WO2005085141A1 - Ozone water and method for production thereof - Google Patents

Ozone water and method for production thereof Download PDF

Info

Publication number
WO2005085141A1
WO2005085141A1 PCT/JP2005/003811 JP2005003811W WO2005085141A1 WO 2005085141 A1 WO2005085141 A1 WO 2005085141A1 JP 2005003811 W JP2005003811 W JP 2005003811W WO 2005085141 A1 WO2005085141 A1 WO 2005085141A1
Authority
WO
WIPO (PCT)
Prior art keywords
ozone
microbubbles
aqueous solution
ozone water
producing
Prior art date
Application number
PCT/JP2005/003811
Other languages
French (fr)
Japanese (ja)
Inventor
Kaneo Chiba
Masayoshi Takahashi
Original Assignee
Reo Laboratory Co., Ltd.
National Institute Of Advanced Industrial Science And Technology (Aist)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reo Laboratory Co., Ltd., National Institute Of Advanced Industrial Science And Technology (Aist) filed Critical Reo Laboratory Co., Ltd.
Priority to US10/591,978 priority Critical patent/US8137703B2/en
Publication of WO2005085141A1 publication Critical patent/WO2005085141A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/18Liquid substances or solutions comprising solids or dissolved gases
    • A61L2/183Ozone dissolved in a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/24Medical instruments, e.g. endoscopes, catheters, sharps
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes

Definitions

  • the present invention has utility in all technical fields, kills microorganisms such as bacteria and viruses, and maintains the effect of suppressing growth for a long period of time.
  • Ozone is known to have a strong oxidizing power, and is used in various fields for the purpose of sterilization, deodorization, and maintaining freshness.
  • a method of sterilizing with ozonated water containing ozone in a gas is used.
  • Patent Document 1 proposes a device for efficiently dissolving ozone in an aqueous solution, and a device for producing ozonated water in which ozone is surely dissolved in an aqueous solution.
  • the above-mentioned ozonized water has a high ozone content at the time of production, but when stored at room temperature and normal pressure, it diffuses from the surface of the aqueous solution within about 12 hours after production. Most of the dissolved ozone disappeared, and the bactericidal effect was remarkably ⁇ reduced, and it was not possible to store it as ozone water for 1JZ for a long period of time.
  • An object of the present invention is to provide ozone water, which is ozone water, which has ozone in an aqueous solution for a long period of time and has an activating effect and a bactericidal effect on living organisms, and a method for controlling the ozone water.
  • ozonized water In order to distinguish the conventional ozone water from the ozone water according to the present invention, the person is referred to as ozonized water and the latter is referred to as ozone water.
  • An object of the present invention is to provide ozone water in which ozone is present in an aqueous solution for a long period of time.
  • the above object of the present invention is that the ozone concentration in the aqueous solution is 0.
  • the present invention which is more effectively achieved when the amount is 1 mg L or more, aims to provide a method for producing ozone water in which ozone is present in an aqueous solution for a long period of time.
  • the object is to apply ozone-containing microbubbles contained in an aqueous solution to a physical stimulus, thereby rapidly reducing the bubble diameter of the microbubbles and producing ozone nanobubbles. Achieved.
  • the above object of the present invention is to provide a method of manufacturing a semiconductor device according to the above, wherein in the process of rapidly reducing the microbubbles, when the bubble diameter is reduced to 200 nm or less, the charge density on the surface of the microbubbles increases, and the electrostatic repulsion force is increased.
  • the aqueous solution near the interface is generated by ions attracted to a gas-liquid interface and electrostatic attraction.
  • Both ions having the opposite signs attracted therein are concentrated in a very small volume to a high concentration, thereby acting as a shell surrounding the periphery of the microbubble, and Stabilizes the ozone nanobubbles by inhibiting the diffusion of the ozone into the aqueous solution Or at the self-gas-liquid interface: the adsorbed ions are hydrogen ions or hydroxide ions, which are attracted to the vicinity of the interface as the electrolyte ions in the aqueous solution.
  • the temperature inside the microbubbles is rapidly increased by adiabatic compression. This effect is more effectively achieved by stabilizing the ozone nanobubbles by giving a physicochemical change associated with an ultra-high temperature around the microbubbles.
  • the above object of the present invention is that the physical stimulus is to discharge the microbubbles using a discharge generator, or that the physical stimulus is generated using an ultrasonic transmitter.
  • the physical stimulus is caused by flowing the aqueous solution by operating a rotating body mounted in a container containing the aqueous solution, and is generated at the time of the flowing.
  • the physical stimulus is obtained by introducing the aqueous solution containing the microbubbles in the container into the circulation circuit in the case where a circulation circuit is formed in the container.
  • a circulation circuit is formed in the container.
  • Fig. 1 shows the particle frequency distribution of ozone nanobubbles according to the present invention (the average distribution is about 140 nm and the standard deviation is about 30 nm). Is).
  • Fig. 2 is a schematic diagram showing the mechanism by which ozone is stably present in an aqueous solution as nanobubbles.
  • FIG. 3 is a side view of an apparatus for producing ozone water using a discharge device.
  • FIG. 4 is a side view of an apparatus for producing ozone water using an ultrasonic generator.
  • FIG. 5 is a side view of an apparatus for producing ozone water by generating a vortex.
  • Fig. 6 is a side view of an apparatus for producing ozone water by generating a vortex by a rotating body.
  • the ozone water of the present invention contains ozone in bubbles having a diameter of 200 nm or less.
  • Ozone water is characterized by comprising ozone water containing ozone nanobubbles containing ozone.
  • Ozone water in the aqueous solution continues to exist in the solution for a long period of one month or more, and has various effects. Yes The ozone water according to the present invention will be described in detail.
  • the ozone water ozone according to the present invention is held as nanobubbles. Nanobubbles are bubbles with a bubble diameter of less than 200 nm as shown in the particle size distribution in Fig. 1.Ozone is dissolved in an aqueous solution for a long period of one month or more. It is characterized by doing.
  • the method for storing ozone water according to the present invention is not particularly limited, and ozone does not disappear from the aqueous solution for one month or more even when stored in a normal container.
  • Fig. 2 shows the mechanism by which ozone water ozone according to the present invention exists as ozone nanobubbles.
  • the smaller bubbles are the higher the dissolution efficiency of ozone inside, becomes unstable and disappears instantaneously.
  • the extremely high concentration of electric charge is concentrated on the gas-liquid interface, preventing the sphere (bubble) from contracting due to the electrostatic repulsion acting between the charges on the opposite sides of the sphere. ing.
  • an inorganic shell mainly composed of electrolyte ions such as iron contained in the aqueous solution is formed around the bubbles, which prevents the internal ozone from dissipating.
  • ozone nanobubbles come into contact with other substances, such as bacteria, because ozone nanobubbles come into contact with ozone nanobubbles, the shells themselves are easily disintegrated because they are different from the shells of surfactants and organic substances. When the shell collapses, the ozone contained inside is easily released into the aqueous solution
  • electrolyte ions such as iron are mainly used due to the action of concentrated high electric fields.
  • a body-like shell is formed around the air bubbles, which prevents the ozone from scattering inside. Since this shell is different from that of surfactants and organic substances, the shell itself tends to collapse easily due to the deviation of the charge around the bubbles generated when the ozone nanobubbles come into contact with other substances such as Itoda. ing .
  • the released ozone can be used for various kinds of spontaneous reactions, killing of microorganisms, bacteria, etc. due to active oxygen and free radicals generated during instantaneous decomposition.
  • the diameter is 10
  • the 50 m ozone microbubbles are rapidly reduced by physical stimulation. Electric conductivity in an aqueous solution of water containing fine ozone bubbles
  • the bubbles are reduced by the rm repulsive force. Inhibits.
  • the aerobic reaction force of a sphere is defined as a small spherical bubble having a spherical shape, and the curvature of the sphere increases as the sphere shrinks and shrinks. Since the reduced ozone microbubbles are pressurized, they tend to shrink more as the ozone microbubbles shrink. However, when the bubble diameter becomes smaller than 200 ⁇ m, the electrostatic repulsion becomes apparent, and the bubble shrinkage stops.
  • the static electricity is reduced.
  • the electrical repulsion is strong enough to stabilize the bubble by balancing the shrinking and repulsion forces.
  • the bubble diameter at the time of this stabilization differs depending on the concentration and type of the electrolyte ion. However, as shown in FIG. 1, the size is 200 nm or less.
  • the feature of ozone nanobubbles is that they not only maintain ozone in a pressurized state inside, but also form an extremely strong electric field due to the concentrated surface charge. This strong electric field has the power to strongly influence the ozone inside the bubbles ⁇ the surrounding aqueous solution, and has a physiological activating effect ⁇ a bactericidal effect, a chemical reactivity, etc.
  • Fig. 3 is a side view of an apparatus for producing ozone water using a discharge device.
  • the microbubble generator 3 takes in the aqueous solution in the container 1 through the water intake port 31 and injects ozone for producing ozone microbubbles into the microbubble generator 3 from an inlet (not shown).
  • the ozone is injected, mixed with the aqueous solution taken in through the water intake 31, and the microbubble generator is supplied through the aqueous solution outlet 32 containing ozone nanobubbles.
  • the container 1 has an anode 21 and a cathode 22, and the anode 21 and the cathode 22 are connected to a discharge generator 2.
  • ozone microbubbles are generated using the microbubble generator 3 in the container 1 containing the aqueous solution.
  • an electrolyte is added so that the electric conductivity of the aqueous solution is at least 300 S / cm by adding the decomposition of iron, manganese, potassium and other minerals.
  • the discharge generator 2 an aqueous solution containing ozone microbubbles in the container 1 was subjected to underwater discharge.
  • the concentration of ozone microbubbles in container 1 is saturated. It is preferable to have reached 50% or more of the degree.
  • the voltage of the underwater discharge is preferably from 2000 to 300 V.
  • Ozone microbubbles in water are rapidly reduced to nano-level bubbles due to shock wave stimulation (physical stimulation) associated with underwater discharge.
  • the ions existing around the bubble at the time of the reduction have a rapid reduction speed, so there is no time to deviate into the surrounding water, and the ions are concentrated at a high speed as the bubble is reduced.
  • the concentrated ions form a very strong high electric field around the bubbles. Due to the presence of this high electric field, hydrogen ions and hydroxide ions existing at the liquid interface have a bonding relationship with electrolyte ions having the opposite sign existing around the bubbles, forming an inorganic shell around the bubbles. . Since this shell prevents spontaneous dissolution of ozone in bubbles into the aqueous solution, ozone nanobubbles are stably contained in the aqueous solution without dissolving.
  • the manufactured ozone nanobubbles are made up of extremely small bubbles of about 200 nm or less, so they hardly receive buoyancy in water, and there is almost no rupture on the water surface observed with ordinary bubbles. .
  • Fig. 4 is a side view of an apparatus for producing ozone water using an ultrasonic generator.
  • microbubble generator Similar to the method of producing ozone water by electric discharge, a microbubble generator
  • 3.Ozone microbubbles are produced at the water intake 3 1 and the ozone nanobubble-containing aqueous solution outlet 3 2, and the ozone microbubbles are sent into the container 1.
  • the ultrasonic generator 4 is installed in the container 1.
  • the location of the m4 is not limited, but it is efficient To produce nanobubbles, it is preferable to install an ultrasonic generator 4 between the water intake 31 and the ozone nanobubble-containing aqueous solution outlet 32.
  • ozone microbubbles are generated using a microbubble generator 3 in a container 1 containing water containing electrolyte ions.
  • the ultrasonic wave is applied to the aqueous solution containing ozone microbubbles in the container 1 using the ultrasonic generator 4.
  • the concentration of the ozone microbubbles in the container 1 has reached 50% or more of the saturated concentration.
  • Transmission frequency of ultrasonic wave is 20 kHz ⁇ : LMHz is preferable, and irradiation of ultrasonic wave is 3
  • Fig. 5 is a side view of the device when using compression, expansion and vortex to produce ozone water. Similar to the method of producing ozone water by electric discharge and the method of producing ozone water by ultrasonic irradiation, microbubbles are produced at the microbubble generator 3, the water intake 31, and the ozone nanobubble-containing water solution outlet 32, and ozone is produced. Send microbubbles into container 1.
  • a circulation pump 5 for partially circulating a water solution containing ozone microbubbles in the container 1 is connected to the container 1, and a large number of pipes (circulation pipes) in which the circulation pump 5 is installed are provided.
  • An orifice (perforated plate) 6 with a hole is connected and connected to the container 1.
  • the aqueous solution containing the ozone microbubbles in the container 1 is caused to flow in the circulation pipe by the circulation pump 5, and the orifice (perforated plate) Passing through 6 causes compression, expansion and eddy currents.
  • ozone microbubbles are generated using a microbubble generator 3 in a container 1 containing water containing charged ions.
  • the circulation pump 5 is operated to partially circulate the aqueous solution containing ozone microbubbles.
  • An aqueous solution containing ozone microbubbles is pushed out by the circulation pump 5, and compression, expansion, and vortex flow are generated in the pipe before and after passing through the orifice (multi-hole plate) 6.
  • Ozone microbubbles that have a charge are generated by eddy currents due to the compression and expansion of water and eddy currents generated in the pipes, and the ozone microbubbles are rapidly reduced to ozone nanobubbles. And stabilize.
  • the order of the circulation pump 5 and the orifice (perforated plate) 6 in the flow path may be reversed.
  • the orifice (perforated plate) 6 is single in FIG. 6, a plurality of PXs may be placed, and the circulating pump 5 may be omitted if necessary. It is also possible to use the driving force for the aqueous solution or the flow of the aqueous solution due to the height difference.
  • ozone nanobubbles can also be produced by installing a rotating body 7 for generating a vortex in the container 1. By rotating the rotating body 7 at 500 000 rP m, it is possible to efficiently generate a vortex in the container 1.
  • the ozone concentration during production is 1.
  • the ozone water was placed in a glass bottle, covered, and stored in a cool, dark place.
  • the zonal nanobubbles present in the ozone water according to the present invention were measured by a dynamic light scattering photometer.
  • the center particle diameter was about 140 nm (standard deviation about 3 nm). (0 nm) was stable.
  • the ozone concentration of the ozone water was measured by an ultraviolet absorption method after June, it was 1 • OmgZL, and it was confirmed that the ozone concentration contained a sufficient amount of ozone for sterilization and the like.
  • the action of electrolyte ion is important for stabilization of ozone nanobubbles in ozone water according to the present invention.
  • the same amount of the ozone water according to the present invention was mixed in 100 mL of spring water, and the change in the number of bacteria was examined. ,) 96 bacteria / 1 ml of general bacteria in spring water, E. coli 20 MPN / 1
  • ozone in ozone water is contained as nanobubbles having a bubble diameter of 200 nm or less, and ozone is contained in an aqueous solution for a long period of one month or more. It is possible to maintain the effect of ozone in a stable and stable manner through medical treatments, food handling sites, aquaculture and production of seafood and terrestrial organisms, etc. Since ozone is retained as nanobubbles with a bubble diameter of 200 nm or less, sterilization by ozone and the like can be performed at the site, drainage and respiration of fish and shellfish are carried out. For terrestrial organisms, it is now possible to kill harmful microorganisms such as bacteria and viruses that are taken into living organisms by drinking and to suppress the growth of terrestrial organisms. Industrial Applicability ⁇
  • ozone can be dissolved in an aqueous solution over a period of one month or more. This makes it possible to maintain the effect of ozone stably, and it is necessary to sterilize medical and food-related seafood. It can be used in fields such as aquaculture of terrestrial organisms, livestock farming, etc.Because the ozone is held as a nanopable with a diameter of 200 nm or less, drainage and respiration of fish and shellfish In terrestrial organisms, it is taken into living organisms by drinking, and it is a treasure trove of bacteria and viruses that exist in the body.
  • Patent Document 1

Abstract

Ozone nano bubbles capable of being present in a solution for a long period of time, which are produced by a method comprising applying a physical stimulus to ozone-containing fine bubbles contained in an aqueous solution, to thereby reduce the bubble diameter of the fine bubble rapidly; and a method for producing such ozone bubbles. The above ozone water is potentially useful in all technical fields, and maintains the effect to kill microbes such as bacteria and virus or to inhibit the multiplication thereof, over a long period of time.

Description

オゾン水およびその製造方法 Ozone water and method for producing the same
技術分野 Technical field
本発明は、 あ らゆる技術分野に有用性が潜在し、 細菌やクィ ルス等の微生物を死滅および増殖抑制効果を長期に渡つて維持 明  INDUSTRIAL APPLICABILITY The present invention has utility in all technical fields, kills microorganisms such as bacteria and viruses, and maintains the effect of suppressing growth for a long period of time.
する とが可能であるオゾン水に関するものである。 It is about ozone water that can be done.
田 背 技術  Technology
ォゾンは、 強力な酸化力をもつ こ とが知 られてお り 、 权菌 脱臭 鮮度保持等の目的で様々な分野で使用されている なか でも水溶液を殺菌等する場合、 水溶液中の気泡内の気体にォゾ ンを入れたオゾン化水で殺菌する方法が使用されている。  Ozone is known to have a strong oxidizing power, and is used in various fields for the purpose of sterilization, deodorization, and maintaining freshness. A method of sterilizing with ozonated water containing ozone in a gas is used.
例えば、 特許文献 1 では、 ォゾンを効率的に水溶液中に溶解 させるための装置であ り 、 オゾンが水溶液中に確実に溶存させ るォゾン化水製造装 を 案している。  For example, Patent Document 1 proposes a device for efficiently dissolving ozone in an aqueous solution, and a device for producing ozonated water in which ozone is surely dissolved in an aqueous solution.
しかし、 上述したようなォゾン化水は 、 製造時には高いォゾ ン含有量を有している のの 常温 · 常圧下での保存では製造 後 1 2時間程度で水溶液表面からの拡散等によ り溶解したォ ゾンの大部分が消滅してしまい 、 殺菌効果が著し <低下し、 ォ ゾン水として長期間に 1JZ て保管してお < ことができないとい た問題があつた  However, the above-mentioned ozonized water has a high ozone content at the time of production, but when stored at room temperature and normal pressure, it diffuses from the surface of the aqueous solution within about 12 hours after production. Most of the dissolved ozone disappeared, and the bactericidal effect was remarkably <reduced, and it was not possible to store it as ozone water for 1JZ for a long period of time.
発明の開示 Disclosure of the invention
本発明は上述したよう な実情に鑑みてなされたものであ り 、 ォゾン水であって、 長期間水溶液中にオゾンが存在し、 生物に 対する活性効果や殺菌効果等を有するオゾン水およびその制 ^ 方法を提供する こ とを目的とする。 The present invention has been made in view of the above situation, An object of the present invention is to provide ozone water, which is ozone water, which has ozone in an aqueous solution for a long period of time and has an activating effect and a bactericidal effect on living organisms, and a method for controlling the ozone water.
なあ、 従来のオゾン水と本発明に係るオゾン水を区別するため に、 刖者をオゾン化水、 後者をオゾン水と表現する。 In order to distinguish the conventional ozone water from the ozone water according to the present invention, the person is referred to as ozonized water and the latter is referred to as ozone water.
本発明は、 長期間水溶液中にオゾンが存在するォゾン水を提 供する とを 目的と し、 本発明の上記目的は、 気泡の直 が 2 An object of the present invention is to provide ozone water in which ozone is present in an aqueous solution for a long period of time.
0 0 n m以下であって、 前記気泡内にオゾンを含有するナノバ ブルが含まれる水溶液からなる ことによって達成される。 This is achieved by using an aqueous solution containing a nanobubble containing ozone in the bubbles.
また 、 本発明の上記目的は、 前記水溶液中のオゾン濃度は 0 . Further, the above object of the present invention is that the ozone concentration in the aqueous solution is 0.
1 m g L以上である こ とによってよ り効果的に達成される 本発明は、 長期間水溶液中にオゾンが存在するォゾン水の製 造方法を提供する こ とを 目的と し、 本発明の上記目的は 、 水溶 液中に含まれるオゾンを含有する微小気泡に物理的剌激を加え る こ とによ り 、 前記微小気泡の気泡径を急激に縮小させ 、 ォゾ ンナノバブルを製造する ことによって達成される。 The present invention, which is more effectively achieved when the amount is 1 mg L or more, aims to provide a method for producing ozone water in which ozone is present in an aqueous solution for a long period of time. The object is to apply ozone-containing microbubbles contained in an aqueous solution to a physical stimulus, thereby rapidly reducing the bubble diameter of the microbubbles and producing ozone nanobubbles. Achieved.
また 、 本発明の上記目的は、 前記微小気泡を急激に縮小させ る過程において、 気泡径が 2 0 0 n m以下まで縮小する と刖記 微小気泡表面の電荷密度が上昇し、 静電気的な反発力が生じ、 前記微小気泡の縮小が停止する こ とによって、 或いは前記微小 気泡を 激に縮小させる過程において、 気液界面に吸着したィ オンと静電気的な引力によ り 、 前記界面近傍の前記水溶液中に 引き寄せられた反対符号を持つ両方のイ オンが微小な体積の中 に高濃度に濃縮する こ とによ り 、 前記微小気泡周囲を取り 囲む 殻の働さをし、 前記微小気泡内の前記オゾンの前記水溶液への 拡散を阻害する こ とによって、 前記オゾンナノバブルを安定化 させる とによつて、 或いは前 己気液界面に:吸着したィ才ンは、 水素ィォンや水酸化物イオンであ り 、 前記界面近傍に引き寄せ られたィォンと して水溶液中の電解質ィ ォンを利用する こ と に よ り 前記ォゾンナノバブルを安定化させる こ とによつて 、 或い は刖記微小気泡を急激に縮小させる過程において、 断熱的圧縮 によつて前記微小気泡内温度が急激に上昇し、 前記微小気泡の 周囲に超高温度に伴う物理化学的な変化を与える こ とで m記ォ ゾンナノバブルを安定化させる こ と によつてよ り効果的に達成 される Further, the above object of the present invention is to provide a method of manufacturing a semiconductor device according to the above, wherein in the process of rapidly reducing the microbubbles, when the bubble diameter is reduced to 200 nm or less, the charge density on the surface of the microbubbles increases, and the electrostatic repulsion force is increased. When the reduction of the microbubbles is stopped, or during the process of sharply reducing the microbubbles, the aqueous solution near the interface is generated by ions attracted to a gas-liquid interface and electrostatic attraction. Both ions having the opposite signs attracted therein are concentrated in a very small volume to a high concentration, thereby acting as a shell surrounding the periphery of the microbubble, and Stabilizes the ozone nanobubbles by inhibiting the diffusion of the ozone into the aqueous solution Or at the self-gas-liquid interface: the adsorbed ions are hydrogen ions or hydroxide ions, which are attracted to the vicinity of the interface as the electrolyte ions in the aqueous solution. In the process of stabilizing the ozone nanobubbles by using the method described above, or in the process of rapidly reducing the microbubbles, the temperature inside the microbubbles is rapidly increased by adiabatic compression. This effect is more effectively achieved by stabilizing the ozone nanobubbles by giving a physicochemical change associated with an ultra-high temperature around the microbubbles.
さ ら に 本発明の上記目的は 、 刖記物理的刺激は、 放電発生 装置を用いて前記微小気泡に放電する ことである ことによって、 或いは前記物理的刺激は、 超音波発信装置を用いて刖記微小気 泡に超音波照射する こ とによって、 或いは前記物理的刺激は、 前記水溶液が入った容器内に取り付けた回転体を作動させる こ とによ り前記水溶液を流動させ、 前記流動時に生じる圧縮 、 膨 張および渦流を利用する こ とである によって、 或いは m  Further, the above object of the present invention is that the physical stimulus is to discharge the microbubbles using a discharge generator, or that the physical stimulus is generated using an ultrasonic transmitter. By irradiating the micro bubbles with ultrasonic waves, or the physical stimulus is caused by flowing the aqueous solution by operating a rotating body mounted in a container containing the aqueous solution, and is generated at the time of the flowing. By utilizing compression, expansion and eddy currents, or m
前記物理 的刺激は、 前記容器に循環回路を形成した場合において HU ø己 容器内の前記微小気泡が含まれる前記水溶液を前記循環回路へ 刖記微小気泡が含まれる前記水溶液を取 り入れた後 記循環 系回路内に備えつけられた単一若し く は多数の孔を持つォ U フ ィ ス若し く は多孔板を通過させる こ とで圧縮、 膨張お び渦流 を生じさせる ことによってよ り効果的に達成される。 図面の簡単な説明  The physical stimulus is obtained by introducing the aqueous solution containing the microbubbles in the container into the circulation circuit in the case where a circulation circuit is formed in the container. By passing through a single or multiple perforated plate or perforated plate provided in the circulation circuit, compression, expansion and eddy currents are generated. Achieved effectively. Brief Description of Drawings
第 1 図 本発明に係るオゾン水のオゾンナノバブルの粒 頻度 分布である (平均分布は約 1 4 0 n mで標準偏差は約 3 0 n m である)。 Fig. 1 shows the particle frequency distribution of ozone nanobubbles according to the present invention (the average distribution is about 140 nm and the standard deviation is about 30 nm). Is).
第 2 図 ナノバブルと してオゾンが安定して水溶液中に存在し ているメカニズムを表わした模式図である。 Fig. 2 is a schematic diagram showing the mechanism by which ozone is stably present in an aqueous solution as nanobubbles.
第 3 図 放電装置を用いてオゾン水を製造する装置の側面図で ある。 FIG. 3 is a side view of an apparatus for producing ozone water using a discharge device.
第 4 図 超音波発生装置を用いてオゾン水を製造する装置の側 面図である。 FIG. 4 is a side view of an apparatus for producing ozone water using an ultrasonic generator.
第 5 図 渦流を起してオゾン水を製造する装置の側面図である。 第 6 図 回転体で渦流を起してオゾン水を製造する装置の側面 図である。 符号の説明 FIG. 5 is a side view of an apparatus for producing ozone water by generating a vortex. Fig. 6 is a side view of an apparatus for producing ozone water by generating a vortex by a rotating body. Explanation of symbols
1 容器 1 container
2 放電発生装置 2 Discharge generator
2 1 陽極 2 1 Anode
2 2 陰極  2 2 Cathode
3 微小気泡発生装置  3 Microbubble generator
3 1 取水口 3 1 Intake
3 2 オゾンナノバブル含有水溶液排出口  3 2 Ozone nanobubble-containing aqueous solution outlet
4 超音波発生装置 4 Ultrasonic generator
5 循環ポンプ  5 Circulation pump
6 オリ フィ ス (多孔板)  6 Orifice (perforated plate)
7 回転体 発明を実施するための最良の形態  7 Rotating body Best mode for carrying out the invention
本発明のオゾン水は、 直径 2 0 0 n m以下の気泡内にオゾン を含有するォゾンナノバブルが含まれる水溶液 (ォゾン水) か らなる と を特徴とする のォゾン水は 水溶液中のォゾン が 1 月 以上の長期間に つて溶液中に存在し続け 、 様々な効果 を有する 以下 本 明に係るォゾン水について詳細に説明す る。 The ozone water of the present invention contains ozone in bubbles having a diameter of 200 nm or less. Ozone water is characterized by comprising ozone water containing ozone nanobubbles containing ozone. Ozone water in the aqueous solution continues to exist in the solution for a long period of one month or more, and has various effects. Yes The ozone water according to the present invention will be described in detail.
本 明に係るォゾン水のオゾンはナノバブルと して保持され ている 。 ナノバブルとは第 1 図の粒径分布が示すよ う に気泡径 が 2 0 0 n m以下の大きさを持っている気泡のこ とをいい 1 月以上の長期に渡っ てオゾンが水溶液中に溶存する こ とを特徴 とする 。 本発明に係るオゾン水の保存方法は、 特に限定される のではなく 、 通常の容器に入れて保存しても、 1 月 以上ォゾ ンが水溶液中から消滅する ことはない。  The ozone water ozone according to the present invention is held as nanobubbles. Nanobubbles are bubbles with a bubble diameter of less than 200 nm as shown in the particle size distribution in Fig. 1.Ozone is dissolved in an aqueous solution for a long period of one month or more. It is characterized by doing. The method for storing ozone water according to the present invention is not particularly limited, and ozone does not disappear from the aqueous solution for one month or more even when stored in a normal container.
本発明に係るォゾン水のオゾンがオゾンナノバブルと しての 存在するメカニズムを第 2 図に示す。 オゾン微小気泡の場 に は 小さな気泡ほど内部のオゾンの溶解効率が高く 、 不安定な 状 とな り 瞬時に消滅する。 オゾンナノバブルの場合、 気液界 面に極めて高濃度の電荷が濃縮しているため、 球の反対側同士 の電荷間に働く 静電気的な反発力によ り球 (気泡) が収縮する とを妨げている。 また、 濃縮した高電場の作用によ り 、 水溶 液中に含まれる鉄等の電解質イオンを主体と した無機質の殻を 気泡周囲に形成し、 これが内部のオゾンの散逸を防止している の殻は界面活性剤や有機物の殻とは異なるため、 細菌等の他 の物質とオゾンナノバブルが接触した時に生じる気泡周囲の 荷の 脱によ り 、 殻自体が簡単に崩壊する。 殻が崩壊したとさ には 内部に含まれるオゾンは簡単に水溶液中に放出される  Fig. 2 shows the mechanism by which ozone water ozone according to the present invention exists as ozone nanobubbles. In the field of ozone microbubbles, the smaller bubbles are, the higher the dissolution efficiency of ozone inside, becomes unstable and disappears instantaneously. In the case of ozone nanobubbles, the extremely high concentration of electric charge is concentrated on the gas-liquid interface, preventing the sphere (bubble) from contracting due to the electrostatic repulsion acting between the charges on the opposite sides of the sphere. ing. Also, due to the action of the concentrated high electric field, an inorganic shell mainly composed of electrolyte ions such as iron contained in the aqueous solution is formed around the bubbles, which prevents the internal ozone from dissipating. Because ozone nanobubbles come into contact with other substances, such as bacteria, because ozone nanobubbles come into contact with ozone nanobubbles, the shells themselves are easily disintegrated because they are different from the shells of surfactants and organic substances. When the shell collapses, the ozone contained inside is easily released into the aqueous solution
また 、 濃縮した高電場の作用によ り鉄等の電解質イ オンを主 体と した 機質の殻を気泡周囲に形成し、 これが内部のォゾン の散 を防止している 。 この殻は界面活性剤や有機物の殻とは 異なるため 、 糸田菌等の他の物質とオゾンナノバブルが接触した 時に生じる気泡周囲の電荷の逸脱によ り 、 殻自体が簡単に崩壊 する傾向を持つている 。 放出されたオゾンは瞬時に分解をする ため の時に発生した活性酸素やフ リ ーラジカルによ り様々 な化子反応ゃ微生物の死滅、 細菌等に利用できる。 In addition, electrolyte ions such as iron are mainly used due to the action of concentrated high electric fields. A body-like shell is formed around the air bubbles, which prevents the ozone from scattering inside. Since this shell is different from that of surfactants and organic substances, the shell itself tends to collapse easily due to the deviation of the charge around the bubbles generated when the ozone nanobubbles come into contact with other substances such as Itoda. ing . The released ozone can be used for various kinds of spontaneous reactions, killing of microorganisms, bacteria, etc. due to active oxygen and free radicals generated during instantaneous decomposition.
本 明に係るォゾン水の製造方法においては 直径が 1 0 In the method for producing ozone water according to the present invention, the diameter is 10
5 0 mのォゾン微小気泡を物理的な剌激によ て急速に縮小 ささせせるる。 オォゾゾンン微微小小気気泡泡がが含含ままれれるる水水溶溶液液中中のの電気 ¾導度が 3The 50 m ozone microbubbles are rapidly reduced by physical stimulation. Electric conductivity in an aqueous solution of water containing fine ozone bubbles
0 0 S c m以上となるよ に鉄 マンガン 力ルシゥム、 ナ 卜 U クム 、 マグネシゥム等のィォン その他 ネラル類のィ ォン等の電解質を 入させる と れら の r m 的な反発力に よ 気泡の縮小を阻害する。 の静 気的な反 力 とは 球形 ををししたた微微小小気気泡泡ににおおいいてて縮縮小小にに伴伴いい球球のの曲曲率率がが増加する とに よ り 球の反対面に存在する同符号のィ ォン同士に作用する静 電気力の とである 縮小したォゾン微小気泡は加圧されてい るため ォゾン微小気泡が縮小するほど よ り縮小しょう とす る傾向が まるが 気泡径が 2 0 0 η mよ り ち小さ く なる と こ の静電気的な反発力が顕在化してきて、 気泡の縮小が停止する。 水溶液中に電気伝導度が 3 0 0 n S Z c m以上になるよう に 鉄、 マンガン、 カルシウム、 ナ ト リ ウム、 マグネシウム等のィ オン、 ミネラル類のイ オン等の電解質を混入させる と、 この静 電気的な反発力が十分に強く 働き、 気泡は縮小する力 と反発力 のバラ ンスを取って安定化する。 この安定化したときの気泡径 (ナノバブルの気泡径) は電解質ィォンの濃度や種類によ り異 なるが、 第 1 図に示すよう に、 2 0 0 n m以下の大きさである。 ォゾンナノバブルの特徴は、 オゾンを内部に加圧された状態 で維持しているのみでな く 、 濃縮した表面電荷によ り極めて強 い電場を形成している こ とである。 この強い電場は、 気泡内部 のォゾンゃ周囲の水溶液に強力な影響を与える力を持っており、 生理的な活性効果ゃ殺菌効果、 化学的な反応性等を有するよ う になる When the electrolyte such as iron, manganese, potassium, magnesium, etc., and other ions such as neon, etc., are introduced, the bubbles are reduced by the rm repulsive force. Inhibits. The aerobic reaction force of a sphere is defined as a small spherical bubble having a spherical shape, and the curvature of the sphere increases as the sphere shrinks and shrinks. Since the reduced ozone microbubbles are pressurized, they tend to shrink more as the ozone microbubbles shrink. However, when the bubble diameter becomes smaller than 200 ηm, the electrostatic repulsion becomes apparent, and the bubble shrinkage stops. When an electrolyte such as ions such as iron, manganese, calcium, sodium, and magnesium, and ions such as minerals is mixed into the aqueous solution so that the electric conductivity is 300 nSZ cm or more, the static electricity is reduced. The electrical repulsion is strong enough to stabilize the bubble by balancing the shrinking and repulsion forces. The bubble diameter at the time of this stabilization (bubble diameter of nanobubbles) differs depending on the concentration and type of the electrolyte ion. However, as shown in FIG. 1, the size is 200 nm or less. The feature of ozone nanobubbles is that they not only maintain ozone in a pressurized state inside, but also form an extremely strong electric field due to the concentrated surface charge. This strong electric field has the power to strongly influence the ozone inside the bubbles 水溶液 the surrounding aqueous solution, and has a physiological activating effect ゃ a bactericidal effect, a chemical reactivity, etc.
第 3 図は放電装置を用いてオゾン水を製造する装置の側面図 である  Fig. 3 is a side view of an apparatus for producing ozone water using a discharge device.
微小気泡発生装置 3 は取水口 3 1 によって容器 1 内の水溶液 を取 Ό込み、 微小気泡発生装置 3 内にオゾン微小気泡を製造す るためのオゾンを注入する注入口 (図示せず) か らオゾンが注 入され 、 取水口 3 1 によって取り込んだ水溶液と混合させて、 ォゾンナノバブル含有水溶液排出口 3 2 か ら微小気泡発生装置 The microbubble generator 3 takes in the aqueous solution in the container 1 through the water intake port 31 and injects ozone for producing ozone microbubbles into the microbubble generator 3 from an inlet (not shown). The ozone is injected, mixed with the aqueous solution taken in through the water intake 31, and the microbubble generator is supplied through the aqueous solution outlet 32 containing ozone nanobubbles.
3 で製造したォゾン微小気泡を容器 1 内へ送る。 これによ り 、 容器 1 内にォゾン微小気泡が存在するよ う になる。 容器 1 内に は 、 陽極 2 1 と陰極 2 2 があ り 、 陽極 2 1 と陰極 2 2 は放電発 生装置 2 に接続されている。 Send the ozone microbubbles produced in step 3 into container 1. As a result, ozone microbubbles are present in the container 1. The container 1 has an anode 21 and a cathode 22, and the anode 21 and the cathode 22 are connected to a discharge generator 2.
まず、 水溶液の入った容器 1 内に微小気泡発生装置 3 を用い てオゾン微小気泡を発生させる。  First, ozone microbubbles are generated using the microbubble generator 3 in the container 1 containing the aqueous solution.
次に鉄、 マンガン、 力ルシゥムその他ミネフル類の 解質を 加えて水溶液の電気伝導度が 3 0 0 S / c m以上になるよ う に電解質を加える。  Next, an electrolyte is added so that the electric conductivity of the aqueous solution is at least 300 S / cm by adding the decomposition of iron, manganese, potassium and other minerals.
放電発生装置 2 を用いて 、 容器 1 内のォゾン微小気泡が含ま れる水溶液に水中放電を行 Ό 。 よ り効率的にォゾンナノパブル を製造させるため、 容器 1 内のォゾン微小気泡の濃度が飽和濃 度の 5 0 %以上に達している場合が好ま しい。 また、 水中放電 の電圧は 2 0 0 0 〜 3 0 0 0 Vが好ましい。 Using the discharge generator 2, an aqueous solution containing ozone microbubbles in the container 1 was subjected to underwater discharge. In order to produce ozone nanopables more efficiently, the concentration of ozone microbubbles in container 1 is saturated. It is preferable to have reached 50% or more of the degree. Further, the voltage of the underwater discharge is preferably from 2000 to 300 V.
水中放電に伴う衝撃波の刺激 (物理的刺激) によ り 、 水中の ォゾン微小気泡は急速に縮小され、 ナノ レベルの気泡となる。  Ozone microbubbles in water are rapidly reduced to nano-level bubbles due to shock wave stimulation (physical stimulation) associated with underwater discharge.
の時に気泡周囲に存在しているイ オン類は、 縮小速度が急速 なため、 周囲の水中に逸脱する時間が無く 、 気泡の縮小に伴つ てノ 速に濃縮する。 濃縮されたイ オン類は気泡周囲に極めて強 い高電場を形成する。 この高電場の存在のも とで 液界面に存 在する水素イ オンや水酸化物イオンは気泡周囲に存在する反対 符号を持つ電解質イオンと結合関係を持ち、 気泡周囲に無機質 の殻を形成する。 この殻は気泡内のオゾンの水溶液中への 自然 溶解を阻止するため、 オゾンナノバブルは溶解する こ とな く 安 定的に水溶液中に含まれる。 なお、 製造されるォゾンナノバブ ルは 2 0 0 n m以下程度の極めて微小な気泡でめるため、 水中 における浮力をほとんど受ける こ とが無く 、 通常の気泡で認め られる水表面での破裂は皆無に近い。  The ions existing around the bubble at the time of the reduction have a rapid reduction speed, so there is no time to deviate into the surrounding water, and the ions are concentrated at a high speed as the bubble is reduced. The concentrated ions form a very strong high electric field around the bubbles. Due to the presence of this high electric field, hydrogen ions and hydroxide ions existing at the liquid interface have a bonding relationship with electrolyte ions having the opposite sign existing around the bubbles, forming an inorganic shell around the bubbles. . Since this shell prevents spontaneous dissolution of ozone in bubbles into the aqueous solution, ozone nanobubbles are stably contained in the aqueous solution without dissolving. The manufactured ozone nanobubbles are made up of extremely small bubbles of about 200 nm or less, so they hardly receive buoyancy in water, and there is almost no rupture on the water surface observed with ordinary bubbles. .
物理的剌激と して超音波をオゾン微小気泡に照射する こ とに よ 、 ォゾン水を製造する方法を説明する。 なお 、 上述した内 容と重複する箇所については説明を省略する。  A method for producing ozone water by irradiating ultrasonic waves to ozone microbubbles as physical stimulation will be described. Note that the description of the same portions as those described above is omitted.
第 4 図は超音波発生装置を用いてオゾン水を製造する装置の 側面図であな  Fig. 4 is a side view of an apparatus for producing ozone water using an ultrasonic generator.
放電によるオゾン水の製造方法と同様に、 微小気泡発生装置 Similar to the method of producing ozone water by electric discharge, a microbubble generator
3 、 取水口 3 1 およびオゾンナノバブル含有水溶液排出口 3 2 でォゾン微小気泡を製造し、 オゾン微小気泡を容器 1 内へ送る 容 1 内には超音波発生装置 4が設置されている 超音波発生 m 4 の設置場所は特に限定されていないが、 効率よ く ォゾン ナノバブルを製造するには取水口 3 1 とオゾンナノバブル含有 水溶液排出口 3 2 の間に超音波発生装置 4 を設置する こ とが好 ましい。 3.Ozone microbubbles are produced at the water intake 3 1 and the ozone nanobubble-containing aqueous solution outlet 3 2, and the ozone microbubbles are sent into the container 1.The ultrasonic generator 4 is installed in the container 1. The location of the m4 is not limited, but it is efficient To produce nanobubbles, it is preferable to install an ultrasonic generator 4 between the water intake 31 and the ozone nanobubble-containing aqueous solution outlet 32.
まず、 電解質イオンを含んだ水の入った容器 1 内に微小気泡 発生装置 3 を用いてオゾン微小気泡を発生させる。  First, ozone microbubbles are generated using a microbubble generator 3 in a container 1 containing water containing electrolyte ions.
次に、 超音波発生装置 4 を用いて、 超音波を容器 1 内のォゾ ン微小気泡が含まれる水溶液に照射する。 よ り効率的にォゾン 水を製造させるため、 容器 1 内のオゾン微小気泡の濃度が飽和 濃度の 5 0 %以上に達している場合が好ましい。 超音波の発信 周波数は 2 0 k H z 〜 : L M H z が好ま し く 、 超音波の照射は 3 Next, the ultrasonic wave is applied to the aqueous solution containing ozone microbubbles in the container 1 using the ultrasonic generator 4. In order to produce ozone water more efficiently, it is preferable that the concentration of the ozone microbubbles in the container 1 has reached 50% or more of the saturated concentration. Transmission frequency of ultrasonic wave is 20 kHz ~: LMHz is preferable, and irradiation of ultrasonic wave is 3
0秒間隔で発振と停止を繰り返すこ とが好ま しいが、 連続に照 射してもよい。 It is preferable to repeat the oscillation and stop at 0-second intervals, but it is also possible to irradiate continuously.
次に、 物理的刺激と して渦流を起こすこ と によ り 、 ォゾン水 を製造する方法について説明する。 なお、 上述した内容と重複 する箇所については説明を省略する。  Next, a method for producing ozone water by generating a vortex as a physical stimulus will be described. Note that the description of the same parts as described above will be omitted.
第 5 図はオゾン水を製造するために圧縮、 膨張および渦流を 用いた場合の装置の側面図である。 放電によるオゾン水の製造 方法および超音波照射によるオゾン水の製造方法と同様に、 微 小気泡発生装置 3 、 取水口 3 1 およびオゾンナノバブル含有水 溶液排出口 3 2 で微小気泡を製造し、 オゾン微小気泡を容器 1 内へ送る。 容器 1 には容器 1 内のオゾン微小気泡が含まれる水 溶液を部分循環させるための循環ポンプ 5 が接続されてお り 、 循環ポンプ 5 が設置されている配管 (循環配管) 内には多数の 孔を持つオリ フ ィ ス (多孔板) 6 が接続され、 容器 1 と連結し ている。 容器 1 内のオゾン微小気泡が含まれる水溶液は循環ポ ンプ 5 によ り循環配管内を流動させられ、 オリ フィ ス (多孔板) 6 を通過する ことで圧縮、 膨張および渦流を生じさせる。 Fig. 5 is a side view of the device when using compression, expansion and vortex to produce ozone water. Similar to the method of producing ozone water by electric discharge and the method of producing ozone water by ultrasonic irradiation, microbubbles are produced at the microbubble generator 3, the water intake 31, and the ozone nanobubble-containing water solution outlet 32, and ozone is produced. Send microbubbles into container 1. A circulation pump 5 for partially circulating a water solution containing ozone microbubbles in the container 1 is connected to the container 1, and a large number of pipes (circulation pipes) in which the circulation pump 5 is installed are provided. An orifice (perforated plate) 6 with a hole is connected and connected to the container 1. The aqueous solution containing the ozone microbubbles in the container 1 is caused to flow in the circulation pipe by the circulation pump 5, and the orifice (perforated plate) Passing through 6 causes compression, expansion and eddy currents.
まず 電荷質イ オンを含んだ水の入った容器 1 内に微小気泡 発生装置 3 を用いてオゾン微小気泡を発生させる。  First, ozone microbubbles are generated using a microbubble generator 3 in a container 1 containing water containing charged ions.
次に のオゾン微小気泡が含まれる水溶液を部分循環させ るため 循環ポンプ 5 を作動させる。 この循環ポンプ 5 によ り ォゾン微小気泡が含まれる水溶液が押し出され、 オリ フィ ス (多 孔板) 6 を通過前及び通過後の配管内で圧縮、 膨張及び渦流が 発生する 通過時の微小気泡の圧縮や膨張によ り 、 および配管 内で発生した渦流によ り電荷を持ったオゾン微小気泡が渦電流 を発生させる こ と によ り オゾン微小気泡は急激に縮小されォゾ ンナノバブルと して安定化する。 なお、 循環ポンプ 5 とォ フ ィ ス (多孔板) 6 の流路における順序は逆でもよい。  Next, the circulation pump 5 is operated to partially circulate the aqueous solution containing ozone microbubbles. An aqueous solution containing ozone microbubbles is pushed out by the circulation pump 5, and compression, expansion, and vortex flow are generated in the pipe before and after passing through the orifice (multi-hole plate) 6. Ozone microbubbles that have a charge are generated by eddy currents due to the compression and expansion of water and eddy currents generated in the pipes, and the ozone microbubbles are rapidly reduced to ozone nanobubbles. And stabilize. The order of the circulation pump 5 and the orifice (perforated plate) 6 in the flow path may be reversed.
ォリ フィ ス (多孔板) 6 は第 6 図では単一であるが、 複数 PX 置して よ く 、 循環ポンプ 5 は必要に応じて省略してもよい その場口 微小気泡発生装置 2 の水溶液に対する駆動力や高低 差による水溶液の流動などを利用する ことも可能である。  Although the orifice (perforated plate) 6 is single in FIG. 6, a plurality of PXs may be placed, and the circulating pump 5 may be omitted if necessary. It is also possible to use the driving force for the aqueous solution or the flow of the aqueous solution due to the height difference.
また 第 6 図に示すよ う に、 容器 1 内に渦流を発生させるた めの回転体 7 を取 り付ける こ とによつてもオゾンナノバブルを 製造する とができる。 回転体 7 を 5 0 0 1 0 0 0 0 r P m で回転させる こ とによ り 、 効率よ く 渦流を容器 1 内で発生させ る ことがでさる。  In addition, as shown in FIG. 6, ozone nanobubbles can also be produced by installing a rotating body 7 for generating a vortex in the container 1. By rotating the rotating body 7 at 500 000 rP m, it is possible to efficiently generate a vortex in the container 1.
以下 本発明のオゾン水の特徴 · 効果を試験した実施例を 説明するが、 本発明はこれらに限定されるものではない。 実施例  Examples of testing the characteristics and effects of the ozone water of the present invention will be described below, but the present invention is not limited thereto. Example
製造時におけるオゾン濃度が 1 . 係るォゾン水をガラス瓶に入れて蓋をして冷暗所において保存 をした The ozone concentration during production is 1. The ozone water was placed in a glass bottle, covered, and stored in a cool, dark place.
製造後 1 週間経過した時点で本発明に係るォゾン水中に存在 している才ゾンナノバブルを動的光散乱光度計によ り 測定した と ころ 中心粒径が約 1 4 0 n m (標準偏差約 3 0 n m) のナ ノパブルが安定して存在していた。  One week after the production, the zonal nanobubbles present in the ozone water according to the present invention were measured by a dynamic light scattering photometer.The center particle diameter was about 140 nm (standard deviation about 3 nm). (0 nm) was stable.
6 月後にオゾン水のオゾン濃度を紫外線吸収方式で測定した と ころ 1 • O m g Z Lであ り 、 殺菌等をお なう上で十分な量 のォゾンを含んでいる こ とが確認された。  When the ozone concentration of the ozone water was measured by an ultraviolet absorption method after June, it was 1 • OmgZL, and it was confirmed that the ozone concentration contained a sufficient amount of ozone for sterilization and the like.
本発明に係るォゾン水におけるオゾンナノバブルの安定化に は電解質ィオンの作用が重要である。 本発明に係るォゾン水の 水質を測定したと ころ、 p H = 8 . 0 6 導 = 2 2 . The action of electrolyte ion is important for stabilization of ozone nanobubbles in ozone water according to the present invention. When the water quality of the ozone water according to the present invention was measured, pH = 8.06 derived = 22.
3 m S / c m、 鉄 = 0 . O l m g / L、 力 U ゥム 1 3 0 m g3 m S / cm, iron = 0.O l m g / L, force U 1 m
/ L ナ リ ウム = 3 7 0 0 m g / L、 マグネシゥム = 3 5 0 m g / Lであった。 / L sodium = 370 mg / L, and magnesium = 350 mg / L.
比較例と して、 オゾン気泡のバブリ ングによ り 得られたォゾ ン化水の濃度変化を調べたと ころ、 生成直後の値と して 1 . 5 m g / Lであつたが、 2 時間後には 0 . 1 m g / L以下の値に 減少していた。 こ のオゾン化水において濃度減少の禾王度はォゾ ンを水中に供給する手法をバプリ ンブ以外に変えても大きな変 化は められなかった。 実施例 2  As a comparative example, when the change in the concentration of zonized water obtained by bubbling of ozone bubbles was examined, the value immediately after generation was 1.5 mg / L, but was 2 hours. Later it was reduced to values below 0.1 mg / L. In this ozonated water, the degree of concentration decline was not significantly changed even if the method of supplying ozone into water was changed to a method other than baprimbu. Example 2
本発明に係るオゾン水による殺菌効果を調ベるため 泉源 水 1 0 0 0 m L において同量の本発明に係るォゾン水を混合さ せて菌数の変化を調べた。 、)曰泉源水中の一般細菌 9 6 個/ 1 m l 、 大腸菌 2 0 M P N / 1In order to examine the bactericidal effect of the ozone water according to the present invention, the same amount of the ozone water according to the present invention was mixed in 100 mL of spring water, and the change in the number of bacteria was examined. ,) 96 bacteria / 1 ml of general bacteria in spring water, E. coli 20 MPN / 1
0 0 m 1 レジォネラ菌 6 0 C F U / 1 0 0 m 1 であゥ た ¾の が 製造後 1 週間経過した本発明に係るォゾン水を 1 0 0 0 m0 0 m 1 Regionella bacteria 60 CFU / 100 m
L と胚口 させた結果、 一般細菌 0個 / 1 m 1 大腸菌 0 M P N ZAs a result of L and germ opening, 0 common bacteria / 1 m1 E. coli 0 M PNZ
1 0 0 m 1 レジオネラ菌 1 0 未満 C F U Z 1 0 0 m 1 とな Ό 十分な殺 効果をが認め られた。 発明の効果 100 m 1 Legionella bacteria less than 10 C F UZ 100 m 1 Ό Sufficient killing effect was observed. The invention's effect
本発明のォゾン水およびその 造方法によれば、 ォゾン水中 のォゾンは 気泡径が 2 0 0 n m以下の大ささのナノバブルと して含まれて り 1 月 以上の長期に渡 てォゾンを水溶液中 に溶存させる とがでさるよ になつた れによ 安定し てォゾンの効果を維持させ続ける こ とが可能とな り 医療現場 や食料の取り扱い現場 魚介類や陸上生物等の養殖や 産等の 現場において ォゾンによる殺菌等がでさるよ う にな た ま た 泡径が 2 0 0 n m以下の大ささのナノバブルと してォゾ ンが保持されているため 、 魚介類においては濾水や呼吸 陸上 生物に いては飲用 によ り 生物の体内に取り込まれ 体内に存 在する細菌やゥィルス等の有害微生物を死滅および増殖の抑制 をする ことができるよう になった。 産業上の利用可能性 ·  According to the ozone water and the method for producing the same according to the present invention, ozone in ozone water is contained as nanobubbles having a bubble diameter of 200 nm or less, and ozone is contained in an aqueous solution for a long period of one month or more. It is possible to maintain the effect of ozone in a stable and stable manner through medical treatments, food handling sites, aquaculture and production of seafood and terrestrial organisms, etc. Since ozone is retained as nanobubbles with a bubble diameter of 200 nm or less, sterilization by ozone and the like can be performed at the site, drainage and respiration of fish and shellfish are carried out. For terrestrial organisms, it is now possible to kill harmful microorganisms such as bacteria and viruses that are taken into living organisms by drinking and to suppress the growth of terrestrial organisms. Industrial Applicability ·
本発明のオゾン水おょぴその製造方法によ Ό 1 月以上の 期に渡ってオゾンを水溶液中に溶存させる こ とがでさるよ に なっ た。 これによ り 、 安定してォゾンの効果を維持させ続ける こ とが可能とな り 、 殺菌を必要とする医療ゃ食料関係 魚介 や陸上生物等の養殖や畜産等の分野等において利用可能である ま 径が 2 0 0 n m以下の大ささのナノパブルと して ォゾンが板保持されているため 魚介類においては濾水ゃ呼吸、 陸上生物においては飲用によ 0生物の体内に取 Ό込まれ、 体内 に存在する細菌やゥィルス等の有宝 According to the ozone water and the method for producing the same of the present invention, ozone can be dissolved in an aqueous solution over a period of one month or more. This makes it possible to maintain the effect of ozone stably, and it is necessary to sterilize medical and food-related seafood. It can be used in fields such as aquaculture of terrestrial organisms, livestock farming, etc.Because the ozone is held as a nanopable with a diameter of 200 nm or less, drainage and respiration of fish and shellfish In terrestrial organisms, it is taken into living organisms by drinking, and it is a treasure trove of bacteria and viruses that exist in the body.
口微生物を死滅および増殖の 抑制をする こ とが可能である とか ら 医療 養殖産業の分野 おいても利用する こ とが可能となる。 ぐ参考文献一覧 >  The ability to kill and control the growth of oral microorganisms makes it possible to use them in the medical aquaculture industry. Reference List>
特許文献 1 : Patent Document 1:
特開 2 0 0 4 — 6 0 Japanese Patent Application Laid-Open No. 2004-600

Claims

請 求 の 範 囲 The scope of the claims
1 . 気泡の直径が 2 0 0 n m以下であって、 前記気泡内にォ ゾンを含有するオゾンナノバブルが含まれる水溶液か らなる こ とを特徴とするオゾン水。  1. Ozone water having a bubble diameter of 200 nm or less and comprising an aqueous solution containing ozone nanobubbles containing ozone in the bubbles.
2 . 前記水溶液中のオゾン濃度は 0 . I m g / L以上である 請求の範囲第 1 項に記載のオゾン水。 2. The ozone water according to claim 1, wherein the ozone concentration in the aqueous solution is 0.1 mg / L or more.
3 - 水溶液中に含まれるォゾンを含有する微小気泡に物理的 刺激を加える こ とによ Ό 、 刖記微小気泡の気泡径を G?、激に縮小 させ 、 ォゾンナノバブルを製造する こ とを特徴とするォゾン水 の製造方法。 3-By applying a physical stimulus to ozone-containing microbubbles contained in an aqueous solution Ό, 刖A method for producing ozone water, characterized in that ozone nanobubbles are significantly reduced and ozone nanobubbles are produced.
4 . 刖 3d微小 ¾泡を每激に縮小させる過程において 気泡径 が 2 0 0 n m以下まで縮小する と 記微小気泡表面の 荷密度 が上昇し、 静 与的な反発力が生じる こ とによつて 前記微小 気泡の縮小が停止する 求の範囲第 3項に記 のォゾン水の 造方法。 4.During the process of rapidly reducing 3d microbubbles, when the bubble diameter is reduced to 200 nm or less, the load density on the surface of the microbubbles increases, and a static repulsive force is generated. 3. The method for producing ozone water according to claim 3, wherein the reduction of the microbubbles is stopped.
5 - 刖記微小気泡を 激に縮小させる過程において 、 気液界 面に吸着したィォンと Β争電気的な引力によ り 、 前記界面近傍の 刖記水溶液中に引き せられた反対符号を持つ両方のィォンが 微小な体積の中に高濃 に濃縮する こ とによ り 、 刖記微小気泡 周囲を取り 囲む殻の働さをし 、 刖記微小気泡内の刖記ォゾンの 刖記水溶液への拡散を阻口する こ とによつて、 刖 idォゾンナノ パブルを安定化させる 求の範囲第 3 項に記載のォゾン水の 造方法。 5-In the process of sharply reducing the microbubbles described above, due to the ion adsorbed on the gas-liquid interface and the competing electrical attraction, the microbubbles have the opposite sign drawn in the aqueous solution near the interface Both ions are highly concentrated in a very small volume, which acts as a shell surrounding the microbubbles, allowing the ozone in the microbubbles to the aqueous solution. Stabilization of 刖 id ozone nanopables by blocking diffusion of ozone water Construction method.
6 . 前記微小気泡を急激に縮小させる過程に'おいて、 気液界 面に吸着したィォンと 的な引力に り HU目 ΰ界面近傍の 刖記水溶液中に引き せられた反対符号を持つ両方のィォンが 微小な体積の中に高濃度に濃縮する こ と によ り 、 刖記微小気泡 周囲を取り 囲む殻の働きをし 刖記微小気泡内の前記ォゾンの 刖記水溶液への拡散を阻 する こ とによつて 刖 ø己ォゾンナノ nブルを女定化させる誇求の範囲第 3 項に記載のォゾン水の製 造方法。 6. In the process of rapidly reducing the microbubbles, both the ions adsorbed on the gas-liquid interface and the attractive force and the opposite sign drawn in the aqueous solution near the HU interface The ion concentrates in a very small volume to a high concentration, thereby acting as a shell surrounding the microbubbles. The diffusion of the ozone in the microbubbles into the aqueous solution is prevented. 3. The method for producing ozon water according to claim 3, wherein the ozone water is made into a woman.
7 • 刖記気液界面に吸着したィォンは、 水素ィォンや水酸化 物ィォンでめ り 前記界面近傍に引き寄せられたィ ォンと して 水溶液中の電解質ィオンを利用する とによ り前記ォゾンナノ バブルを安定化させる請求の範囲第 3項に記載のォゾン水の製 造方法。 7 • The ion adsorbed on the gas-liquid interface is quenched with hydrogen ion or hydroxide ion, and the ionized ion in the aqueous solution is used as the ion attracted to the vicinity of the interface. 4. The method for producing ozone water according to claim 3, which stabilizes bubbles.
8 . 刖記微小 泡を急激に縮小させる過程において、 断熱的 圧縮によ て前 微小気泡内温度が急激に上昇し 、 刖 Bd微小気 泡の周囲に超高温度に伴う物理化学的な変化を与える こ とで前 pDォゾンナノパブルを安定化させ 求の範囲 3 項に記載の オゾン水の製造方法。 8. In the process of rapidly reducing the microbubbles, the temperature inside the microbubbles rises rapidly due to adiabatic compression, and 刖 physicochemical changes around the Bd microbubbles due to ultra-high temperatures occur. 4. The method for producing ozone water according to claim 3, wherein the ozone water is stabilized by providing the pD ozone nanopable.
9 . 前記物理的刺激は、 放電発生装置を用いて前記微小気泡 に放電する こ とである請求の範囲第 3項に記載のオゾン水の製 造方法。 9. The method for producing ozone water according to claim 3, wherein the physical stimulus is to discharge the microbubbles using a discharge generator.
1 0 . 前記物理的刺激は、 超音波発信装置を用いて前記微小 気泡に超音波照射する こ とである請求の範囲第 3項に記載のォ ゾン水の製造方法。 10. The method for producing ozone water according to claim 3, wherein the physical stimulus is to irradiate the microbubbles with ultrasonic waves using an ultrasonic transmitter.
1 1 • 前記物理的刺激は、 前記水溶液が入った容器内に取 Ό 付けた回転体を作動させる こ とによ り前記水溶液を流動させ 、 前記流動時に生じる圧縮、 膨張および渦流を利用する こ とであ る 求の範囲第 3項に記載のオゾン水の製造方法。 1 1 • The physical stimulus is to make the aqueous solution flow by operating a rotating body mounted in a container containing the aqueous solution, and to use the compression, expansion and vortex generated during the flow. 3. The method for producing ozone water according to claim 3, wherein
1 2 前記物理的刺激は、 前記容器に循環回路を形成した場 σ において、 前記容器内の前記微小気泡が含まれる前記水溶液 を刖記循環回路へ前記微小気泡が含まれる前記水溶液を取り入 れた後、 前記循環系回路内に備えつけられた単一若し く は多数 の孔を持つオリ フィ ス若しく は多孔板を通過させる こ とで圧縮 、 膨張および渦流を生じさせる こ とである請求の範囲第 3 項に L のォゾン水の製造方法。 1 2 The physical stimulus is that, when a circulation circuit is formed in the container, the aqueous solution containing the microbubbles in the container is introduced into the circulation circuit with the aqueous solution containing the microbubbles. Thereafter, compression, expansion and vortex flow are caused by passing through an orifice or a perforated plate having a single or multiple holes provided in the circulation circuit. The method of producing L ozone water in the third section of the scope.
PCT/JP2005/003811 2004-03-05 2005-02-28 Ozone water and method for production thereof WO2005085141A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/591,978 US8137703B2 (en) 2004-03-05 2005-02-28 Ozone water and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004062156A JP4059506B2 (en) 2004-03-05 2004-03-05 Ozone water and method for producing the same
JP2004-062156 2004-03-05

Publications (1)

Publication Number Publication Date
WO2005085141A1 true WO2005085141A1 (en) 2005-09-15

Family

ID=34918106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003811 WO2005085141A1 (en) 2004-03-05 2005-02-28 Ozone water and method for production thereof

Country Status (3)

Country Link
US (1) US8137703B2 (en)
JP (1) JP4059506B2 (en)
WO (1) WO2005085141A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072371A1 (en) 2006-12-12 2008-06-19 National University Corporation Tokyo Medical And Dental University Preparation for sterilization or disinfection of tissue
US8962700B2 (en) 2006-10-25 2015-02-24 Revalesio Corporation Electrokinetically-altered fluids comprising charge-stabilized gas-containing nanostructures
US8980325B2 (en) 2008-05-01 2015-03-17 Revalesio Corporation Compositions and methods for treating digestive disorders
US9011922B2 (en) 2009-04-27 2015-04-21 Revalesio Corporation Compositions and methods for treating insulin resistance and diabetes mellitus
US9034195B2 (en) 1997-10-24 2015-05-19 Revalesio Corporation Diffuser/emulsifier for aquaculture applications
US9198929B2 (en) 2010-05-07 2015-12-01 Revalesio Corporation Compositions and methods for enhancing physiological performance and recovery time
US9402803B2 (en) 2006-10-25 2016-08-02 Revalesio Corporation Methods of wound care and treatment
US9492404B2 (en) 2010-08-12 2016-11-15 Revalesio Corporation Compositions and methods for treatment of taupathy
US9512398B2 (en) 2006-10-25 2016-12-06 Revalesio Corporation Ionic aqueous solutions comprising charge-stabilized oxygen-containing nanobubbles
US9523090B2 (en) 2007-10-25 2016-12-20 Revalesio Corporation Compositions and methods for treating inflammation
US9745567B2 (en) 2008-04-28 2017-08-29 Revalesio Corporation Compositions and methods for treating multiple sclerosis
US10125359B2 (en) 2007-10-25 2018-11-13 Revalesio Corporation Compositions and methods for treating inflammation
CN111330468A (en) * 2020-03-19 2020-06-26 纳米气泡有限公司 Household efficient ozone nano-bubble water generation system

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4144669B2 (en) * 2004-03-05 2008-09-03 独立行政法人産業技術総合研究所 Method for producing nanobubbles
KR100744739B1 (en) * 2006-03-29 2007-08-01 옥철호 Apparatus for generation of water drop in a water tank
JP2007319832A (en) * 2006-06-05 2007-12-13 Sharp Corp Exhaust gas treatment method and exhaust gas treatment apparatus
US8906241B2 (en) * 2006-09-07 2014-12-09 Kerfoot Technologies, Inc. Enhanced reactive ozone
CA2667614A1 (en) 2006-10-25 2008-09-25 Revalesio Corporation Method of wound care and treatment
US8784897B2 (en) 2006-10-25 2014-07-22 Revalesio Corporation Methods of therapeutic treatment of eyes
US8609148B2 (en) 2006-10-25 2013-12-17 Revalesio Corporation Methods of therapeutic treatment of eyes
US8784898B2 (en) 2006-10-25 2014-07-22 Revalesio Corporation Methods of wound care and treatment
JP4896694B2 (en) * 2006-12-14 2012-03-14 シャープ株式会社 Purification device
US8735337B2 (en) * 2007-03-13 2014-05-27 Food Safety Technology, Llc Aqueous ozone solution for ozone cleaning system
US9068149B2 (en) * 2007-03-14 2015-06-30 Food Safety Technology, Llc Ozone cleaning system
US8016041B2 (en) * 2007-03-28 2011-09-13 Kerfoot William B Treatment for recycling fracture water gas and oil recovery in shale deposits
JP2008246054A (en) * 2007-03-30 2008-10-16 Sharp Corp Bathtub device, therapeutic bathtub device, bath water, and therapeutic bath water
WO2008147866A1 (en) * 2007-05-22 2008-12-04 Vapex Technologies, Inc. Disinfection system for surfaces and enclosed spaces and associated methods
JP2009084258A (en) * 2007-10-01 2009-04-23 Tokyo Medical & Dental Univ Medicine containing nano-bubble for treatment or prevention of cancer
US20090263495A1 (en) * 2007-10-25 2009-10-22 Revalesio Corporation Bacteriostatic or bacteriocidal compositions and methods
US9522348B2 (en) 2008-07-24 2016-12-20 Food Safety Technology, Llc Ozonated liquid dispensing unit
US9174845B2 (en) 2008-07-24 2015-11-03 Food Safety Technology, Llc Ozonated liquid dispensing unit
JP5829790B2 (en) * 2009-10-07 2015-12-09 株式会社ナノサイエンス Method for producing biological water containing stabilized ozone nanobubble nuclei and biological water
JP2011105642A (en) * 2009-11-17 2011-06-02 Jichi Medical Univ Ozone nano-bubble water for medical use on digestive tract
JP2011200778A (en) * 2010-03-25 2011-10-13 Miike Iron Works Co Ltd Method and apparatus for producing ozone water
JP5221591B2 (en) 2010-04-23 2013-06-26 ペルメレック電極株式会社 How to control ectoparasites that infest cultured fish
JP5113892B2 (en) 2010-04-30 2013-01-09 アクアエコス株式会社 Membrane-electrode assembly, electrolytic cell using the same, ozone water production apparatus, ozone water production method, sterilization method, and waste water / waste liquid treatment method
HUP1100435A2 (en) * 2011-08-12 2013-04-29 Hyd Rakkutato Es Gyogyszerfejlesztoe Kft Apparatus and method for distillation of liquids with different boiling point
JP5854502B2 (en) * 2011-11-21 2016-02-09 株式会社アクルス Ozone sterilizer
JP2013180956A (en) * 2012-02-29 2013-09-12 Sunstar Engineering Inc Bactericidal agent composition
US9272924B2 (en) * 2012-10-25 2016-03-01 ABC Sails, Inc. Process and apparatus to remove and destroy volatile organic compounds by atomizing water in ozone atmosphere
AU2014207407A1 (en) * 2013-01-17 2015-07-09 Food Safety Technology, Llc Ozonated liquid dispensing unit
WO2015017500A1 (en) 2013-07-30 2015-02-05 Musculoskeletal Transplant Foundation Acellular soft tissue-derived matrices and methods for preparing same
JP2015093205A (en) * 2013-11-08 2015-05-18 セイコーエプソン株式会社 Nano-bubble generator
JP6210917B2 (en) 2014-03-26 2017-10-11 トスレック株式会社 Nano bubble production equipment
WO2016017821A1 (en) * 2014-08-01 2016-02-04 国立研究開発法人産業技術総合研究所 Ozone water and method for producing same
EP3178324B1 (en) 2014-08-04 2020-09-23 Opt Creation, Inc. Microbicide and method for manufacturing same
US10912864B2 (en) 2015-07-24 2021-02-09 Musculoskeletal Transplant Foundation Acellular soft tissue-derived matrices and methods for preparing same
US11052175B2 (en) 2015-08-19 2021-07-06 Musculoskeletal Transplant Foundation Cartilage-derived implants and methods of making and using same
WO2017131972A1 (en) 2016-01-25 2017-08-03 Oxytec Llc Soil and water remediation method and apparatus for treatment of recalcitrant halogenated substances
JP2018090514A (en) * 2016-12-01 2018-06-14 日新技研株式会社 Fine bubble mixed liquid having bactericidal effect
JP6931145B2 (en) 2017-11-30 2021-09-01 株式会社オプトクリエーション Ozone nanobubble anti-cancer drug
US10865128B2 (en) 2018-02-06 2020-12-15 Oxytec Llc Soil and water remediation method and apparatus for treatment of recalcitrant halogenated substances
US11904366B2 (en) 2019-03-08 2024-02-20 En Solución, Inc. Systems and methods of controlling a concentration of microbubbles and nanobubbles of a solution for treatment of a product
US11661360B2 (en) 2020-06-18 2023-05-30 Wp&E Technologies And Solutions, Llc System for removing per- and polyfluorinated alkyl substances from contaminated aqueous streams, via chemical aided filtration, and methods of use thereof
CN111792711A (en) * 2020-07-08 2020-10-20 北京化工大学 Device for environment-friendly disinfection and sterilization of epidemic prevention equipment and public space
CN113818031A (en) * 2021-05-17 2021-12-21 博海云通中水处理技术(北京)有限公司 Method for manufacturing medical high-concentration ozone water generator capable of prolonging retention time of ozone water
US20230112608A1 (en) 2021-10-13 2023-04-13 Disruptive Oil And Gas Technologies Corp Nanobubble dispersions generated in electrochemically activated solutions

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122337U (en) * 1984-01-24 1985-08-17 山本 増男 Ozone water production device using silent discharge
JPH10251883A (en) * 1997-03-11 1998-09-22 V M C:Kk Production of ozonized water and ozonized water reproducing device
JP2001252664A (en) * 2000-03-09 2001-09-18 Surugaen:Kk Ozonized water modification device for retarding ozone decomposition rate of ozone-containing water
JP2002307053A (en) * 2001-04-12 2002-10-22 Daikin Ind Ltd Ozone water producing apparatus, and gas-liquid separator thereof
JP2002543960A (en) * 1999-05-05 2002-12-24 カンゾーン リミティド Gas-liquid mixing apparatus and method
WO2003022736A1 (en) * 2001-09-10 2003-03-20 Hag-Joo Lee Water discharge in a dielectric barrier discharge system to generate an ozonated water
US20030164306A1 (en) * 2002-02-22 2003-09-04 Senkiw James Andrew Microbubbles of oxygen
JP2003334548A (en) * 2002-05-20 2003-11-25 National Institute Of Advanced Industrial & Technology Method for producing nanometer air bubble

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1357920B1 (en) * 2001-02-01 2007-09-05 Hydron Technologies Inc. Compositions and method of tissue superoxygenation
JP3682275B2 (en) 2002-07-30 2005-08-10 ネオオゾン株式会社 Ozone water production equipment
JP4505560B2 (en) * 2003-12-15 2010-07-21 宮崎県 Generation method of monodisperse bubbles

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122337U (en) * 1984-01-24 1985-08-17 山本 増男 Ozone water production device using silent discharge
JPH10251883A (en) * 1997-03-11 1998-09-22 V M C:Kk Production of ozonized water and ozonized water reproducing device
JP2002543960A (en) * 1999-05-05 2002-12-24 カンゾーン リミティド Gas-liquid mixing apparatus and method
JP2001252664A (en) * 2000-03-09 2001-09-18 Surugaen:Kk Ozonized water modification device for retarding ozone decomposition rate of ozone-containing water
JP2002307053A (en) * 2001-04-12 2002-10-22 Daikin Ind Ltd Ozone water producing apparatus, and gas-liquid separator thereof
WO2003022736A1 (en) * 2001-09-10 2003-03-20 Hag-Joo Lee Water discharge in a dielectric barrier discharge system to generate an ozonated water
US20030164306A1 (en) * 2002-02-22 2003-09-04 Senkiw James Andrew Microbubbles of oxygen
JP2003334548A (en) * 2002-05-20 2003-11-25 National Institute Of Advanced Industrial & Technology Method for producing nanometer air bubble

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GOTO M. ET AL.: "Nanobubble no hassei Tokusei ni Kansuru Kenkyu.", DAI 40 KAI NIPPON DENNETSU SYMPOSIUM KOEN RONBUNSHU, vol. 2, 2003, pages 359 - 360, XP002992605 *
KIM J. ET AL.: "Zeta Potential of Nanobubbles Generated by Ultrasonication in Aqueous Alkyl Polyglycoside Solutions.", JOURNAL OF COLLOID AND INTERFACE SCIENCE, vol. 223, 2000 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9034195B2 (en) 1997-10-24 2015-05-19 Revalesio Corporation Diffuser/emulsifier for aquaculture applications
US9511333B2 (en) 2006-10-25 2016-12-06 Revalesio Corporation Ionic aqueous solutions comprising charge-stabilized oxygen-containing nanobubbles
US9512398B2 (en) 2006-10-25 2016-12-06 Revalesio Corporation Ionic aqueous solutions comprising charge-stabilized oxygen-containing nanobubbles
US8962700B2 (en) 2006-10-25 2015-02-24 Revalesio Corporation Electrokinetically-altered fluids comprising charge-stabilized gas-containing nanostructures
US9004743B2 (en) 2006-10-25 2015-04-14 Revalesio Corporation Mixing device for creating an output mixture by mixing a first material and a second material
US9402803B2 (en) 2006-10-25 2016-08-02 Revalesio Corporation Methods of wound care and treatment
US20100151043A1 (en) * 2006-12-12 2010-06-17 Reo Laboratory Co., Ltd. Preparation for sterilization or disinfection of tissue
WO2008072371A1 (en) 2006-12-12 2008-06-19 National University Corporation Tokyo Medical And Dental University Preparation for sterilization or disinfection of tissue
US9523090B2 (en) 2007-10-25 2016-12-20 Revalesio Corporation Compositions and methods for treating inflammation
US10125359B2 (en) 2007-10-25 2018-11-13 Revalesio Corporation Compositions and methods for treating inflammation
US9745567B2 (en) 2008-04-28 2017-08-29 Revalesio Corporation Compositions and methods for treating multiple sclerosis
US8980325B2 (en) 2008-05-01 2015-03-17 Revalesio Corporation Compositions and methods for treating digestive disorders
US9011922B2 (en) 2009-04-27 2015-04-21 Revalesio Corporation Compositions and methods for treating insulin resistance and diabetes mellitus
US9272000B2 (en) 2009-04-27 2016-03-01 Revalesio Corporation Compositions and methods for treating insulin resistance and diabetes mellitus
US9198929B2 (en) 2010-05-07 2015-12-01 Revalesio Corporation Compositions and methods for enhancing physiological performance and recovery time
US9492404B2 (en) 2010-08-12 2016-11-15 Revalesio Corporation Compositions and methods for treatment of taupathy
CN111330468A (en) * 2020-03-19 2020-06-26 纳米气泡有限公司 Household efficient ozone nano-bubble water generation system

Also Published As

Publication number Publication date
US8137703B2 (en) 2012-03-20
JP2005246293A (en) 2005-09-15
US20070205161A1 (en) 2007-09-06
JP4059506B2 (en) 2008-03-12

Similar Documents

Publication Publication Date Title
WO2005085141A1 (en) Ozone water and method for production thereof
JP4144669B2 (en) Method for producing nanobubbles
WO2005084786A1 (en) Water containing oxygen nano bubbles and method for production thereof
JPWO2005030649A1 (en) Collapse of micro bubbles
JP3121287B2 (en) Water purification device
CN111569683B (en) High-concentration long-acting ozone nano bubble aqueous solution and preparation method thereof
JP2005246294A5 (en)
WO2010035421A1 (en) Apparatus for water treatment
JP2005110552A (en) System for pressure multilayer type micro ozone sterilization, purification and breeding sterilization
CN105540761B (en) A kind of water body disinfection equipment and the method using its progress water body disinfection
JP4921332B2 (en) Method for producing nitrogen nanobubble water
KR100509813B1 (en) Apparatus of Dissolving Ozone in Water with High Degree of Efficiency and Method thereof
JP3326500B2 (en) Processing equipment for processing objects containing microorganisms
JP2006198499A (en) Method for sterilizing water and sterilization apparatus
JP2009226386A (en) Ultrafine-bubble water
JPWO2002062711A1 (en) Atom free type aqueous solution generating apparatus, atom free type aqueous solution generation method, and atom free type aqueous solution
KR102066339B1 (en) Plasma Dissolved-Water Production System
KR101919406B1 (en) Health Care System Using Quantum Energy Generator built-in Oxidized Nitrogen Contained Vaporizing Apparatus
JP4925215B2 (en) Method for sterilization or inactivation of spore bacteria
CN115108613A (en) Device for disinfection and method for disinfection
JP2802071B2 (en) Food sterilization method
JP2004358437A (en) Hydrogen reducing water treatment apparatus
Feng et al. A Brief Talk of the Disinfection Process for Reclaimed Water
KR101254551B1 (en) An aquarium type sterilizer
KR19990045891A (en) Ultrasonic ozone sterizer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10591978

Country of ref document: US

Ref document number: 2007205161

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10591978

Country of ref document: US