JP2005246294A5 - - Google Patents

Download PDF

Info

Publication number
JP2005246294A5
JP2005246294A5 JP2004062160A JP2004062160A JP2005246294A5 JP 2005246294 A5 JP2005246294 A5 JP 2005246294A5 JP 2004062160 A JP2004062160 A JP 2004062160A JP 2004062160 A JP2004062160 A JP 2004062160A JP 2005246294 A5 JP2005246294 A5 JP 2005246294A5
Authority
JP
Japan
Prior art keywords
oxygen
microbubbles
aqueous solution
nanobubble water
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004062160A
Other languages
Japanese (ja)
Other versions
JP4080440B2 (en
JP2005246294A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2004062160A priority Critical patent/JP4080440B2/en
Priority claimed from JP2004062160A external-priority patent/JP4080440B2/en
Priority to PCT/JP2005/003809 priority patent/WO2005084786A1/en
Publication of JP2005246294A publication Critical patent/JP2005246294A/en
Publication of JP2005246294A5 publication Critical patent/JP2005246294A5/ja
Application granted granted Critical
Publication of JP4080440B2 publication Critical patent/JP4080440B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

酸素ナノバブル水およびその製造方法Oxygen nanobubble water and method for producing the same

本発明は、あらゆる技術分野にその有用性が潜在し、特に動植物に対しての生理活性効果を顕在化した酸素ナノバブル水に関するものである。   The present invention relates to oxygen nanobubble water that has potential utility in all technical fields, and in particular, has manifested bioactive effects on animals and plants.

近年、地球環境全般の汚染により、様々な化学物質の蓄積を通して人間の身体が組織レベルで酸素不足になることが知られるようになった。   In recent years, it has become known that due to pollution of the global environment in general, the human body becomes oxygen deficient at the tissue level through the accumulation of various chemical substances.

この問題を解決するために、例えば特許文献1では、通常の気泡とは異なった性質を持つ直径が50μm以下の気泡(微小気泡)中の気体に酸素を溶存させることにより、生理活性機能を有する微小気泡について提案している。   In order to solve this problem, for example, Patent Document 1 has a physiologically active function by dissolving oxygen in a gas in a bubble (microbubble) having a diameter different from that of a normal bubble having a diameter of 50 μm or less. Proposes microbubbles.

しかしながら、人間の生理活性機能を高めるには微小気泡を組織レベルで作用させなければならず、全身に十分な量の酸素を供給するためには、大掛りな装置が必要となり、コスト等の面で問題があった。
特開2002−143885号公報
However, in order to enhance human bioactivity function, microbubbles must act at the tissue level, and in order to supply a sufficient amount of oxygen to the whole body, a large-scale device is required, and costs, etc. There was a problem.
JP 2002-143885 A

本発明は上述したような実情に鑑みてなされたものであり、酸素ナノバブル水であって、長期間水溶液中に酸素が存在し、生物に対する活性効果等を有する酸素ナノバブル水およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and provides oxygen nanobubble water, in which oxygen is present in an aqueous solution for a long period of time, and has an active effect on living organisms, and a method for producing the same. The purpose is to do.

本発明の上記目的は、気泡の直径が50〜500nmであって、前記気泡内に酸素を含有する酸素ナノバブルが含まれる水溶液からなることによって達成される。   The object of the present invention is achieved by comprising an aqueous solution having a bubble diameter of 50 to 500 nm and containing oxygen nanobubbles containing oxygen in the bubble.

また、本発明の上記目的は、気泡の直径が50〜500nmであって、前記気泡内に酸素を含有する酸素ナノバブルが含まれる水溶液であって、前記水溶液は、塩分濃度が0.01〜3.5%の範囲に設定されていることによって効果的に達成される。   The object of the present invention is an aqueous solution having a bubble diameter of 50 to 500 nm and containing oxygen nanobubbles containing oxygen in the bubble, wherein the aqueous solution has a salinity of 0.01 to 3. It can be effectively achieved by setting in the range of 5%.

さらに、本発明の上記目的は、水溶液中に含まれる酸素を含有する微小気泡に物理的刺激を加えることにより、前記微小気泡の気泡径を急激に縮小させ、酸素ナノバブルを製造することによって達成される。   Further, the above object of the present invention is achieved by producing oxygen nanobubbles by applying a physical stimulus to oxygen-containing microbubbles contained in an aqueous solution, thereby rapidly reducing the bubble diameter of the microbubbles. The

本発明の上記目的は、前記微小気泡を急激に縮小させる過程において、気泡径が50〜500nmまで縮小すると前記微小気泡表面の電荷密度が上昇し、静電気的な反発力が生じることによって、前記微小気泡の縮小が停止することによって、或いは前記微小気泡を急激に縮小させる過程において、気液界面に吸着したイオンと静電気的な引力により、前記界面近傍の前記水溶液中に引き寄せられた反対符号を持つ両方のイオンが微小な体積の中に高濃度に濃縮することにより、前記微小気泡周囲を取り囲む殻の働きをし、前記微小気泡内の前記酸素の前記水溶液への拡散を阻害することによって、前記酸素ナノバブルを安定化させることによって、或いは前記気液界面に吸着したイオンは、水素イオンや水酸化物イオンであり、前記界面近傍に引き寄せられたイオンとして水溶液中の電解質イオンを利用することにより前記酸素ナノバブルを安定化させることによって、或いは前記微小気泡を急激に縮小させる過程において、断熱的圧縮によって前記微小気泡内温度が急激に上昇することにより、前記微小気泡の周囲に超高温度に伴う物理化学的な変化を与えることで前記酸素ナノバブルを安定化させることによってより効果的に達成される。   In the process of rapidly reducing the microbubbles, the object of the present invention is to increase the charge density on the surface of the microbubbles when the bubble diameter is reduced to 50 to 500 nm, thereby generating an electrostatic repulsive force. It has an opposite sign drawn into the aqueous solution in the vicinity of the interface by stopping the contraction of the bubbles or in the process of abruptly reducing the microbubbles due to ions adsorbed on the gas-liquid interface and electrostatic attraction. By concentrating both ions in a small volume to a high concentration, it acts as a shell surrounding the microbubbles, and by inhibiting diffusion of the oxygen in the microbubbles into the aqueous solution, The ions adsorbed on the gas-liquid interface by stabilizing the oxygen nanobubbles are hydrogen ions or hydroxide ions, and are close to the interface. In the process of stabilizing the oxygen nanobubbles by using electrolyte ions in an aqueous solution as ions attracted to the surface or abruptly shrinking the microbubbles, the temperature inside the microbubbles is rapidly increased by adiabatic compression. Ascending, it is achieved more effectively by stabilizing the oxygen nanobubbles by giving a physicochemical change accompanying ultra-high temperature around the microbubbles.

また、本発明の上記目的は、前記物理的刺激は、放電発生装置を用いて前記微小気泡に放電することであることによって、或いは前記物理的刺激は、前記水溶液が入った容器内に取り付けた回転体を作動させることにより前記水溶液を流動させ、前記流動時に生じる圧縮、膨張および渦流を利用することであるによって、或いは前記物理的刺激は、前記容器に循環回路を形成した場合において、前記容器内の前記微小気泡が含まれる前記溶液を前記循環回路へ前記微小気泡が含まれる前記溶液を取り入れた後、前記循環系回路内に備えつけられた単一若しくは多数の孔を持つオリフィスもしくは多孔板を通過させることで圧縮、膨張および渦流を生じさせることによってより効果的に達成される。 The above-described object of the present invention, said physical stimulation, by using a discharge generating device is to discharge the microbubbles, some have the said physical stimulus, vessel where the aqueous solution containing By operating the attached rotating body to flow the aqueous solution, utilizing compression, expansion and vortex generated during the flow, or when the physical stimulation forms a circulation circuit in the container, After the solution containing the microbubbles in the container is taken into the circulation circuit, the orifice or porous having single or multiple holes provided in the circulation system circuit More effectively achieved by causing compression, expansion and vortex flow through the plate.

本発明に係る酸素ナノバブル水およびその製造方法によれば、酸素ナノバブル水中の酸素は、気泡径が50〜500nmの大きさのナノバブルとして含まれており、1月以上の長期に渡って酸素を水溶液中に溶存させることができるようになった。これにより、医療現場や魚介類の畜養、養殖、陸上生物の飼育現場等において、酸素による生理活性効果を高める目的で利用が可能となった。   According to the oxygen nanobubble water and the method for producing the same according to the present invention, oxygen in the oxygen nanobubble water is contained as nanobubbles having a bubble diameter of 50 to 500 nm, and oxygen is used as an aqueous solution for a long period of one month or longer. It can be dissolved inside. As a result, it has become possible to use it for the purpose of enhancing the physiological activity effect of oxygen in medical sites, seafood breeding and aquaculture, terrestrial life breeding sites, and the like.

また、本発明に係る酸素ナノバブル水を生物の体内に取りこむことにより、疾病が急速に快復したり、細菌やウイルス等による感染症も予防できるようになった。皮膚に本発明に係る酸素ナノバブル水を塗布することにより、皮膚病の快復を促すことも可能となった。   In addition, by incorporating oxygen nanobubble water according to the present invention into the body of a living organism, it has become possible to quickly recover from diseases and to prevent infections caused by bacteria and viruses. By applying the oxygen nanobubble water according to the present invention to the skin, it has become possible to promote the recovery of skin diseases.

さらに、本発明に係る酸素ナノバブル水の塩分濃度を0.5〜1.5%の範囲に調節することにより、淡水性および海水性の魚介類を一つの水槽で共存させることが可能となり、この酸素ナノバブル水に衰弱した魚介類を入れると、衰弱した魚介類を快復させることも可能となった。   Furthermore, by adjusting the salt concentration of oxygen nanobubble water according to the present invention in the range of 0.5 to 1.5%, it becomes possible to coexist freshwater and seawater fish and shellfish in one aquarium. When weakened seafood was put into oxygen nanobubble water, it became possible to recover the weakened seafood.

本発明に係る酸素ナノバブル水について詳細に説明する。   The oxygen nanobubble water according to the present invention will be described in detail.

本発明に係る酸素ナノバブル水とは、水溶液中の酸素がナノバブルとして保持されている。ナノバブルとは図1の粒径分布が示すように気泡径が50〜500nmの大きさを持っている気泡のことをいい、1月以上の長期に渡って酸素が水溶液中に溶存することを特徴とする。本発明に係る酸素ナノバブル水の保存方法は、特に限定されるものではなく、通常の容器に入れて保存しても、1月以上酸素が水溶液中から消滅することはない。   In the oxygen nanobubble water according to the present invention, oxygen in an aqueous solution is held as nanobubbles. A nanobubble is a bubble having a bubble diameter of 50 to 500 nm as shown in the particle size distribution in FIG. 1, and is characterized by oxygen being dissolved in an aqueous solution over a long period of one month or more. And The method for storing oxygen nanobubble water according to the present invention is not particularly limited, and oxygen does not disappear from the aqueous solution for more than one month even if stored in a normal container.

本発明に係る酸素ナノバブル水の酸素が酸素ナノバブルとしての存在するメカニズムを図2に示す。酸素微小気泡の場合には、小さな気泡ほど内部の酸素の溶解効率が高く、存在が不安定となり瞬時に消滅する。酸素ナノバブルの場合、気液界面に極めて高濃度の電荷が濃縮しているため、球の反対側同士の電荷間に働く静電気的な反発力により球(気泡)が収縮することを妨げている。また、濃縮した高電場の作用により、水溶液中に含まれる鉄等の電解質イオンを主体とした無機質の殻を気泡周囲に形成し、これが内部の酸素の散逸を防止している。この殻は界面活性剤や有機物の殻とは異なるため、細菌等の他の物質と酸素ナノバブルが接触した時に生じる気泡周囲の電荷の逸脱により、殻自体が簡単に崩壊する。殻が崩壊したときには、内部に含まれる酸素は簡単に水溶液中に放出される。   FIG. 2 shows a mechanism in which oxygen of oxygen nanobubble water according to the present invention exists as oxygen nanobubbles. In the case of oxygen microbubbles, the smaller the bubbles, the higher the internal oxygen dissolution efficiency, and the presence becomes unstable and disappears instantly. In the case of oxygen nanobubbles, an extremely high concentration of electric charge is concentrated at the gas-liquid interface, which prevents the sphere (bubble) from contracting due to an electrostatic repulsive force acting between the charges on opposite sides of the sphere. In addition, due to the action of the concentrated high electric field, an inorganic shell mainly composed of electrolyte ions such as iron contained in the aqueous solution is formed around the bubbles, which prevents the dissipation of oxygen inside. Since this shell is different from the surfactant or organic shell, the shell itself easily collapses due to the deviation of the charge around the bubble that occurs when oxygen nanobubbles come into contact with other substances such as bacteria. When the shell collapses, the oxygen contained inside is easily released into the aqueous solution.

また、濃縮した高電場の作用により鉄等の電解質イオンを主体とした無機質の殻を気泡周囲に形成し、これが内部の酸素の散逸を防止している。この殻は界面活性剤や有機物の殻とは異なるため、細菌等の他の物質と酸素ナノバブルが接触した時に生じる気泡周囲の電荷の逸脱により、殻自体が簡単に崩壊する傾向を持っている。殻が崩壊したときには内部に含まれる酸素は簡単に水溶液中に放出される。   Also, an inorganic shell mainly composed of electrolyte ions such as iron is formed around the bubbles by the action of the concentrated high electric field, which prevents the dissipation of oxygen inside. Since this shell is different from the surfactant or organic shell, the shell itself tends to collapse easily due to the deviation of the charge around the bubble that occurs when oxygen nanobubbles come into contact with other substances such as bacteria. When the shell collapses, the oxygen contained inside is easily released into the aqueous solution.

発明者等は鋭意研究の結果、本発明に係る酸素ナノバブル水を生物の体内に取りこむと疾病が急速に快復したり、細菌やウイルス等の感染症を予防できることを見出した。理由については定かでないが、酸素ナノバブルが生体の体内に浸透して入りこみ、細胞を活性化することが予測される。   As a result of intensive studies, the inventors have found that when the oxygen nanobubble water according to the present invention is taken into the body of a living organism, the disease can be recovered rapidly or infectious diseases such as bacteria and viruses can be prevented. Although the reason is not clear, it is predicted that oxygen nanobubbles penetrate into the body of the living body and activate cells.

また、理由については今後の研究を待たねばならないが、発明者等は酸素ナノバブル水の塩分濃度を0.5〜1.5%に調節すると、淡水性および海水性の魚介類を一つの水槽で共存させることができることを見出した。   In addition, we have to wait for future research on the reason. However, the inventors adjusted the salt concentration of oxygen nanobubble water to 0.5 to 1.5%, so that freshwater and seawater fish and shellfish can be contained in one tank. It was found that they can coexist.

次に、本発明に係る酸素ナノバブル水の製造方法について詳細に説明する。   Next, the method for producing oxygen nanobubble water according to the present invention will be described in detail.

本発明に係る酸素ナノバブル水の製造方法においては、直径が10〜50μmの酸素微小気泡を物理的な刺激によって急速に縮小させる。酸素微小気泡が含まれる水溶液中の電気伝導度が300μS/cm以上となるように鉄、マンガン、カルシウム、ナトリウム、マグネシウムイオン、その他ミネラル類のイオン等の電解質を混入させると、これらの静電気的な反発力により気泡の縮小を阻害する。この静電気的な反発力とは、球形をした微小気泡において縮小に伴い球の曲率が増加することにより、球の反対面に存在する同符号のイオン同士に作用する静電気力のことである。縮小した酸素微小気泡は加圧されているため、酸素微小気泡が縮小するほど、より縮小しようとする傾向が強まるが、気泡径が500nmよりも小さくなるとこの静電気的な反発力が顕在化してきて、気泡の縮小が停止する。   In the method for producing oxygen nanobubble water according to the present invention, oxygen microbubbles having a diameter of 10 to 50 μm are rapidly reduced by physical stimulation. When electrolytes such as iron, manganese, calcium, sodium, magnesium ions and other mineral ions are mixed so that the electric conductivity in an aqueous solution containing oxygen microbubbles is 300 μS / cm or more, Inhibits the reduction of bubbles by the repulsive force. This electrostatic repulsive force is an electrostatic force that acts on ions of the same sign existing on the opposite surface of the sphere by increasing the curvature of the sphere as it shrinks in a spherical microbubble. Since the reduced oxygen microbubbles are pressurized, the smaller the oxygen microbubbles, the greater the tendency to shrink. However, when the bubble diameter becomes smaller than 500 nm, this electrostatic repulsion force has become apparent. , The bubble shrinkage stops.

水溶液中に電気伝導度が3mS/cm以上になるように鉄、マンガン、カルシウム、ナトリウム、マグネシウムイオン、ミネラル類のイオン等の電解質を混入させると、この静電気的な反発力が十分に強く働き、気泡は縮小する力と反発力のバランスを取って安定化する。この安定化したときの気泡径(ナノバブルの気泡径)は電解質イオンの濃度や種類により異なるが、図1に示すように、50〜500nmの大きさである。   When an electrolyte such as iron, manganese, calcium, sodium, magnesium ions, or mineral ions is mixed in the aqueous solution so that the electric conductivity is 3 mS / cm or more, this electrostatic repulsive force works sufficiently strongly. Bubbles stabilize by balancing the shrinking force and the repulsive force. The bubble diameter when stabilized (bubble diameter of nanobubbles) varies depending on the concentration and type of electrolyte ions, but is 50 to 500 nm as shown in FIG.

酸素ナノバブルの特徴は、酸素を内部に加圧された状態で維持しているのみでなく、濃縮した表面電荷により極めて強い電場を形成していることである。この強い電場は、気泡内部の酸素や周囲の水溶液に強力な影響を与える力を持っており、生理的な活性効果や殺菌効果、化学的な反応性等を有するようになる。   The feature of oxygen nanobubbles is that not only oxygen is maintained in a pressurized state but also an extremely strong electric field is formed by the concentrated surface charge. This strong electric field has a strong influence on oxygen in the bubbles and the surrounding aqueous solution, and has a physiological activity effect, a bactericidal effect, a chemical reactivity, and the like.

図3は放電装置を用いて酸素ナノバブル水を製造する装置の側面図である。   FIG. 3 is a side view of an apparatus for producing oxygen nanobubble water using a discharge device.

微小気泡発生装置3は取水口31によって容器1内の水溶液を取り込み、微小気泡発生装置3内に酸素微小気泡を製造するための酸素を注入する注入口(図示せず)から酸素が注入され、取水口31によって取り込んだ水溶液と混合させて、酸素ナノバブル含有水溶液排出口32から微小気泡発生装置3で製造した酸素微小気泡を容器1内へ送る。これにより容器1内に酸素微小気泡が存在するようになる。容器1内には、陽極21と陰極22があり、陽極21と陰極22は放電発生装置2に接続されている。   The microbubble generator 3 takes in the aqueous solution in the container 1 through the water intake 31, and oxygen is injected into the microbubble generator 3 from an inlet (not shown) for injecting oxygen for producing oxygen microbubbles. The oxygen microbubbles produced by the microbubble generator 3 are fed into the container 1 from the oxygen nanobubble-containing aqueous solution discharge port 32 by mixing with the aqueous solution taken in by the water intake 31. As a result, oxygen microbubbles are present in the container 1. In the container 1, there are an anode 21 and a cathode 22, and the anode 21 and the cathode 22 are connected to the discharge generator 2.

まず、水溶液の入った容器1内に微小気泡発生装置3を用いて酸素微小気泡を発生させる。   First, oxygen microbubbles are generated in the container 1 containing the aqueous solution using the microbubble generator 3.

次に鉄、マンガン、カルシウムその他ミネラル類の電解質を加えて水溶液の電気伝導度が3mS/cm以上になるように電解質を加える。   Next, an electrolyte of iron, manganese, calcium and other minerals is added, and the electrolyte is added so that the electric conductivity of the aqueous solution becomes 3 mS / cm or more.

放電発生装置2を用いて、容器1内の酸素微小気泡が含まれる水溶液に水中放電を行う。より効率的に酸素ナノバブルを製造させるため、容器1内の酸素微小気泡の濃度が飽和濃度の50%以上に達している場合が好ましい。また、水中放電の電圧は2000〜3000Vが好ましい。   Using the discharge generator 2, an underwater discharge is performed on the aqueous solution containing oxygen microbubbles in the container 1. In order to produce oxygen nanobubbles more efficiently, it is preferable that the concentration of oxygen microbubbles in the container 1 reaches 50% or more of the saturation concentration. The underwater discharge voltage is preferably 2000 to 3000V.

水中放電に伴う衝撃波の刺激(物理的刺激)により、水中の酸素微小気泡は急速に縮小され、ナノレベルの気泡となる。この時に気泡周囲に存在しているイオン類は、縮小速度が急速なため、周囲の水中に逸脱する時間が無く、気泡の縮小に伴って急速に濃縮する。濃縮されたイオン類は気泡周囲に極めて強い高電場を形成する。この高電場の存在のもとで気液界面に存在する水素イオンや水酸化物イオンは気泡周囲に存在する反対符号を持つ電解質イオンと結合関係を持ち、気泡周囲に無機質の殻を形成する。この殻は気泡内の酸素の水溶液中への自然溶解を阻止するため、酸素ナノバブルは溶解することなく安定的に水溶液中に含まれる。なお、製造される酸素ナノバブルは50〜500nm程度の極めて微小な気泡であるため、水中における浮力をほとんど受けることが無く、通常の気泡で認められる水表面での破裂は皆無に近い Oxygen microbubbles in water are rapidly reduced into nano-level bubbles by shock wave stimulation (physical stimulation) accompanying underwater discharge. At this time, the ions present around the bubbles have a rapid reduction speed, so that they do not have time to deviate into the surrounding water and are rapidly concentrated as the bubbles are reduced. Concentrated ions form a very strong high electric field around the bubbles. In the presence of this high electric field, hydrogen ions and hydroxide ions present at the gas-liquid interface have a binding relationship with electrolyte ions having opposite signs existing around the bubbles, and form an inorganic shell around the bubbles. Since this shell prevents spontaneous dissolution of oxygen in the bubbles in the aqueous solution, the oxygen nanobubbles are stably contained in the aqueous solution without dissolving. Since the produced oxygen nanobubbles are extremely fine bubbles of about 50 to 500 nm, they hardly receive buoyancy in water, and there is almost no rupture on the water surface observed for normal bubbles .

に、渦流を起こすことにより、酸素ナノバブル水を製造する方法について説明する。なお、放電による酸素ナノバブル水を製造する方法及び超音波照射による酸素ナノバブル水を製造する方法と重複する個所については説明を省略する。 In the following, by causing vortex, it describes a method of producing oxygen nanobubble water. In addition, description is abbreviate | omitted about the location which overlaps with the method of manufacturing oxygen nano bubble water by discharge, and the method of manufacturing oxygen nano bubble water by ultrasonic irradiation.

は酸素ナノバブル水を製造するために圧縮、膨張および渦流を用いた場合の装置の側面図である。放電による酸素ナノバブル水の製造方法と同様に、微小気泡発生装置3、取水口31および酸素ナノバブル含有水溶液排出口32で微小気泡を製造し、酸素微小気泡を容器1内へ送る。容器1には容器1内の酸素微小気泡が含まれる水溶液を部分循環させるための循環ポンプ5が接続されており、循環ポンプ5が設置されている配管(循環配管)内には多数の孔を持つオリフィス(多孔板)6が接続され、容器1と連結している。容器1内の酸素微小気泡が含まれる水溶液は循環ポンプ5により循環配管内を流動させられ、オリフィス(多孔板)6を通過することで圧縮、膨張および渦流を生じさせる。 FIG. 4 is a side view of the apparatus when compression, expansion and vortex are used to produce oxygen nanobubble water. Like the oxygen nanobubbles water production how due to discharge, the microbubble generator 3, to produce microbubbles at intake 31 and an oxygen nanobubbles containing aqueous solution outlet 32, and sends the oxygen microbubbles into the container 1. A circulation pump 5 for partially circulating an aqueous solution containing oxygen microbubbles in the container 1 is connected to the container 1, and a large number of holes are formed in a pipe (circulation pipe) in which the circulation pump 5 is installed. An orifice (perforated plate) 6 is connected to the container 1. The aqueous solution containing oxygen microbubbles in the container 1 is caused to flow in the circulation pipe by the circulation pump 5 and passes through the orifice (perforated plate) 6 to generate compression, expansion and vortex.

まず、電荷質イオンを含んだ水の入った容器1内に微小気泡発生装置3を用いて酸素微小気泡を発生させる。   First, oxygen microbubbles are generated in a container 1 containing water containing charged ions using a microbubble generator 3.

次に、この酸素微小気泡が含まれる水溶液を部分循環させるため、循環ポンプ5を作動させる。この循環ポンプ5により酸素微小気泡が含まれる水溶液が押し出され、オリフィス(多孔板)6を通過前及び通過後の配管内で圧縮、膨張及び渦流が発生する。通過時の微小気泡の圧縮や膨張により、および配管内で発生した渦流により電荷を持った酸素微小気泡が渦電流を発生させることにより酸素微小気泡は急激に縮小され酸素ナノバブルとして安定化する。なお、循環ポンプ5とオリフィス(多孔板)6の流路における順序は逆でもよい。   Next, the circulation pump 5 is operated to partially circulate the aqueous solution containing the oxygen microbubbles. An aqueous solution containing oxygen microbubbles is pushed out by the circulation pump 5, and compression, expansion, and vortex flow are generated in the pipe before and after passing through the orifice (porous plate) 6. Oxygen microbubbles are rapidly reduced and stabilized as oxygen nanobubbles by generating eddy currents due to the compression and expansion of the microbubbles during passage and the eddy currents generated in the pipes. In addition, the order in the flow path of the circulation pump 5 and the orifice (porous plate) 6 may be reversed.

オリフィス(多孔板)6は図では単一であるが、複数設置してもよく、循環ポンプ5は必要に応じて省略してもよい。その場合、微小気泡発生装置2の水溶液に対する駆動力や高低差による水溶液の流動等を利用することも可能である。 Although the orifice (perforated plate) 6 is single in FIG. 5 , a plurality of orifices (circular plate) may be provided, and the circulation pump 5 may be omitted as necessary. In that case, it is also possible to use the driving force of the microbubble generator 2 on the aqueous solution, the flow of the aqueous solution due to the height difference, and the like.

また、図に示すように、容器1内に渦流を発生させるための回転体7を取り付けることによっても酸素ナノバブルを製造することができる。回転体7を500〜10000rpmで回転させることにより、効率よく渦流を容器1内で発生させることができる。 In addition, as shown in FIG. 5 , oxygen nanobubbles can also be produced by attaching a rotating body 7 for generating a vortex in the container 1. By rotating the rotating body 7 at 500 to 10000 rpm, a vortex can be efficiently generated in the container 1.

本発明に係る酸素ナノバブル水を製造後、酸素ナノバブルを動的光散乱光学計により測定したところ、約150nmを中心とする粒径分布を持っていた。この酸素ナノバブル水をガラス瓶に入れて蓋をして冷暗所において保存をした。1月後同様に測定すると、ほぼ同一の粒径分布を持っており、安定した状態を保っていた。   After the oxygen nanobubble water according to the present invention was produced, the oxygen nanobubbles were measured by a dynamic light scattering optical meter, and had a particle size distribution centered at about 150 nm. This oxygen nanobubble water was put in a glass bottle, covered, and stored in a cool and dark place. When measured in the same manner after one month, they had almost the same particle size distribution and remained stable.

酸素ナノバブル水におけるナノバブルの安定化には電解質イオンの作用が重要である。本発明に係る酸素ナノバブル水の水質を測定したところ、pH=8.4、硬度=1000mg/L、鉄=0.03mg/L未満、マンガン=0.016mg/L、ナトリウム=2200mg/L、塩化物イオン=2110mg/Lであった。   The action of electrolyte ions is important for the stabilization of nanobubbles in oxygen nanobubble water. When the water quality of the oxygen nanobubble water according to the present invention was measured, pH = 8.4, hardness = 1000 mg / L, iron = 0.03 mg / L, manganese = 0.016 mg / L, sodium = 2200 mg / L, chloride. Product ion was 2110 mg / L.

塩分濃度が淡水と海水の中間である酸素ナノバブル水に衰弱した鰯とメバルを入れたところ急速に快復した。   When weakened coral and rockfish were put into oxygen nanobubble water with a salinity between fresh water and seawater, it recovered rapidly.

また、水槽内に酸素ナノバブル水を入れると、鯛、カレイ、ヒラメ、アイナメ、竜宮ハゼ、ドンコ等の海水魚、およびコイ、金魚、鉄魚、鮎、イワナ等の淡水魚を同時に半年以上の期間に渡って生存させることができた。また、この間に稚魚の急速な成長を確認した。さらに熱帯魚については、海水系のコバルトや淡水系のグッピー等を同じ水槽内で、水温15℃程度の条件でも数日間以上生存させることができた。   In addition, when oxygen nanobubble water is put into the aquarium, freshwater fish such as carp, flounder, flounder, ainame, Ryugu goby, donko, etc. I was able to survive across. Also, during this period, the rapid growth of fry was confirmed. Furthermore, with regard to tropical fish, seawater-based cobalt, freshwater-based guppy, etc. could survive several days or more in the same aquarium even under conditions of a water temperature of about 15 ° C.

鶏の飼育現場において、飲料用に酸素ナノバブル水を与えることにより、感染症に対する抵抗量が向上し、抗生物質の使用を大幅に低下させることができた。   By providing oxygen nanobubble water for drinking at chicken breeding sites, the amount of resistance against infectious diseases was improved and the use of antibiotics could be greatly reduced.

本発明に係る酸素ナノバブル水の酸素ナノバブルの粒径頻度分布である(平均分布は約140nmで標準偏差は約40nmである)。It is the particle size frequency distribution of oxygen nanobubbles of oxygen nanobubble water according to the present invention (average distribution is about 140 nm and standard deviation is about 40 nm). ナノバブルとして酸素が安定して水溶液中に存在しているメカニズムを表わした模式図である。It is the schematic diagram showing the mechanism in which oxygen exists stably in aqueous solution as nanobubble. 放電装置を用いて酸素ナノバブル水を製造する装置の側面図である。It is a side view of the apparatus which manufactures oxygen nano bubble water using a discharge device. 渦流を起して酸素ナノバブル水を製造する装置の側面図である。It is a side view of the apparatus which raise | generates an eddy current and manufactures oxygen nano bubble water. 回転体で渦流を起して酸素ナノバブル水を製造する装置の側面図である。It is a side view of the apparatus which raise | generates an eddy current with a rotary body and manufactures oxygen nano bubble water.

符号の説明Explanation of symbols

1 容器
2 放電発生装置
21 陽極
22 陰極
3 微小気泡発生装置
31 取水口
32 酸素ナノバブル含有水溶液排出口
5 循環ポンプ
6 オリフィス(多孔板)
7 回転体
DESCRIPTION OF SYMBOLS 1 Container 2 Discharge generator 21 Anode 22 Cathode 3 Microbubble generator 31 Water intake 32 Oxygen nanobubble containing aqueous solution outlet 5 Circulation pump 6 Orifice (porous plate)
7 Rotating body

Claims (10)

気泡の直径が50〜500nmであって、前記気泡内に酸素を含有する酸素ナノバブルが含まれる水溶液からなることを特徴とする酸素ナノバブル水。   Oxygen nanobubble water, wherein the bubble has a diameter of 50 to 500 nm and is made of an aqueous solution containing oxygen nanobubbles containing oxygen in the bubbles. 気泡の直径が50〜500nmであって、前記気泡内に酸素を含有する酸素ナノバブルが含まれる水溶液であって、前記水溶液は、塩分濃度が0.01〜3.5%の範囲に設定されていることを特徴とする酸素ナノバブル水。   A bubble diameter of 50 to 500 nm, and an aqueous solution containing oxygen nanobubbles containing oxygen in the bubble, wherein the aqueous solution has a salinity of 0.01 to 3.5%. Oxygen nanobubble water characterized by 水溶液中に含まれる酸素を含有する微小気泡に物理的刺激を加えることにより、前記微小気泡の気泡径を急激に縮小させ、酸素ナノバブルを製造することを特徴とする酸素ナノバブル水の製造方法。   A method for producing oxygen nanobubble water, characterized in that oxygen nanobubbles are produced by applying a physical stimulus to microbubbles containing oxygen contained in an aqueous solution to rapidly reduce the bubble diameter of the microbubbles. 前記微小気泡を急激に縮小させる過程において、気泡径が50〜500nmまで縮小すると前記微小気泡表面の電荷密度が上昇し、静電気的な反発力が生じることによって、前記微小気泡の縮小が停止する請求項3に記載の酸素ナノバブル水の製造方法。   In the process of abruptly reducing the microbubbles, if the bubble diameter is reduced to 50 to 500 nm, the charge density on the surface of the microbubbles is increased, and electrostatic repulsion is generated, whereby the reduction of the microbubbles is stopped. Item 4. The method for producing oxygen nanobubble water according to Item 3. 前記微小気泡を急激に縮小させる過程において、気液界面に吸着したイオンと静電気的な引力により、前記界面近傍の前記水溶液中に引き寄せられた反対符号を持つ両方のイオンが微小な体積の中に高濃度に濃縮することにより、前記微小気泡周囲を取り囲む殻の働きをし、前記微小気泡内の前記酸素の前記水溶液への拡散を阻害することによって、前記酸素ナノバブルを安定化させる請求項3または4に記載の酸素ナノバブル水の製造方法。   In the process of abruptly reducing the microbubbles, both ions having opposite signs attracted into the aqueous solution in the vicinity of the interface due to the ions adsorbed on the gas-liquid interface and the electrostatic attractive force are brought into the minute volume. The oxygen nanobubbles are stabilized by acting as a shell surrounding the microbubbles by concentrating to a high concentration and inhibiting diffusion of the oxygen in the microbubbles into the aqueous solution. 4. The method for producing oxygen nanobubble water according to 4. 前記気液界面に吸着したイオンは、水素イオンや水酸化物イオンであり、前記界面近傍に引き寄せられたイオンとして水溶液中の電解質イオンを利用することにより前記酸素ナノバブルを安定化させる請求項3乃至5のいずれかに記載の酸素ナノバブル水の製造方法。   The ions adsorbed on the gas-liquid interface are hydrogen ions or hydroxide ions, and the oxygen nanobubbles are stabilized by using electrolyte ions in an aqueous solution as ions attracted to the vicinity of the interface. 5. The method for producing oxygen nanobubble water according to any one of 5 above. 前記微小気泡を急激に縮小させる過程において、断熱的圧縮によって前記微小気泡内温度が急激に上昇し、前記微小気泡の周囲に超高温度に伴う物理化学的な変化を与えることで前記酸素ナノバブルを安定化させる請求項3乃至6のいずれかに記載の酸素ナノバブル水の製造方法。   In the process of abruptly reducing the microbubbles, the temperature inside the microbubbles rapidly increases due to adiabatic compression, and the oxygen nanobubbles are formed by giving a physicochemical change around the microbubbles with an ultrahigh temperature. The method for producing oxygen nanobubble water according to any one of claims 3 to 6, wherein the oxygen nanobubble water is stabilized. 前記物理的刺激は、放電発生装置を用いて前記微小気泡に放電することである請求項3乃至7のいずれかに記載の酸素ナノバブル水の製造方法。   The method for producing oxygen nanobubble water according to any one of claims 3 to 7, wherein the physical stimulation is to discharge the microbubbles using a discharge generator. 前記物理的刺激は、前記水溶液が入った容器内に取り付けた回転体を作動させることにより前記水溶液を流動させ、前記流動時に生じる圧縮、膨張および渦流を利用することである請求項3乃至7のいずれかに記載の酸素ナノバブル水の製造方法。   The physical stimulation is to cause the aqueous solution to flow by operating a rotating body mounted in a container containing the aqueous solution, and to utilize compression, expansion, and vortex generated during the flow. The method for producing oxygen nanobubble water according to any one of the above. 前記物理的刺激は、前記容器に循環回路を形成した場合において、前記容器内の前記微小気泡が含まれる前記水溶液を前記循環回路へ前記微小気泡が含まれる前記水溶液を取り入れた後、前記循環系回路内に備えつけられた単一若しくは多数の孔を持つオリフィス若しくは多孔板を通過させることで圧縮、膨張および渦流を生じさせることである請求項3乃至7のいずれかに記載の酸素ナノバブル水の製造方法。   In the case where a circulation circuit is formed in the container, the physical stimulation is performed by taking the aqueous solution containing the microbubbles in the container into the circulation circuit and then introducing the aqueous solution containing the microbubbles into the circulation circuit. The production of oxygen nanobubble water according to any one of claims 3 to 7, wherein compression, expansion and vortex are generated by passing through an orifice or a perforated plate having a single or multiple holes provided in a circuit. Method.
JP2004062160A 2004-03-05 2004-03-05 Oxygen nanobubble water and method for producing the same Expired - Lifetime JP4080440B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004062160A JP4080440B2 (en) 2004-03-05 2004-03-05 Oxygen nanobubble water and method for producing the same
PCT/JP2005/003809 WO2005084786A1 (en) 2004-03-05 2005-02-28 Water containing oxygen nano bubbles and method for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004062160A JP4080440B2 (en) 2004-03-05 2004-03-05 Oxygen nanobubble water and method for producing the same

Publications (3)

Publication Number Publication Date
JP2005246294A JP2005246294A (en) 2005-09-15
JP2005246294A5 true JP2005246294A5 (en) 2006-03-16
JP4080440B2 JP4080440B2 (en) 2008-04-23

Family

ID=34918108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004062160A Expired - Lifetime JP4080440B2 (en) 2004-03-05 2004-03-05 Oxygen nanobubble water and method for producing the same

Country Status (2)

Country Link
JP (1) JP4080440B2 (en)
WO (1) WO2005084786A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7919534B2 (en) 2006-10-25 2011-04-05 Revalesio Corporation Mixing device
US8609148B2 (en) 2006-10-25 2013-12-17 Revalesio Corporation Methods of therapeutic treatment of eyes
US8617616B2 (en) 2006-10-25 2013-12-31 Revalesio Corporation Methods of wound care and treatment
US9034195B2 (en) 1997-10-24 2015-05-19 Revalesio Corporation Diffuser/emulsifier for aquaculture applications
US9198929B2 (en) 2010-05-07 2015-12-01 Revalesio Corporation Compositions and methods for enhancing physiological performance and recovery time
US9272000B2 (en) 2009-04-27 2016-03-01 Revalesio Corporation Compositions and methods for treating insulin resistance and diabetes mellitus
US9492404B2 (en) 2010-08-12 2016-11-15 Revalesio Corporation Compositions and methods for treatment of taupathy
US9523090B2 (en) 2007-10-25 2016-12-20 Revalesio Corporation Compositions and methods for treating inflammation
JP7475025B2 (en) 2020-01-23 2024-04-26 国立大学法人東北大学 Water containing oxygen-containing nanoparticles

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4144669B2 (en) * 2004-03-05 2008-09-03 独立行政法人産業技術総合研究所 Method for producing nanobubbles
JP2006289183A (en) * 2005-04-06 2006-10-26 Nano Bubble Kk Nano-bubble forming method and apparatus
US8726918B2 (en) 2005-09-23 2014-05-20 Sadatoshi Watanabe Nanofluid generator and cleaning apparatus
JP4430609B2 (en) * 2005-11-14 2010-03-10 ヤーマン株式会社 Nano bubble generator
JP4899434B2 (en) * 2005-11-16 2012-03-21 有限会社 健康百二十才 New physicochemical fusion type disinfectant
JP2007152301A (en) * 2005-12-07 2007-06-21 Nanoplanet Kenkyusho:Kk Functional water producing method and functional water
US8046867B2 (en) 2006-02-10 2011-11-01 Tennant Company Mobile surface cleaner having a sparging device
EP1991372B1 (en) * 2006-02-10 2011-11-23 Tennant Company Mobile surface cleaner having a sparging device, and method of producing a sparged cleaning liquid onboard a mobile surface cleaner
US8025787B2 (en) 2006-02-10 2011-09-27 Tennant Company Method and apparatus for generating, applying and neutralizing an electrochemically activated liquid
US8156608B2 (en) 2006-02-10 2012-04-17 Tennant Company Cleaning apparatus having a functional generator for producing electrochemically activated cleaning liquid
KR100744739B1 (en) * 2006-03-29 2007-08-01 옥철호 Apparatus for generation of water drop in a water tank
JP4899681B2 (en) 2006-07-18 2012-03-21 富士ゼロックス株式会社 Microchannel device
JP4968511B2 (en) * 2006-08-19 2012-07-04 株式会社 ナノプラネット研究所 Method for producing insulin-like growth factor-1 (IGF-1) in vivo
JP5120998B2 (en) 2006-09-06 2013-01-16 国立大学法人 東京医科歯科大学 Tissue, cell or organ preservation solution
JP4931201B2 (en) * 2006-10-13 2012-05-16 独立行政法人産業技術総合研究所 Method for producing water containing ultrafine bubbles and water containing ultrafine bubbles
US8591957B2 (en) * 2006-10-25 2013-11-26 Revalesio Corporation Methods of therapeutic treatment of eyes and other human tissues using an oxygen-enriched solution
US8445546B2 (en) 2006-10-25 2013-05-21 Revalesio Corporation Electrokinetically-altered fluids comprising charge-stabilized gas-containing nanostructures
US8784898B2 (en) 2006-10-25 2014-07-22 Revalesio Corporation Methods of wound care and treatment
US8784897B2 (en) 2006-10-25 2014-07-22 Revalesio Corporation Methods of therapeutic treatment of eyes
EP2116589A4 (en) * 2006-12-11 2013-12-11 Opt Creation Inc Apparatus and process for production of nanobubble liquid
JP5255451B2 (en) * 2006-12-12 2013-08-07 国立大学法人 東京医科歯科大学 Preparation for tissue repair or regeneration
US20100151043A1 (en) * 2006-12-12 2010-06-17 Reo Laboratory Co., Ltd. Preparation for sterilization or disinfection of tissue
JP2008156320A (en) * 2006-12-26 2008-07-10 Hydrox Kk Antioxidative functional water
US8147876B2 (en) * 2007-02-27 2012-04-03 National University Corporation Tokyo Medical And Dental University Medical agent for preventing or treating diseases resulting from one of inflammation and remodeling, and method for preventing or treating the diseases
JP5151204B2 (en) 2007-03-27 2013-02-27 富士ゼロックス株式会社 Microchannel device and method of manufacturing microchannel device
JP2008246054A (en) * 2007-03-30 2008-10-16 Sharp Corp Bathtub device, therapeutic bathtub device, bath water, and therapeutic bath water
JP4769963B2 (en) * 2007-04-12 2011-09-07 株式会社Reo研究所 How to preserve seafood
WO2009041670A1 (en) 2007-09-26 2009-04-02 Kitakyushu Foundation For The Advancement Of Industry, Science And Technology Process for producing water having redox activity and apparatus for producing water having redox activity
WO2009046279A2 (en) 2007-10-04 2009-04-09 Tennant Company Method and apparatus for neutralizing electrochemically activated liquids
JP5119848B2 (en) 2007-10-12 2013-01-16 富士ゼロックス株式会社 Microreactor device
JP2009101299A (en) * 2007-10-24 2009-05-14 Fuji Xerox Co Ltd Micro nano-bubble generation method, washing method for micro-flow passage, micro nano-bubble generation system, and micro-reactor
US10125359B2 (en) 2007-10-25 2018-11-13 Revalesio Corporation Compositions and methods for treating inflammation
US9745567B2 (en) 2008-04-28 2017-08-29 Revalesio Corporation Compositions and methods for treating multiple sclerosis
JP4921332B2 (en) * 2007-11-29 2012-04-25 株式会社Reo研究所 Method for producing nitrogen nanobubble water
JP4921333B2 (en) * 2007-11-29 2012-04-25 株式会社Reo研究所 Method for producing carbon dioxide nanobubble water
JP5053115B2 (en) * 2008-02-05 2012-10-17 芝浦メカトロニクス株式会社 Substrate processing apparatus and processing method
CN103919804A (en) 2008-05-01 2014-07-16 利发利希奥公司 Compositions And Methods For Treating Digestive Disorders
BRPI0914778A2 (en) 2008-06-19 2017-08-22 Tennant Co PORTABLE SPRAY BOTTLE AND METHOD
JP5773473B2 (en) * 2008-09-01 2015-09-02 田中 裕之 NK activity enhancer and use thereof
JP2010115624A (en) 2008-11-14 2010-05-27 Fuji Xerox Co Ltd Microchannel device, separation device, and separation method
KR101085840B1 (en) 2008-12-04 2011-11-24 주식회사환경과생명 Nano Bubble proceded water Generator
JP5003702B2 (en) 2009-03-16 2012-08-15 富士ゼロックス株式会社 Microfluidic device and microfluidic control method
JP2011011126A (en) * 2009-06-30 2011-01-20 Panasonic Electric Works Co Ltd Apparatus for producing functional liquid
SG10201403566SA (en) * 2009-08-06 2014-10-30 Sunstar Engineering Inc Composition and process for production thereof
JP4995245B2 (en) * 2009-09-13 2012-08-08 熊本製粉株式会社 Grain treated with oxygen nanobubble water and superheated steam
WO2011036722A1 (en) * 2009-09-25 2011-03-31 Tanaka Hiroyuki Enhancer of nk activity and use thereof
RU2519411C1 (en) 2010-03-08 2014-06-10 Шарп Кабусики Кайся Method of processing with lubricant for mould, mould, method of manufacturing anti-reflecting film, device for processing with lubricant for mould and device for mould washing/drying
KR101219880B1 (en) * 2010-10-08 2013-01-08 한국생산기술연구원 Manufacturing Method Of Tofu Using Nano Bubble
JP5445522B2 (en) * 2011-06-24 2014-03-19 三菱電機株式会社 Water heater, air conditioner
JP2013135661A (en) * 2011-07-25 2013-07-11 Mg Grow Up:Kk Method for producing highly-concentrated oxygen treated water, highly-concentrated oxygen treated water and freshness retention treatment of fresh fish and shellfish
JP5818090B2 (en) * 2011-12-16 2015-11-18 学校法人山野学苑 Permanent wave second agent with low impact on hair and environment
JP6231780B2 (en) * 2012-06-14 2017-11-15 松本 高明 Oxygen water for fish and shellfish and its production system, fish and shellfish breeding device, fish and shellfish breeding method, fish and shellfish transport method and fish and shellfish oxygen ice
KR101483842B1 (en) 2013-02-22 2015-01-16 손덕순 Generation apparatus and method for electrolyte concentrated and fusion nano oxygen bubble water
WO2014148397A1 (en) * 2013-03-18 2014-09-25 学校法人北里研究所 Device for generating nanobubbles by electric current supply
WO2015048904A1 (en) * 2013-10-03 2015-04-09 Ebed Holdings Inc. Nanobubble-containing liquid solutions
JP6214091B2 (en) * 2014-03-28 2017-10-18 国立研究開発法人産業技術総合研究所 Method for producing water containing nanobubbles
JP2016104474A (en) 2014-08-22 2016-06-09 有限会社情報科学研究所 Ultrafine bubble manufacturing method and ultrafine bubble water manufacturing device by resonance forming and vacuum cavitation
WO2016163415A1 (en) * 2015-04-08 2016-10-13 SonoCore株式会社 Bubble production method
US20170056439A1 (en) * 2015-08-25 2017-03-02 Oxy Young Co., Ltd. Oxygen-enriched water composition, biocompatible composition comprising the same, and methods of preparing and using the same
WO2017195852A1 (en) 2016-05-13 2017-11-16 シグマテクノロジー有限会社 Aqueous solution capable of being administered to living body, and method for producing same
CN106035142A (en) * 2016-05-30 2016-10-26 铜陵东晟生态农业科技有限公司 Procypris rabaudi cultivation method
KR101767146B1 (en) * 2016-10-17 2017-08-10 임용범 The apparatus and method of generating with micro bubble and nano bubble
JP2018090514A (en) * 2016-12-01 2018-06-14 日新技研株式会社 Fine bubble mixed liquid having bactericidal effect
JP6836269B2 (en) * 2017-03-21 2021-02-24 吉川工業株式会社 Ornamental fish breeding system
CN108002605B (en) * 2017-11-17 2021-05-14 浙江海洋大学 Method for treating antibiotics in mariculture wastewater
JP2021175944A (en) * 2018-07-20 2021-11-04 国立研究開発法人産業技術総合研究所 Water evaluation method and water evaluation mechanism
GB2578105B (en) 2018-10-15 2023-06-28 Univ College Dublin Nat Univ Ireland Dublin A system, method and generator for generating nanobubbles or nanodroplets
JP7295395B2 (en) * 2019-04-03 2023-06-21 ダイキン工業株式会社 Method for producing bubbles and method for producing substance
CN111265543A (en) * 2020-03-31 2020-06-12 潘纲 Medical nano oxygen infusion agent for controlling partial pressure of blood oxygen and preparation method and application thereof
CN113680225B (en) * 2021-08-20 2022-05-31 常州大学 Charged micro-nano bubble suspension injection machine based on heating cutting method
JP7152824B1 (en) 2022-08-26 2022-10-13 株式会社ナノバブル研究所 Cation-containing microbubble generator and cation generator

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09276675A (en) * 1996-04-17 1997-10-28 Kankyo Kagaku Kogyo Kk Gas-liquid contact apparatus
JP3397154B2 (en) * 1997-12-30 2003-04-14 博文 大成 Revolving microbubble generator
JP2000254483A (en) * 1999-03-12 2000-09-19 Babcock Hitachi Kk Cavitation reactor
JP4101979B2 (en) * 1999-06-24 2008-06-18 株式会社神戸製鋼所 Underwater discharge method and equipment
JP2001225060A (en) * 1999-12-08 2001-08-21 Mitsubishi Heavy Ind Ltd Water treatment method and its device
JP4309021B2 (en) * 2000-05-10 2009-08-05 鈴木産業株式会社 Wastewater treatment system
AU2001274610A1 (en) * 2000-06-23 2002-01-02 Ryosaku Fujisato Fine air bubble generator and fine air bubble generating device with the generator
JP2002143885A (en) * 2000-11-14 2002-05-21 Hirobumi Onari Micro bubble
JP3502363B2 (en) * 2001-05-31 2004-03-02 ジェイイーシー株式会社 Wastewater treatment method and wastewater treatment equipment
JP2003245662A (en) * 2002-02-21 2003-09-02 Fm Ecology Kenkyusho:Kk Waste water treatment system
JP2003245533A (en) * 2002-02-22 2003-09-02 Mori Kikai Seisakusho:Kk Ultrafine air bubble generator
JP4016099B2 (en) * 2002-05-20 2007-12-05 独立行政法人産業技術総合研究所 How to create nanobubbles
JP2004121962A (en) * 2002-10-01 2004-04-22 National Institute Of Advanced Industrial & Technology Method and apparatus for using nanometer-bubble

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9034195B2 (en) 1997-10-24 2015-05-19 Revalesio Corporation Diffuser/emulsifier for aquaculture applications
US9004743B2 (en) 2006-10-25 2015-04-14 Revalesio Corporation Mixing device for creating an output mixture by mixing a first material and a second material
US8449172B2 (en) 2006-10-25 2013-05-28 Revalesio Corporation Mixing device for creating an output mixture by mixing a first material and a second material
US8609148B2 (en) 2006-10-25 2013-12-17 Revalesio Corporation Methods of therapeutic treatment of eyes
US8617616B2 (en) 2006-10-25 2013-12-31 Revalesio Corporation Methods of wound care and treatment
US8962700B2 (en) 2006-10-25 2015-02-24 Revalesio Corporation Electrokinetically-altered fluids comprising charge-stabilized gas-containing nanostructures
US7919534B2 (en) 2006-10-25 2011-04-05 Revalesio Corporation Mixing device
US8410182B2 (en) 2006-10-25 2013-04-02 Revalesio Corporation Mixing device
US9523090B2 (en) 2007-10-25 2016-12-20 Revalesio Corporation Compositions and methods for treating inflammation
US9272000B2 (en) 2009-04-27 2016-03-01 Revalesio Corporation Compositions and methods for treating insulin resistance and diabetes mellitus
US9198929B2 (en) 2010-05-07 2015-12-01 Revalesio Corporation Compositions and methods for enhancing physiological performance and recovery time
US9492404B2 (en) 2010-08-12 2016-11-15 Revalesio Corporation Compositions and methods for treatment of taupathy
JP7475025B2 (en) 2020-01-23 2024-04-26 国立大学法人東北大学 Water containing oxygen-containing nanoparticles

Similar Documents

Publication Publication Date Title
JP4080440B2 (en) Oxygen nanobubble water and method for producing the same
JP2005246294A5 (en)
US20070286795A1 (en) Oxygen Nanobubble Water and Method of Producing the Same
JP4059506B2 (en) Ozone water and method for producing the same
JP4144669B2 (en) Method for producing nanobubbles
JP6762467B2 (en) Aeration device
ES2881344T3 (en) Disinfection and removal of nitrogen species from saline aquaculture systems
KR101379274B1 (en) Apparatus for water containing nitric oxide having sterilizing function
JP3645250B2 (en) Pressurized multilayer micro-ozone sterilization / purification / animal sterilization system
JP5854502B2 (en) Ozone sterilizer
JP4921333B2 (en) Method for producing carbon dioxide nanobubble water
US7487876B2 (en) Particles with silver carried and producing method thereof
WO2004016344A1 (en) Minute air bubble-containing liquid matter and device for manufacturing the liquid matter
WO2006088156A1 (en) Method of treating ship ballast water
CN204162498U (en) The micro-nano bubble water machine of sun power
JP4921332B2 (en) Method for producing nitrogen nanobubble water
CN102246712B (en) Method of expelling ectoparasites parasitic on breeding fish
JP2012239938A (en) Water-quality improvement apparatus, water-quality improving method and metal ion water generator
JP5596276B2 (en) Super fine bubble water
JP2013193000A (en) Ballast water treating system and ballast water treating method
JP2004267868A (en) System for dissolving/storing/supplying gas with line atomizer
JP2016198096A (en) Seafood processor, seafood processing method, frozen seafood, and reviving method of frozen seafood
Chaurasia Nanobubbles: an emerging science in nanotechnology
WO2021054423A1 (en) Bathing apparatus for thermotherapy
CN109936980B (en) Purification system