WO2004008471A1 - Image display device, image display device manufacturing method, and manufacturing device - Google Patents

Image display device, image display device manufacturing method, and manufacturing device Download PDF

Info

Publication number
WO2004008471A1
WO2004008471A1 PCT/JP2003/008929 JP0308929W WO2004008471A1 WO 2004008471 A1 WO2004008471 A1 WO 2004008471A1 JP 0308929 W JP0308929 W JP 0308929W WO 2004008471 A1 WO2004008471 A1 WO 2004008471A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
sealing layer
front substrate
image display
rear substrate
Prior art date
Application number
PCT/JP2003/008929
Other languages
French (fr)
Japanese (ja)
Inventor
Hisakazu Okamoto
Tsukasa Ooshima
Akiyoshi Yamada
Takashi Enomoto
Masahiro Yokota
Takashi Nishimura
Hirotaka Unno
Hiroharu Takezawa
Original Assignee
Kabushiki Kaisha Toshiba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba filed Critical Kabushiki Kaisha Toshiba
Priority to KR1020047020410A priority Critical patent/KR100686668B1/en
Priority to JP2005505099A priority patent/JPWO2004008471A1/en
Priority to EP03741381A priority patent/EP1542255A1/en
Publication of WO2004008471A1 publication Critical patent/WO2004008471A1/en
Priority to US11/035,322 priority patent/US20050179360A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/48Sealing, e.g. seals specially adapted for leading-in conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/86Vessels; Containers; Vacuum locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/90Leading-in arrangements; Seals therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/92Means forming part of the tube for the purpose of providing electrical connection to it
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/26Sealing together parts of vessels
    • H01J9/261Sealing together parts of vessels the vessel being for a flat panel display

Definitions

  • Image display device method of manufacturing image display device, and manufacturing device
  • the present invention relates to a flat-type image display device having substrates arranged to face each other, a method for manufacturing an image display device, and a device for manufacturing an image display device.
  • CRTs cathode ray tubes
  • image display devices include a liquid crystal display (hereinafter, referred to as an LCD) that controls the intensity of light by using the orientation of liquid crystal, and a plasma display that emits phosphors using ultraviolet light of plasma discharge.
  • Panels hereinafter referred to as PDPs
  • FEDs field emission displays
  • SEDs surface-conduction electron emission displays
  • FEDs and SEDs generally have a front substrate and a rear substrate that are opposed to each other with a predetermined gap, and these substrates are joined to each other through a rectangular frame-shaped side wall. And constitute a vacuum envelope.
  • a phosphor screen is formed on the inner surface of the front substrate, and a number of electron-emitting devices are provided on the inner surface of the rear substrate as electron emission sources for exciting the phosphor to emit light.
  • a plurality of support members are disposed between these substrates. The potential on the back substrate side is almost the ground potential, and the anode voltage Va is applied to the phosphor screen.
  • the red, green, and blue phosphors that make up the phosphor screen are irradiated with the electron beam emitted from the emitter, and the phosphors emit light to display images.
  • the thickness of the display device can be reduced to about several mm, and it can be compared with CRTs used as displays for televisions and computers today. As a result, the weight and the thickness can be reduced.
  • Japanese Patent Application Laid-Open No. 2000-220980 and Japanese Patent Application Laid-Open No. 2001-210258 Discloses a method of performing final assembly of a front substrate and a rear substrate constituting an envelope in a vacuum chamber.
  • the front substrate and the rear substrate brought into the vacuum chamber are sufficiently heated. This is to reduce the gas release from the inner wall of the envelope, which is the main cause of the deterioration of the envelope vacuum.
  • a getter film for improving and maintaining the vacuum degree of the envelope was placed on the phosphor screen. Form.
  • the front substrate and the rear substrate are heated again to a temperature at which the sealing material melts, and the front substrate and the rear substrate are heated. Cool in a state where the sealing material is solidified in a state where the sealing material is combined with the predetermined position.
  • the vacuum envelope made by such a method can perform both the sealing process and the vacuum sealing process, does not require much time for evacuation, and can obtain an extremely good degree of vacuum. And can be.
  • As a sealing material it is desirable to use a low-melting-point material suitable for sealing and sealing batch processing.
  • the processes performed in the sealing process include heating, positioning, and cooling, and the sealing material melts and solidifies for a long time.
  • the front substrate and the rear substrate must be kept in place.
  • problems in productivity and characteristics associated with sealing such as that the front substrate and the rear substrate are thermally expanded due to heating and cooling at the time of sealing, and alignment accuracy is likely to deteriorate.
  • a method in which a conductive sealing material such as indium is energized, and the conductive sealing material itself is heated and melted by Joule heat to bond the substrates (hereinafter referred to as energizing heating and ) Are being considered.
  • energizing heating and it is not necessary to spend an enormous amount of time for cooling the substrate, and the envelope can be vacuum-sealed in a short time and with a simple device. That is, by using a conductive sealing material, it is possible to selectively heat only the sealing material having a small heat capacity without heating the substrate, and to deteriorate the positional accuracy due to the thermal expansion of the substrate. Can be suppressed.
  • the heat capacity of the sealing material is very small compared to the heat capacity of the substrate, it requires more heating and cooling than the method of heating the entire substrate. Time and time can be greatly reduced, and mass productivity can be greatly improved.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a method of manufacturing an image display device and a manufacturing device capable of performing a sealing operation quickly and stably. And.
  • an image display device includes a front substrate, and a back substrate disposed opposite to the front substrate, wherein a sealing layer containing a conductive sealing material is provided.
  • a sealing layer containing a conductive sealing material is provided.
  • a method of manufacturing an image display device includes an image display device including an envelope having a front substrate and a rear substrate, which are arranged to face each other and whose peripheral portions are joined to each other. The method of manufacturing
  • a sealing material having conductivity is arranged to form a sealing layer, and an electrode is attached to at least one of the front substrate and the rear substrate on which the sealing layer is formed, and the sealing is performed.
  • an electric current is applied to the sealing layer through the electrode, and the sealing layer is heated and melted to thereby surround the front substrate and the rear substrate. Join the parts together.
  • the image display device includes an electrode that is previously attached to the envelope and is electrically connected to the sealing layer, and is sealed through the electrode.
  • the envelope is constructed by heating the deposited layer with electric current. Therefore, a stable current can be applied to the sealing layer formed of the conductive sealing material, and the sealing operation of the image display device can be quickly and stably performed.
  • FIG. 1 is a perspective view showing the entire FED according to the first embodiment of the present invention.
  • FIG. 2 is a perspective view showing the internal configuration of the FED.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG.
  • FIG. 4 is an enlarged plan view showing a part of the phosphor screen of the FED.
  • FIG. 5 is a perspective view showing the FED electrode.
  • 6A and 6B are plan views respectively showing a front substrate and a rear substrate used for manufacturing the FED.
  • FIG. 7 is a perspective view showing a state in which electrodes are attached to the rear substrate of the FED.
  • FIG. 8 is a cross-sectional view showing a state in which a rear substrate and a front substrate, each having indium disposed in the sealing portion, are opposed to each other.
  • FIG. 9 is a diagram schematically showing a vacuum processing apparatus used for manufacturing the FED.
  • FIG. 10 is a plan view schematically showing a state in which a power supply is connected to an electrode of the FED in the FED manufacturing process.
  • FIG. 11 is a perspective view showing a part of an FED according to a second embodiment of the present invention.
  • FIG. 12A and FIG. 12B are cross-sectional views showing the manufacturing process of the FED according to the second embodiment.
  • FIG. 13 is a plan view schematically showing a state in which a power supply is connected to an electrode of the FED in a process of manufacturing the FED according to the third embodiment of the present invention.
  • FIG. 14A and FIG. 14B are cross-sectional views showing the manufacturing process of the FED according to the third embodiment.
  • FIG. 15 is a perspective view showing the entire FED according to the fourth embodiment of the present invention.
  • Figure 16 is a cross-sectional view of Figure 15 taken along line XVI—XVI.
  • FIG. 17 is a perspective view showing the FED electrode.
  • FIG. 18A and FIG. 18B are plan views respectively showing a front substrate and a rear substrate used for manufacturing the FED.
  • FIG. 19 is a cross-sectional view showing a state in which the rear substrate and the front substrate on which indium is arranged are opposed to each other.
  • FIG. 20 is a cross-sectional view showing a modification of the electrode in the fourth embodiment.
  • FIG. 21 is a perspective view showing another modification of the electrode in the fourth embodiment.
  • FIG. 22 is a cross-sectional view showing another modified example of the fourth embodiment.
  • FIG. 23 is a perspective view showing the entire FED according to the fifth embodiment of the present invention.
  • FIG. 24 is a cross-sectional view along the line XXIV-XXIV of FIG.
  • FIG. 25 is a perspective view showing an FED electrode according to the fifth embodiment.
  • FIG. 26 is a cross-sectional view showing an electrode according to a modification of the fifth embodiment.
  • FIG. 27 is a perspective view showing an electrode according to another modification of the fifth embodiment.
  • FIG. 28 is a cross-sectional view showing an electrode according to another modification of the fifth embodiment.
  • FIG. 29 is a perspective view showing an electrode according to still another modification of the fifth embodiment.
  • FIG. 30 is a perspective view showing an FED according to a sixth embodiment of the present invention.
  • FIG. 31A is a plan view showing a front substrate used for manufacturing the above-mentioned FED.
  • FIG. 31B is a plan view showing a back substrate, side walls, and spacers used for manufacturing the above-mentioned FED.
  • FIG. 32 is a cross-sectional view showing a step of sealing the front substrate and the side wall in the manufacturing method according to the sixth embodiment.
  • FIG. 33 is a plan view showing a modification of the electrode in the sixth embodiment.
  • FIG. 34A and FIG. 34B are plan views each showing another modified example of the electrode in the sixth embodiment.
  • FIG. 35 is a cross-sectional view showing the method of manufacturing the FED according to the seventh embodiment of the present invention.
  • FIG. 36 is a cross-sectional view showing a sealing step using an electrode according to a modification of the seventh embodiment.
  • FIG. 37 is a cross-sectional view showing the method of manufacturing the FED according to the eighth embodiment of the present invention.
  • FIG. 38 is a cross-sectional view showing a state where electrodes are inserted between the substrates in the eighth embodiment.
  • FIG. 39 is a cross-sectional view showing a state where both substrates are pressed in a direction approaching each other in the eighth embodiment.
  • FIG. 40 is a cross-sectional view showing a method of manufacturing an FED according to a ninth embodiment of the present invention.
  • FIG. 41 is a cross-sectional view showing a state where an electrode is brought into contact with a welded portion of a sealing layer in the ninth embodiment.
  • FIG. 42 is a perspective view showing the entire FED according to the tenth embodiment of the present invention.
  • Figure 43 is a cross-sectional view along the line XLIII—XLIII of Figure 42.
  • FIG. 44 is a perspective view showing the FED electrode according to the tenth embodiment.
  • FIG. 45 is a perspective view showing a state where electrodes are attached to a rear substrate in the tenth embodiment.
  • FIG. 46 is a cross-sectional view showing a state where the rear substrate and the front substrate on which the sealing layer is disposed are arranged to face each other in the tenth embodiment.
  • FIG. 47 is a cross-sectional view showing a state in which the back substrate and the front substrate are pressed in a direction approaching each other in the tenth embodiment, and the contact portions of the electrodes are sandwiched between sealing layers.
  • FIG. 48 is a perspective view showing an electrode according to a modification of the tenth embodiment.
  • FIG. 49 is a perspective view showing an electrode according to another modification in the tenth embodiment.
  • FIG. 50 is a perspective view showing an electrode according to still another modification of the tenth embodiment.
  • FIG. 51 is a cross-sectional view showing an electrode according to another modification of the tenth embodiment.
  • FIG. 52 is a cross-sectional view showing a state in which the rear substrate and the front substrate on which indium is arranged are opposed to each other in a modification of the tenth embodiment.
  • FIG. 53 is a cross-sectional view showing a state in which the rear substrate and the front substrate on which an indicator is arranged are opposed to each other in another modification of the tenth embodiment.
  • FIG. 54 is a perspective view showing an electrode according to a modification of the tenth embodiment.
  • FIG. 55 is a cross-sectional view showing a step of removing an electrode in the first embodiment of the present invention.
  • FIG. 56 is a cross-sectional view showing a step of removing an electrode in the eleventh embodiment.
  • FIG. 57 is a perspective view showing the FED with the electrodes removed in the first embodiment.
  • FIG. 58 is a cross-sectional view showing the FED with the electrodes removed in the eleventh embodiment.
  • FIG. 59 is a cross-sectional view showing a step of removing an electrode in the modification of the first embodiment.
  • FIG. 60 is a cross-sectional view showing a step of removing an electrode in another modification of the eleventh embodiment.
  • FIG. 61A to FIG. 61E are plan views respectively showing modified examples of the concave portion formed in the sealing layer of FED in the first embodiment.
  • FIG. 62 is a cross-sectional view showing a step of cutting an electrode in the first embodiment of the present invention.
  • FIG. 63 is a cross-sectional view showing a step of removing the cut electrode in the first embodiment.
  • FIG. 64 is a cross-sectional view showing an FED according to a thirteenth embodiment of the present invention.
  • FIG. 65 is a perspective view showing a state where an electrode is mounted on the rear substrate in the thirteenth embodiment.
  • FIG. 66 is a cross-sectional view showing the manufacturing apparatus according to the thirteenth embodiment.
  • FIG. 67 is a perspective view schematically showing the manufacturing apparatus.
  • FIG. 68 is a cross-sectional view showing a manufacturing apparatus according to a modification of the thirteenth embodiment.
  • the FED has a front substrate 11 and a rear substrate 12 each made of a rectangular glass plate, and these substrates are separated by a gap of 1 to 2 mm. They are arranged facing each other.
  • the front substrate 11 and the rear substrate 12 are joined to each other via a rectangular frame-shaped side wall 18 to form a flat rectangular vacuum envelope 10 whose inside is maintained in a vacuum. Make up.
  • a plurality of plate-like support members 14 are provided to support the atmospheric pressure load applied to the front substrate 11 and the rear substrate 12.
  • the support members 14 extend in a direction parallel to one side of the vacuum envelope 10 and are arranged at predetermined intervals along a direction orthogonal to the one side. ing.
  • the support member 14 is not limited to the plate shape, and may be a columnar shape.
  • a phosphor screen 16 functioning as an image display surface is formed.
  • the phosphor screen 16 is composed of phosphor layers R, G, and B of red, green, and blue, and a light absorbing layer 20 positioned between these phosphor layers.
  • R, G, and B extend in a direction parallel to the one side of the vacuum envelope 10 and are arranged at predetermined intervals along a direction orthogonal to the one side. .
  • the light absorbing layer 20 is provided around the phosphor layers R, G, and B.
  • a metal knock 17 made of aluminum force and a getter film 13 are sequentially deposited. As shown in FIG.
  • the electron-emitting device 22 is provided on the inner surface of the rear substrate 12, there are a number of electron emission sources for exciting the phosphor layers of the phosphor screen 16, each emitting an electron beam.
  • the electron-emitting device 22 is provided. These electron-emitting devices 22 are arranged in a plurality of columns and a plurality of rows corresponding to each pixel. Specifically, a conductive force layer 24 is formed on the inner surface of the back substrate 12, and a silicon dioxide having a large number of cavities 25 is formed on the conductive force layer. A film 26 is formed. A gate electrode 28 made of molybdenum, niobium, or the like is formed on the silicon dioxide film 26. A cone-shaped electron-emitting device 22 made of molybdenum or the like is provided in each cavity 25 on the inner surface of the rear substrate 12.
  • a video signal is input to the electron-emitting device 22 and the gate electrode 28 formed in a simple matrix system.
  • a gate voltage of +100 V is applied when the luminance is the highest.
  • +10 kV is applied to the phosphor screen 16 with a printing force B.
  • an electron beam is emitted from the electron-emitting device 22.
  • the size of the electron beam emitted from the electron-emitting device 22 is modulated by the voltage of the gate electrode 28, and this electron beam excites the phosphor layer of the phosphor screen 16.
  • the image is displayed by emitting light.
  • Front board 1 Since a high voltage is applied to the phosphor screen 16, a high strain point glass is formed on the glass plates for the front substrate 11, the rear substrate 12, the side walls 18, and the support members 14. It is used. See below As described above, the space between the rear substrate 12 and the side wall 18 is sealed with a low-melting glass 19 such as a frit glass.
  • Front board 1 Since a high voltage is applied to the phosphor screen 16, a high strain point glass is formed on the glass plates for the front substrate 11, the rear substrate 12, the side walls 18, and the support members 14. It is used. See below As described above, the space between the rear substrate 12 and the side wall 18 is sealed with a low-melting glass 19 such as a frit glass.
  • the gap between 1 and the side wall 18 is sealed by a sealing layer 21 containing indium (In) as a low-melting sealing material having conductivity.
  • the FED includes a plurality of, for example, a pair of electrodes 30, and these electrodes are attached to the envelope 10 in a state of being electrically connected to the sealing layer 21. These electrodes 30 are used as electrode members when energizing the sealing layer 21.
  • each electrode 30 serves as a conductive member, for example.
  • the electrode 30 is bent so as to have a substantially U-shaped cross-section, and is formed into a flat first plate portion 3 by machining a copper plate having a thickness of 0.2 mm. 3a, the second plate portion 33b opposed to the first plate portion with a gap therebetween, and the first and second plate portions extend at substantially right angles, and the first and second plate portions 33b extend at substantially right angles. It has a conducting portion 38 that connects the edges of the two plates at the same time. 1st plate 3
  • 3ba has first and second contact portions 36a and 36b which are electrically connected to the sealing layer 21 respectively.
  • a slit 45 is formed between 6a and 36b, and the second contact portion is formed.
  • each electrode 30 is attached to the vacuum envelope 10 while being elastically engaged with the back substrate 12 and the side wall 18, for example. . That is, the electrode 30 is
  • the vacuum envelope 1 Fixed to 0.
  • the first and second contact portions 36a and 36b of the first plate portion 33a are in contact with the sealing layer 21 and are electrically conductive.
  • the conducting portion 38 of the electrode 30 faces the side surface and the side wall 18 of the back substrate 12 and is exposed outside the vacuum envelope 10.
  • the pair of electrodes 30 are provided at two diagonally separated corners of the vacuum envelope 10, respectively, and are arranged symmetrically with respect to the sealing layer 21.
  • a phosphor screen 16 is formed on a plate glass serving as the front substrate 11.
  • a plate glass having the same size as the front substrate 11 is prepared, and a phosphor strip pattern is formed on the plate glass by a plotter machine.
  • the plate glass on which the phosphor stripe pattern is formed and the plate glass for the front substrate are placed on a positioning jig and set on an exposure table.
  • the phosphor stripe pattern is exposed and developed, so that a phosphor screen is generated on a glass plate serving as the front substrate 11.
  • a metal back 17 is formed on the phosphor screen 16 to form the metal back 17.
  • an electron-emitting device 22 is formed on the glass plate for the rear substrate 12.
  • An insulating film of a silicon film is formed.
  • a metal film for forming a gate electrode such as molybdenum or niobium is formed on the insulating film by, for example, a sputtering method or an electron beam evaporation method.
  • a resist pattern having a shape corresponding to the gate electrode to be formed is formed on the metal film by lithography. Using the resist pattern as a mask, the metal film is etched by a wet etching method or a dry etching method to form a gate electrode 28.
  • the insulating film is etched by a wet or dry etching method using the resist pattern and the gate electrode 28 as a mask to form a cavity 25.
  • electron beam evaporation is performed from a direction inclined at a predetermined angle with respect to the surface of the rear substrate 12, thereby forming, for example, aluminum or nickel on the gate electrode 28.
  • a release layer is formed.
  • molybdenum is vapor-deposited as a material for forming a force source from a direction perpendicular to the rear substrate surface by an electron beam vapor deposition method.
  • the electron-emitting device 22 is formed inside the cavity 25.
  • the release layer and the metal film formed thereon are removed by a lift-off method. Subsequently, the side wall 18 and the support member 14 are sealed in the atmosphere on the inner surface of the back substrate 12 with the low melting point glass 19.
  • an adhesive is applied to a predetermined width and thickness over the entire periphery of the sealing surface of the side wall 18 to form a sealing layer 21a.
  • indium is applied to the sealing surface facing the side wall of the front substrate 11 in a rectangular frame with a predetermined width and thickness to form a sealing layer 21b.
  • the filling of the sealing layers 21a and 21b with respect to the sealing surface of the side wall 18 and the front substrate 11 is performed by applying molten indium to the sealing surface as described above.
  • the method is carried out by placing indium in a solid state on a sealing surface.
  • a pair of electrodes 30 is mounted on the back substrate 12 to which the side walls 18 are joined.
  • the first contact portion 36a of each electrode 30 is brought into contact with the sealing layer 21a on the side wall 18 to electrically connect the electrode to the sealing layer.
  • solder between the sealing layer 21a and the first contact portion 36a must be soldered in advance. Is also effective.
  • the electrode 30 requires a pair of a positive electrode and a single electrode on the substrate, and it is desirable that the length of current flowing from each electrode to the sealing layers 21a and 21b be equal. Therefore, a pair of electrodes 30 is attached to two diagonally opposite corners of the rear substrate 12, and the length of the sealing layers 21 a and 21 b located between the electrodes is It is set almost equally on both sides of.
  • the vacuum processing apparatus 100 includes a load chamber 101, a baking, electron beam cleaning chamber 102, a cooling chamber 103, a getter film deposition chamber 104, and an assembling chamber. 105, cooling room 106 and unloading room 107 are provided.
  • the assembly room 105 is connected to a DC power supply 120 for energization and a computer 122 for controlling the power supply.
  • Each chamber of the vacuum processing apparatus 100 is configured as a processing chamber capable of performing vacuum processing, and all the chambers are evacuated during the manufacture of the FED.
  • Each of these The rooms are connected by a gate valve (not shown).
  • the above-mentioned front substrate 11 and rear substrate 12 arranged at a predetermined interval are first loaded into a load chamber 101, and after the load chamber 101 is evacuated to a vacuum atmosphere, baking and electron beams are performed. It is sent to the washing room 102.
  • each member is heated to a temperature of 300 ° C. to release the surface adsorbed gas on the side wall of each substrate.
  • baking and electron beams are emitted from an electron beam generator (not shown) provided in the electron beam cleaning room 102, and are emitted from the phosphor screen surface of the front substrate 11 and the rear substrate 12 Irradiate the element surface.
  • the entire surface of the phosphor screen and the entire surface of the electron-emitting device are cleaned by deflecting and scanning the electron beam by a deflecting device mounted outside the electron beam generator. .
  • the front substrate 11 and the rear substrate 12 that have been subjected to the heating and the electron beam cleaning are sent to a cooling chamber 103 and cooled to a temperature of about 120 ° C.
  • a Ba film is vapor-deposited as a getter film outside the phosphor layer. The surface of the Ba film is prevented from being contaminated with oxygen, carbon, or the like, and can maintain an active state.
  • the front substrate 11 and the rear substrate 12 are sent to the assembly room 105.
  • the front substrate 11 and the rear substrate 12 were moved in a direction approaching each other while maintaining the temperature at about 120 ° C.
  • the second contact portion 36b of the first substrate is brought into contact with the sealing layer 21b on the front substrate 11 side. to this Thus, each electrode 30 is electrically connected to the sealing layer 2 lb.
  • the second contact portion 36b is elastically pressed against the sealing layer 21b by the spring pressure, so that stable conductivity can be secured.
  • the sealing layer 21 a on the side wall 18 side and the sealing layer 21 a on the front substrate 11 side are formed. Electricity is applied to each of the bonding layers 21b to heat the sealing layer to melt the indium.
  • the connection terminal 40 connected to the power supply 120 into contact with the conducting portion 38 of the electrode 30, the power supply and the electrode, and the electrode and the sealing layer 21 a, 21 b and can be reliably conducted.
  • the front substrate 11 and the rear substrate 12 are pressed in a direction approaching each other.
  • the sealing layers 2 la and 2 lb are fused to form the sealing layer 21, and the peripheral portion of the front substrate 11 and the side wall 18 are sealed by the sealing layer.
  • the vacuum envelope 10 formed by the above process is cooled to room temperature in the cooling chamber 106 and taken out of the unload chamber 107. This completes the FED vacuum envelope.
  • the electrode 30 may be cut off if necessary.
  • the electrode 30 for supplying electricity to the sealing layer 21 was previously mounted on the envelope and electrically connected to the sealing layer. Therefore, a stable current can be applied to the sealing layer 21 via the electrode 30 during the heating by energization. Therefore, at the time of sealing, the sealing layer The conductive low melting point sealing material to be formed can be stably and reliably melted in a predetermined energizing time, and as a result, the sealing layer 21 can be quickly and surely not cracked. Sealing can be performed.
  • the surface adsorbed gas can be sufficiently released by using both baking and electron beam cleaning, and the getter film has excellent adsorption capacity. Can be obtained.
  • the indium is sealed and joined by energizing and heating, there is no need to heat the entire front and back substrates, and the getter film is deteriorated. The substrate is broken during the sealing process. And the like can be eliminated, and at the same time, the sealing time can be shortened.
  • each electrode is configured to include the first contact portion that is conductive to the sealing layer on the side wall and the second contact portion that is conductive to the sealing layer on the front substrate side.
  • the electrode 30 is provided with a single contact portion 36a.
  • the pair of electrodes 30 are mounted on a pair of diagonally opposite corners of the rear substrate 12, respectively, and are attached to the envelope while elastically holding the side wall 18 and the rear substrate 12. It is attached.
  • each contact portion 36a is in contact with the upper surface of the sealing layer 21a and is electrically connected to the sealing layer.
  • the front substrate 11 on which the sealing layer 2 1 b is formed is arranged to face the rear substrate 12, so that the contact portions 36 a of the respective electrodes 30 form the sealing layer 2 1. Both a and 2 lb are in contact and electrically connected. Then, the sealing layers 2 la and 2 lb can be simultaneously energized through these electrodes 30 to heat and melt the indium.
  • each electrode 30 may be mounted and fixed to the front substrate side.
  • the FED is a pair of first conductive members for supplying electricity to the sealing layer 21 a formed on the side wall 18. It includes an electrode 30 a and a pair of second electrodes 30 b for supplying electricity to the sealing layer 21 b formed on the front substrate 11.
  • the first and second electrodes 30a and 30b are formed in a clip shape almost in the same manner as the above-described electrode 30.However, each electrode has one contact portion 36. Has become.
  • the pair of first electrodes 30 a are mounted on a pair of diagonally opposite corners of the rear substrate 12, respectively, and are attached while elastically sandwiching the side wall 18 and the rear substrate 12. ing. At this time, each of the first electrodes 30a is electrically connected to the sealing layer with its contact portion 36 in contact with the sealing layer 21a.
  • the pair of second electrodes 3 Ob is formed on a pair of corners of the front substrate 11 opposite to each other in a diagonal direction. Each is mounted and attached with the front substrate elastically sandwiched. At this time, each of the second electrodes 3 Ob has a first electrode 30 a and a second electrode 30 whose contact portions 36 are in contact with the sealing layer 21 b and are electrically connected to the sealing layer. It is desirable that b be divided into four corners without overlapping each other.
  • the pair of connection terminals 40 a connected to the power supply 120 are brought into contact with the conductive portions 38 of the first electrode 30 a, respectively. Then, the power supply and the first electrode, and the first electrode and the sealing layer 2 la are electrically connected. Further, the pair of connection terminals 4 O b connected to the power supply 120 are brought into contact with the conducting portions 38 of the second power 30 b, respectively, so that the power supply and the second electrode, and the second electrode and the sealing layer 2 Make lb conductive. In this state, current is applied to each of the sealing layer 21a on the side wall 18 and the sealing layer 21b on the front substrate 11 to heat the sealing layer and melt the indium. Thereafter, as shown in FIG.
  • the front substrate 11 and the rear substrate 12 are pressed in a direction approaching each other, whereby the sealing layers 21 a and 21 b are fused and sealed.
  • the adhesion layer 21 is formed, and the peripheral portion of the front substrate 11 and the side wall 18 are sealed by the sealing layer.
  • the other configuration is the same as that of the above-described first embodiment, and the same portions are denoted by the same reference numerals and detailed description thereof will not be repeated.
  • the same operation and effect as those of the first embodiment can be obtained.
  • the current flowing through the sealing layer 21a on the rear substrate 12 side and the sealing layer 21b on the front substrate 11 side are individually , And more appropriate energization heating can be performed.
  • the FED includes a vacuum envelope 10 and a plurality of, for example, a pair of electrodes 30 attached to the vacuum envelope.
  • the vacuum envelope 10 includes a front substrate 11 and a rear substrate 12 each made of a rectangular glass plate, and these substrates 11 and 12 are arranged at a peripheral portion through a rectangular frame-shaped side wall 18. Are joined together.
  • a phosphor screen 16, a metal back 17, and a getter film 13 are formed on the inner surface of the front substrate 11.
  • a number of electron-emitting devices 22 for exciting the phosphor layer of the phosphor screen 16 are provided.
  • a large number of wirings 23 for supplying a potential to the electron-emitting devices 22 are provided in a matrix on the inner surface of the rear substrate 12, and the ends of the wirings 23 are provided at the ends of the vacuum envelope 10. It is drawn out to the periphery.
  • the pair of electrodes 30 is attached to the envelope 10 in a state of being electrically connected to the sealing layer 21. These electrodes 30 are used as electrodes when energizing the sealing layer 21.
  • Each electrode 30 is formed by bending a copper plate having a thickness of, for example, 0.2 mm as a conductive member. That is, the electrode 30 is bent so as to have a substantially U-shaped cross-section, and is a clip-like mounting that can be attached to a peripheral portion of the front substrate 11 or the rear substrate 12.
  • a contact portion 36 located at the extended end of the body portion and a flat conducting portion 38 formed by the mounting portion and the back portion of the body portion are integrally provided.
  • the contact portion 36 has a horizontal extension L of 2 mm or more. Further, the body portion 34 is formed in a band shape, and extends obliquely upward and outward from the contact portion 36. As a result, the body portion 34 forms the outflow regulating portion 37 positioned higher than the contact portion 36 along the vertical direction.
  • Each electrode 30 is attached in a state of being elastically engaged with, for example, a back substrate 12 of the vacuum envelope 10. That is, the electrode 30 is attached to the vacuum envelope 10 in a state where the peripheral portion of the rear substrate 12 is elastically held by the attachment portion 32.
  • the contact portion 36 of each electrode 30 is in contact with the sealing layer 21 and is electrically conductive.
  • the body 34 extends from the contact portion 36 to the outside of the vacuum envelope 10, and the outflow regulating portion 37 is located vertically higher than the contact portion 36. are doing.
  • the conduction portion 38 is exposed on the outer surface of the vacuum envelope 10 so as to face the side surface of the rear substrate 12.
  • the pair of electrodes 30 are provided at two diagonally separated corners of the vacuum envelope 10, respectively, and are arranged symmetrically with respect to the sealing layer 21.
  • the other configuration of the FED is the same as that of the above-described first embodiment, and the same portions are denoted by the same reference characters and will not be described in detail.
  • a method of manufacturing the above FED will be described in detail.
  • This manufacturing method is almost the same as the manufacturing method according to the first embodiment, and different portions will be mainly described.
  • a front substrate 11 on which a phosphor screen and a metal back 17 are formed, and a rear substrate 12 on which electron-emitting devices 22 are formed are prepared.
  • the side wall 18 and the support member 14 are sealed on the inner surface of the rear substrate 12 with the low melting point glass 19 in the atmosphere.
  • indium is applied to a predetermined width and thickness over the entire periphery of the sealing surface of the side wall 18 to form a sealing layer 21a.
  • a sealing layer 21b is formed by applying an image in a rectangular frame shape with a predetermined width and thickness to a sealing surface facing the side wall of the front substrate 11.
  • the filling of the sealing layers 21a and 21 with respect to the side walls 18 and the sealing surface of the front substrate 11 may be performed by applying molten indium to the sealing surface as described above, or This is performed by a method of placing indium in a solid state on a sealing surface.
  • a pair of electrodes 30 is mounted on the back substrate 12 to which the side walls 18 are joined.
  • the electrode is electrically connected to the sealing layer by bringing the contact portion 36 of each electrode 30 into contact with the sealing layer 2 la on the side wall 18.
  • the pair of electrodes 30 is mounted on two diagonally opposite corners of the back substrate 12, and the length of the sealing layers 21 a and 21 b located between the electrodes is equal to the length of each electrode. Almost equal on both sides.
  • the rear substrate 12 and the front substrate 11 are arranged facing each other with a predetermined interval therebetween, and in this state, are put into the vacuum processing apparatus 100 shown in FIG.
  • the front substrate 11 and the rear substrate 12 are baked through the loading chamber 101 and sent to the electron beam cleaning chamber 102. Baking, electron beam cleaning room 102, each The seed member is heated to a temperature of 300 ° C. to release gas adsorbed on the surface of each substrate.
  • an electron beam is irradiated from the electron beam generator onto the phosphor screen surface of the front substrate 11 and the electron-emitting device surface of the rear substrate 12 so that the phosphor screen surface and the electrons are emitted.
  • the entire surface of the emission element surface is cleaned with an electron beam.
  • each electrode 30 is provided with an outflow restricting portion 37 positioned higher than the contact portion 36, the outflow restricting portion allows molten indium to flow outside the back substrate. Can be suppressed.
  • the front substrate 11 and the rear substrate 12 are sent to a cooling chamber 103, cooled to a temperature of about 120 ° C., and then sent to a getter film deposition chamber 104, where the phosphor B a film is deposited forming the outer layer.
  • the front substrate 11 and the rear substrate 12 are sent to the assembly room 105, and as shown in FIG. 19, the hot plates 131, 1 in the assembly room are placed in a state of facing each other, as shown in FIG. 3 and 2 respectively.
  • the front substrate 11 is fixed to the upper hot plate 13 1 with the fixing jig 13 3 so as not to drop.
  • the front substrate 11 and the rear substrate 12 are moved in a direction approaching each other while being maintained at about 120 ° C., and pressurized at a predetermined pressure.
  • the contact portion 36 of each electrode 30 is sandwiched between the sealing layer 21b on the front substrate 11 side and the sealing layer 21a on the rear substrate 12 side, and each electrode 3 0 is electrically connected to the sealing layers 21a and 21b.
  • the contact part 36 has a horizontal length of 2 mm or more. As a result, it is possible to stably contact the sealing layers 21a and 21b.
  • indium to the contact portion 36 of the electrode 30 in advance, it is possible to more stably supply electricity to the sealing material.
  • each of the sealing layer 21 a on the side wall 18 side and the sealing layer 21 b on the front substrate 11 side is connected, for example.
  • 140 A DC current is applied in the constant current mode.
  • the sealing layers 21a and 21b are heated to melt the indium.
  • the connection terminal connected to the power supply 120 is brought into contact with the conducting portion 38 of the electrode 30 to make the power supply and the electrode, and the electrode and the sealing layer 21a, 21b. And can be reliably conducted.
  • each electrode 30 is in equivalent contact with the sealing layers 21a and 21b, it is possible to supply electricity stably, and almost the same amount of current flows through each sealing layer. And it can be melted evenly.
  • the sealing layer 21 a and 2 lb are fused to form a sealing layer 21, and the peripheral layer of the front substrate 11 is formed by the sealing layer.
  • the part and the side wall 18 are sealed.
  • the vacuum envelope 10 formed by the above process is cooled to room temperature in the cooling chamber 106 and is taken out from the unload chamber 107, whereby the vacuum envelope is removed. 10 is completed. After the vacuum envelope 10 is completed, the electrode 30 may be cut off if necessary.
  • the FED configured as described above and the method of manufacturing the same, the first embodiment described above is used. The same operation and effect as described above can be obtained. Further, according to the fourth embodiment, a current is applied to the sealing material.
  • the electrode 30 Since the electrode 30 has an outflow restricting portion positioned higher than the contact portion, the electrode 30 restricts the molten sealing material from flowing out through the electrode in the baking step or the like. As a result, the sealing layer can be maintained at a uniform thickness, the envelope can be reliably sealed over the entire circumference, and wiring caused by leakage of the sealing material can be achieved. It is possible to prevent short shots. Therefore, it is possible to obtain an inexpensive FED that is excellent in mass productivity and that can obtain stable and good images at the same time.
  • each electrode 30 is configured so that almost the entire body extends obliquely upward from the contact portion 36 to form the outflow regulation portion 37. As shown in FIG. 20, a part of the body part 34 may be extended vertically higher than the contact part 36 to form the outflow restriction part 37. .
  • each electrode 30 was configured to have a mounting part integrally, but as shown in Figs. 21 and 22, the electrode 30 has a contact part 36, a lunar union part 34, and an outflow control. It may be configured to include the unit 37 and the base unit 39, and may be configured to be attached to the rear substrate 12 using a separate clip 46.
  • the FED includes a vacuum envelope 10 and a plurality of, for example, a pair of electrodes 30 attached to the vacuum envelope.
  • the pair of electrodes 30 is attached to the envelope 10 in a state of being electrically connected to the sealing layer 21.
  • Each electrode 30 is formed by bending a copper plate having a thickness of, for example, 0.2 mm as a conductive member. That is, the electrode 30 is bent so that the cross section becomes substantially U-shaped, and can be attached to the front substrate 11 or the rear substrate 12 by sandwiching the peripheral portion thereof.
  • the contact portion 36 has a horizontal extension L of 2 mm or more.
  • the body portion 34 is formed in a belt shape, and extends outward and diagonally upward from the contact portion 36. As a result, the body portion 34 forms the outflow regulating portion 37 located higher than the contact portion 36 along the vertical direction. The body portion 34 forms a flow path for flowing a current from the conducting portion 38 to the contact portion 36.
  • the drain portion 35 is formed in a band shape and extends obliquely downward and outward from the contact portion 36. As a result, the drain portion 35 is formed at a position lower than the contact portion 36 along the vertical direction.
  • the width of the drain portion 35 is smaller than the width of the body portion 34, and is formed, for example, to about 1 mm. As will be described later, the drain portion 35 is used to discharge the molten sealing material to the outside. Forming a road.
  • Each electrode 30 is attached in a state of being elastically engaged with, for example, a back substrate 12 of the vacuum envelope 10. That is, the electrode 30 is attached to the vacuum envelope 10 while the peripheral portion of the rear substrate 12 is elastically held by the mounting portion 32.
  • the contact portion 36 of each electrode 30 is in contact with the sealing layer 21 and is electrically connected to the sealing layer.
  • the body 34 extends from the contact 36 to the outside of the vacuum envelope 10, and the outflow restricting portion 37 is located vertically higher than the contact 36.
  • the drain portion 35 extends from the contact portion 36 to the outside of the vacuum envelope 10 and is located lower than the contact portion 36 in the vertical direction.
  • the conduction portion 38 faces the side surface of the rear substrate 12 and is exposed on the outer surface of the vacuum envelope 10.
  • the pair of electrodes 30 are provided at two diagonally separated corners of the vacuum envelope 10, respectively, and are arranged symmetrically with respect to the sealing layer 21.
  • the other configuration of the FED is the same as that of the above-described fourth embodiment, and the same portions are denoted by the same reference characters and will not be described in detail.
  • the FED according to the fifth embodiment is manufactured by the same manufacturing method as the manufacturing method according to the fourth embodiment.
  • the sealing layers 21a and 2lb are heated and melted. Then, the sealing layer 21a on the rear substrate 12 side tends to flow out through the electrode 30 to the outside. However, since each electrode 30 is provided with an outflow control portion 37 located higher than the contact portion 36, this outflow control is performed.
  • the control section can prevent the molten indium from flowing out of the rear substrate. Also, a part of the molten indium flows outside the back substrate 12 from the drain portion 35 of the electrode 30, and the width of the drain portion is larger than the width of the body portion 34. Is small, so the amount of runoff is small.
  • the amount of outflow of molten indium can be suppressed to about 1Z10 compared to the electrode without the outflow regulation part 37 and the drain part,
  • the sealing layer becomes relatively thin so that it can easily leak from the sealing portion, and if the indium that has flowed out contacts the wiring on the substrate to generate a short-circuit. Such problems can be prevented.
  • the sealing layers 21 a and 21 b are fused to form a sealing layer 21, and the peripheral portion of the front substrate 11 and the side wall 18 are formed by the sealing layer. Seal.
  • the front substrate 11 and the rear substrate 12 are pressed toward each other, so that the molten indium is crushed and excess indium is generated. This excess indium tries to flow out to the substrate side.
  • each electrode 30 is provided with a drain portion 35 located lower than the contact portion 36, the excess molten alloy is actively drained.
  • the drain portion 35 of the electrode 30 is formed to have a width smaller than that of the body portion 34, but because the indium is pressurized.
  • each electrode 30 is attached to the corner of the rear substrate 12, and the drain 35 is located at a position separated from the wiring 23. Has been extended to. Therefore, the indium flowing out of the drain portion 35 does not come into contact with the wiring 23, and it is possible to prevent a short-circuit of the wiring due to the outflow indium.
  • an indium to the drain portion 35 of the electrode 30 and a region in the vicinity thereof in advance, it is possible to more stably flow into the sealing material.
  • the body portion 34 of each electrode 30 is configured so that almost the whole extends obliquely upward from the contact portion to form the outflow regulating portion 37.
  • a part of the body part 34 may be extended to a position higher in the vertical direction than the contact part 36 to form the outflow regulating part 37.
  • each electrode 30 has a configuration in which the mounting portion is integrally provided.
  • the contact portion 36, the body portion 34, the outflow It is configured to include a regulating part 37, a drain part 35 and a base part 39, and is attached to the rear substrate 12 by using a separate tap 46 having a conducting part 38. May be.
  • the drain portion 35 of the electrode 30 is not limited to the configuration provided side by side with the body portion 34, and may be provided at the center of the body portion 34 as shown in FIG. 27. good.
  • the drain portion 35 is formed by cutting and raising a part of the body portion 34, and the body portion allows the sealing material to flow from the contact portion 36 to the drain portion 35. Opening 4 2 Is formed.
  • the number of the drain portions 35 of the electrodes 30 is not limited to one, and a pair of drain portions 35 may be provided on both sides of the body portion 34.
  • the configuration of each drain unit 35 is the same as that of the above-described embodiment.
  • the FED includes a flat rectangular vacuum envelope 10 and a plurality of, for example, a pair of electrodes 30 attached to the envelope.
  • the configuration of the FED is the same as that of the above-described embodiment except for the electrode 30. Therefore, the description will focus on different configurations.
  • the structure of the FED will be described together with the manufacturing method.
  • a front substrate 11 on which a metal pack 16 and a metal pack 17 are formed, and a rear substrate 12 on which an electron-emitting device is formed are prepared. Subsequently, the side wall 18 and the supporting member 14 are sealed on the inner surface of the rear substrate 12 with low melting glass in the air. Then sidewall 1
  • the front substrate 11 and the rear substrate 12 are sent into, for example, a vacuum processing apparatus shown in FIG. 9 and sealed in a vacuum atmosphere.
  • the front substrate 11 and the rear substrate 12 are heated and sufficiently degassed.
  • the heating temperature is appropriately set to about 200 ° C to 500 ° C.
  • gas released from the inner wall of the envelope component member is reduced, and the degree of vacuum in the vacuum envelope is prevented from deteriorating.
  • a getter film is formed on the phosphor screen 16 of the front substrate 11. This is because the residual gas after forming the vacuum envelope is adsorbed and evacuated by the getter film, and the degree of vacuum in the vacuum envelope is maintained at a favorable level.
  • the front substrate 11 and the rear substrate 12 are overlapped with each other at a predetermined position such that the phosphor screen 16 and the electron-emitting device face each other.
  • electricity is passed to the sealing layers 21a and 2lb, and these sealing materials are heated and dissolved.
  • the current is stopped, and the heat of the sealing layers 21a and 21b is quickly diffused and conducted to the front substrate 11 and the side wall 18 to solidify the sealing layers 21a and 21b.
  • the front substrate 1 1 and the side wall 18 are bonded to the sealing layer 2 1 They are sealed to each other by a, 21b.
  • the above-mentioned sealing step will be described in more detail.
  • the temperature of the front substrate 11 and the rear substrate 12 is lower than the melting points of the sealing layers 21 a and 21 b.
  • the sealing layers 21a and 21b are solidified.
  • the front substrate 11 and the rear substrate 12 are overlapped at a predetermined position, and the sealing layers 21a and 21b are overlapped with each other.
  • a predetermined load is applied to the front substrate 11 and the rear substrate 12 by the pressurizing devices 23a and 23b in a direction approaching each other.
  • the image display area is held in a predetermined gap by the support member 14.
  • the plate-like electrode 30 is disposed between the sealing layers 21 a and 21 b at two corners of the side wall 18 opposed to each other in the diagonal direction.
  • the electrode 30 has two contact portions 36a and 36b, each of which is in electrical contact with the sealing layer, and is formed in a substantially Y-shape. ing.
  • the contact portions 36a and 36b of each electrode 30 are in contact with these sealing layers on both sides of the corners of the sealing layers 21a and 2lb.
  • a gap 30c is formed between the two contact portions 36a and 36b to allow the molten sealing material to flow out.
  • a method of sandwiching the electrode 30 a method of fixing it with a clip of the same material as the electrode can be used.
  • the electrode 30 is formed of a single element or an alloy containing at least one of Cu, Al, Fe, Ni, Co, Be, and Cr.
  • the electrode 30 is made of a sealing material layer.
  • the vacuum envelope can be vacuum-sealed by an extremely short and simple manufacturing apparatus. It can be.
  • a sealing material having conductivity it is possible to selectively heat only the sealing material having a small heat capacity, that is, a small volume, without heating the substrate. Therefore, it is possible to suppress the deterioration of the positioning accuracy due to the thermal expansion of the substrate.
  • the heat capacity of the sealing layer is very small compared to the heat capacity of the substrate Compared to the conventional method of heating the entire substrate, the time required for heating and cooling can be significantly reduced, and mass productivity can be greatly improved. Furthermore, the only device required for sealing is a mere power supply terminal and a mechanism for bringing the terminal into contact with the power supply terminal, so that a very simple and clean device suitable for ultra-high vacuum can be realized.
  • Each electrode 30 for supplying electricity to the sealing layers 21a and 21b has a plurality of contact portions 36a and 36b, and a gap 30c is formed between these contact portions. Is formed. Therefore, at the time of sealing, it is possible to positively flow the excess molten sealing material to the outside from the gap 30 c defined between the contact portions 36 a and 36 b. You. Therefore, by providing the contact portion of the electrode 30 at an appropriate position, it is possible to prevent the sealing material from protruding onto the wiring of the substrate and the like, without causing a short-circuit between the wirings. Quick and stable sealing is possible.
  • the electrode 30 need only have a gap through which the sealing material passes between the contact portions, and is not limited to the above-described Y-shaped shape. For example, as shown in FIG. It may be shaped.
  • the electrode 30 may have three or more contact portions in contact with the sealing material.
  • the electrode 30 may be formed in a shape having four contact portions 36a, 36b32a32b. In this case, a gap 30 c through which the sealing material passes is formed between the adjacent contact portions.
  • the contact portion of the electrode 30 is not limited to the two sides sandwiching the corner of the vacuum envelope, and as shown in FIG. 34B, the sealing layer 21 is formed on one side of the corner of the envelope. You may touch a and 21b. Is electrode 30 corner? The sealing material may flow out from the corner of the envelope 30 d force because it is located slightly off.
  • FIG. 33, FIG. 34a and FIG. 34B other configurations are the same as those of the above-described embodiment, and the same portions are denoted by the same reference numerals. Detailed description is omitted. Also in these modified examples, the same operation and effect as in the sixth embodiment can be obtained.
  • the electrode 30 is configured to directly contact the sealing layers 2 la and 2 lb.
  • the electrode 30 may be covered with the conductive material layer 31, and the electrode may be brought into contact with the sealing layer via the conductive material layer 31.
  • each electrode 30 the surface that comes into contact with sealing layers 21 a and 21 b is previously covered with conductive material layer 31.
  • both surfaces of each electrode 30 are coated with, for example, In or an alloy containing In which is the same conductive material as sealing layers 21a and 21b.
  • the conductive material layer 31 is formed, for example, by applying a conductive material to the electrode surface with a soldering iron to which ultrasonic waves have been applied. Thereby, each electrode 30 is in contact with sealing layers 21 a and 21 b via conductive material layer 31.
  • the electrode 30 is formed of a single element or an alloy including at least any one of Cu, Al, Fe, Ni, Co, Be, and Cr.
  • the sealing layers 21a and 21b reach thermal equilibrium with the front substrate 11 and the side wall 18 having a large heat capacity, and are rapidly cooled and solidified.
  • the front substrate 11 and the side wall 18 are sealed to each other by the sealing layers 21a and 21b, and the FED having the vacuum envelope 10 whose inside is maintained at a high vacuum is provided. can get.
  • the electrode 30 is fixed to the vacuum envelope 10 while being sealed together with the sealing layers 21a and 21b.
  • the sixth embodiment is the same as the sixth embodiment described above, and the same portions are denoted by the same reference characters and will not be described in detail. Detailed description is omitted.
  • the electrode 30 for supplying electricity to the sealing layers 21 a and 21 b has a surface in contact with the sealing layer covered with a conductive material layer 31. Therefore, when the sealing layers 21a and 21b are energized and melted, the wettability between the electrode 30 and the sealing material is improved, and the increase in contact resistance between the sealing material and the electrode is prevented. Can be done. This prevents abnormal heat generation at the contact portion and eliminates the possibility that the sealing layers 21a and 21b are disconnected. As a result, in a short time and It is possible to manufacture FEDs with high yield.
  • the molten sealing material that has become excessive at the time of sealing can be actively removed from the electrode to the outside of the envelope. It can be discharged to
  • the configuration is such that the electrode 30 is sandwiched between the sealing layers 21a and 21b.However, the configuration is such that current is supplied while the electrode is in contact with only one sealing material. You may. That is, as shown in FIG. 36, the front substrate 11 and the rear substrate 12 are overlapped at a predetermined position, and the sealing layers 21 a and 21 b are overlapped and brought into contact with each other. Pressing devices 23a and 23b apply a predetermined sealing load to front substrate 11 and rear substrate 12 in directions approaching each other. Then, the electrodes 30 are arranged so as to be in contact with the sealing material 21b.
  • the electrode can be held in such a way that the electrode is fixed with a clip of the same material as the sealing layer so that it contacts the sealing layer 21a, 2lb of the front substrate 11 in advance, or a power supply terminal
  • a method may be used in which the electrodes are fixedly held on the 24a and 24b with a clip or the like, and the electrodes are sandwiched when the front substrate 11 and the rear substrate 12 are overlapped at a predetermined position.
  • each electrode 30 that comes into contact with the sealing layer 21 b is covered with the conductive material layer 31 in advance.
  • the conductive material layer 31 is formed, for example, by applying a conductive material to the electrode surface with a soldering iron to which an ultrasonic wave is applied.
  • a conductive material layer may also be formed on a surface of the electrode that is not in contact with the sealing material, in order to allow excess sealing material to protrude from the electrode 30 during sealing.
  • the other configuration is the same as that of the seventh embodiment, and the same portions are denoted by the same reference characters and will not be described in detail. Also, in the above configuration, it is possible to obtain the same functions and effects as in the above-described seventh embodiment.
  • a direct current not only a direct current but also an alternating current that fluctuates at a commercial frequency may be used.
  • the trouble of converting the commercial current transmitted by the alternating current into the direct current can be omitted, and the device can be simplified.
  • an alternating current fluctuating at a high frequency of the kHz level may be used.
  • the same heating effect as described above can be obtained with a smaller current value because the Joule heat increases by an amount corresponding to an increase in the effective resistance value to a high frequency due to the skin effect.
  • the power to be energized and the time are set to about 5 to 300 seconds in the above embodiment. If the energization time is long (low power), the cooling rate decreases due to a rise in the temperature around the substrate and adverse effects occur due to thermal expansion. If the energization time is short (high power), the conductive sealing material is used. Disconnection due to non-uniform filling of glass and cracking due to glass thermal stress occur. Therefore, it is desirable to set the optimal power and time (including temporal power change) for each object.
  • the temperature difference between the substrate temperature at the time of sealing and the melting point of the sealing material is about 20 ° C. to 150 ° C. in the above embodiment. If the temperature difference is large, the cooling time can be shortened, but the thermal stress of the glass increases. Therefore, it is desirable to set optimum conditions for each object.
  • a method of manufacturing an FED according to the eighth embodiment of the present invention will be described.
  • the configuration of the FED and the configuration other than the sealing step in the manufacturing method are the same as those of the above-described sixth embodiment, and different portions will be mainly described.
  • the front substrate 11 and the rear substrate 12 sent to the assembly chamber of the vacuum processing apparatus are hot plates 131, 132 while facing each other.
  • the outer surfaces are kept in close contact with each other. That is, the rear substrate 12 is placed on the hot plate 13 2, and the front substrate 11 is fixed to the upper hot plate 13 1 by the fixing jig 13 3 so as not to drop. .
  • a pair of plate-like electrodes 30 made of copper and having a thickness of about 0.2 mm is prepared, and these electrodes 30 are attached to the front substrate. Insert between 1 1 and rear substrate 1 2.
  • the pair of electrodes 30 are provided at opposing positions, and the tip of each electrode is placed between the sealing layer 21b on the front substrate 11 side and the sealing layer 21a on the rear substrate 12 side. Insert to be located.
  • the pair of electrodes 30 is disposed on two diagonally opposite corners, two short sides, or two long sides of the substrate.
  • the molten indium is solidified, and the envelope 10 is formed.
  • the envelope formed in this way is cooled to room temperature in the cooling chamber 106 and taken out from the inlet chamber 107. Through the above steps, a vacuum envelope is completed.
  • the front substrate 11 and the rear substrate 12 are sealed and joined in a vacuum atmosphere, so that baking and electron beam cleaning are used together.
  • the surface adsorbed gas can be sufficiently released, and a getter film having an excellent adsorption ability can be obtained.
  • the entire surface of the front substrate and the rear substrate are not required to be heated and sealed, so that the getter film is deteriorated and the substrate is broken during the sealing process. Troubles can be eliminated.
  • the sealing time can be shortened, and a manufacturing method with excellent mass productivity can be achieved.
  • the front substrate 11 and the rear substrate 1 2 At least one of them is pressed so that the front substrate and the rear substrate come close to each other, and at least a part of the sealing layer 21 a, 2 lb is applied between the front substrate and the periphery of the rear substrate.
  • the sealing layer In the sandwiched state, the sealing layer is energized and heated and melted.
  • the sealing layer after the fusion is sandwiched between the front substrate 11 and the side wall 18, so that the sealing layers 21 a and 21 b along the periphery of the substrate are formed. Excessive cohesion due to the limited space between the front substrate 11 and the side walls 18 even if local irregularities occur in the molten image due to variations in cross-sectional area, gravity, etc.
  • the cross-sectional area of the sealing layer after melting is uniform over the entire circumference of the front substrate 11 and the side wall 18, and during bonding, the sealing layer can be heated evenly over the entire assembly. it can. From this, it is possible to prevent disconnection due to local heating of the sealing layer, cracks in the substrate, etc., and to perform stable bonding. Further, it is possible to provide an FED which can be manufactured at low cost, has high reliability, and can obtain good images.
  • each electrode 30 is simultaneously electrically contacted with both the sealing layer 21b on the front substrate 11 side and the sealing layer 21a on the side wall side. Electric current can be supplied in a state in which the sealing layer is in equivalent contact with the sealing layer. As a result, almost the same amount of current can flow through each sealing layer. As a result, the sealing layers provided on the front substrate 11 and the rear substrate 12 can be uniformly heated and melted, and stable bonding can be performed.
  • a method of manufacturing an FED according to a ninth embodiment of the present invention will be described.
  • the electrode 30 is sandwiched between the upper and lower sealing layers 21a and 21b, and is brought into electrical contact with both sealing layers at the same time.
  • the sealing layers 21a and 21b are partially welded to each other in advance at a portion where the electrode 30 is brought into contact, and the electrode 30 is brought into contact with the welded portion. I have.
  • the front substrate 11 and the rear substrate 12 sent to the assembly chamber 105 of the vacuum processing apparatus are held by a plurality of support pins 128 as shown in FIG. Are pressed in the direction of approaching each other.
  • the sealing layer 21 b provided on the front substrate 11 and the sealing layer 21 a provided on the side wall 18 come into contact with each other.
  • the sealing layer 21 b provided on the front substrate 11 has an extension 21 c that extends outward from other portions. are doing.
  • the extending portions 21 c are provided near two opposing corners of the front substrate 11, respectively.
  • an induction heating coil 127 is arranged to face the corner of the rear substrate 12 below the corner thereof, and the sealing layer is formed by the induction heating coil 127.
  • 21a and 21b are locally heated with high frequency, and the sealing layers are partially welded to each other. Thereby, the welded portions 21 d are formed at the two corners opposing each other in the diagonal direction.
  • an electrode 30 made of copper having a thickness of about 0.2 mm is inserted between the front substrate 11 and the rear substrate 12, and is attached to each of the welded portions 21 d.
  • power is supplied to the sealing layers 21a and 2lb from a power source through a pair of electrodes 30.
  • the indium is heated and melted, and the front substrate 11 and the side walls 18 are hermetically bonded by the sealing layers 21a and 21b.
  • the molten indium is solidified, and the envelope 10 is formed.
  • the envelope formed in this way is cooled to room temperature in the cooling chamber and taken out of the unloading chamber. Through the above steps, a vacuum envelope is completed.
  • the other configuration is the same as that of the above-described embodiment, and the same portions are denoted by the same reference numerals and detailed description thereof will be omitted.
  • the ninth embodiment configured as described above According to this, at the position where the electrode 30 is brought into contact, the opposing indiums are welded before energization, so that the sealing layer 21 b on the front substrate 11 side and the side wall 18 side are welded. Almost the same amount of current can be shunted and flown to the sealing layer 21a. This makes it possible to heat and melt both sealing layers 2 la 21 b uniformly.
  • the sealing layer is energized while the front substrate 11 and the rear substrate 12 are pressed in a direction approaching each other, the sealing layer after melting is cut off in the same manner as in the eighth embodiment.
  • the change in area can be suppressed, and the entire sealing layer can be uniformly heated and heated. From the above, it is possible to stably join the front substrate 11 and the rear substrate 12 to obtain a FED with improved reliability.
  • the electrodes may be put into a vacuum processing apparatus in a state where the electrodes are attached to a substrate in advance
  • the shapes and materials of the poles are not limited to those in the above embodiment.
  • the sealing is performed with the sealing material provided on both the front substrate and the side wall.
  • the sealing may be performed with the sealing material provided on at least one of the front substrate and the side wall. .
  • the FED includes a vacuum envelope 10 and a plurality of, for example, a pair of electrodes 30 attached to the vacuum envelope.
  • the vacuum envelope 10 includes a front substrate 11 and a rear substrate 12 each made of a rectangular glass plate, and these substrates 11 and 12 are arranged at a peripheral portion through a rectangular frame-shaped side wall 18. Are joined together.
  • a phosphor screen 16 On the inner surface of the front substrate 11, a phosphor screen 16, a metal knock 17, and a getter film 13 are formed.
  • a number of electron-emitting devices 22 for exciting the phosphor layer of the phosphor screen 16 are provided.
  • a large number of wirings 23 for supplying a potential to the electron-emitting devices 22 are provided in a matrix on the inner surface of the rear substrate 12, and the ends of the wirings 23 are provided at the ends of the vacuum envelope 10. It is drawn out to the periphery.
  • each electrode 30 is formed by bending a copper plate having a thickness of, for example, 0.2 mm as a conductive member. That is, the electrode 30 is bent so that its cross section is substantially U-shaped, and Attachment part 32, body part 34 extending from the attachment part and serving as a current path to the sealing layer, contact part 36 located at the extended end of the body part and capable of contacting the sealing layer, and attachment part And a flat conducting portion 38 formed by the back of the body.
  • the mounting portion 32 is integrally provided with a holding portion bent in a clip shape, and can be attached while holding the peripheral portion of the front substrate 11 or the rear substrate 12.
  • the contact portion 36 has a horizontal extension L of 2 mm or more.
  • the body portion 34 is formed in a belt shape, and extends obliquely upward from the mounting portion 32. As a result, the contact portion 36 is located higher than the mounting portion 32 and the body portion 34 in the vertical direction.
  • each electrode 30 is elastically attached to the peripheral portion of the rear substrate 12 by, for example, the mounting portion 32 of the vacuum envelope 10. It is attached to the vacuum envelope 10 while being clamped.
  • the contact portion 36 of each electrode 30 is in contact with the sealing layer 21 and is electrically connected.
  • the body portion 34 extends from the contact portion 36 to the outside of the vacuum envelope 10, and the conduction portion 38 faces the side surface of the rear substrate 12 and faces the vacuum envelope 1. Exposed on the outer surface of 0.
  • the pair of electrodes 30 are provided at two diagonally separated corners of the vacuum envelope 10, respectively, and are arranged symmetrically with respect to the sealing layer 21.
  • the other configuration of the FED is the same as that of the above-described first embodiment, and the same portions are denoted by the same reference characters and will not be described in detail.
  • a method of manufacturing the FED according to the tenth embodiment will be described in detail. Here, the description will focus on the parts that are different from the manufacturing method according to the first embodiment.
  • a front substrate 11 on which a phosphor screen 16 and a metal back 17 are formed, and a rear substrate 12 on which an electron-emitting device 22 is formed Prepare Subsequently, the side wall 18 and the support member 14 are sealed on the inner surface of the rear substrate 12 with the low melting point glass 19 in the atmosphere. Thereafter, indium is applied to a predetermined width and thickness over the entire periphery of the sealing surface of the side wall 18 to form a sealing layer 21a. An image is applied to the sealing surface facing the side wall of the front substrate 11 in a rectangular frame shape with a predetermined width and thickness to form a sealing layer 2 lb.
  • a pair of electrodes 30 is mounted on the back substrate 12 to which the side walls 18 are joined. At this time, each electrode 30 is mounted such that the contact portion 36 does not contact the sealing layer 21a and faces the sealing layer 21 with a gap.
  • the electrode 30 requires a pair of a positive electrode and a single electrode on the substrate, and each energizing path of the sealing layers 21a and 21b, which are energized in parallel between the pair of electrodes, has its length It is desirable to make them equal. Therefore, a pair of electrodes 30 is mounted on two diagonally opposite corners of the rear substrate 12, and the length of the sealing layers 21 a and 21 b located between the electrodes is It is set almost equally on both sides of.
  • Front board 1 1 and rear board 1 2 is sent to the electron beam cleaning chamber 102 through the loading chamber 101 for baking.
  • the various members are heated to a temperature of 300 ° C. to release the gas adsorbed on the surface of each substrate.
  • an electron beam is irradiated from the electron beam generator onto the phosphor screen surface of the front substrate 11 and the electron emission element surface of the rear substrate 12 so that the phosphor screen surface and the electrons are emitted.
  • the entire surface of the emission element surface is cleaned with an electron beam.
  • the sealing layers 21a and 21b are once melted by heating to have fluidity, but the contact portions 36 of the electrodes 30 are connected to the sealing layers 21a and 21b. They face each other with a gap without contact. Therefore, it is possible to suppress the molten indium from flowing out of the rear substrate 12 through the electrode 30.
  • the front substrate 11 and the back substrate 12 that have been baked and cleaned with an electron beam are sent to the cooling chamber 103, cooled to a temperature of about 120 ° C, and then to the getter film deposition chamber 104. Is sent.
  • a Ba film is formed as a getter film 27 outside the metal back 17 by vapor deposition. The Ba film can prevent the surface from being contaminated with oxygen, carbon, and the like, and can maintain an active state.
  • the front substrate 11 and the rear substrate 12 are sent to the assembly room 105.
  • the front substrate 11 and the rear substrate 12 are placed on the hot plates 131, 132 in the assembly room in a state where they are opposed to each other. Each is retained. Fixing jig 1 3 so that the front substrate 1 1 does not fall Fix to the upper hot plate 1 3 1 with 3.
  • the front substrate 11 and the rear substrate 12 are moved in a direction approaching each other while being maintained at about 120 ° C., and pressurized at a predetermined pressure.
  • the substrate may be moved by moving both the front substrate 11 and the rear substrate 12 so as to approach each other, or by moving one of the front substrate and the rear substrate so as to approach each other.
  • the sealing layer 21b on the front substrate 11 and the sealing layer 21a on the rear substrate 12 are brought into contact with each other.
  • the contact portion 36 of each electrode 30 is sandwiched between the sealing layers 21a and 21b, and each electrode 30 is electrically connected to the sealing layers 21a and 2lb. Connecting.
  • the contact portion 36 is formed with a horizontal length of 2 mm or more, the contact portion 36 can stably contact the sealing layers 21a and 21b.
  • the sealing layers 21 a and 21 b are fused to form a sealing layer 21, and the peripheral layer and the side wall 1 of the front substrate 11 are formed by the sealing layer. 8 Seal and.
  • the front substrate 11, side wall 18, and rear substrate 12 sealed by the above process are cooled to room temperature in the cooling chamber 106, and are taken out from the unload chamber 107. As a result, the vacuum envelope 10 of the FED is
  • the pair of electrodes 30 may be cut off if necessary.
  • a stable current can be applied to the sealing layer 21 via the electrode 30 mounted on the rear substrate during the heating by energization. Accordingly, at the time of sealing, the conductive low-melting-point sealing material constituting the sealing layer can be stably and reliably melted for a predetermined energizing time, and as a result, the sealing layer 21 Quick and reliable sealing can be performed without cracks.
  • the surface adsorbed gas can be sufficiently released, and a getter film with excellent adsorption ability can be obtained.
  • sealing and joining the indium by energizing and heating the indium, it is not necessary to heat the entire front substrate and the rear substrate, while maintaining the entire substrate at a low temperature. The sealing operation can be performed quickly and stably. At the same time, it is possible to eliminate problems such as deterioration of the getter film and cracking of the substrate during the sealing process.
  • the contact portion of the electrode faces the sealing layer with a gap without contacting the sealing layer. Therefore, even if the sealing material is melted in the baking step or the like, it is possible to prevent the melted sealing material from flowing out through the electrode. Accordingly, the sealing layer can be maintained at a uniform thickness over the entire circumference, and it is possible to prevent a short-circuit of the wiring due to the outflow of the sealing material. From the above, it is possible to inexpensively obtain an FED that is excellent in mass productivity and that can obtain a stable and good image.
  • the contact portion 36 and the body portion 34 of each electrode 30 are formed in a band shape having the same width.
  • the body portion 34 may be formed to have a width smaller than the width of the contact portion 36.
  • the body portion 34 is formed in a band shape having a uniform width over the entire length.
  • the body portion 34 has a portion connected to the contact portion 36 formed to have a width smaller than the width of the contact portion. It may be formed so that the width gradually increases toward 2.
  • the electrode 30 is used in which the width of the body portion 34, particularly the width of the body portion at least in a portion connected to the contact portion 36 is smaller than the width of the contact portion.
  • the width of the body portion 34 is narrowed, but the body portion may be controlled by making a cutout in the hole, or may be controlled by reducing the thickness of the body portion. Further, the material may be changed in the body part and other parts, and the heat generation may be controlled by overlapping the plate materials.
  • each electrode 30 is configured to integrally include a clip-like holding portion.
  • the electrode 30 may be configured to include a separate clip 46 that functions as a unit. That is, the electrode 30 has a contact portion 36, a body portion 34, and a flat base portion 39, which are integrally formed by bending a plate material.
  • the mounting portion for the electrode 30 is composed of a base portion 39 and a separate clip 46.
  • the electrode 30 is formed by clamping the base 39 and the periphery of the substrate, here, the periphery of the rear substrate 12, with the clip 46, whereby the rear substrate 1 Attached to 2.
  • a pair of electrodes are attached to opposite diagonal portions of the rear substrate, and current is applied to the sealing layer while the substrates are pressed against each other.
  • the present invention is not limited to this, and a pair of electrodes may also be attached to the front substrate side, and the sealing layer may be separately energized and heated and melted separately from the rear substrate side.
  • the front substrate 11 and the rear substrate 12 sent to the assembly room are fixed on the hot plates 131, 132, and are opposed to each other. They are moved toward each other.
  • the contact portion of the electrode 30 attached to the rear substrate 12 electrically contacts the sealing layer 21b on the front substrate 11 side, and the contact portion of the electrode 30 attached to the front substrate 11
  • the contact portion makes electrical contact with the sealing layer 21a on the rear substrate 12 side.
  • the sealing layer 21b on the front substrate 11 side and the sealing layer 21a on the rear substrate 12 side are held in a state where they do not contact each other.
  • the sealing layers 21a and 21b are separately melted. I do. After the melting, the energization is stopped, the two substrates 1 1 1 2 are moved further in the direction of approaching each other, and the pressure is applied, whereby the sealing layers 21 a and 21 b are fused to form a sealing layer. 21 is formed, and the peripheral portion of the front substrate 11 and the side wall 18 are sealed by the sealing layer 21.
  • Attach two pairs of electrodes to one of the substrates apply electricity to the sealing layer 2 1a on the rear substrate 12 with one pair of electrodes, and apply the sealing layer 2 on the front substrate 1 1 with the other pair of electrodes. It is also possible to adopt a configuration that energizes 1b.
  • FIG. 53 two pairs of electrodes 30 are attached to rear substrate 12.
  • Front board 11 sent to the assembly room and The rear substrate 12 is fixed on the hot plates 13 1 and 13 2, and is arranged to face each other, and then moved in a direction approaching each other.
  • the contact portions 36 of a pair of electrodes are in electrical contact with the sealing layer 21 b on the front substrate 11 side.
  • the other pair of electrodes 30 has a convex portion 47 formed on the body 34 of the electrode.
  • the convex portion 47 abuts on the peripheral edge of the front substrate 11, and the electrode contact portion 36 is the rear substrate.
  • the sealing layers 21a and 21b are separately heated and melted. After the melting, the power supply is stopped, and the front substrate 11 and the rear substrate 12 are moved further closer to each other and pressurized. Thus, the sealing layers 21 a and 2 lb are fused to form a sealing layer 21, and the peripheral portion of the front substrate 11 and the side wall 18 are sealed by the sealing layer.
  • the FED vacuum envelope After the sealing is completed, the electrode may be removed from the vacuum envelope.
  • the electrode 3 is removed from the vacuum envelope 10. It is configured to excise zero.
  • the envelope 10 is removed from the unload chamber 107 of the vacuum processing apparatus. In this envelope 10, the electrode 30 remains firmly bonded to the sealing layer 21. Therefore, these electrodes 30 are removed from the envelope 10 by the following steps.
  • a blade of an ultrasonic cutter 60 was inserted into the interface between the electrode 30 and the sealing layer 21 to form a sealing member located around the contact portion 36 of the electrode.
  • the adhesion layer 21 is removed by ultrasonic cutting.
  • the ultrasonic cutter 60 When the ultrasonic cutter 60 is used, the frictional force between the blade and the sealing layer 21 is reduced by the ultrasonic vibration, so that the sealing layer can be easily formed with little pressure. Can be cut and removed.
  • the bonding strength between the electrode and the sealing layer becomes weak.
  • the mounting portion 32 of the electrode 30 is chucked by a holding jig (not shown) and pulled out in the direction of the arrow.
  • the electrode 30 can be mechanically removed from the envelope 10 without damaging the substrate or the sealing layer.
  • the concave portion 41 corresponding to the trace where the electrode contact portion 36 is arranged is formed in the sealing layer 21. Remains. That is, as shown in FIGS. 57 and 58, two corners 40 a and 40 b of the sealing layer 21 opposed to each other in the diagonal direction of the vacuum envelope 10. Located in At two locations, for example, recesses 41 each having a width of 5 mm and a depth of about 1 mm are formed, each opening toward the outside of the vacuum envelope. Thereby, at corners 40 a and 40 b of vacuum envelope 10, sealing layer 21 is formed such that its width is partially reduced.
  • the other configuration is the same as that of the above-described tenth embodiment, and the same portions are denoted by the same reference characters and will not be described in detail.
  • the manufacturing method and the FED according to the first embodiment configured as described above it is possible to obtain the same operation and effects as those of the above-described embodiment.
  • the handling of the envelope is simplified.
  • the FED when the FED is incorporated into a cabinet as a monitor, it is possible to prevent the electrodes from becoming an obstacle.
  • the part of the electrode protruding from the substrate may damage other equipment or workers, or the load on the enclosure via the electrode may cause problems such as breakage of the enclosure. .
  • the sealing material around the electrode can be removed, and the electrode can be easily removed.
  • the electrode 30 when removing the electrode 30 from the vacuum envelope 10, an ultrasonic cutter was used.
  • the electrode 30 may be removed by the following method. That is, as shown in Figure 59
  • the ultrasonic vibrator 64 connected to the ultrasonic wave generating source 62 is brought into contact with the electrode 30 and the electrode 30 is directly ultrasonically vibrated.
  • the electrode 30 itself functions as a blade of the ultrasonic cutter, and ultrasonically cuts the interface between the contact portion 36 of the electrode and the sealing layer 21.
  • the sealing material around the electrode 30 can be removed, and the electrode can be easily removed.
  • a region near the contact portion 36 of the sealed electrode 30 is partially heated and softened, and the bonding strength between the electrode and the sealing layer 21 is reduced.
  • the electrode may be pulled out from the sealing layer. This is performed by inductively heating the sealing layer 21 near the contact portion 36 of the electrode 30. That is, as shown in FIG. 60, after sealing, for example, the induction heating coil 66 is disposed adjacent to the front substrate 11 of the vacuum envelope 10 in the vicinity of the electrode 30. By applying a high frequency to the induction heating coil 66, the sealing layer 21 is heated at a high frequency via the front substrate 11, and the sealing layer is partially softened.
  • the mounting portion 32 of the electrode 30 is chucked in advance by a holding jig (not shown) to apply a weak tensile force to the outside of the substrate. Then, when the sealing layer 21 is softened, the bonding strength between the electrode 30 and the sealing layer 21 is weakened, and the electrode 30 can be pulled out. After the electrode 30 is pulled out, the heated portion of the sealing layer 21 is quickly cooled by stopping the energization of the induction heating coil 66 and separating the induction heating coil 66 from the vacuum envelope 10. The envelope 10 is completed.
  • the electrode may be mechanically removed.
  • the heating time is long, a wide area of the sealing layer 21 melts and flows out, and the hermetic sealing of the envelope may be broken. Therefore, it is desirable to perform heating in a short time of about 3 to 30 seconds. In a short time, only the sealing material in the vicinity of the contact portion 36 of the electrode 30 is melted, and the electrode 30 can be removed while the vacuum tightness of the envelope 10 is maintained.
  • the area around the electrode may be heated by a local heater or another method.
  • a concave portion 41 as shown in FIG. 61A or 61 E is formed in the sealing layer 21 according to the position where the electrode is arranged and the shape of the electrode. You may.
  • the corners of the side wall 18 and the sealing layer 21 are formed at right angles, and the recesses 41 are formed at the corners of the sealing layer and extend diagonally. It has a rectangular shape.
  • the corners of the side wall 18 and the sealing layer 21 are formed at right angles, and the recesses 41 are formed in a shape in which the corners of the sealing layer are chamfered, and the diagonal direction Has been extended.
  • the corners of the side wall 18 and the sealing layer 21 are formed in an arc shape, and the recess 41 is formed in the corner of the sealing layer and extends diagonally. It has a rectangular shape.
  • the corners of the side wall 18 and the sealing layer 21 are arc-shaped.
  • the bottom surface of the concave portion 41 is formed at a corner of the sealing layer and has a shape protruding in an arc shape in a diagonal direction.
  • the corners of the side wall 18 and the sealing layer 21 are formed in an arc shape, and the recess 41 is formed in a shape in which the corner of the sealing layer is chamfered. Extend diagonally
  • the concave portion 41 may have a shape other than the above depending on the shape of the electrode used.
  • the electrode 30 is not limited to the corner of the envelope, and may be, for example, the center of the long side or the short side as long as the energization path length of each of the sealing layers 21 is set to be equal. It may be arranged in a part. In this case, the upper part 41 is formed at the center of the long side or the short side of the sealing layer 21 corresponding to the position of the electrode 30.
  • the position and shape of the recess 41 can be set arbitrarily.
  • the sealing layers 21a and 21b provided on the front substrate 11 and the rear substrate 12 are separately energized and sealed. After the material is melted, the two substrates can be sealed by applying a desired pressure in a direction approaching each other. In this case, two pairs and four electrodes 30 are required for the two substrates.These electrodes are mounted, for example, on the four corners of the rear substrate 12, respectively. Is used to energize the sealing layer 21 a provided on the back substrate 12, and the other pair of electrodes is used to energize the sealing layer 2 lb provided on the front substrate 11. Therefore, after the electrodes are removed after the sealing, four concave portions 41 are formed in the sealing layer 21 of the vacuum envelope 10.
  • the number of these recesses is limited to two or four as described above. Instead, the number can be arbitrarily determined according to the number of electrodes used. For example, when energization sealing is performed using four electrodes whose contact portions are bifurcated, eight recesses are formed. In the first embodiment described above, the entire electrode is taken out of the vacuum envelope. Although the configuration was excluded, the electrodes may be removed while leaving a part. According to the manufacturing method of the twelfth embodiment of the present invention, the electrode 30 is cut in the middle of the body, and the other part of the electrode except the contact part 36 is removed from the envelope.
  • the front substrate 11, the side walls 18, and the rear substrate 12 sealed by the same processes as those of the above-described tenth embodiment are connected to the cooling chamber 1 of the vacuum processing apparatus. It is sent to 06 and cooled to room temperature. In this state, the contact portion 36 of the electrode 30 is firmly joined to the sealing layer 21. As shown in Fig. 62, the cooling room 106 is equipped with an automatic cutter 70. The automated cutter 70 is extended so as to sandwich the body part 34 of the electrode 30, and the body part 34 is cut near the contact part 36 by the automated cutter.
  • the mounting portion 32 of the cut electrode 30 is chucked by a holding jig (not shown), pulled out in the direction of the arrow, and removed from the rear substrate 12.
  • a holding jig not shown
  • the contact portion 36 of the electrode 30 and a part of the body portion 34 are left on the envelope 10 side, and the other portion of the electrode including the mounting portion 32 is separated from the envelope.
  • the substrate 30 and the sealing layer 21 are easily damaged without being damaged. Can be removed You.
  • the envelope 10 is sent to the unloading chamber 107, and is taken out of the unloading chamber 107.
  • the vacuum envelope 10 of the FED is completed.
  • the two corners of the vacuum envelope 10 are brought into contact with the contact portion 36 of the electrode 30 and the electrode 30. Only the conductor pieces 7 1 including a part of the body 3 4 remain.
  • the manufacturing method and the FED according to the first embodiment configured as described above it is possible to obtain the same operation and effects as those of the above-described embodiment. Also, by removing most of the electrodes, which are unnecessary parts in the FED after sealing, the tip of the electrode remains at the corner of the envelope, but the area is very small.
  • the advantage of the enclosure is that it is easier to handle the envelope. For example, when the FED is installed in a cabinet as a monitor, it is possible to prevent the electrodes from becoming obstacles. The part of the electrode protruding from the substrate can hurt other equipment and workers, or eliminate the problem that the load acts on the envelope via the electrode and the envelope breaks. .
  • the electrode 30 By removing the electrode 30 from the vacuum envelope after cutting, the electrode can be easily removed without damaging the sealing layer or the substrate.
  • the electrodes are cut and removed in the cooling chamber of the vacuum processing apparatus. However, the electrodes are cut in the cooling chamber, and the envelope is passed through the unload chamber to the outside. After the removal, the cut portion of the electrode may be manually removed from rear substrate 12.
  • the electrode was cut by an automatic power meter attached to the cooling chamber of the vacuum processing device.However, the present invention is not limited to this, and a device for cutting and removing the electrode is prepared separately from the vacuum processing device. A configuration in which cutting is performed by using may be used. If the electrode is thin and can be cut easily, the operator may manually cut it with a pliers or the like.
  • a pair of electrodes that energize the sealing layer 21a on the rear substrate side and a pair of electrodes that energize the sealing layer 21b on the front substrate side are separately provided. Electric current may be applied to the sealing layer using the electrodes.
  • the completed FED has a structure in which four conductor pieces 71 corresponding to the electrode tip end remain. It goes without saying that the position, shape and number of the electrodes are not limited to the above embodiment.
  • FIG. 64 shows an FED manufactured by the present embodiment.
  • the other configuration of the FED is the same as that of the FED shown in the above-described embodiment, and the same portions are denoted by the same reference characters and will not be described in detail.
  • the phosphor screen 16 and the A front substrate 11 on which a back 17 is formed and a rear substrate 12 on which an electron-emitting device 22 is formed are prepared.
  • the side wall 18 and the support member 14 are sealed on the inner surface of the back substrate 12 with low melting glass in the air. Thereafter, an aluminum film is applied to a predetermined width and thickness over the entire periphery of the sealing surface of the side wall 18 to form a rectangular frame-shaped sealing layer 21a.
  • An image is applied to the sealing surface facing the side wall of the front substrate 11 in a rectangular frame shape with a predetermined width and thickness, and a rectangular frame corresponding to the sealing layer 21a on the rear substrate 11 side. To form a sealing layer 21b.
  • a pair of conducting electrodes 30 are mounted on the back substrate 12 to which the side walls 18 are joined.
  • Each electrode 30 is formed by bending a copper plate having a thickness of, for example, 0.2 mm as a conductive member.
  • Each electrode 30 is capable of contacting the mounting portion 32 that can be attached to the periphery of the back substrate 12, the tongue piece 44 held by a holding jig described later, and the sealing layer 21 a.
  • Contact portions 36 are integrally provided.
  • Each of the electrodes 30 is attached to the rear substrate while the peripheral portion of the rear substrate 12 is elastically held by the mounting portion 32. At this time, the contact portion 36 of each electrode 30 is brought into contact with the sealing layer 21a formed on the side wall 18 to electrically connect the electrode to the sealing layer.
  • the tongue piece 44 protrudes outward from the rear substrate 12.
  • the rear substrate 12 and the front substrate 11 are arranged facing each other with a predetermined distance therebetween, and are put into a vacuum processing apparatus in this state.
  • the vacuum processing apparatus 100 shown in FIG. 9 is used.
  • the above-described front substrate 11 and rear substrate 12 arranged at a predetermined distance from each other are first loaded into a load chamber 101. After the atmosphere in the loading chamber 101 is changed to a vacuum atmosphere, it is sent to a baking and electron beam cleaning chamber 102.
  • the baking and electron beam cleaning chamber 102 various members are heated to a temperature of 300 ° C. to release gas adsorbed on the surface of each substrate.
  • the electron beam from the electron beam generator (not shown) attached to the baking and electron beam cleaning chamber 102 is used to emit the phosphor screen on the front substrate 11 and the electron-emitting devices on the rear substrate 12. Illuminate the surface.
  • the electron beam is deflected and scanned by a deflector mounted outside the electron beam generator, thereby cleaning the entire phosphor screen surface and the electron emission element surface with the electron beam, respectively.
  • the front substrate 11 and the rear substrate 12 after line cleaning are sent to the cooling chamber 103, cooled to a temperature of about 120 ° C, and then sent to the getter film deposition chamber 104.
  • the barrier film can prevent the surface from being contaminated with oxygen, carbon, and the like, and can maintain an active state.
  • the front substrate 11 and the rear substrate 12 are sent to the assembly room 105.
  • hot plates 131, 1332, and a lower hot plate for holding and heating both substrates are provided inside the assembly chamber 105.
  • a plurality of guide rollers 1338 are provided for moving the substrate in an in-plane direction, that is, a direction parallel to the substrate surface.
  • the contact electrode 135 is attached to the lower hot plate 132.
  • the wiring 134 is connected to a power supply 120 provided outside the assembly room 105.
  • the front substrate 11 and the rear substrate 12 sent to the assembly chamber 105 are first mechanically positioned with respect to the respective hot plates 13 1 and 13 2 by the guide rollers 1 38. At this time, after the front substrate 11 is positioned on the transport jig, the front substrate 11 is suction-fixed to the hot plate 1331 by a known electrostatic suction technique so as not to drop. After the rear substrate 12 is set on the lower hot plate 132, it is positioned by the guide rollers 1338. At the same time, the tongue pieces 44 of the pair of electrodes 30 contact the corresponding contact electrodes 135 and are electrically connected.
  • the hot plate drive mechanism 150 moves the rear substrate 12 toward the front substrate 11 and pressurizes it with a predetermined pressure.
  • the contact portion 36 of each electrode 30 is sandwiched between the sealing layers 21b and 21a of the front substrate 11 and the rear substrate 12 and each electrode is bonded to the sealing layer of both substrates. Electrical contact at the same time.
  • the sealing layer 2 1 is passed from the power supply 120 through the electrode 30.
  • a DC current of 14 OA is applied to a and 21b in the constant current mode, whereby the indium is heated and melted, and the front substrate 11 and the rear substrate 12 are hermetically sealed.
  • the driving mechanism 13 7 moves the holding device 13 6 to the tongue piece 4 4 of the electrode 30 and the tongue piece 4 4 Sandwich.
  • the drive mechanism 13 7 moves the holding device 13 6 along with the electrodes 30 to the outside of the substrate along a direction parallel to the surface of the rear substrate 12, and the respective electrodes 30 are melted. Away from the indium and back substrate 12.
  • the indium is in a molten state, and the electrode 30 can be easily detached from the sealing layer. If the sealing layer 21 is held as it is after the separation of the electrode 30, the melted solid is solidified and the envelope 10 is formed.
  • the envelope 10 after sealing is sent to the cooling chamber 106, cooled to room temperature, and taken out of the unloading chamber 107. Through the above steps, the vacuum envelope 10 of the FED is completed.
  • the sealing and joining of the front substrate 11 and the rear substrate 12 are performed in a vacuum atmosphere. Therefore, the surface adsorbed gas can be sufficiently released by using the baking and the electron beam cleaning in combination, and a getter film having excellent adsorption ability can be obtained.
  • the indium By sealing and joining the indium by energizing and heating it, it is not necessary to heat the entire front and back substrates, and the getter film may be degraded and the substrate may be cracked during the sealing process. Defects can be eliminated. At the same time, shorten the sealing time This makes it possible to achieve a manufacturing method with excellent mass productivity.
  • the electrode By removing the electrode from the insulator in the assembly chamber after energization, the electrode does not remain on the FED after sealing. Therefore, for example, it is possible to prevent the FED from being obstructed when the FED is incorporated into a cabinet as a monitor, or to prevent the enclosure from being broken by the electrodes, and other problems. You. This has the advantage that handling of the envelope after sealing is simplified.
  • a pair of electrodes 30 was attached to the rear substrate 12 and then charged into the vacuum processing apparatus.
  • the present invention is not limited to this.
  • the manufacturing method and the manufacturing apparatus may be such that they are installed and charged into a vacuum processing apparatus without attaching an electrode to the substrate.
  • the FED manufacturing apparatus includes hot plates 13 1, 13 2, and a lower plate for fixing and heating and holding both substrates.
  • the drive mechanism 150 for driving the hot plate 13 2 in the vertical direction, the wiring 13 4 for conducting electricity to the sealing layer, the electrode 14 5, and the electrode 14 5 are the surface of the substrate.
  • 1 34 is connected to a power supply 120 outside the assembly room.
  • the front substrate 11 and the rear substrate 12 sent to the assembling chamber 105 firstly receive guide rollers 13 1, 13 2 corresponding to the respective hot plates 13 1, 13 2. It is mechanically positioned by 1 3 8. At this time, after the front substrate 11 is positioned on the transport jig, the front substrate 11 is attracted to the hot plate 13 1 by a known electrostatic attraction technique so as not to drop. Then, the electrode driving mechanism 13 7 The hot plate driving mechanism 150 moves the electrode 144 and the rear substrate 12 in the direction of the front substrate 11 and pressurizes them at a desired pressure. As a result, each electrode 145 is sandwiched between the sealing layers 21a and 21b of both substrates, and each electrode comes into electrical contact with the sealing layer of both substrates simultaneously.
  • a DC current of 14 OA is supplied from the power supply 120 through the electrode 144 to the sealing layers 21a and 21b in the constant current mode.
  • the electrode driving mechanism 1337 moves the electrode 144 outward from the substrate, and separates it from the molten indium.
  • the indium is in a molten state, so that the electrode 145 can be easily separated from the indium force. If the electrodes are kept as they are for several minutes after the separation of the electrodes, the molten indium solidifies and the envelope 10 is formed.
  • the envelope 10 after sealing is sent to a cooling chamber 106, cooled to room temperature, and taken out from the unloading chamber 107.
  • the electrode 145 for energization is installed in the assembly chamber 105, and is detached from the sealing layer after energization. Therefore, similarly to the thirteenth embodiment, the electrode does not remain on the FED after sealing. Incorporating the FED into the cabinet as a monitor will prevent problems such as electrode failure or envelope rupture caused by the electrodes.
  • two pairs of electrodes are provided, and four pairs of electrodes are brought into contact with the sealing layer on the front substrate side and the sealing layer on the rear substrate side, each of which is energized. It may be a process of pressurizing the substrates. It goes without saying that the position, shape and number of electrodes are not limited to the above embodiment.
  • the present invention is not limited to the various embodiments described above, and can be variously modified within the scope of the present invention.
  • the vacuum envelope having the configuration in which the side wall is sandwiched between the front substrate and the rear substrate is used, but the configuration in which the side wall is integrated with the front substrate or the rear substrate is also used.
  • the configuration may be such that the side walls are joined so as to cover the front substrate and the rear substrate from the side surfaces.
  • the sealing surfaces to be sealed by energizing heating of the sealing material may be two surfaces between the front substrate and the side wall and between the rear substrate and the side wall.
  • the sealing material on the front substrate and the sealing material on the rear substrate are brought into contact with each other and heated by energization.However, after these sealing materials are heated in a non-contact state and then solidified, It may be joined between.
  • the configuration of the phosphor screen and the configuration of the electron-emitting device are not limited to the embodiment of the present invention, but may be other configurations. It may be good. Also,
  • the sealing material is not limited to an insulator, but may be any other material having conductivity. In general, if a metal undergoes a phase change, a sharp change in resistance occurs, so that it can be used as a sealing material. For example, a metal or alloy containing at least one of In, Sn, Pb, Ga, and Bi can be used as the sealing material.
  • the above-mentioned FED has a configuration in which one or two pairs of electrodes are provided, but has a configuration in which at least one electrode is attached to an envelope in advance, and other necessary components are used in the sealing process.
  • a configuration may be adopted in which the electrodes are mounted on an envelope and heated by energization.
  • the plurality of electrodes are arranged so that the energization paths of the sealing layer located between the electrodes are equal in length to each other, or are arranged at positions symmetrical with respect to the sealing layer. As long as it is provided, it may be provided not only at the corner of the envelope but also at another position.
  • the sealing layer made of indium is provided on both the rear substrate side and the front substrate side.
  • a configuration in which the substrate and the substrate are sealed may be employed.
  • the outer shape of the vacuum envelope and the configuration of the support member are not limited to the above embodiment.
  • a matrix-shaped light absorbing layer and a phosphor layer may be formed, and a columnar support member having a cross-shaped cross section may be positioned and sealed to the light absorbing layer.
  • As the electron-emitting device a pn-type cold cathode device, a surface conduction electron-emitting device, or the like may be used.
  • the step of bonding the substrates in a vacuum atmosphere it is also possible to implement in other atmosphere environment.
  • the present invention is not limited to the FED, and can be applied to other image display devices such as an SED and a PDP, or to an image display device in which the inside of the envelope does not have a high vacuum.
  • a sealing operation can be performed stably and quickly, and an image display device and a method of manufacturing an image display device capable of displaying a high-quality image with high reliability. And manufacturing equipment can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

An external device of an image display device includes a front substrate (11) and a rear substrate (12) arranged to oppose to the front substrate. The front substrate has a periphery portion attached to a periphery portion of the rear substrate to form a sealed space by a sealing layer (21) containing a conductive sealing adhesive. An electrode (30) is mounted on the external device for electrical connection with the sealing layer. The electrode is formed by a conductive member, in electrical contact with the sealing layer, and has an electrical connection section (38) exposed outside.

Description

明 細 書  Specification
画像表示装置、 画像表示装置の製造方法、 および製造装置 技術分野 Image display device, method of manufacturing image display device, and manufacturing device
こ の発明は、 対向配置された基板を有した平面型の画像表 示装置、 画像表示装置の製造方法、 画像表示装置の製造装置 に関する。  The present invention relates to a flat-type image display device having substrates arranged to face each other, a method for manufacturing an image display device, and a device for manufacturing an image display device.
背景技術 Background art
近年、 陰極線管 (以下、 C R T と称する) に代わる次世代 の軽量、 薄型の表示装置と して様々 な画像表示装置が開発さ れている。 こ のよ う な画像表示装置には、 液晶の配向を利用 して光の強弱を制御する液晶ディ スプレイ (以下、 L C D と 称する) 、 プラズマ放電の紫外線によ り 蛍光体を発光させる プラズマディ スプレイパネル (以下、 P D P と称する) 、 電 界放出型電子放出素子の電子ビームによ り 蛍光体を発光させ るフィール ドェミ ッショ ンディ スプレイ (以下、 F E D と称 する) 、 表面伝導型電子放出素子の電子ビームによ り 蛍光体 を発光させる表面伝導電子放出ディ スプレイ (以下、 S E D と称する) な どがある。  In recent years, various image display devices have been developed as next-generation light-weight and thin display devices that replace cathode ray tubes (hereinafter referred to as CRTs). Such image display devices include a liquid crystal display (hereinafter, referred to as an LCD) that controls the intensity of light by using the orientation of liquid crystal, and a plasma display that emits phosphors using ultraviolet light of plasma discharge. Panels (hereinafter referred to as PDPs), field emission displays (hereinafter referred to as FEDs) that emit phosphors with electron beams from field emission electron-emitting devices, and electrons in surface conduction electron-emitting devices There are surface-conduction electron emission displays (hereinafter referred to as SEDs) that emit phosphors by beams.
例えば F E Dや S E Dは、 一般に、 所定の隙間を置いて対 向配置された前面基板および背面基板を有し、 これらの基板 は、 矩形枠状の側壁を介 して周辺部同士を互いに接合する こ と によ り 真空の外囲器を構成している。 前面基板の内面には 蛍光体スク リ ーンが形成され、 背面基板の内面には蛍光体を 励起して発光させる電子放出源と して多数の電子放出素子が 設け られている。 背面基板および前面基板に加わる大気圧荷重を支えるため これら基板の間には複数の支持部材が配設されている。 背面 基板側の電位はほぼアース電位であ り 、 蛍光面にはァノ 一 ド 電圧 V a が印加される。 そ して、 蛍光体ス ク リ ー ンを構成す る赤、 緑、 青の蛍光体にェミ ッタから放出された電子ビーム を照射し、 蛍光体を発光させる こ と によって画像を表示する このよ う な F E Dや S E Dでは、 表示装置の厚さを数 m m 程度にまで薄く する こ とができ、 現在のテ レ ビやコ ン ビユー タのディ スプレイ と して使用されている C R T と比較 して、 軽量化、 薄型化を達成する こ と ができ る。 For example, FEDs and SEDs generally have a front substrate and a rear substrate that are opposed to each other with a predetermined gap, and these substrates are joined to each other through a rectangular frame-shaped side wall. And constitute a vacuum envelope. A phosphor screen is formed on the inner surface of the front substrate, and a number of electron-emitting devices are provided on the inner surface of the rear substrate as electron emission sources for exciting the phosphor to emit light. In order to support the atmospheric load applied to the rear substrate and the front substrate, a plurality of support members are disposed between these substrates. The potential on the back substrate side is almost the ground potential, and the anode voltage Va is applied to the phosphor screen. Then, the red, green, and blue phosphors that make up the phosphor screen are irradiated with the electron beam emitted from the emitter, and the phosphors emit light to display images. With such FEDs and SEDs, the thickness of the display device can be reduced to about several mm, and it can be compared with CRTs used as displays for televisions and computers today. As a result, the weight and the thickness can be reduced.
上記のよ う な F E Dや S E Dでは、 外囲器の内部を高真空 に維持する こ と が必要と なる。 また、 P D P においても外囲 器内を一度真空に してから放電ガスを充填する必要がある。 真空の外囲器を備えた F E Dを製造する方法と して、 例えば 特開 2 0 0 0 — 2 2 9 8 2 5号公報、 特開 2 0 0 1 — 2 1 0 2 5 8 号公報には、 外囲器を構成する前面基板および背面基 板の最終組立を真空槽内にて行 う方法が示されている。  With the above-mentioned FED and SED, it is necessary to maintain the inside of the envelope at a high vacuum. Also, in the case of PDP, it is necessary to evacuate the envelope once and then to fill the discharge gas. As a method of manufacturing an FED provided with a vacuum envelope, for example, Japanese Patent Application Laid-Open No. 2000-220980 and Japanese Patent Application Laid-Open No. 2001-210258 Discloses a method of performing final assembly of a front substrate and a rear substrate constituting an envelope in a vacuum chamber.
こ の方法では、 まず、 真空槽内に持ち込まれた前面基板お よび背面基板を十分に加熱しておく 。 これは、 外囲器真空度 を劣化させる主因 と なっている外囲器内壁からのガス放出を 軽減するためである。 次に、 前面基板および背面基板が冷え て真空槽内の真空度が十分に向上したと ころで、 外囲器真空 度を改善、 維持させるためのゲッター膜を蛍光面ス ク リ ー ン 上に形成する。 その後、 封着材料が溶解する温度まで前面基 板および背面基板を再び加熱し、 前面基板および背面基板を 所定の位置に組み合わせた状態で封着材料が固化するまで冷 却する。 In this method, first, the front substrate and the rear substrate brought into the vacuum chamber are sufficiently heated. This is to reduce the gas release from the inner wall of the envelope, which is the main cause of the deterioration of the envelope vacuum. Next, when the front and back substrates cooled down and the degree of vacuum in the vacuum chamber was sufficiently improved, a getter film for improving and maintaining the vacuum degree of the envelope was placed on the phosphor screen. Form. After that, the front substrate and the rear substrate are heated again to a temperature at which the sealing material melts, and the front substrate and the rear substrate are heated. Cool in a state where the sealing material is solidified in a state where the sealing material is combined with the predetermined position.
こ のよ う な方法で作成された真空外囲器は、 封着工程と真 空封止工程を兼ねる う え、 排気に伴う 多大な時間が要らず、 かつ、 極めて良好な真空度を得る こ と ができ る。 また、 封着 材料と しては、 封着、 封止一括処理に適した低融点材料を使 用する こ と が望ま しい。  The vacuum envelope made by such a method can perform both the sealing process and the vacuum sealing process, does not require much time for evacuation, and can obtain an extremely good degree of vacuum. And can be. As a sealing material, it is desirable to use a low-melting-point material suitable for sealing and sealing batch processing.
しかしなが ら、 このよ う な真空中で組立を行う場合、 封着 工程で行な う処理が、 加熱、 位置合わせ、 冷却と多岐に渡り かつ、 封着材料が溶解固化する長い時間に渡って前面基板と 背面基板と を所定の位置に維持し続けなければな らない。 ま た、 封着時の加熱冷却に伴い前面基板および背面基板が熱膨 張して位置合わせ精度が劣化し易いこ と な ど、 封着に伴な う 生産性、 特性面で問題がある。  However, when assembling in such a vacuum, the processes performed in the sealing process include heating, positioning, and cooling, and the sealing material melts and solidifies for a long time. The front substrate and the rear substrate must be kept in place. In addition, there are problems in productivity and characteristics associated with sealing, such as that the front substrate and the rear substrate are thermally expanded due to heating and cooling at the time of sealing, and alignment accuracy is likely to deteriorate.
これを解決する方法と して、 イ ンジウム等の導電性封着材 料に通電しそのジュール熱によ り 導電性封着材料自身を発熱 溶解させ、 基板を結合する方法 (以下、 通電加熱と称する) が検討されている。 この方法によれば、 基板の冷却に膨大な 時間を費やす必要がな く 、 短時間で、 かつ、 簡単な装置によ り 、 外囲器を真空封着する こ と ができ る。 すなわち、 導電性 の封着材料を用いる こ とで、 基板を加熱する こ と なく 熱容量 の小さい封着材のみを選択的に加熱する こ と でき、 基板の熱 膨張によ る位置精度の劣化などを抑制する こ と ができ る。 ま た、 封着材の熱容量が基板の熱容量に比べて非常に小さいた め、 基板全面を加熱する方法に比べて、 加熱、 冷却にかかる 時間、 大幅に短縮でき、 量産性を大幅に向上する こ と ができ る。 As a method to solve this problem, a method is used in which a conductive sealing material such as indium is energized, and the conductive sealing material itself is heated and melted by Joule heat to bond the substrates (hereinafter referred to as energizing heating and ) Are being considered. According to this method, it is not necessary to spend an enormous amount of time for cooling the substrate, and the envelope can be vacuum-sealed in a short time and with a simple device. That is, by using a conductive sealing material, it is possible to selectively heat only the sealing material having a small heat capacity without heating the substrate, and to deteriorate the positional accuracy due to the thermal expansion of the substrate. Can be suppressed. Also, since the heat capacity of the sealing material is very small compared to the heat capacity of the substrate, it requires more heating and cooling than the method of heating the entire substrate. Time and time can be greatly reduced, and mass productivity can be greatly improved.
しかしなが ら、 通電加熱の場合、 導電性封着材料に安定し た電流を流す必要がある。 電流値が安定しない場合には外囲 器個々 によ り 導電性封着材料の溶解にかかる時間が異な り 、 安定した基板結合が出来なく なる。 導電性封着材料を加熱し 過ぎる と、 その熱によ り 基板に亀裂が発生する。 逆に十分に 溶解していない場合、 基板の結合が不十分にな り 、 その後の 排気工程で外囲器の真空を保てない等の問題が発生する。 発明の開示  However, in the case of electric heating, it is necessary to supply a stable current to the conductive sealing material. If the current value is not stable, the time required for dissolving the conductive sealing material differs depending on the individual enclosure, and stable substrate bonding cannot be performed. If the conductive sealing material is overheated, the heat will crack the substrate. On the other hand, if not melted sufficiently, the bonding of the substrates will be insufficient, and problems will occur such that the vacuum of the envelope cannot be maintained in the subsequent evacuation process. Disclosure of the invention
こ の発明は、 以上の点に鑑みなされたもので、 その 目的は 封着作業を迅速かつ安定して行う こ と が可能な画像表示装置 画像表示装置の製造方法、 および製造装置を提供する こ と に ある。  The present invention has been made in view of the above points, and an object of the present invention is to provide a method of manufacturing an image display device and a manufacturing device capable of performing a sealing operation quickly and stably. And.
上記目的を達成するため、 この発明の態様に係る画像表示 装置は、 前面基板と、 この前面基板に対向配置された背面基 板と を有し、 導電性封着材を含有した封着層によ り 上記前面 基板および背面基板の周縁部同士が封着された外囲器と 、 上 記封着層に電気的に接触した状態で上記外囲器に取り 付け ら れ、 上記封着層に通電するための電極と、 を備えている。  In order to achieve the above object, an image display device according to an aspect of the present invention includes a front substrate, and a back substrate disposed opposite to the front substrate, wherein a sealing layer containing a conductive sealing material is provided. Thus, the front substrate and the rear substrate are attached to the envelope in which the peripheral edges of the substrates are sealed, and the envelope is attached to the envelope while electrically contacting the sealing layer. And an electrode for supplying electricity.
こ の発明の他の態様に係る画像表示装置の製造方法は、 対 向配置されている と と もに周辺部同士が接合された前面基板 および背面基板を有する外囲器を備えた画像表示装置の製造 方法であって、  A method of manufacturing an image display device according to another aspect of the present invention includes an image display device including an envelope having a front substrate and a rear substrate, which are arranged to face each other and whose peripheral portions are joined to each other. The method of manufacturing
上記前面基板および背面基板の少なく と も一方の周縁部に 導電性を有した封着材料を配置して封着層を形成 し、 上記封 着層の形成された上記前面基板および背面基板の上記少なく と も一方に、 電極を取 り 付けて上記封着層に電気的に接続し 上記前面基板および背面基板を対向配置した状態で上記電極 を通 して上記封着層に通電 し、 上記封着層を加熱溶融させて 上記前面基板および背面基板の周辺部同士を接合する。 At least one edge of the front and back substrates A sealing material having conductivity is arranged to form a sealing layer, and an electrode is attached to at least one of the front substrate and the rear substrate on which the sealing layer is formed, and the sealing is performed. In the state where the front substrate and the rear substrate are electrically opposed to each other and the front substrate and the rear substrate are arranged to face each other, an electric current is applied to the sealing layer through the electrode, and the sealing layer is heated and melted to thereby surround the front substrate and the rear substrate. Join the parts together.
上記のよ う に構成された画像表示装置およびその製造方法 によれば、 予め外囲器に取 り付け られ封着層に電気的に接続 された電極を備え、 こ の電極を通 して封着層を通電加熱する こ と によ り 外囲器を構成している。 そのため、 導電性封着材 で形成された封着層に安定した電流を通電する こ とができ、 画像表示装置の封着作業を迅速かつ、 安定化させる こ と がで き る。  According to the image display device and the method of manufacturing the image display device configured as described above, the image display device includes an electrode that is previously attached to the envelope and is electrically connected to the sealing layer, and is sealed through the electrode. The envelope is constructed by heating the deposited layer with electric current. Therefore, a stable current can be applied to the sealing layer formed of the conductive sealing material, and the sealing operation of the image display device can be quickly and stably performed.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 この発明の第 1 の実施形態に係る F E D全体を示 す斜視図。  FIG. 1 is a perspective view showing the entire FED according to the first embodiment of the present invention.
図 2 は 上記 F E D の内部構成を示す斜視図。  FIG. 2 is a perspective view showing the internal configuration of the FED.
図 3 は 図 1 の線 III _ IIIに沿つた断面図。  FIG. 3 is a cross-sectional view taken along line III-III in FIG.
図 4 は 上記 F E D の蛍光体ス ク リ ーンの一部を拡大して 示す平面図。  FIG. 4 is an enlarged plan view showing a part of the phosphor screen of the FED.
図 5 は、 上記 F E D の電極を示す斜視図。  FIG. 5 is a perspective view showing the FED electrode.
図 6 Aおよぴ図 6 B は、 上記 F E Dの製造に用いられる前 面基板および背面基板をそれぞれ示す平面図。  6A and 6B are plan views respectively showing a front substrate and a rear substrate used for manufacturing the FED.
図 7 は、 上記 F E D の背面基板に電極を取り付けた状態を 示す斜視図。 図 8 は、 上記封着部にイ ンジウムが配置された背面基板と 前面基板と を対向配置 した状態を示す断面図。 FIG. 7 is a perspective view showing a state in which electrodes are attached to the rear substrate of the FED. FIG. 8 is a cross-sectional view showing a state in which a rear substrate and a front substrate, each having indium disposed in the sealing portion, are opposed to each other.
図 9 は、 上記 F E D の製造に用いる真空処理装置を概略的 に示す図。  FIG. 9 is a diagram schematically showing a vacuum processing apparatus used for manufacturing the FED.
図 1 0 は、 上記 F E Dの製造工程において、 F E D の電極 に電源を接続した状態を模式的に示す平面図。  FIG. 10 is a plan view schematically showing a state in which a power supply is connected to an electrode of the FED in the FED manufacturing process.
図 1 1 は、 この発明の第 2 の実施形態に係る F E D の一部 を示す斜視図。  FIG. 11 is a perspective view showing a part of an FED according to a second embodiment of the present invention.
図 1 2 Aおよび図 1 2 B は、 上記第 2 の実施形態に係る F E D の製造工程を示す断面図。  FIG. 12A and FIG. 12B are cross-sectional views showing the manufacturing process of the FED according to the second embodiment.
図 1 3 は、 この発明の第 3 の実施形態に係る F E Dの製造 工程において、 F E D の電極に電源を接続した状態を模式的 に示す平面図。  FIG. 13 is a plan view schematically showing a state in which a power supply is connected to an electrode of the FED in a process of manufacturing the FED according to the third embodiment of the present invention.
図 1 4 Aおよぴ図 1 4 B は、 上記第 3 の実施形態に係る F E D の製造工程を示す断面図。  FIG. 14A and FIG. 14B are cross-sectional views showing the manufacturing process of the FED according to the third embodiment.
図 1 5 は、 この発明の第 4 の実施形態に係る F E D全体を 示す斜視図。  FIG. 15 is a perspective view showing the entire FED according to the fourth embodiment of the present invention.
図 1 6 は、 図 1 5 の線 XVI— XVIに沿つた断面図。  Figure 16 is a cross-sectional view of Figure 15 taken along line XVI—XVI.
図 1 7 は、 上記 F E Dの電極を示す斜視図。  FIG. 17 is a perspective view showing the FED electrode.
図 1 8 Aおよぴ図 1 8 B は、 上記 F E Dの製造に用い られ る前面基板および背面基板をそれぞれ示す平面図。  FIG. 18A and FIG. 18B are plan views respectively showing a front substrate and a rear substrate used for manufacturing the FED.
図 1 9 は、 イ ンジウムが配置された背面基板と前面基板と を対向配置した状態を示す断面図。  FIG. 19 is a cross-sectional view showing a state in which the rear substrate and the front substrate on which indium is arranged are opposed to each other.
図 2 0 は、 上記第 4 の実施形態において、 電極の変形例を 示す断面図。 図 2 1 は、 上記第 4 の実施形態において、 電極の他の変形 例を示す斜視図。 FIG. 20 is a cross-sectional view showing a modification of the electrode in the fourth embodiment. FIG. 21 is a perspective view showing another modification of the electrode in the fourth embodiment.
図 2 2 は、 上記第 4 の実施形態において、 上記他の変形例 を示す断面図。  FIG. 22 is a cross-sectional view showing another modified example of the fourth embodiment.
図 2 3 は、 この発明の第 5 の実施形態に係る F E D全体を 示す斜視図。  FIG. 23 is a perspective view showing the entire FED according to the fifth embodiment of the present invention.
図 2 4 は、 図 1 5 の線 XXIV - XXIV に沿つた断面図。 図 2 5 は、 第 5 の実施形態に係る F E Dの電極を示す斜視 図。  FIG. 24 is a cross-sectional view along the line XXIV-XXIV of FIG. FIG. 25 is a perspective view showing an FED electrode according to the fifth embodiment.
図 2 6 は、 上記第 5 の実施形態において、 変形例に係る電 極を示す断面図。  FIG. 26 is a cross-sectional view showing an electrode according to a modification of the fifth embodiment.
図 2 7 は、 上記第 5 の実施形態に,おいて、 他の変形例に係 る電極を示す斜視図。  FIG. 27 is a perspective view showing an electrode according to another modification of the fifth embodiment.
図 2 8 は、 上記第 5 の実施形態において、 上記他の変形例 に係る電極を示す断面図。  FIG. 28 is a cross-sectional view showing an electrode according to another modification of the fifth embodiment.
図 2 9 は、 上記第 5 の実施形態において、 更に他の変形例 に係る電極を示す斜視図。  FIG. 29 is a perspective view showing an electrode according to still another modification of the fifth embodiment.
図 3 0 は、 この発明の第 6 の実施形態に係る F E Dを示す 斜視図。  FIG. 30 is a perspective view showing an FED according to a sixth embodiment of the present invention.
図 3 1 Aは、 上記 F E Dの製造に用い られる前面基板を示 す平面図。  FIG. 31A is a plan view showing a front substrate used for manufacturing the above-mentioned FED.
図 3 1 Bは、 上記 F E Dの製造に用いられる背面基板、 側 壁、 スぺーサを示す平面図。  FIG. 31B is a plan view showing a back substrate, side walls, and spacers used for manufacturing the above-mentioned FED.
図 3 2 は、 上記第 6 の実施形態に係る製造方法において、 前面基板と側壁と の封着工程を示す断面図。 図 3 3 は、 上記第 6 の実施形態において、 電極の変形例を 示す平面図。 FIG. 32 is a cross-sectional view showing a step of sealing the front substrate and the side wall in the manufacturing method according to the sixth embodiment. FIG. 33 is a plan view showing a modification of the electrode in the sixth embodiment.
図 3 4 Aおよび図 3 4 B は、 上記第 6 の実施形態において 電極の他の変形例をそれぞれ示す平面図。  FIG. 34A and FIG. 34B are plan views each showing another modified example of the electrode in the sixth embodiment.
図 3 5 は、 この発明の第 7 の実施形態に係る F E Dの製造 方法を示す断面図。  FIG. 35 is a cross-sectional view showing the method of manufacturing the FED according to the seventh embodiment of the present invention.
図 3 6 は、 上記第 7 の実施形態において、 変形例に係る電 極を用いた封着工程を示す断面図。  FIG. 36 is a cross-sectional view showing a sealing step using an electrode according to a modification of the seventh embodiment.
図 3 7 は、 この発明の第 8 の実施形態に係る F E Dの製造 方法を示す断面図。  FIG. 37 is a cross-sectional view showing the method of manufacturing the FED according to the eighth embodiment of the present invention.
図 3 8 は、 上記第 8 の実施形態において、 基板間に電極を 揷入した状態を示す断面図。  FIG. 38 is a cross-sectional view showing a state where electrodes are inserted between the substrates in the eighth embodiment.
図 3 9 は、 上記第 8 の実施形態において、 両基板を互いに 接近する方向に加圧 した状態を示す断面図。  FIG. 39 is a cross-sectional view showing a state where both substrates are pressed in a direction approaching each other in the eighth embodiment.
図 4 0 は、 この発明の第 9 の実施形態に係る F E Dの製造 方法を示す断面図。  FIG. 40 is a cross-sectional view showing a method of manufacturing an FED according to a ninth embodiment of the present invention.
図 4 1 は、 上記第 9 の実施形態において、 封着層の溶着部 に電極を接触させた状態を示す断面図。  FIG. 41 is a cross-sectional view showing a state where an electrode is brought into contact with a welded portion of a sealing layer in the ninth embodiment.
図 4 2 は、 この発明の第 1 0 の実施形態に係る F E D全体 を示す斜視図。  FIG. 42 is a perspective view showing the entire FED according to the tenth embodiment of the present invention.
図 4 3 は、 図 4 2 の線 XLIII— XLIIIに沿った断面図。 図 4 4 は、 第 1 0 の実施形態に係る F E Dの電極を示す斜 視図。  Figure 43 is a cross-sectional view along the line XLIII—XLIII of Figure 42. FIG. 44 is a perspective view showing the FED electrode according to the tenth embodiment.
図 4 5 は、 第 1 0 の実施形態において、 背面基板に電極を 取り 付けた状態を示す斜視図。 図 4 6 は、 第 1 0 の実施形態において、 封着層が配置され た背面基板と前面基板と を対向配置した状態を示す断面図。 FIG. 45 is a perspective view showing a state where electrodes are attached to a rear substrate in the tenth embodiment. FIG. 46 is a cross-sectional view showing a state where the rear substrate and the front substrate on which the sealing layer is disposed are arranged to face each other in the tenth embodiment.
図 4 7 は、 第 1 0 の実施形態において、 背面基板と前面基 板と互いに接近する方向に加圧し、 電極の接触部を封着層間 に挟持した状態を示す断面図。  FIG. 47 is a cross-sectional view showing a state in which the back substrate and the front substrate are pressed in a direction approaching each other in the tenth embodiment, and the contact portions of the electrodes are sandwiched between sealing layers.
図 4 8 は、 上記第 1 0 の実施形態において、 変形例に係る 電極を示す斜視図。  FIG. 48 is a perspective view showing an electrode according to a modification of the tenth embodiment.
図 4 9 は、 上記第 1 0 の実施形態において、 他の変形例に 係る電極を示す斜視図。  FIG. 49 is a perspective view showing an electrode according to another modification in the tenth embodiment.
図 5 0 は、 上記第 1 0 の実施形態において、 更に他の変形 例に係る電極を示す斜視図。  FIG. 50 is a perspective view showing an electrode according to still another modification of the tenth embodiment.
図 5 1 は、 上記第 1 0 の実施形態において、 上記他の変形 例に係る電極を示す断面図。  FIG. 51 is a cross-sectional view showing an electrode according to another modification of the tenth embodiment.
図 5 2 は、 上記第 1 0 の実施形態における変形例において イ ンジウムが配置された背面基板と前面基板と を対向配置し た状態を示す断面図。  FIG. 52 is a cross-sectional view showing a state in which the rear substrate and the front substrate on which indium is arranged are opposed to each other in a modification of the tenth embodiment.
図 5 3 は、 上記第 1 0 の実施形態における他の変形例にお いて、 ィ ンジゥムが配置された背面基板と前面基板と を対向 配置 した状態を示す断面図。  FIG. 53 is a cross-sectional view showing a state in which the rear substrate and the front substrate on which an indicator is arranged are opposed to each other in another modification of the tenth embodiment.
図 5 4 は、 上記第 1 0 の実施形態において、 変形例に係る 電極を示す斜視図。  FIG. 54 is a perspective view showing an electrode according to a modification of the tenth embodiment.
図 5 5 は、 この発明の第 1 1 の実施形態において、 電極を 除去する工程を示す断面図。  FIG. 55 is a cross-sectional view showing a step of removing an electrode in the first embodiment of the present invention.
図 5 6 は、 上記第 1 1 の実施形態において、 電極を除去す る工程を示す断面図。 図 5 7 は、 上記第 1 1 の実施形態において、 電極が除去さ れた F E Dを示す斜視図。 FIG. 56 is a cross-sectional view showing a step of removing an electrode in the eleventh embodiment. FIG. 57 is a perspective view showing the FED with the electrodes removed in the first embodiment.
図 5 8 は、 上記第 1 1 の実施形態において、 電極が除去さ れた F E Dを示す断面図。  FIG. 58 is a cross-sectional view showing the FED with the electrodes removed in the eleventh embodiment.
図 5 9 は、 上記第 1 1 の実施形態の変形例において、 電極 を除去する工程を示す断面図。  FIG. 59 is a cross-sectional view showing a step of removing an electrode in the modification of the first embodiment.
図 6 0 は、 上記第 1 1 の実施形態における他の変形例にお いて、 電極を除去する工程を示す断面図。  FIG. 60 is a cross-sectional view showing a step of removing an electrode in another modification of the eleventh embodiment.
図 6 1 Aない し図 6 1 E は、 上記第 1 1 の実施形態におい て、 F E Dの封着層に形成された凹部の変形例をそれぞれ示 す平面図。  FIG. 61A to FIG. 61E are plan views respectively showing modified examples of the concave portion formed in the sealing layer of FED in the first embodiment.
図 6 2 は、 この発明の第 1 2 の実施形態において、 電極を 切断する工程を示す断面図。  FIG. 62 is a cross-sectional view showing a step of cutting an electrode in the first embodiment of the present invention.
図 6 3 は、 上記第 1 2 の実施形態において、 切断された電 極を除去する工程を示す断面図。  FIG. 63 is a cross-sectional view showing a step of removing the cut electrode in the first embodiment.
図 6 4 は、 この発明の第 1 3 の実施形態に係る F E Dを示 す断面図。  FIG. 64 is a cross-sectional view showing an FED according to a thirteenth embodiment of the present invention.
図 6 5 は、 上記第 1 3 の実施形態において、 背面基板に電 極を装着 した状態を示す斜視図。  FIG. 65 is a perspective view showing a state where an electrode is mounted on the rear substrate in the thirteenth embodiment.
図 6 6 は、 上記第 1 3 の実施形態に係る製造装置を示す断 面図。  FIG. 66 is a cross-sectional view showing the manufacturing apparatus according to the thirteenth embodiment.
図 6 7 は、 上記製造装置を概略的に示す斜視図。  FIG. 67 is a perspective view schematically showing the manufacturing apparatus.
図 6 8 は、 上記第 1 3 の実施形態において、 変形例に係る 製造装置を示す断面図。  FIG. 68 is a cross-sectional view showing a manufacturing apparatus according to a modification of the thirteenth embodiment.
発明を実施するための最良の形態 以下図面を参照しなが ら、 こ の発明の第 1 の実施形態に係 る F E Dおよびその製造方法について詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an FED and a method of manufacturing the FED according to the first embodiment of the present invention will be described in detail with reference to the drawings.
図 1 ない し図 4 に示すよ う に、 F E Dは、 それぞれ矩形状 のガラス板からなる前面基板 1 1 、 および背面基板 1 2 を備 え、 これらの基板は 1 〜 2 m mの隙間を置いて対向配置され ている。 前面基板 1 1 および背面基板 1 2 は、 矩形枠状の側 壁 1 8 を介 して周縁部同士が接合され、 内部が真空に維持さ れた扁平な矩形状の真空外囲器 1 0 を構成している。  As shown in Fig. 1 or Fig. 4, the FED has a front substrate 11 and a rear substrate 12 each made of a rectangular glass plate, and these substrates are separated by a gap of 1 to 2 mm. They are arranged facing each other. The front substrate 11 and the rear substrate 12 are joined to each other via a rectangular frame-shaped side wall 18 to form a flat rectangular vacuum envelope 10 whose inside is maintained in a vacuum. Make up.
真空外囲器 1 0 の内部には、 前面基板 1 1 および背面基板 1 2 に加わる大気圧荷重を支えるため、 複数の板状の支持部 材 1 4 が設けられている。 これらの支持部材 1 4 は、 真空外 囲器 1 0 の一辺 と平行な方向にそれぞれ延在している と と も に、 上記一辺と直交する方向に沿って所定の間隔を置いて配 置されている。 支持部材 1 4 は板状に限らず、 柱状のものを 用いても よい。  Inside the vacuum envelope 10, a plurality of plate-like support members 14 are provided to support the atmospheric pressure load applied to the front substrate 11 and the rear substrate 12. The support members 14 extend in a direction parallel to one side of the vacuum envelope 10 and are arranged at predetermined intervals along a direction orthogonal to the one side. ing. The support member 14 is not limited to the plate shape, and may be a columnar shape.
前面基板 1 1 の内面には、 画像表示面と して機能する蛍光 体ス ク リ ーン 1 6 が形成されている。 この蛍光体ス ク リ ーン 1 6 は、 赤、 緑、 青の蛍光体層 R、 G、 B、 およびこれらの 蛍光体層間に位置した光吸収層 2 0 を並べて構成されている 蛍光体層 R、 G、 B は、 真空外囲器 1 0 の上記一辺と平行な 方向に延在 している と と もに、 この一辺と直交する方向に沿 つて所定の間隔を置いて配置されている。 光吸収層 2 0 は、 蛍光体層 R、 G、 B の周囲に設け られている。 蛍光体ス ク リ ーン 1 6 上には、 た と えばアルミ ニウム力 らなる メ タルノ ッ ク 1 7、 ゲッター膜 1 3 が順に蒸着されている。 図 3 に示すよ う に、 背面基板 1 2 の内面上には、 蛍光体ス ク リ ーン 1 6 の蛍光体層を励起する電子放出源と して、 それ ぞれ電子ビームを放出する多数の電子放出素子 2 2 が設け ら れている。 これらの電子放出素子 2 2 は、 画素毎に対応 して 複数列おょぴ複数行に配列されている。 詳細に述べる と、 背 面基板 1 2 の内面上には、 導電性力 ソー ド層 2 4 が形成され この導電性力 ソー ド層上には多数のキヤ ビティ 2 5 を有した 二酸化シ リ コ ン膜 2 6 が形成されている。 二酸化シ リ コ ン膜 2 6 上には、 モ リ ブデンやニオブ等からなるゲー ト電極 2 8 が形成されている。 背面基板 1 2 の内面上において各キヤ ビ ティ 2 5 内にはモ リ ブデンなどからなる コーン状の電子放出 素子 2 2 が設け られている。 On the inner surface of the front substrate 11, a phosphor screen 16 functioning as an image display surface is formed. The phosphor screen 16 is composed of phosphor layers R, G, and B of red, green, and blue, and a light absorbing layer 20 positioned between these phosphor layers. R, G, and B extend in a direction parallel to the one side of the vacuum envelope 10 and are arranged at predetermined intervals along a direction orthogonal to the one side. . The light absorbing layer 20 is provided around the phosphor layers R, G, and B. On the phosphor screen 16, for example, a metal knock 17 made of aluminum force and a getter film 13 are sequentially deposited. As shown in FIG. 3, on the inner surface of the rear substrate 12, there are a number of electron emission sources for exciting the phosphor layers of the phosphor screen 16, each emitting an electron beam. The electron-emitting device 22 is provided. These electron-emitting devices 22 are arranged in a plurality of columns and a plurality of rows corresponding to each pixel. Specifically, a conductive force layer 24 is formed on the inner surface of the back substrate 12, and a silicon dioxide having a large number of cavities 25 is formed on the conductive force layer. A film 26 is formed. A gate electrode 28 made of molybdenum, niobium, or the like is formed on the silicon dioxide film 26. A cone-shaped electron-emitting device 22 made of molybdenum or the like is provided in each cavity 25 on the inner surface of the rear substrate 12.
上記構成の F E D において、 映像信号は、 単純マ ト リ ック ス方式に形成された電子放出素子 2 2 とゲー ト電極 2 8 に入 力される。 電子放出素子 2 2 を基準と した場合、 最も輝度の 高い状態の時、 + 1 0 0 Vのゲー ト電圧が印加される。 また 蛍光体ス ク リ ーン 1 6 には + 1 0 k Vが印力 Bされる。 これに よ り 、 電子放出素子 2 2 から電子ビームが放出される。 電子 放出素子 2 2から放出される電子ビームの大き さ は、 ゲー ト 電極 2 8 の電圧によ って変調され、 この電子ビームが蛍光体 スク リ ーン 1 6 の蛍光体層を励起して発光させる こ と によ り 画像を表示する。  In the FED having the above configuration, a video signal is input to the electron-emitting device 22 and the gate electrode 28 formed in a simple matrix system. When the electron-emitting device 22 is used as a reference, a gate voltage of +100 V is applied when the luminance is the highest. Further, +10 kV is applied to the phosphor screen 16 with a printing force B. As a result, an electron beam is emitted from the electron-emitting device 22. The size of the electron beam emitted from the electron-emitting device 22 is modulated by the voltage of the gate electrode 28, and this electron beam excites the phosphor layer of the phosphor screen 16. The image is displayed by emitting light.
蛍光体スク リ ーン 1 6 には高電圧が印加されるため、 前面 基板 1 1 、 背面基板 1 2、 側壁 1 8 、 および支持部材 1 4用 の板ガラ ス には、 高歪点ガラスが使用 されている。 後述する よ う に、 背面基板 1 2 と側壁 1 8 との間は、 フ リ ッ トガラス 等の低融点ガラス 1 9 によって封着されている。 前面基板 1Since a high voltage is applied to the phosphor screen 16, a high strain point glass is formed on the glass plates for the front substrate 11, the rear substrate 12, the side walls 18, and the support members 14. It is used. See below As described above, the space between the rear substrate 12 and the side wall 18 is sealed with a low-melting glass 19 such as a frit glass. Front board 1
1 と側壁 1 8 と の間は、 導電性を有した低融点封着材料と し てのイ ンジウム ( I n ) を含んだ封着層 2 1 によ って封着さ れている。 The gap between 1 and the side wall 18 is sealed by a sealing layer 21 containing indium (In) as a low-melting sealing material having conductivity.
F E Dは、 複数、 例えば、 一対の電極 3 0 を備え、 これら の電極は、 封着層 2 1 に電気的に導通 した状態で外囲器 1 0 に取り 付け られている。 これらの電極 3 0 は、 封着層 2 1 に 通電する際の電極部材と して用い られる。  The FED includes a plurality of, for example, a pair of electrodes 30, and these electrodes are attached to the envelope 10 in a state of being electrically connected to the sealing layer 21. These electrodes 30 are used as electrode members when energizing the sealing layer 21.
図 5 に示すよ う に、 各電極 3 0 は、 導電部材と して例えば As shown in FIG. 5, each electrode 30 serves as a conductive member, for example.
0 . 2 m m厚の銅板を加工してク リ ップ状に形成されている すなわち、 電極 3 0 は、 断面がほぼ U字形状と なる よ う に折 曲げられ、 平坦な第 1 板部 3 3 a 、 こ の第 1 板部と隙間を置 いて対向 した第 2板部 3 3 b 、 および第 1 および第 2板部に 対してほぼ直角に延ぴている と と もに第 1 および第 2板部の 端縁部同時を連結した導通部 3 8 を有 している。 第 1 板部 3That is, the electrode 30 is bent so as to have a substantially U-shaped cross-section, and is formed into a flat first plate portion 3 by machining a copper plate having a thickness of 0.2 mm. 3a, the second plate portion 33b opposed to the first plate portion with a gap therebetween, and the first and second plate portions extend at substantially right angles, and the first and second plate portions 33b extend at substantially right angles. It has a conducting portion 38 that connects the edges of the two plates at the same time. 1st plate 3
3 b a は、 それぞれ封着層 2 1 に導通する第 1 および第 2接 触部 3 6 a 、 3 6 b を有している。 第 1 および第 2接触部 33ba has first and second contact portions 36a and 36b which are electrically connected to the sealing layer 21 respectively. First and second contact 3
6 a、 3 6 b の間にはス リ ッ ト 4 5 が形成され、 第 2接触部A slit 45 is formed between 6a and 36b, and the second contact portion is formed.
3 6 b は爪状をなし、 容易に弾性変形可能と なっている。 図 1 ない し図 3 に示すよ う に、 各電極 3 0 は、 例えば、 背 面基板 1 2 および側壁 1 8 に弾性的に係合した状態で真空外 囲器 1 0 に取り 付け られている。 すなわち、 電極 3 0 は、 第36 b has a claw shape and can be easily elastically deformed. As shown in FIG. 1 or FIG. 3, each electrode 30 is attached to the vacuum envelope 10 while being elastically engaged with the back substrate 12 and the side wall 18, for example. . That is, the electrode 30 is
1 板部 3 3 b a と第 2板部 3 3 b との間に背面基板 1 2 の端 縁部および側壁 1 8 を弾性的に挟持した状態で真空外囲器 1 0 に固定されている。 そ して、 第 1 板部 3 3 a の第 1 および 第 2接触部 3 6 a 、 3 6 b は、 それぞれ封着層 2 1 に接触し 電気的に導通している。 また、 電極 3 0 の導通部 3 8 は、 背 面基板 1 2 の側面および側壁 1 8 と対向 し、 真空外囲器 1 0 の外側に露出している。 これら一対の電極 3 0 は、 真空外囲 器 1 0 の対角方向に離間した 2 つの角部にそれぞれ設けられ 封着層 2 1 に対して対称に配置されている。 1 With the edge and the side wall 18 of the back substrate 1 2 elastically held between the plate 33 b and the second plate 33 b, the vacuum envelope 1 Fixed to 0. The first and second contact portions 36a and 36b of the first plate portion 33a are in contact with the sealing layer 21 and are electrically conductive. The conducting portion 38 of the electrode 30 faces the side surface and the side wall 18 of the back substrate 12 and is exposed outside the vacuum envelope 10. The pair of electrodes 30 are provided at two diagonally separated corners of the vacuum envelope 10, respectively, and are arranged symmetrically with respect to the sealing layer 21.
次に、 上記構成を有する F E Dの製造方法について詳細に 説明する。  Next, a method of manufacturing the FED having the above configuration will be described in detail.
まず、 前面基板 1 1 と なる板ガラス に蛍光体ス ク リ ーン 1 6 を形成する。 この場合、 前面基板 1 1 と 同 じ大き さの板ガ ラス を準備 し、 この板ガラ ス にプロ ッ ターマシンで蛍光体ス ト ライ プパターンを形成しておく 。 この蛍光体ス ト ライプパ ターンを形成した板ガラス と前面基板用の板ガラスを位置決 め治具に載せて露光台にセ ッ トする。 この状態で、 蛍光体ス ト ライプパターンを露光、 現像するこ と によ り 、 前面基板 1 1 と なるガラス板上に蛍光体スク リ ーンを生成する。 その後 蛍光体ス ク リ ーン 1 6 に重ねてメ タルバック 1 7 を形成する 続いて、 背面基板 1 2用の板ガラス上に電子放出素子 2 2 を形成する。 これは、 マ ト リ ッ ク ス状の導電性力 ソー ド層 2 4 を板ガラス上に形成 し、 この力 ソー ド層上に例えば熱酸化 法や C V D法あるいはスパッタ リ ング法によ り 2酸化シリ コ ン膜の絶縁膜を形成する。 この後、 この絶縁膜上に、 例えば スパッタ リ ング法や電子ビーム蒸着法によ り モ リ ブデンや二 ォブなどのゲー ト電極形成用の金属膜を形成する。 次に、 こ の金属膜上に、 形成すべきゲー ト電極に対応 した形状の レジ ス トパターンを リ ソグラ フィ 一によ り 形成する。 レジス トパ ターンをマスク と して金属膜をゥエ ツ トエッチング法または ドライエッチング法によ り エッチング し、 ゲー ト電極 2 8 を 形成する。 First, a phosphor screen 16 is formed on a plate glass serving as the front substrate 11. In this case, a plate glass having the same size as the front substrate 11 is prepared, and a phosphor strip pattern is formed on the plate glass by a plotter machine. The plate glass on which the phosphor stripe pattern is formed and the plate glass for the front substrate are placed on a positioning jig and set on an exposure table. In this state, the phosphor stripe pattern is exposed and developed, so that a phosphor screen is generated on a glass plate serving as the front substrate 11. Thereafter, a metal back 17 is formed on the phosphor screen 16 to form the metal back 17. Subsequently, an electron-emitting device 22 is formed on the glass plate for the rear substrate 12. This is achieved by forming a matrix-shaped conductive power source layer 24 on a sheet glass, and forming a second oxide layer on this power source layer by, for example, a thermal oxidation method, a CVD method, or a sputtering method. An insulating film of a silicon film is formed. Thereafter, a metal film for forming a gate electrode such as molybdenum or niobium is formed on the insulating film by, for example, a sputtering method or an electron beam evaporation method. Next, A resist pattern having a shape corresponding to the gate electrode to be formed is formed on the metal film by lithography. Using the resist pattern as a mask, the metal film is etched by a wet etching method or a dry etching method to form a gate electrode 28.
こ の後、 レジス トパターン及びゲー ト電極 2 8 をマス ク と して絶縁膜をゥエ ツ トエッチングまたは ドライエッチング法 によ り エッチングして、 キヤ ビティ 2 5 を形成する。 そ して レジス トパター ンを除去した後、 背面基板 1 2表面に対して 所定角度傾斜した方向から電子ビーム蒸着を行う こ と によ り ゲー ト電極 2 8 上に例えばアルミ ニウムやニ ッケルからなる 剥離層を形成する。 その後、 背面基板表面に対して垂直な方 向から力 ソー ド形成用の材料と して例えばモ リ ブデンを電子 ビーム蒸着法によ り 蒸着する。 これによつて、 キヤビティ 2 5 の内部に電子放出素子 2 2 が形成される。 次に、 剥離層を その上に形成された金属膜と と も に リ フ トオフ法によ り 除去 する。 続いて、 大気中で側壁 1 8 および支持部材 1 4 を背面 基板 1 2 の内面上に低融点ガラス 1 9 によ り 封着する。  Thereafter, the insulating film is etched by a wet or dry etching method using the resist pattern and the gate electrode 28 as a mask to form a cavity 25. After removing the resist pattern, electron beam evaporation is performed from a direction inclined at a predetermined angle with respect to the surface of the rear substrate 12, thereby forming, for example, aluminum or nickel on the gate electrode 28. A release layer is formed. Thereafter, for example, molybdenum is vapor-deposited as a material for forming a force source from a direction perpendicular to the rear substrate surface by an electron beam vapor deposition method. As a result, the electron-emitting device 22 is formed inside the cavity 25. Next, the release layer and the metal film formed thereon are removed by a lift-off method. Subsequently, the side wall 18 and the support member 14 are sealed in the atmosphere on the inner surface of the back substrate 12 with the low melting point glass 19.
その後、 図 6 A、 6 B に示すよ う に、 側壁 1 8 の封着面の 全周に渡ってィ ンジゥムを所定の幅および厚さに塗布 し封着 層 2 1 a を形成する。 同様に、 前面基板 1 1 の側壁と対向す る封着面にイ ンジウムを所定の幅および厚さで矩形枠状に塗 布し封着層 2 1 b を形成する。 側壁 1 8 および前面基板 1 1 の封着面に対する封着層 2 1 a、 2 1 b の充填は、 上述 した よ う に、 溶融したイ ンジウムを封着面に塗布する方法、 ある いは、 固体状態のイ ンジウムを封着面に載置する方法等によ つて行う。 Thereafter, as shown in FIGS. 6A and 6B, an adhesive is applied to a predetermined width and thickness over the entire periphery of the sealing surface of the side wall 18 to form a sealing layer 21a. Similarly, indium is applied to the sealing surface facing the side wall of the front substrate 11 in a rectangular frame with a predetermined width and thickness to form a sealing layer 21b. The filling of the sealing layers 21a and 21b with respect to the sealing surface of the side wall 18 and the front substrate 11 is performed by applying molten indium to the sealing surface as described above. Alternatively, the method is carried out by placing indium in a solid state on a sealing surface.
続いて、 図 7 に示すよ う に、 側壁 1 8 が接合されている背 面基板 1 2 に一対の電極 3 0 を装着する。 こ の際、 側壁 1 8 上で各電極 3 0 の第 1接触部 3 6 a を封着層 2 1 a に接触さ せる こ と によ り 、 電極を封着層に対して電気的に接続する。 なお、 第 1 接触部 3 6 a と封着層 との導電性を確実に確保す るため、 予め封着層 2 1 a と第 1 接触部 3 6 a と の間をハン ダ付けする こ と も有効である。 電極 3 0 は、 基板上で +極と 一極の一対を必要と し、 各電極から封着層 2 1 a 、 2 1 b へ 通電する長さ を等しく する こ と が望ま しい。 そこで、 一対の 電極 3 0 は、 背面基板 1 2 の対角方向に対向する 2つの角部 に装着され、 電極間に位置 した封着層 2 1 a 、 2 1 b の長さ は、 各電極の両側でほぼ等 しく 設定されている。  Subsequently, as shown in FIG. 7, a pair of electrodes 30 is mounted on the back substrate 12 to which the side walls 18 are joined. At this time, the first contact portion 36a of each electrode 30 is brought into contact with the sealing layer 21a on the side wall 18 to electrically connect the electrode to the sealing layer. I do. In order to ensure the conductivity between the first contact portion 36a and the sealing layer, solder between the sealing layer 21a and the first contact portion 36a must be soldered in advance. Is also effective. The electrode 30 requires a pair of a positive electrode and a single electrode on the substrate, and it is desirable that the length of current flowing from each electrode to the sealing layers 21a and 21b be equal. Therefore, a pair of electrodes 30 is attached to two diagonally opposite corners of the rear substrate 12, and the length of the sealing layers 21 a and 21 b located between the electrodes is It is set almost equally on both sides of.
電極 3 0 を装着した後、 これら背面基板 1 2、 前面基板 1 1 を所定間隔離して対向配置し、 この状態で、 真空処理装置 内に投入する。 こ こでは、 例えば図 9 に示すよ う な真空処理 装置 1 0 0 を用いる。 真空処理装置 1 0 0 は、 並んで配設さ れたロー ド室 1 0 1 、 ベーキング、 電子線洗浄室 1 0 2、 冷 却室 1 0 3 、 ゲッター膜の蒸着室 1 0 4 、 組立室 1 0 5 、 冷 却室 1 0 6 、 およびアンロー ド室 1 0 7 を備えている。 組立 室 1 0 5 には、 通電用の直流の電源 1 2 0 と、 こ の電源を制 御するコ ンピュータ 1 2 2 とが接続されている。 真空処理装 置 1 0 0 の各室は、 真空処理が可能な処理室と して構成され F E Dの製造時には全室が真空排気されている。 これら各処 理室間は図示しないゲー トバルブ等によ り接続されている。 所定間隔離して配置された上述の前面基板 1 1 および背面 基板 1 2 は、 まず、 ロー ド室 1 0 1 に投入され、 ロー ド室 1 0 1 内を真空雰囲気と した後、 ベーキング、 電子線洗浄室 1 0 2 へ送られる。 After the electrodes 30 are mounted, the rear substrate 12 and the front substrate 11 are opposed to each other with a predetermined distance therebetween, and are put into a vacuum processing apparatus in this state. Here, for example, a vacuum processing apparatus 100 as shown in FIG. 9 is used. The vacuum processing apparatus 100 includes a load chamber 101, a baking, electron beam cleaning chamber 102, a cooling chamber 103, a getter film deposition chamber 104, and an assembling chamber. 105, cooling room 106 and unloading room 107 are provided. The assembly room 105 is connected to a DC power supply 120 for energization and a computer 122 for controlling the power supply. Each chamber of the vacuum processing apparatus 100 is configured as a processing chamber capable of performing vacuum processing, and all the chambers are evacuated during the manufacture of the FED. Each of these The rooms are connected by a gate valve (not shown). The above-mentioned front substrate 11 and rear substrate 12 arranged at a predetermined interval are first loaded into a load chamber 101, and after the load chamber 101 is evacuated to a vacuum atmosphere, baking and electron beams are performed. It is sent to the washing room 102.
ベーキング、 電子線洗浄室 1 0 2では、 各部材を 3 0 0 °C の温度に加熱し、 各基板おょぴ側壁の表面吸着ガスを放出さ せる。 同時にべ一キング、 電子線洗浄室 1 0 2 に設け られた 図示 しない電子線発生装置から電子線を、 前面基板 1 1 の蛍 光体ス ク リ ー ン面、 および背面基板 1 2 の電子放出素子面に 照射する。 その際、 電子線発生装置外部に装着された偏向装 置によって電子線を偏向走査する こ と によ り 、 蛍光体ス ク リ ーン面および電子放出素子面の全面をそれぞれ電子線洗浄す る。  In the baking and electron beam cleaning chamber 102, each member is heated to a temperature of 300 ° C. to release the surface adsorbed gas on the side wall of each substrate. At the same time, baking and electron beams are emitted from an electron beam generator (not shown) provided in the electron beam cleaning room 102, and are emitted from the phosphor screen surface of the front substrate 11 and the rear substrate 12 Irradiate the element surface. At this time, the entire surface of the phosphor screen and the entire surface of the electron-emitting device are cleaned by deflecting and scanning the electron beam by a deflecting device mounted outside the electron beam generator. .
そ して、 こ の加熱、 電子線洗浄を行った前面基板 1 1 およ び背面基板 1 2 は冷却室 1 0 3 に送られ、 約 1 2 0 °Cの温度 まで冷却された後、 ゲッター膜の蒸着室 1 0 4へと送られる 蒸着室 1 0 4 では、 蛍光体層の外側にゲッター膜と して B a 膜が蒸着される。 B a 膜は表面が酸素や炭素な どで汚染され る こ とが防止され、 活性状態を維持する こ と ができ る。  Then, the front substrate 11 and the rear substrate 12 that have been subjected to the heating and the electron beam cleaning are sent to a cooling chamber 103 and cooled to a temperature of about 120 ° C. In the vapor deposition chamber 104 which is sent to the vapor deposition chamber 104, a Ba film is vapor-deposited as a getter film outside the phosphor layer. The surface of the Ba film is prevented from being contaminated with oxygen, carbon, or the like, and can maintain an active state.
続いて、 前面基板 1 1 および背面基板 1 2 は組立室 1 0 5 に送られる。 こ の組立室 1 0 5 では、 図 8 に示すよ う に、 前 面基板 1 1 および背面基板 1 2 を約 1 2 0 °Cに維持したまま 互いに接近する方向へ移動させ、 各電極 3 0 の第 2接触部 3 6 b を前面基板 1 1側の封着層 2 1 b に接触させる。 これに よ り 、 各電極 3 0 を封着層 2 l b に電気的に接続する。 この 際、 第 2接触部 3 6 b は、 ばね圧によ り封着層 2 1 b に対し て弾性的に押付け られ、 安定した導電性を確保するこ とがで き る。 Subsequently, the front substrate 11 and the rear substrate 12 are sent to the assembly room 105. In this assembly room 105, as shown in FIG. 8, the front substrate 11 and the rear substrate 12 were moved in a direction approaching each other while maintaining the temperature at about 120 ° C. The second contact portion 36b of the first substrate is brought into contact with the sealing layer 21b on the front substrate 11 side. to this Thus, each electrode 30 is electrically connected to the sealing layer 2 lb. At this time, the second contact portion 36b is elastically pressed against the sealing layer 21b by the spring pressure, so that stable conductivity can be secured.
次に、 図 1 0 に示すよ う に、 一対の電極 3 0 に電源 1 2 0 を電気的に接続した後、 側壁 1 8側の封着層 2 1 a および前 面基板 1 1 側の封着層 2 1 b のそれぞれに通電して封着層を 加熱しイ ンジウムを溶融させる。 この際、 電源 1 2 0 に接続 された接続端子 4 0 を、 電極 3 0 の導通部 3 8 に接触させる こ と によ り 、 電源と電極、 および電極と封着層 2 1 a 、 2 1 b と を確実に導通させる こ とができる。  Next, as shown in FIG. 10, after the power supply 120 is electrically connected to the pair of electrodes 30, the sealing layer 21 a on the side wall 18 side and the sealing layer 21 a on the front substrate 11 side are formed. Electricity is applied to each of the bonding layers 21b to heat the sealing layer to melt the indium. At this time, by bringing the connection terminal 40 connected to the power supply 120 into contact with the conducting portion 38 of the electrode 30, the power supply and the electrode, and the electrode and the sealing layer 21 a, 21 b and can be reliably conducted.
イ ンジウムが溶融した後、 前面基板 1 1 および背面基板 1 2 を互いに接近する方向へ加圧する。 これによ り 、 封着層 2 l a 、 2 l b を融合させて封着層 2 1 を形成し、 この封着層 によって前面基板 1 1 の周縁部と側壁 1 8 とを封着する。 上 記工程によ り形成された真空外囲器 1 0 は、 冷却室 1 0 6 で 常温まで冷却され、 アンロー ド室 1 0 7カゝら取り 出される。 これによ り 、 F E Dの真空外囲器が完成する。  After the indium is melted, the front substrate 11 and the rear substrate 12 are pressed in a direction approaching each other. Thus, the sealing layers 2 la and 2 lb are fused to form the sealing layer 21, and the peripheral portion of the front substrate 11 and the side wall 18 are sealed by the sealing layer. The vacuum envelope 10 formed by the above process is cooled to room temperature in the cooling chamber 106 and taken out of the unload chamber 107. This completes the FED vacuum envelope.
なお、 真空外囲器が完成 した後、 必要であれば電極 3 0 を 切除しても よい。  After the completion of the vacuum envelope, the electrode 30 may be cut off if necessary.
以上のよ う に構成された F E Dおよびその製造方法によれ ば、 封着層 2 1 に通電するための電極 3 0 が予め外囲器に装 着され、 封着層に電気的に接続された状態で固定されている そのため、 通電加熱時、 電極 3 0 を介 して封着層 2 1 に安定 した電流を流すこ とができ る。 従って、 封着時、 封着層を構 成する導電性の低融点封着材料を予め定めた通電時間で安定 してかつ確実に溶融させる こ とができ、 その結果、 封着層 2 1 に亀裂等が発生する こ と なく 迅速かつ確実な封着を行う こ とができ る。 According to the FED configured as described above and the method for manufacturing the same, the electrode 30 for supplying electricity to the sealing layer 21 was previously mounted on the envelope and electrically connected to the sealing layer. Therefore, a stable current can be applied to the sealing layer 21 via the electrode 30 during the heating by energization. Therefore, at the time of sealing, the sealing layer The conductive low melting point sealing material to be formed can be stably and reliably melted in a predetermined energizing time, and as a result, the sealing layer 21 can be quickly and surely not cracked. Sealing can be performed.
真空雰囲気中で前面基板および背面基板の封着、 接合を行 う こ とから、 ベーキングと電子線洗浄との併用によって表面 吸着ガス を十分に放出させる こ と ができ、 吸着能力が優れた ゲッター膜を得る こ と ができ る。 また、 イ ンジウムを通電加 熱するこ と によって封着、 接合する こ と によ り 、 前面基板お よび背面基板全体を加熱する必要がな く 、 ゲッター膜の劣化 封着工程中に基板が割れるなどの不具合をな く すこ と ができ 同時に、 封着時間の短縮を図る こ とができ る。  Since the front and rear substrates are sealed and bonded in a vacuum atmosphere, the surface adsorbed gas can be sufficiently released by using both baking and electron beam cleaning, and the getter film has excellent adsorption capacity. Can be obtained. In addition, since the indium is sealed and joined by energizing and heating, there is no need to heat the entire front and back substrates, and the getter film is deteriorated. The substrate is broken during the sealing process. And the like can be eliminated, and at the same time, the sealing time can be shortened.
従って、 量産性に優れ、 同時に、 安定かつ良好な画像を得 る こ とが可能な F E Dを安価に得る こ とができ る。  Therefore, it is possible to inexpensively obtain an FED that is excellent in mass productivity and that can obtain a stable and good image at the same time.
次に、 この発明の第 2 の実施形態に係る F E D について説 明する。 上述した実施形態において、 各電極は、 側壁側の封 着層に導通 した第 1 接触部、 および前面基板側の封着層に導 通 した第 2接触部を備えた構成と したが、 第 2 の実施形態に よれば、 図 1 1 、 図 1 2 Aおよぴ図 1 2 B に示すよ う に、 電 極 3 0 は、 単一の接触部 3 6 a を備えて構成されている。 一 対の電極 3 0 は、 背面基板 1 2 の対角方向に対向 した一対の 角部にそれぞれ装着され、 側壁 1 8および背面基板 1 2 を弾 性的に挟持した状態で外囲器に取り 付けられている。 この際 各接触部 3 6 a は、 封着層 2 1 a の上面に接触して封着層 と 電気的に接続されている。 封着工程において、 封着層 2 1 b の形成された前面基板 1 1 を背面基板 1 2 と対向配置する こ と によ り 、 各電極 3 0 の 接触部 3 6 a が封着層 2 1 a 、 2 l b の両方に接触し電気的 に接続される。 そ して、 これらの電極 3 0 を介して封着層 2 l a 、 2 l b に同時に通電し、 イ ンジウムを加熱溶融する こ とができ る。 Next, an FED according to a second embodiment of the present invention will be described. In the above-described embodiment, each electrode is configured to include the first contact portion that is conductive to the sealing layer on the side wall and the second contact portion that is conductive to the sealing layer on the front substrate side. According to this embodiment, as shown in FIG. 11, FIG. 12A and FIG. 12B, the electrode 30 is provided with a single contact portion 36a. The pair of electrodes 30 are mounted on a pair of diagonally opposite corners of the rear substrate 12, respectively, and are attached to the envelope while elastically holding the side wall 18 and the rear substrate 12. It is attached. At this time, each contact portion 36a is in contact with the upper surface of the sealing layer 21a and is electrically connected to the sealing layer. In the sealing step, the front substrate 11 on which the sealing layer 2 1 b is formed is arranged to face the rear substrate 12, so that the contact portions 36 a of the respective electrodes 30 form the sealing layer 2 1. Both a and 2 lb are in contact and electrically connected. Then, the sealing layers 2 la and 2 lb can be simultaneously energized through these electrodes 30 to heat and melt the indium.
第 2 の実施形態において、 他の構成は前述 した第 1 の実施 形態と 同一であ り 、 同一の部分には、 同一の参照符号を付し てその詳細な説明を省略する。 そ して、 第 2 の実施形態にお いても、 第 1 の実施形態と 同様の作用効果を得る こ とができ る。 なお、 第 1 およぴ第 2 の実施形態において、 各電極 3 0 は、 前面基板側に装着固定する構成と しても良い。  In the second embodiment, the other configuration is the same as that of the above-described first embodiment, and the same portions are denoted by the same reference numerals and detailed description thereof will be omitted. Also, in the second embodiment, the same operation and effect as in the first embodiment can be obtained. In the first and second embodiments, each electrode 30 may be mounted and fixed to the front substrate side.
図 1 3 、 図 1 4 Aおよび図 1 4 Bに示す第 3 の実施形態に よれば、 F E Dは、 側壁 1 8上に形成された封着層 2 1 a に 通電する ための一対の第 1 電極 3 0 a と、 前面基板 1 1 に形 成された封着層 2 1 b に通電するための一対の第 2電極 3 0 b と を備えている。 第 1 および第 2電極 3 0 a 、 3 0 b は、 前述 した電極 3 0 と ほぼ同様にク リ ップ状に形成されている ただし、 各電極と もに、 接触部 3 6 は 1 つ と なっている。  According to the third embodiment shown in FIG. 13, FIG. 14A and FIG. 14B, the FED is a pair of first conductive members for supplying electricity to the sealing layer 21 a formed on the side wall 18. It includes an electrode 30 a and a pair of second electrodes 30 b for supplying electricity to the sealing layer 21 b formed on the front substrate 11. The first and second electrodes 30a and 30b are formed in a clip shape almost in the same manner as the above-described electrode 30.However, each electrode has one contact portion 36. Has become.
一対の第 1 電極 3 0 a は、 背面基板 1 2 の対角方向に対向 した一対の角部にそれぞれ装着され、 側壁 1 8 および背面基 板 1 2 を弾性的に挟持した状態で取り 付け られている。 この 際、 各第 1 電極 3 0 a はその接触部 3 6 が封着層 2 1 a に接 触して封着層と電気的に接続されている。 一対の第 2電極 3 O b は、 前面基板 1 1 の対角方向に対向 した一対の角部にそ れぞれ装着され、 前面基板を弾性的に挟持した状態で取り 付 け られている。 この際、 各第 2電極 3 O b はその接触部 3 6 が封着層 2 1 b に接触して封着層 と電気的に接続されている 第 1 電極 3 0 a および第 2電極 3 0 b は、 互い重なる こ と な く 、 4つの角部に分け配置する こ とが望ま しい。 The pair of first electrodes 30 a are mounted on a pair of diagonally opposite corners of the rear substrate 12, respectively, and are attached while elastically sandwiching the side wall 18 and the rear substrate 12. ing. At this time, each of the first electrodes 30a is electrically connected to the sealing layer with its contact portion 36 in contact with the sealing layer 21a. The pair of second electrodes 3 Ob is formed on a pair of corners of the front substrate 11 opposite to each other in a diagonal direction. Each is mounted and attached with the front substrate elastically sandwiched. At this time, each of the second electrodes 3 Ob has a first electrode 30 a and a second electrode 30 whose contact portions 36 are in contact with the sealing layer 21 b and are electrically connected to the sealing layer. It is desirable that b be divided into four corners without overlapping each other.
封着工程においては、 図 1 3 および図 1 4 Aに示すよ う に 電源 1 2 0 に接続された一対の接続端子 4 0 a を、 第 1 電極 3 0 a の導通部 3 8 にそれぞれ接触させ、 電源と第 1 電極、 および第 1 電極と封着層 2 l a を導通させる。 また、 電源 1 2 0 に接続された一対の接続端子 4 O b を、 第 2電 3 0 b の導通部 3 8 にそれぞれ接触させ、 電源と第 2電極、 および 第 2電極と封着層 2 l b を導通させる。 この状態で、 側壁 1 8側の封着層 2 1 a および前面基板 1 1側の封着層 2 1 b の それぞれに通電して封着層を加熱しイ ンジウムを溶融させる イ ンジウムが溶融した後、 図 1 4 B に示すよ う に、 前面基 板 1 1 および背面基板 1 2 を互いに接近する方向へ加圧する これによ り 、 封着層 2 1 a 、 2 1 b を融合させて封着層 2 1 を形成し、 この封着層によって前面基板 1 1 の周縁部と側壁 1 8 と を封着する。  In the sealing step, as shown in FIGS. 13 and 14A, the pair of connection terminals 40 a connected to the power supply 120 are brought into contact with the conductive portions 38 of the first electrode 30 a, respectively. Then, the power supply and the first electrode, and the first electrode and the sealing layer 2 la are electrically connected. Further, the pair of connection terminals 4 O b connected to the power supply 120 are brought into contact with the conducting portions 38 of the second power 30 b, respectively, so that the power supply and the second electrode, and the second electrode and the sealing layer 2 Make lb conductive. In this state, current is applied to each of the sealing layer 21a on the side wall 18 and the sealing layer 21b on the front substrate 11 to heat the sealing layer and melt the indium. Thereafter, as shown in FIG. 14B, the front substrate 11 and the rear substrate 12 are pressed in a direction approaching each other, whereby the sealing layers 21 a and 21 b are fused and sealed. The adhesion layer 21 is formed, and the peripheral portion of the front substrate 11 and the side wall 18 are sealed by the sealing layer.
第 3 の実施形態において、 他の構成は前述 した第 1 の実施 形態と 同一であ り 、 同一の部分には、 同一の参照符号を付し てその詳細な説明を省略する。 第 3 の実施形態においても、 第 1 の実施形態と同様の作用効果を得る こ と ができ る。 更に 第 3 の実施形態によれば、 背面基板 1 2側の封着層 2 1 a お ょぴ前面基板 1 1側の封着層 2 1 b に通電する電流値を個別 に制御する こ とができ、 一層適切な通電加熱を行 う こ と がで き る。 In the third embodiment, the other configuration is the same as that of the above-described first embodiment, and the same portions are denoted by the same reference numerals and detailed description thereof will not be repeated. In the third embodiment, the same operation and effect as those of the first embodiment can be obtained. Further, according to the third embodiment, the current flowing through the sealing layer 21a on the rear substrate 12 side and the sealing layer 21b on the front substrate 11 side are individually , And more appropriate energization heating can be performed.
次に、 この発明の第 4 の実施形態に係る F E Dについて説 明する。  Next, an FED according to a fourth embodiment of the present invention will be described.
図 1 5 ない し図 1 7 に示すよ う に、 F E Dは真空外囲器 1 0および真空外囲器に取り付け られた複数、 例えば、 一対の 電極 3 0 を備えている。 真空外囲器 1 0 は、 それぞれ矩形状 のガラス板からなる前面基板 1 1 および背面基板 1 2 を備え これらの基板 1 1 、 1 2 は、 矩形枠状の側壁 1 8 を介して周 縁部同士が接合されている。 前面基板 1 1 の内面には、 蛍光 体ス ク リ ーン 1 6 、 メ タルバッ ク 1 7、 ゲッター膜 1 3 が形 成されている。 背面基板 1 2 の内面上には、 蛍光体スク リ ー ン 1 6 の蛍光体層を励起する多数の電子放出素子 2 2 が設け られている。 また、 背面基板 1 2 の内面には、 電子放出素子 2 2 に電位を供給する多数本の配線 2 3 がマ ト リ ック ス状に 設け られ、 その端部は真空外囲器 1 0 の周縁部に引出されて いる。  As shown in FIGS. 15 to 17, the FED includes a vacuum envelope 10 and a plurality of, for example, a pair of electrodes 30 attached to the vacuum envelope. The vacuum envelope 10 includes a front substrate 11 and a rear substrate 12 each made of a rectangular glass plate, and these substrates 11 and 12 are arranged at a peripheral portion through a rectangular frame-shaped side wall 18. Are joined together. A phosphor screen 16, a metal back 17, and a getter film 13 are formed on the inner surface of the front substrate 11. On the inner surface of the rear substrate 12, a number of electron-emitting devices 22 for exciting the phosphor layer of the phosphor screen 16 are provided. A large number of wirings 23 for supplying a potential to the electron-emitting devices 22 are provided in a matrix on the inner surface of the rear substrate 12, and the ends of the wirings 23 are provided at the ends of the vacuum envelope 10. It is drawn out to the periphery.
一対の電極 3 0 は、 封着層 2 1 に電気的に導通 した状態で 外囲器 1 0 に取り付けられている。 これらの電極 3 0 は、 封 着層 2 1 に通電する際の電極と して用いられる。 各電極 3 0 は、 導電部材と して例えば 0 . 2 m m厚の銅板を折り 曲げ加 工して形成されている。 すなわち、 電極 3 0 は、 断面がほぼ U字形状と なる よ う に折曲げられ、 前面基板 1 1 あるいは背 面基板 1 2 の周縁部を挟持して取り 付け可能なク リ ップ状の 装着部 3 2 、 装着部に並んで位置した楔状の胴体部 3 4 、 胴 体部の延出端に位置 した接触部 3 6 、 および装着部および胴 体部の背面部によ り 形成された平坦な導通部 3 8 を一体に備 えている。 接触部 3 6 は、 水平方向の延出長さ Lが 2 m m以 上に形成されている。 また、 胴体部 3 4 は帯状に形成され、 接触部 3 6 から外側かつ斜め上方に傾斜して延びている。 こ れによ り 、 胴体部 3 4 は、 鉛直方向に沿って接触部 3 6 よ り も高く 位置 した流出規制部 3 7 を形成 している。 The pair of electrodes 30 is attached to the envelope 10 in a state of being electrically connected to the sealing layer 21. These electrodes 30 are used as electrodes when energizing the sealing layer 21. Each electrode 30 is formed by bending a copper plate having a thickness of, for example, 0.2 mm as a conductive member. That is, the electrode 30 is bent so as to have a substantially U-shaped cross-section, and is a clip-like mounting that can be attached to a peripheral portion of the front substrate 11 or the rear substrate 12. Portion 32, wedge-shaped body portion 34 located alongside the mounting portion, torso A contact portion 36 located at the extended end of the body portion and a flat conducting portion 38 formed by the mounting portion and the back portion of the body portion are integrally provided. The contact portion 36 has a horizontal extension L of 2 mm or more. Further, the body portion 34 is formed in a band shape, and extends obliquely upward and outward from the contact portion 36. As a result, the body portion 34 forms the outflow regulating portion 37 positioned higher than the contact portion 36 along the vertical direction.
各電極 3 0 は、 真空外囲器 1 0 の例えば、 背面基板 1 2 に 弾性的に係合した状態で取り 付け られている。 すなわち、 電 極 3 0 は、 装着部 3 2 によ り 背面基板 1 2 の周縁部を弾性的 に挟持した状態で真空外囲器 1 0 に取り付け られている。 各 電極 3 0 の接触部 3 6 は、 それぞれ封着層 2 1 に接触し、 電 気的に導通 している。 胴体部 3 4 は接触部 3 6 から真空外囲 器 1 0 の外側に延出 している と と もに、 流出規制部 3 7 は接 触部 3 6 よ り も鉛直方向に沿って高く 位置 している。 導通部 3 8 は、 背面基板 1 2 の側面と対向 し真空外囲器 1 0 の外面 に露出 している。 これら一対の電極 3 0 は、 真空外囲器 1 0 の対角方向に離間した 2 つの角部にそれぞれ設け られ、 封着 層 2 1 に対 して対称に配置されている。  Each electrode 30 is attached in a state of being elastically engaged with, for example, a back substrate 12 of the vacuum envelope 10. That is, the electrode 30 is attached to the vacuum envelope 10 in a state where the peripheral portion of the rear substrate 12 is elastically held by the attachment portion 32. The contact portion 36 of each electrode 30 is in contact with the sealing layer 21 and is electrically conductive. The body 34 extends from the contact portion 36 to the outside of the vacuum envelope 10, and the outflow regulating portion 37 is located vertically higher than the contact portion 36. are doing. The conduction portion 38 is exposed on the outer surface of the vacuum envelope 10 so as to face the side surface of the rear substrate 12. The pair of electrodes 30 are provided at two diagonally separated corners of the vacuum envelope 10, respectively, and are arranged symmetrically with respect to the sealing layer 21.
上記 F E Dの他の構成は、 前述した第 1 の実施形態と 同一 であ り 、 同一の部分には同一の参照符号を付してその詳細な 説明を省略する。  The other configuration of the FED is the same as that of the above-described first embodiment, and the same portions are denoted by the same reference characters and will not be described in detail.
次に、 上記 F E D の製造方法について詳細に説明する。 こ の製造方法は、 第 1 の実施形態に係る製造方法と ほぼ同一で あ り 、 異なる部分を中心に説明する。 まず、 蛍光体スク リ ーンおよびメ タルバック 1 7が形成さ れた前面基板 1 1 、 並びに、 電子放出素子 2 2 が形成された 背面基板 1 2 を用意する。 続いて、 大気中で低融点ガラス 1 9 によ り側壁 1 8 および支持部材 1 4 を背面基板 1 2 の内面 上に封着する。 その後、 図 1 8 A、 図 1 8 B に示すよ う に、 側壁 1 8 の封着面の全周に渡ってイ ンジウムを所定の幅およ ぴ厚さに塗布 し封着層 2 1 a を形成する。 前面基板 1 1 の側 壁と対向する封着面にィ ンジゥムを所定の幅および厚さで矩 形枠状に塗布し封着層 2 1 b を形成する。 なお、 側壁 1 8 お よび前面基板 1 1 の封着面に対する封着層 2 1 a、 2 1 の 充填は、 上述 したよ う に、 溶融したイ ンジウムを封着面に塗 布する方法、 あるいは、 固体状態のイ ンジウムを封着面に載 置する方法等によって行う 。 Next, a method of manufacturing the above FED will be described in detail. This manufacturing method is almost the same as the manufacturing method according to the first embodiment, and different portions will be mainly described. First, a front substrate 11 on which a phosphor screen and a metal back 17 are formed, and a rear substrate 12 on which electron-emitting devices 22 are formed are prepared. Subsequently, the side wall 18 and the support member 14 are sealed on the inner surface of the rear substrate 12 with the low melting point glass 19 in the atmosphere. Thereafter, as shown in FIGS. 18A and 18B, indium is applied to a predetermined width and thickness over the entire periphery of the sealing surface of the side wall 18 to form a sealing layer 21a. To form A sealing layer 21b is formed by applying an image in a rectangular frame shape with a predetermined width and thickness to a sealing surface facing the side wall of the front substrate 11. The filling of the sealing layers 21a and 21 with respect to the side walls 18 and the sealing surface of the front substrate 11 may be performed by applying molten indium to the sealing surface as described above, or This is performed by a method of placing indium in a solid state on a sealing surface.
続いて、 側壁 1 8 が接合されている背面基板 1 2 に一対の 電極 3 0 を装着する。 この際、 側壁 1 8 上で各電極 3 0 の接 触部 3 6 を封着層 2 l a に接触させる こ と によ り 、 電極を封 着層に対して電気的に接続する。 一対の電極 3 0 は、 背面基 板 1 2 の対角方向に対向する 2 つの角部に装着され、 電極間 に位置した封着層 2 1 a、 2 1 b の長さ は、 各電極の両側で ほぼ等しく 設定されている。  Subsequently, a pair of electrodes 30 is mounted on the back substrate 12 to which the side walls 18 are joined. At this time, the electrode is electrically connected to the sealing layer by bringing the contact portion 36 of each electrode 30 into contact with the sealing layer 2 la on the side wall 18. The pair of electrodes 30 is mounted on two diagonally opposite corners of the back substrate 12, and the length of the sealing layers 21 a and 21 b located between the electrodes is equal to the length of each electrode. Almost equal on both sides.
電極 3 0 を装着した後、 背面基板 1 2 、 前面基板 1 1 を所 定間隔離して対向配置し、 この状態で、 図 9 に示した真空処 理装置 1 0 0 内に投入する。 前面基板 1 1 および背面基板 1 2 は、 ロー ド室 1 0 1 を介 してべ一キング、 電子線洗浄室 1 0 2 へ送られる。 ベーキング、 電子線洗浄室 1 0 2では、 各 種部材を 3 0 0 °Cの温度に加熱し、 各基板の表面吸着ガスを 放出させる。 同時に、 電子線発生装置から電子線を、 前面基 板 1 1 の蛍光体ス ク リ ーン面、 および背面基板 1 2 の電子放 出素子面に照射 し、 蛍光体スク リ ーン面および電子放出素子 面の全面をそれぞれ電子線洗浄する。 After the electrodes 30 are mounted, the rear substrate 12 and the front substrate 11 are arranged facing each other with a predetermined interval therebetween, and in this state, are put into the vacuum processing apparatus 100 shown in FIG. The front substrate 11 and the rear substrate 12 are baked through the loading chamber 101 and sent to the electron beam cleaning chamber 102. Baking, electron beam cleaning room 102, each The seed member is heated to a temperature of 300 ° C. to release gas adsorbed on the surface of each substrate. At the same time, an electron beam is irradiated from the electron beam generator onto the phosphor screen surface of the front substrate 11 and the electron-emitting device surface of the rear substrate 12 so that the phosphor screen surface and the electrons are emitted. The entire surface of the emission element surface is cleaned with an electron beam.
ベーキング工程において、 封着層 2 1 a 、 2 1 b は加熱さ れて溶融する。 背面基板 1 2側の封着層 2 1 a は、 電極 3 0 を通 して外部に流出 しょ う とする。 し力 し、 各電極 3 0 には 接触部 3 6 よ り も高く 位置した流出規制部 3 7 が設け られて いるため、 この流出規制部によ り 、 溶融したイ ンジウムが背 面基板の外側へ流れ出すのを抑える こ と ができ る。  In the baking step, the sealing layers 21a and 21b are heated and melted. The sealing layer 21a on the rear substrate 12 side tends to flow out through the electrode 30. Since each electrode 30 is provided with an outflow restricting portion 37 positioned higher than the contact portion 36, the outflow restricting portion allows molten indium to flow outside the back substrate. Can be suppressed.
次いで、 前面基板 1 1 および背面基板 1 2 は冷却室 1 0 3 に送られ、 約 1 2 0 °Cの温度まで冷却された後、 ゲッター膜 の蒸着室 1 0 4へと送られ、 蛍光体層の外側に B a 膜が蒸着 形成される。 続いて、 前面基板 1 1 および背面基板 1 2 は組 立室 1 0 5 に送られ、 図 1 9 に示すよ う に、 対向配置された 状態で組立室内のホ ッ トプレー ト 1 3 1、 1 3 2 にそれぞれ 保持される。 前面基板 1 1 は落下しないよ う に、 固定治具 1 3 3 によ り 上側のホ ッ トプレー ト 1 3 1 に固定する。 Next, the front substrate 11 and the rear substrate 12 are sent to a cooling chamber 103, cooled to a temperature of about 120 ° C., and then sent to a getter film deposition chamber 104, where the phosphor B a film is deposited forming the outer layer. Subsequently, the front substrate 11 and the rear substrate 12 are sent to the assembly room 105, and as shown in FIG. 19, the hot plates 131, 1 in the assembly room are placed in a state of facing each other, as shown in FIG. 3 and 2 respectively. The front substrate 11 is fixed to the upper hot plate 13 1 with the fixing jig 13 3 so as not to drop.
その後、 前面基板 1 1 および背面基板 1 2 を約 1 2 0 °Cに 維持したまま、 互いに接近する方向へ移動させ、 所定の圧力 で加圧する。 それによ り 、 各電極 3 0 の接触部 3 6 を前面基 板 1 1側の封着層 2 1 b と背面基板 1 2側の封着層 2 1 a と の間に挟持し、 各電極 3 0 を封着層 2 1 a 、 2 1 b に電気的 に接続する。 こ の際、 接触部 3 6 は 2 m m以上の水平方向長 さ に形成されているため、 封着層 2 1 a 、 2 1 b に対 し安定 して接触する こ と ができ る。 なお、 電極 3 0 の接触部 3 6 に 予めイ ンジウムを塗布 しておく こ と によ り 、 一層安定して封 着材に通電する こ と が可能と なる。 Thereafter, the front substrate 11 and the rear substrate 12 are moved in a direction approaching each other while being maintained at about 120 ° C., and pressurized at a predetermined pressure. As a result, the contact portion 36 of each electrode 30 is sandwiched between the sealing layer 21b on the front substrate 11 side and the sealing layer 21a on the rear substrate 12 side, and each electrode 3 0 is electrically connected to the sealing layers 21a and 21b. At this time, the contact part 36 has a horizontal length of 2 mm or more. As a result, it is possible to stably contact the sealing layers 21a and 21b. By applying indium to the contact portion 36 of the electrode 30 in advance, it is possible to more stably supply electricity to the sealing material.
この状態で、 一対の電極 3 0 に電源 1 2 0 を電気的に接続 した後、 側壁 1 8側の封着層 2 1 a および前面基板 1 1側の 封着層 2 1 b のそれぞれに例えば、 1 4 0 Aの直流電流を定 電流モー ドで印加する。 これによ り 、 封着層 2 1 a 、 2 1 b を加熱しイ ンジウムを溶融させる。 この際、 電源 1 2 0 に接 続された接続端子を、 電極 3 0 の導通部 3 8 に接触させる こ と によ り 、 電源と電極、 および電極と封着層 2 1 a 、 2 1 b と を確実に導通させる こ とができ る。 また、 各電極 3 0 は封 着層 2 1 a 、 2 1 b に対して等価に接触しているため、 安定 して通電する こ とができ、 それぞれの封着層にほぼ同量の電 流を流し均等に溶融させる こ とができ る。  In this state, after the power supply 120 is electrically connected to the pair of electrodes 30, for example, each of the sealing layer 21 a on the side wall 18 side and the sealing layer 21 b on the front substrate 11 side is connected, for example. , 140 A DC current is applied in the constant current mode. As a result, the sealing layers 21a and 21b are heated to melt the indium. At this time, the connection terminal connected to the power supply 120 is brought into contact with the conducting portion 38 of the electrode 30 to make the power supply and the electrode, and the electrode and the sealing layer 21a, 21b. And can be reliably conducted. In addition, since each electrode 30 is in equivalent contact with the sealing layers 21a and 21b, it is possible to supply electricity stably, and almost the same amount of current flows through each sealing layer. And it can be melted evenly.
上記のよ う にイ ンジウムを溶融させる こ と によ り 、 封着層 2 1 a 、 2 l b を融合させて封着層 2 1 を形成し、 こ の封着 層によって前面基板 1 1 の周縁部と側壁 1 8 と を封着する。 上記工程によ り 形成された真空外囲器 1 0 は、 冷却室 1 0 6 で常温まで冷却され、 アンロー ド室 1 0 7 カゝら取 り 出 される これに よ り 、 真空外囲器 1 0 が完成する。 なお、 真空外囲器 1 0 が完成 した後、 必要であれば電極 3 0 を切除して も よい 以上のよ う に構成された F E Dおよびその製造方法によれ ば、 前述した第 1 の実施形態と 同様の作用効果を得る こ と が でき る。 更に、 第 4 の実施形態によれば、 封着材に通電する ための電極 3 0 は、 接触部よ り も高く 位置した流出規制部を 有している こ とから、 ベーキング工程等において、 溶融した 封着材が電極を通して外部に流出する こ と規制する。 そのた め、 封着層を均一な厚さ に維持し、 外囲器を全周に渡って確 実に封着する こ とができ る と と も に、 封着材の流出に起因す る配線のショ ー ト等を防止する こ とが可能と なる。 従って、 量産性に優れ、 同時に、 安定かつ良好な画像を得る こ と が可 能な F E Dを安価に得る こ とができ る。 By melting the indium as described above, the sealing layer 21 a and 2 lb are fused to form a sealing layer 21, and the peripheral layer of the front substrate 11 is formed by the sealing layer. The part and the side wall 18 are sealed. The vacuum envelope 10 formed by the above process is cooled to room temperature in the cooling chamber 106 and is taken out from the unload chamber 107, whereby the vacuum envelope is removed. 10 is completed. After the vacuum envelope 10 is completed, the electrode 30 may be cut off if necessary. According to the FED configured as described above and the method of manufacturing the same, the first embodiment described above is used. The same operation and effect as described above can be obtained. Further, according to the fourth embodiment, a current is applied to the sealing material. Since the electrode 30 has an outflow restricting portion positioned higher than the contact portion, the electrode 30 restricts the molten sealing material from flowing out through the electrode in the baking step or the like. As a result, the sealing layer can be maintained at a uniform thickness, the envelope can be reliably sealed over the entire circumference, and wiring caused by leakage of the sealing material can be achieved. It is possible to prevent short shots. Therefore, it is possible to obtain an inexpensive FED that is excellent in mass productivity and that can obtain stable and good images at the same time.
上述した第 4 の実施形態において、 各電極 3 0 の胴体部 3 4 は、 そのほぼ全体が接触部 3 6 から斜め上方に延出 し流出 規制部 3 7 を形成している構成したが、 例えば、 図 2 0 に示 すよ う に、 胴体部 3 4 の一部を接触部 3 6 よ り も鉛直方向に 沿って高い位置へ延出 させて流出規制部 3 7 を構成しても よ い。 また、 各電極 3 0 は装着部を一体に備えた構成と したが 図 2 1 、 図 2 2 に示すよ う に、 電極 3 0 は、 接触部 3 6 、 月同 体部 3 4 、 流出規制部 3 7 および基台部 3 9 を備えた構成と し、 別体のク リ ップ 4 6 を用いて背面基板 1 2 に取り 付ける 構成と しても よい。  In the above-described fourth embodiment, the body portion 34 of each electrode 30 is configured so that almost the entire body extends obliquely upward from the contact portion 36 to form the outflow regulation portion 37. As shown in FIG. 20, a part of the body part 34 may be extended vertically higher than the contact part 36 to form the outflow restriction part 37. . In addition, each electrode 30 was configured to have a mounting part integrally, but as shown in Figs. 21 and 22, the electrode 30 has a contact part 36, a lunar union part 34, and an outflow control. It may be configured to include the unit 37 and the base unit 39, and may be configured to be attached to the rear substrate 12 using a separate clip 46.
なお、 図 2 0 ないし図 2 2 に示した変形例において、 他の 構成は前述した第 4 の実施形態と 同一であ り 、 同一の部分に は同一の参照符号を付してその詳細な説明を省略する。 そ し て、 これらの変形例に係る電極を用いた場合でも、 前述した 実施形態と 同様の作用効果を得る こ とができ る。  In the modified examples shown in FIGS. 20 to 22, other configurations are the same as those of the above-described fourth embodiment, and the same portions are denoted by the same reference numerals and detailed description thereof will be omitted. Is omitted. Further, even when the electrodes according to these modified examples are used, the same operation and effect as those of the above-described embodiment can be obtained.
次に、 この発明の第 5 の実施形態に係る F E D について説 明する。 図 2 3 ない し図 2 5 に示すよ う に、 F E Dは真空外囲器 1 0および真空外囲器に取り 付け られた複数、 例えば、 一対の 電極 3 0 を備えている。 一対の電極 3 0 は、 封着層 2 1 に電 気的に導通 した状態で外囲器 1 0 に取り 付け られている。 各 電極 3 0 は、 導電部材と して例えば 0 . 2 m m厚の銅板を折 り 曲げ加工して形成されている。 すなわち、 電極 3 0 は、 断 面がほぼ U字形状と なるよ う に折曲げられ、 前面基板 1 1 あ るいは背面基板 1 2 の周縁部を挟持して取り 付け可能なタ リ ップ状の装着部 3 2、 装着部に並んで位置した楔状の胴体部 3 4 、 胴体部の延出端に位置した接触部 3 6 、 接触部から胴 体部側に延出 し胴体部 と並んで位置した ド レイ ン部 3 5 、 お よび装着部および胴体部の背面部によ り 形成された平坦な導 通部 3 8 を一体に備えている。 Next, an FED according to a fifth embodiment of the present invention will be described. As shown in FIGS. 23 and 25, the FED includes a vacuum envelope 10 and a plurality of, for example, a pair of electrodes 30 attached to the vacuum envelope. The pair of electrodes 30 is attached to the envelope 10 in a state of being electrically connected to the sealing layer 21. Each electrode 30 is formed by bending a copper plate having a thickness of, for example, 0.2 mm as a conductive member. That is, the electrode 30 is bent so that the cross section becomes substantially U-shaped, and can be attached to the front substrate 11 or the rear substrate 12 by sandwiching the peripheral portion thereof. The mounting part 32, the wedge-shaped body part 34 positioned side by side with the mounting part, the contact part 36 positioned at the extension end of the body part, and extending from the contact part to the body part side along with the body part It has a drain portion 35 located therein and a flat conducting portion 38 formed by the mounting portion and the back portion of the body portion.
接触部 3 6 は、 水平方向の延出長さ Lが 2 m m以上に形成 されている。 胴体部 3 4は帯状に形成され、 接触部 3 6 力 ら 外側かつ斜め上方に傾斜して延びている。 これによ り 、 胴体 部 3 4 は、 鉛直方向に沿って接触部 3 6 よ り も高く 位置 した 流出規制部 3 7 を形成 している。 胴体部 3 4 は、 電流を導通 部 3 8 から接触部 3 6 へ流す流路を形成している。  The contact portion 36 has a horizontal extension L of 2 mm or more. The body portion 34 is formed in a belt shape, and extends outward and diagonally upward from the contact portion 36. As a result, the body portion 34 forms the outflow regulating portion 37 located higher than the contact portion 36 along the vertical direction. The body portion 34 forms a flow path for flowing a current from the conducting portion 38 to the contact portion 36.
ド レイ ン部 3 5 は帯状に形成され、 接触部 3 6 から外側か つ斜め下方に傾斜して延びている。 これによ り 、 ド レイ ン部 3 5 は、 鉛直方向に沿って接触部 3 6 よ り も低い位置に形成 している。 ド レイ ン部 3 5 の幅は、 胴体部 3 4 の幅よ り も狭 く 、 例えば、 1 m m程度に形成されている。 ド レイ ン部 3 5 は、 後述する よ う に、 溶融した封着材を外部に流出させる流 路を形成している。 The drain portion 35 is formed in a band shape and extends obliquely downward and outward from the contact portion 36. As a result, the drain portion 35 is formed at a position lower than the contact portion 36 along the vertical direction. The width of the drain portion 35 is smaller than the width of the body portion 34, and is formed, for example, to about 1 mm. As will be described later, the drain portion 35 is used to discharge the molten sealing material to the outside. Forming a road.
各電極 3 0 は、 真空外囲器 1 0 の例えば、 背面基板 1 2 に 弾性的に係合した状態で取り 付け られている。 すなわち、 電 極 3 0 は、 装着部 3 2 によ り 背面基板 1 2 の周縁部を弾性的 に挟持した状態で真空外囲器 1 0 に取 り 付けられている。 各 電極 3 0 の接触部 3 6 は、 それぞれ封着層 2 1 に接触 し、 封 着層に電気的に導通 している。 胴体部 3 4 は接触部 3 6 から 真空外囲器 1 0 の外側に延出 している と と もに、 流出規制部 3 7 は接触部 3 6 よ り も鉛直方向に沿って高く位置している ドレイ ン部 3 5 は接触部 3 6 から真空外囲器 1 0 の外側に延 出 し、 接触部 3 6 よ り も鉛直方向に沿って低い位置に位置し ている。 導通部 3 8 は、 背面基板 1 2 の側面と対向し真空外 囲器 1 0 の外面に露出 している。 これら一対の電極 3 0 は、 真空外囲器 1 0 の対角方向に離間 した 2 つの角部にそれぞれ 設け られ、 封着層 2 1 に対して対称に配置されている。  Each electrode 30 is attached in a state of being elastically engaged with, for example, a back substrate 12 of the vacuum envelope 10. That is, the electrode 30 is attached to the vacuum envelope 10 while the peripheral portion of the rear substrate 12 is elastically held by the mounting portion 32. The contact portion 36 of each electrode 30 is in contact with the sealing layer 21 and is electrically connected to the sealing layer. The body 34 extends from the contact 36 to the outside of the vacuum envelope 10, and the outflow restricting portion 37 is located vertically higher than the contact 36. The drain portion 35 extends from the contact portion 36 to the outside of the vacuum envelope 10 and is located lower than the contact portion 36 in the vertical direction. The conduction portion 38 faces the side surface of the rear substrate 12 and is exposed on the outer surface of the vacuum envelope 10. The pair of electrodes 30 are provided at two diagonally separated corners of the vacuum envelope 10, respectively, and are arranged symmetrically with respect to the sealing layer 21.
上記 F E Dの他の構成は、 前述 した第 4 の実施形態と 同一 であ り 、 同一の部分には同一の参照符号を付してその詳細な 説明を省略する。 また、 第 5 の実施形態に係る F E Dは、 第 4 の実施形態に係る製造方法と 同一の製造方法によ り 製造さ れる。  The other configuration of the FED is the same as that of the above-described fourth embodiment, and the same portions are denoted by the same reference characters and will not be described in detail. The FED according to the fifth embodiment is manufactured by the same manufacturing method as the manufacturing method according to the fourth embodiment.
第 5 の実施形態によれば、 ベーキング工程において、 封着 層 2 1 a 、 2 l b は加熱されて溶融する。 そして、 背面基板 1 2側の封着層 2 1 a は、 電極 3 0 を通して外部に流出 しよ う とする。 しカゝし、 各電極 3 0 には、 接触部 3 6 よ り も高く 位置 した流出規制部 3 7 が設け られているため、 この流出規 制部によ り 、 溶融したイ ンジウムが背面基板の外側へ流れ出 すのを抑える こ とができ る。 また、 溶融したイ ンジウムの一 部は、 電極 3 0 の ド レイ ン部 3 5 カゝら背面基板 1 2 の外側へ 流れでるが、 ド レイ ン部の幅は胴体部 3 4 の幅よ り も狭く 形 成されている こ とから、 流出量は僅かである。 例えば、 流出 規制部 3 7 および ド レイ ン部を持たない電極に比較して、 溶 融イ ンジウムの流出量を 1 Z 1 0程度に抑える こ とができ る こ の程度の流出量であれば、 封着層の厚さが相対的に薄く な つて封着部から リ ーク し易く なる といった問題、 および、 流 出 したイ ンジウムが基板上の配線に接触してショ ー ト を発生 させる と いった問題を防止する こ とができ る。 According to the fifth embodiment, in the baking step, the sealing layers 21a and 2lb are heated and melted. Then, the sealing layer 21a on the rear substrate 12 side tends to flow out through the electrode 30 to the outside. However, since each electrode 30 is provided with an outflow control portion 37 located higher than the contact portion 36, this outflow control is performed. The control section can prevent the molten indium from flowing out of the rear substrate. Also, a part of the molten indium flows outside the back substrate 12 from the drain portion 35 of the electrode 30, and the width of the drain portion is larger than the width of the body portion 34. Is small, so the amount of runoff is small. For example, if the amount of outflow of molten indium can be suppressed to about 1Z10 compared to the electrode without the outflow regulation part 37 and the drain part, In addition, there is a problem that the sealing layer becomes relatively thin so that it can easily leak from the sealing portion, and if the indium that has flowed out contacts the wiring on the substrate to generate a short-circuit. Such problems can be prevented.
また、 封着工程において、 封着層 2 1 a 、 2 1 b を融合さ せて封着層 2 1 を形成 し、 こ の封着層によって前面基板 1 1 の周縁部 と側壁 1 8 と を封着する。 こ の際、 前面基板 1 1 お よび背面基板 1 2 は互いに接近する方向へ加圧されているた め、 溶融 したイ ンジウムは押し潰され余剰のイ ンジウムが生 じる。 こ の余剰のイ ンジウムは基板側へ流出 しよ う とする。 こ こ で、 各電極 3 0 には接触部 3 6 よ り も低く位置した ド レ イ ン部 3 5 が設けられている こ と 力 ら、 溶融した余剰のイ ン ジゥムは積極的に ド レイ ン部 3 5 から基板の外側へ流出する すなわち、 電極 3 0 の ド レイ ン部 3 5 は胴体部 3 4 よ り も狭 い幅に形成されているが、 ィ ンジゥムが加圧されているため 余剰のイ ンジウムは全て電極の ドレイ ン部 3 5 を伝わって基 板周縁側へ押 し流される。 各電極 3 0 は背面基板 1 2 のコー ナ部に装着され、 ド レイ ン部 3 5 は配線 2 3 から外れた位置 に延出している。 そのため、 ド レイ ン部 3 5 を伝わって流出 したイ ンジウムは配線 2 3 に接触する こ とがなく 、 流出イ ン ジゥムによ る配線のショ ー ト等を防止する こ とができ る。 な お、 電極 3 0 の ド レイ ン部 3 5 およびその近傍領域に予めィ ンジゥムを塗布 しておく こ と によ り 、 一層安定して封着材に 流出 させる こ と が可能と なる。 Also, in the sealing step, the sealing layers 21 a and 21 b are fused to form a sealing layer 21, and the peripheral portion of the front substrate 11 and the side wall 18 are formed by the sealing layer. Seal. At this time, the front substrate 11 and the rear substrate 12 are pressed toward each other, so that the molten indium is crushed and excess indium is generated. This excess indium tries to flow out to the substrate side. Here, since each electrode 30 is provided with a drain portion 35 located lower than the contact portion 36, the excess molten alloy is actively drained. In other words, the drain portion 35 of the electrode 30 is formed to have a width smaller than that of the body portion 34, but because the indium is pressurized. All of the excess indium travels along the drain portion 35 of the electrode and is pushed down to the periphery of the substrate. Each electrode 30 is attached to the corner of the rear substrate 12, and the drain 35 is located at a position separated from the wiring 23. Has been extended to. Therefore, the indium flowing out of the drain portion 35 does not come into contact with the wiring 23, and it is possible to prevent a short-circuit of the wiring due to the outflow indium. In addition, by applying an indium to the drain portion 35 of the electrode 30 and a region in the vicinity thereof in advance, it is possible to more stably flow into the sealing material.
その他、 第 5 の実施形態に係る F E Dおよびその製造方法 によれば、 前述 した第 1 の実施形態と 同様の作用効果を得る こ と ができ る。  In addition, according to the FED and the method of manufacturing the same according to the fifth embodiment, the same functions and effects as those of the above-described first embodiment can be obtained.
第 5 の実施の形態において、 各電極 3 0 の胴体部 3 4 は、 そのほぼ全体が接触部から斜め上方に延出 し流出規制部 3 7 を形成している構成 したが、 例えば、 図 2 6 に示すよ う に、 胴体部 3 4 の一部を接触部 3 6 よ り も鉛直方向に沿って高い 位置へ延出させて流出規制部 3 7 を構成 しても よい。  In the fifth embodiment, the body portion 34 of each electrode 30 is configured so that almost the whole extends obliquely upward from the contact portion to form the outflow regulating portion 37. For example, FIG. As shown in FIG. 6, a part of the body part 34 may be extended to a position higher in the vertical direction than the contact part 36 to form the outflow regulating part 37.
また、 第 5 の実施形態において、 各電極 3 0 は装着部を一 体に備えた構成と したが、 図 2 7 および図 2 8 に示すよ う に 接触部 3 6 、 胴体部 3 4、 流出規制部 3 7 、 ドレイ ン部 3 5 および基台部 3 9 を備えた構成と し、 導通部 3 8 を有した別 体のタ リ ップ 4 6 を用いて背面基板 1 2 に取り付ける構成と してもよい。  Further, in the fifth embodiment, each electrode 30 has a configuration in which the mounting portion is integrally provided. However, as shown in FIGS. 27 and 28, the contact portion 36, the body portion 34, the outflow It is configured to include a regulating part 37, a drain part 35 and a base part 39, and is attached to the rear substrate 12 by using a separate tap 46 having a conducting part 38. May be.
電極 3 0 の ド レイ ン部 3 5 は、 胴体部 3 4 の側方に並んで 設けた構成に限らず、 図 2 7 に示すよ う に、 胴体部 3 4 の中 央部に設けても良い。 この場合、 ドレイ ン部 3 5 は、 胴体部 3 4 の一部を切 り 起こ して形成され、 胴体部には接触部 3 6 から ド レイ ン部 3 5 への封着材の流出を許容する開孔 4 2 が 形成されている。 The drain portion 35 of the electrode 30 is not limited to the configuration provided side by side with the body portion 34, and may be provided at the center of the body portion 34 as shown in FIG. 27. good. In this case, the drain portion 35 is formed by cutting and raising a part of the body portion 34, and the body portion allows the sealing material to flow from the contact portion 36 to the drain portion 35. Opening 4 2 Is formed.
図 2 9 に示すよ う に、 電極 3 0 の ド レイ ン部 3 5 は、 1 つ に限らず、 胴体部 3 4 の両側に一対設けても よい。 この場合 各 ドレイ ン部 3 5 の構成は上述した実施の形態と 同一である また、  As shown in FIG. 29, the number of the drain portions 35 of the electrodes 30 is not limited to one, and a pair of drain portions 35 may be provided on both sides of the body portion 34. In this case, the configuration of each drain unit 35 is the same as that of the above-described embodiment.
図 2 6 ない し図 2 9 に示す変形例において、 他の構成は前 述 した第 5 の実施形態と 同一であ り 、 同一の部分には同一の 参照符号を付してその詳細な説明を省略する。 そ して、 これ らの変形例に係る電極を用いた場合でも、 前述した実施形態 と 同様の作用効果を得る こ と ができ る。 また、 前述した実施 形態および図 2 6 ない し図 2 9 に示した変形例を互いに組み 合わせた構成を用いる こ と も可能である。  In the modification shown in FIG. 26 or FIG. 29, the other configuration is the same as that of the above-described fifth embodiment, and the same portions are denoted by the same reference numerals and detailed description thereof will be omitted. Omitted. Also, even when the electrodes according to these modified examples are used, the same operation and effect as those of the above-described embodiment can be obtained. It is also possible to use a configuration in which the above-described embodiment and the modified examples shown in FIGS. 26 to 29 are combined with each other.
次に、 こ の発明の第 6 の実施形態に係る F E Dおよびその 製造方法について説明する。 図 3 0 に示すよ う に、 F E Dは 偏平な矩形状の真空外囲器 1 0および外囲器に取 り 付けられ た複数、 例えば、 一対の電極 3 0 を備えている。 第 6 の実施 形態において、 F E Dの構成は、 電極 3 0 を除いて前述した 実施形態と 同一であるため、 異なる構成を中心に説明する。 同時に、 F E Dの構成は、 製造方法と併せて説明する。  Next, an FED according to a sixth embodiment of the present invention and a method for manufacturing the same will be described. As shown in FIG. 30, the FED includes a flat rectangular vacuum envelope 10 and a plurality of, for example, a pair of electrodes 30 attached to the envelope. In the sixth embodiment, the configuration of the FED is the same as that of the above-described embodiment except for the electrode 30. Therefore, the description will focus on different configurations. At the same time, the structure of the FED will be described together with the manufacturing method.
図 1 3 Aおよび図 1 3 B に示すよ う に、 蛍光体ス ク リ ーン As shown in Figure 13A and Figure 13B, the phosphor screen
1 6 およびメ タルパック 1 7 が形成された前面基板 1 1 、 並 ぴに、 電子放出素子が形成された背面基板 1 2 を用意する。 続いて、 大気中で低融点ガラスによ り側壁 1 8および支持部 材 1 4 を背面基板 1 2 の内面上に封着する。 その後、 側壁 1A front substrate 11 on which a metal pack 16 and a metal pack 17 are formed, and a rear substrate 12 on which an electron-emitting device is formed are prepared. Subsequently, the side wall 18 and the supporting member 14 are sealed on the inner surface of the rear substrate 12 with low melting glass in the air. Then sidewall 1
8 の封着面の全周に渡ってィ ンジゥムを所定の幅おょぴ厚さ に塗布し矩形枠状の封着層 2 1 a を形成する。 前面基板 1 1 の側壁と対向する封着面にィ ンジゥムを所定の幅および厚さ で矩形枠状に塗布し、 背面基板 1 1側の封着層 2 1 a に対応 した矩形枠状の封着層 2 1 b を形成する。 なお、 側壁 1 8 お よび前面基板 1 1 の封着面に対する封着層 2 1 a 、 2 l b の 充填は、 上述したよ う に、 溶融したイ ンジウムを封着面に塗 布する方法、 あるいは、 固体状態のイ ンジウムを封着面に載 置する方法等によって行う。 (8) Apply the specified width and thickness over the entire circumference of the sealing surface To form a rectangular frame-shaped sealing layer 21a. An image is applied to the sealing surface facing the side wall of the front substrate 11 in a predetermined width and thickness in a rectangular frame shape, and the rectangular frame-shaped sealing corresponding to the sealing layer 21a on the rear substrate 11 side. The deposition layer 21b is formed. The filling of the sealing layer 21a and 2lb with respect to the side wall 18 and the sealing surface of the front substrate 11 is performed by applying molten indium to the sealing surface as described above, or This is performed by a method of placing indium in a solid state on a sealing surface.
続いて、 前面基板 1 1 および背面基板 1 2 は、 例えば図 9 に示 した真空処理装置内に送られ、 真空雰囲気中で封着され る。 この場合、 前面基板 1 1 および背面基板 1 2 を加熱して 十分に脱ガスする。 加熱温度は 2 0 0 °C〜 5 0 0 °C程度に適 時設定される。 脱ガス処理によ り 、 外囲器構成部材の内壁か ら放出されるガスを軽減し、 真空外囲器の真空度劣化を防止 する。 次に、 前面基板 1 1 の蛍光体ス ク リ ーン 1 6上にゲッ ター膜を形成する。 これは、 真空外囲器と なった後の残留ガ スをゲッター膜によ り 吸着排気し、 真空外囲器内の真空度を 良好なレベルに保っためである。  Subsequently, the front substrate 11 and the rear substrate 12 are sent into, for example, a vacuum processing apparatus shown in FIG. 9 and sealed in a vacuum atmosphere. In this case, the front substrate 11 and the rear substrate 12 are heated and sufficiently degassed. The heating temperature is appropriately set to about 200 ° C to 500 ° C. By the degassing process, gas released from the inner wall of the envelope component member is reduced, and the degree of vacuum in the vacuum envelope is prevented from deteriorating. Next, a getter film is formed on the phosphor screen 16 of the front substrate 11. This is because the residual gas after forming the vacuum envelope is adsorbed and evacuated by the getter film, and the degree of vacuum in the vacuum envelope is maintained at a favorable level.
続いて、 蛍光体ス ク リ ーン 1 6 と電子放出素子 とが対向す る よ う に前面基板 1 1 および背面基板 1 2 を互いに所定の位 置に重ね合わせる。 この状態で、 封着層 2 1 a 、 2 l b に通 電し、 これらの封着材を加熱して溶解する。 その後、 通電を 止めて封着層 2 1 a 、 2 1 b の熱を速やかに前面基板 1 1 お よび側壁 1 8 に拡散伝導させ、 封着層 2 1 a 、 2 1 b を固化 させる。 その結果、 前面基板 1 1 と側壁 1 8 とが封着層 2 1 a 、 2 1 b によって互いに封着される。 Subsequently, the front substrate 11 and the rear substrate 12 are overlapped with each other at a predetermined position such that the phosphor screen 16 and the electron-emitting device face each other. In this state, electricity is passed to the sealing layers 21a and 2lb, and these sealing materials are heated and dissolved. Thereafter, the current is stopped, and the heat of the sealing layers 21a and 21b is quickly diffused and conducted to the front substrate 11 and the side wall 18 to solidify the sealing layers 21a and 21b. As a result, the front substrate 1 1 and the side wall 18 are bonded to the sealing layer 2 1 They are sealed to each other by a, 21b.
次に、 上述した封着工程についてよ り 詳細に説明する。 図 3 1 , 3 2 に示すよ う に、 封着前の状態において、 前面 基板 1 1 および背面基板 1 2の温度は、 封着層 2 1 a 、 2 1 b の融点よ り も低く なる よ う設定され、 封着層 2 1 a 、 2 1 b は固化 している。 こ の状態で、 前面基板 1 1 および背面基 板 1 2 を所定の位置に重ね合わせ、 封着層 2 1 a 、 2 1 b を 互いに重ね合わせる。 更に、 加圧装置 2 3 a 、 2 3 b によ り 前面基板 1 1 および背面基板 1 2 に対し互いに接近する方向 に所定の荷重を印加する。 画像表示領域は、 支持部材 1 4 に よ り 所定の隙間に保持されている。  Next, the above-mentioned sealing step will be described in more detail. As shown in FIGS. 31 and 32, in the state before sealing, the temperature of the front substrate 11 and the rear substrate 12 is lower than the melting points of the sealing layers 21 a and 21 b. The sealing layers 21a and 21b are solidified. In this state, the front substrate 11 and the rear substrate 12 are overlapped at a predetermined position, and the sealing layers 21a and 21b are overlapped with each other. Further, a predetermined load is applied to the front substrate 11 and the rear substrate 12 by the pressurizing devices 23a and 23b in a direction approaching each other. The image display area is held in a predetermined gap by the support member 14.
この際、 側壁 1 8 の対角方向に対向 した 2 つの角部におい て、 それぞれ封着層 2 1 a 、 2 1 b 間に板状の電極 3 0 を挟 み込んで配置する。 図 3 1 B に示すよ う に、 電極 3 0 は、 そ れぞれ封着層に電気的に接触した 2つの接触部 3 6 a 、 3 6 b を有し、 ほぼ Y字形状に形成されている。 また、 各電極 3 0 の接触部 3 6 a 、 3 6 b は、 封着層 2 1 a 、 2 l b の角部 の両側でこれらの封着層に接触 している。 2 つの接触部 3 6 a 、 3 6 b 間には、 溶融した封着材を流出させるための隙間 3 0 c が形成されている。 電極 3 0 の挟み込み方法と しては 電極と同材質のク リ ップ等で固定する方法を用いる こ と がで き る。 なお、 電極 3 0 は、 少な く と も C u、 A l 、 F e 、 N i 、 C o 、 B e 、 C r の何れかを含む、 単元素または合金に よ り 形成されている。  At this time, the plate-like electrode 30 is disposed between the sealing layers 21 a and 21 b at two corners of the side wall 18 opposed to each other in the diagonal direction. As shown in FIG. 31B, the electrode 30 has two contact portions 36a and 36b, each of which is in electrical contact with the sealing layer, and is formed in a substantially Y-shape. ing. The contact portions 36a and 36b of each electrode 30 are in contact with these sealing layers on both sides of the corners of the sealing layers 21a and 2lb. A gap 30c is formed between the two contact portions 36a and 36b to allow the molten sealing material to flow out. As a method of sandwiching the electrode 30, a method of fixing it with a clip of the same material as the electrode can be used. The electrode 30 is formed of a single element or an alloy containing at least one of Cu, Al, Fe, Ni, Co, Be, and Cr.
続いて、 電極 3 0 にそれぞれ給電端子 2 4 a 、 2 4 b を接 触させる。 これらの給電端子 2 4 a 、 2 4 b は電源 1 2 0 に 接続されている。 こ の状態で、 給電端子 2 4 a 、 2 4 b およ び電極 3 0 を通 して封着層 2 1 a s 2 1 b に所定の電流を通 電する と、 封着層 2 1 a 、 2 l b のみが発熱し溶融する。 こ の際、 溶融した余剰の封着材は、 各電極 3 0 の 2つの接触部Next, connect the power supply terminals 24a and 24b to the electrode 30 respectively. Touch. These power supply terminals 24 a and 24 b are connected to a power supply 120. In this state, when a predetermined current is passed through the power supply terminals 24 a and 24 b and the electrode 30 to the sealing layer 21 a s 21 b, the sealing layer 21 a Only 2 lb heats and melts. At this time, the excess sealing material that has melted is applied to the two contact portions of each electrode 30.
3 6 a 、 3 6 b と封着層と で囲まれた隙間 3 0 c を通って、 側壁 1 8 の角部から側壁の外部に流出する。 Through the gap 30c surrounded by 36a, 36b and the sealing layer, the water flows out of the side wall 18 from the corner of the side wall 18.
その後、 通電を停止 し給電端子 2 4 a 、 2 4 b を外すと、 熱容量の小さい封着層 2 1 a 、 2 1 b の熱は温度勾配によつ て前面基板 1 1 および側壁 1 8 に放熱される。 封着層 2 1 a Then, when the power supply was stopped and the power supply terminals 24a and 24b were removed, the heat of the sealing layers 21a and 21b having a small heat capacity was transferred to the front substrate 11 and side wall 18 due to the temperature gradient. Heat is dissipated. Sealing layer 2 1 a
2 1 b は、 熱容量の大きい前面基板 1 1 および側壁 1 8 と熱 平衡に達し、 速やかに冷却固化される。 これによ り 、 前面基 板 1 1 と側壁 1 8 と が封着層 2 1 a 、 2 1 b によって互いに 封着され、 内部が高真空に維持された真空外囲器 1 0 を有す る F E Dが得られる。 なお、 封着後、 電極 3 0 は、 封着材層21b reaches thermal equilibrium with the front substrate 11 and the side wall 18 having a large heat capacity, and is rapidly cooled and solidified. As a result, the front substrate 11 and the side wall 18 are sealed to each other by the sealing layers 21a and 21b, and the inside has a vacuum envelope 10 maintained at a high vacuum. FED is obtained. After the sealing, the electrode 30 is made of a sealing material layer.
2 1 a 、 2 l b と共に封着された状態で真空外囲器 1 0 に固 定される。 It is fixed to the vacuum envelope 10 in a sealed state together with 21a and 2lb.
上記のよ う に構成された第 6 の実施形態に係る F E Dおよ ぴその製造方法によれば、 極めて短時間でかつ簡単な製造装 置によ り 、 真空外囲器を真空封着する こ とができ る。 すなわ ち、 導電性を有した封着材を用いる こ と によ り 、 基板を加熱 する こ と な く 熱容量の小さい、 つま り 体積の小さい、 封着材 のみを選択的に加熱する こ とができ、 基板の熱膨張によ る位 置精度の劣化等を抑制する こ とができ る。  According to the FED and the method of manufacturing the FED according to the sixth embodiment configured as described above, the vacuum envelope can be vacuum-sealed by an extremely short and simple manufacturing apparatus. It can be. In other words, by using a sealing material having conductivity, it is possible to selectively heat only the sealing material having a small heat capacity, that is, a small volume, without heating the substrate. Therefore, it is possible to suppress the deterioration of the positioning accuracy due to the thermal expansion of the substrate.
封着層の熱容量が基板の熱容量に比べて非常に小さいため 基板全体を加熱する従来の方法に比較して、 加熱、 冷却にか かる時間を大幅に短縮でき、 量産性を大幅に向上する こ とが でき る。 更に、 封着に必要な装置が単なる給電端子と これを 接触させる機構のみであ り 、 極めて簡略かつ超高真空に適し たク リ ーンな装置を実現する こ と ができ る。 Because the heat capacity of the sealing layer is very small compared to the heat capacity of the substrate Compared to the conventional method of heating the entire substrate, the time required for heating and cooling can be significantly reduced, and mass productivity can be greatly improved. Furthermore, the only device required for sealing is a mere power supply terminal and a mechanism for bringing the terminal into contact with the power supply terminal, so that a very simple and clean device suitable for ultra-high vacuum can be realized.
封着層 2 1 a 、 2 1 b に通電するための各電極 3 0 は、 複 数の接触部 3 6 a 、 3 6 b を有し、 これらの接触部間には隙 間 3 0 c が形成されている。 そのため、 封着時、 余剰と なつ た溶融状態の封着材を、 接触部 3 6 a 、 3 6 b 間に規定され た隙間 3 0 c から積極的に外部に流出させる こ と が可能とな る。 従って、 電極 3 0 の接触部を適切な位置に設ける こ と に よ り 、 封着材が基板の配線上等にはみ出る こ と を防止でき、 配線間のショ ー ト等を生じる こ と なく 、 迅速かつ安定した封 着が可能となる。  Each electrode 30 for supplying electricity to the sealing layers 21a and 21b has a plurality of contact portions 36a and 36b, and a gap 30c is formed between these contact portions. Is formed. Therefore, at the time of sealing, it is possible to positively flow the excess molten sealing material to the outside from the gap 30 c defined between the contact portions 36 a and 36 b. You. Therefore, by providing the contact portion of the electrode 30 at an appropriate position, it is possible to prevent the sealing material from protruding onto the wiring of the substrate and the like, without causing a short-circuit between the wirings. Quick and stable sealing is possible.
電極 3 0 は、 接触部間に封着材が通る隙間を有していれば よ く 、 上述した Y字型形状に限定らず、 例えば、 図 3 3 に示 すよ う に、 ほぼ U字形状と しても よい。 電極 3 0 は封着材に 接する接触部を 3個以上有していても よい。 例えば、 図 3 4 Aに示すよ う に、 電極 3 0 は、 4つの接触部 3 6 a 、 3 6 b 3 2 a 3 2 b を有したほ う き形状に形成しても よい。 この 場合、 隣合う接触部間には、 封着材を通す隙間 3 0 c が形成 されている。  The electrode 30 need only have a gap through which the sealing material passes between the contact portions, and is not limited to the above-described Y-shaped shape. For example, as shown in FIG. It may be shaped. The electrode 30 may have three or more contact portions in contact with the sealing material. For example, as shown in FIG. 34A, the electrode 30 may be formed in a shape having four contact portions 36a, 36b32a32b. In this case, a gap 30 c through which the sealing material passes is formed between the adjacent contact portions.
また、 電極 3 0 の接触部は、 真空外囲器の角部を挟んだ両 側に限らず、 図 3 4 B に示すよ う に、 外囲器の角部の片側で 封着層 2 1 a 、 2 1 b に接触しても よい。 電極 3 0が角部か ら少しずれた位置にあるため、 封着材は外囲器の角部 3 0 d 力 ら流出する こ と もある。 なお、 図 3 3 、 図 3 4 a および図 3 4 B にそれぞれ示す変形例において、 他の構成は前述した 実施の形態と 同一であ り 、 同一の部分には同一の参照符号を 付してその詳細な説明を省略する。 また、 これらの変形例に おいても、 第 6 の実施形態と 同様の作用効果を得る こ とがで さ る。 In addition, the contact portion of the electrode 30 is not limited to the two sides sandwiching the corner of the vacuum envelope, and as shown in FIG. 34B, the sealing layer 21 is formed on one side of the corner of the envelope. You may touch a and 21b. Is electrode 30 corner? The sealing material may flow out from the corner of the envelope 30 d force because it is located slightly off. In the modified examples shown in FIG. 33, FIG. 34a and FIG. 34B, other configurations are the same as those of the above-described embodiment, and the same portions are denoted by the same reference numerals. Detailed description is omitted. Also in these modified examples, the same operation and effect as in the sixth embodiment can be obtained.
上述した第 6 の実施形態では、 電極 3 0 は直接、 封着層 2 l a 、 2 l b に接触する構成と したが、 図 3 5 に示す第 7 の 実施形態に係る製造方法によれば、 予め電極 3 0 を導電性材 料層 3 1 によ り 被覆し、 この導電性材料層 3 1 を介して電極 を封着層に接触させる構成と しても よい。  In the above-described sixth embodiment, the electrode 30 is configured to directly contact the sealing layers 2 la and 2 lb. However, according to the manufacturing method according to the seventh embodiment shown in FIG. The electrode 30 may be covered with the conductive material layer 31, and the electrode may be brought into contact with the sealing layer via the conductive material layer 31.
すなわち、 封着工程において、 封着層 2 1 a と封着層 2 1 b との間に一対の板状の電極 3 0 をそれぞれ挟み込む。 各電 極 3 0 において、 封着層 2 1 a 、 2 1 b と接触する面は、 予 め導電性材料層 3 1 で被覆されている。 こ こでは、 各電極 3 0 の両面は、 例えば、 封着層 2 1 a 、 2 1 b と同一の導電性 材料である I n あるいは I n を含む合金によ り被覆されてい る。 導電性材料層 3 1 は、 例えば、 超音波印加した半田コテ によって導電性材料を電極表面に塗布する こ と によ り 形成す る。 これによ り 、 各電極 3 0 は導電性材料層 3 1 を介 して封 着層 2 1 a 、 2 1 b に接触している。 電極 3 0 は、 少なく と も C u、 A l 、 F e 、 N i 、 C o 、 B e 、 C r の何れ力 を含 む、 単元素または合金によ り 形成されている。  That is, in the sealing step, a pair of plate-shaped electrodes 30 is sandwiched between the sealing layers 21a and 21b, respectively. In each electrode 30, the surface that comes into contact with sealing layers 21 a and 21 b is previously covered with conductive material layer 31. Here, both surfaces of each electrode 30 are coated with, for example, In or an alloy containing In which is the same conductive material as sealing layers 21a and 21b. The conductive material layer 31 is formed, for example, by applying a conductive material to the electrode surface with a soldering iron to which ultrasonic waves have been applied. Thereby, each electrode 30 is in contact with sealing layers 21 a and 21 b via conductive material layer 31. The electrode 30 is formed of a single element or an alloy including at least any one of Cu, Al, Fe, Ni, Co, Be, and Cr.
続いて、 電極 3 0 にそれぞれ給電端子 2 4 a 、 2 4 b を接 触させる。 これらの給電端子 2 4 a 、 2 4 b は電源 1 2 0 に 接続されている。 この状態で、 給電端子 2 4 a、 2 4 b およ ぴ電極 3 0 を通 して封着層 2 1 a 、 2 1 b に所定の電流を通 電する と、 封着材のみが発熱し溶解する。 その後、 通電を停 止し給電端子 2 4 a 、 2 4 b を外すと、 熱容量の小さい封着 層 2 1 a 、 2 1 b の熱は温度勾配によって前面基板 1 1 およ ぴ側壁 1 8 に放熱される。 そのため、 封着層 2 1 a 、 2 1 b は、 熱容量の大きい前面基板 1 1 および側壁 1 8 と熱平衡に 達し、 速やかに冷却固化される。 これによ り 、 前面基板 1 1 と側壁 1 8 とが封着層 2 1 a 、 2 1 b によって互いに封着さ れ、 内部が高真空に維持された真空外囲器 1 0 を有する F E Dが得られる。 なお、 封着後、 電極 3 0 は、 封着層 2 1 a 、 2 1 b と共に封着された状態で真空外囲器 1 0 に固定される 第 7 の実施形態において、 他の構成は上述した第 6 の実施 形態と 同一であ り 、 同一の部分には同一の参照符号を付して その詳細な説明を省略する。 その詳細な説明は省略する。 上 記のよ う に構成された第 7 の実施形態においても、 第 6 の実 施形態と 同様の作用効果を得る こ とができ る。 また、 封着層 2 1 a 、 2 1 b に通電する ための電極 3 0 は、 封着層と の接 触面が導電性材料層 3 1 によって被覆されている。 そのため 封着層 2 1 a 、 2 1 b の通電溶融時、 電極 3 0 と封着材と の 濡れ性が向上し、 封着材と電極と の間における接触抵抗の増 カロを防止する こ とができ る。 これによ り 、 接触部における異 常発熱を防止 し、 封着層 2 1 a 、 2 1 b が断線して しま う と いった恐れを無く すこ とができ る。 その結果、 短時間でかつ 高い歩留り で F E Dを製造する こ とが可能と なる。 Next, connect the power supply terminals 24a and 24b to the electrode 30 respectively. Touch. These power supply terminals 24 a and 24 b are connected to a power supply 120. In this state, when a predetermined current is applied to the sealing layers 21a and 21b through the power supply terminals 24a and 24b and the electrode 30, only the sealing material generates heat. Dissolve. Then, when the power supply is stopped and the power supply terminals 24a and 24b are removed, the heat of the sealing layers 21a and 21b having a small heat capacity is transferred to the front substrate 11 and the side wall 18 by the temperature gradient. Heat is dissipated. Therefore, the sealing layers 21a and 21b reach thermal equilibrium with the front substrate 11 and the side wall 18 having a large heat capacity, and are rapidly cooled and solidified. As a result, the front substrate 11 and the side wall 18 are sealed to each other by the sealing layers 21a and 21b, and the FED having the vacuum envelope 10 whose inside is maintained at a high vacuum is provided. can get. After sealing, the electrode 30 is fixed to the vacuum envelope 10 while being sealed together with the sealing layers 21a and 21b.In the seventh embodiment, the other components are described above. The sixth embodiment is the same as the sixth embodiment described above, and the same portions are denoted by the same reference characters and will not be described in detail. Detailed description is omitted. In the seventh embodiment configured as described above, the same operation and effect as those of the sixth embodiment can be obtained. The electrode 30 for supplying electricity to the sealing layers 21 a and 21 b has a surface in contact with the sealing layer covered with a conductive material layer 31. Therefore, when the sealing layers 21a and 21b are energized and melted, the wettability between the electrode 30 and the sealing material is improved, and the increase in contact resistance between the sealing material and the electrode is prevented. Can be done. This prevents abnormal heat generation at the contact portion and eliminates the possibility that the sealing layers 21a and 21b are disconnected. As a result, in a short time and It is possible to manufacture FEDs with high yield.
また、 電極 3 0 の表面を導電性材料層 3 1 で被覆する こ と によ り 、 封着の際に余剰と なった溶融状態の封着材を、 電極 から外囲器の外部へ積極的に排出する こ と が可能となる。  In addition, by covering the surface of the electrode 30 with the conductive material layer 31, the molten sealing material that has become excessive at the time of sealing can be actively removed from the electrode to the outside of the envelope. It can be discharged to
上述した第 7 の実施形態では、 電極 3 0 を封着層 2 1 a 、 2 1 b 間に挟み込む構成と したが、 電極を一方の封着材のみ に接触させた状態で通電する構成と しても よい。 すなわち、 図 3 6 に示すよ う に、 前面基板 1 1 および背面基板 1 2 を所 定の位置に重ね合わせ、 封着層 2 1 a 、 2 1 b を互いに重ね 合わせて接触させる。 前面基板 1 1 および背面基板 1 2 には 加圧装置 2 3 a 、 2 3 b によ り 互いに接近する方向に所定の 封着荷重が印加される。 そ して、 電極 3 0 は、 それぞれ封着 材 2 1 b に接触した状態に配置する。  In the above-described seventh embodiment, the configuration is such that the electrode 30 is sandwiched between the sealing layers 21a and 21b.However, the configuration is such that current is supplied while the electrode is in contact with only one sealing material. You may. That is, as shown in FIG. 36, the front substrate 11 and the rear substrate 12 are overlapped at a predetermined position, and the sealing layers 21 a and 21 b are overlapped and brought into contact with each other. Pressing devices 23a and 23b apply a predetermined sealing load to front substrate 11 and rear substrate 12 in directions approaching each other. Then, the electrodes 30 are arranged so as to be in contact with the sealing material 21b.
電極の保持方法は、 予め前面基板 1 1 の封着層 2 1 a 、 2 l b に接する よ う に、 封着層 と 同材質のク リ ップ等で電極を 固定する方法、 又は、 給電端子 2 4 a 、 2 4 b にク リ ップ等 で電極を固定保持し、 前面基板 1 1 と背面基板 1 2 と を所定 の位置に重ね合わせる際に電極を挟み込む方法でも よい。  The electrode can be held in such a way that the electrode is fixed with a clip of the same material as the sealing layer so that it contacts the sealing layer 21a, 2lb of the front substrate 11 in advance, or a power supply terminal A method may be used in which the electrodes are fixedly held on the 24a and 24b with a clip or the like, and the electrodes are sandwiched when the front substrate 11 and the rear substrate 12 are overlapped at a predetermined position.
この場合、 各電極 3 0 において、 封着層 2 1 b と接触する 表面を、 予め導電性材料層 3 1 によ り被覆しておく 。 導電性 材料層 3 1 は、 例えば、 超音波印加した半田 コテによ って導 電性材料を電極表面に塗布する こ と によ り 形成する。 なお、 封着時に余剰な封着材を積極的に電極 3 0 からはみ出させる ため、 電極の封着材と接しない面にも導電性材料層を形成し ても よい。 他の構成は第 7の実施形態と 同一であ り 、 同一の部分には 同一の参照符号を付してその詳細な説明を省略する。 そ して 上記構成においても、 上述 した第 7の実施形態と 同様の作用 効果を得る こ と ができ る。 In this case, the surface of each electrode 30 that comes into contact with the sealing layer 21 b is covered with the conductive material layer 31 in advance. The conductive material layer 31 is formed, for example, by applying a conductive material to the electrode surface with a soldering iron to which an ultrasonic wave is applied. Note that a conductive material layer may also be formed on a surface of the electrode that is not in contact with the sealing material, in order to allow excess sealing material to protrude from the electrode 30 during sealing. The other configuration is the same as that of the seventh embodiment, and the same portions are denoted by the same reference characters and will not be described in detail. Also, in the above configuration, it is possible to obtain the same functions and effects as in the above-described seventh embodiment.
封着材に通電する電流の形態については、 直流電流のみな らず、 商用周波数で変動する交流電流を用いても良い。 こ の 場合、 交流で送信されてく る商用電流をわざわざ直流に変換 する手間が省け、 装置を簡略化するこ とができ る。 更に、 k H z レベルの高周波で変動する交流電流を用いても良い。 こ の場合、 表皮効果によ り 高周波に対する実効抵抗値が増大す る分だけジュール熱が増大するため、 よ り 小さい電流値で上 記と 同様の加熱効果が得られる。  Regarding the form of the current flowing through the sealing material, not only a direct current but also an alternating current that fluctuates at a commercial frequency may be used. In this case, the trouble of converting the commercial current transmitted by the alternating current into the direct current can be omitted, and the device can be simplified. Further, an alternating current fluctuating at a high frequency of the kHz level may be used. In this case, the same heating effect as described above can be obtained with a smaller current value because the Joule heat increases by an amount corresponding to an increase in the effective resistance value to a high frequency due to the skin effect.
また、 通電する電力 と時間については、 上記実施形態では 5 〜 3 0 0秒程度と している。 通電時間が長い (電力が小さ い) と、 基板周辺の温度上昇による冷却速度の低下や熱膨張 によ る弊害を生 じ、 通電時間が短い (電力が大きい) と、 導 電性封着材料の充填不均一に起因する断線やガラス熱応力に よる割れを生じる。 そのため、 通電する電力および時間 (時 間的な電力変化も含む) は、 対象物毎に最適な条件設定を行 な う こ と が望ま しい。  Further, the power to be energized and the time are set to about 5 to 300 seconds in the above embodiment. If the energization time is long (low power), the cooling rate decreases due to a rise in the temperature around the substrate and adverse effects occur due to thermal expansion. If the energization time is short (high power), the conductive sealing material is used. Disconnection due to non-uniform filling of glass and cracking due to glass thermal stress occur. Therefore, it is desirable to set the optimal power and time (including temporal power change) for each object.
更に、 封着時の基板温度と封着材の融点と の温度差につい ては、 上記実施形態では 2 0 °C〜 1 5 0 °C程度と している。 温度差が大きい場合、 冷却時間を短縮でき るがガラス熱応力 が大き く なるため、 これも対象物毎に最適な条件設定を行な う こ とが望ま しい。 次に、 この発明の第 8 の実施形態に係る F E D の製造方法 について説明する。 なお、 第 8 の実施形態において、 F E D の構成および製造方法における封着工程以外の構成は前述し た第 6 の実施形態と 同一であ り 、 異なる部分を中心に説明す る。 Furthermore, the temperature difference between the substrate temperature at the time of sealing and the melting point of the sealing material is about 20 ° C. to 150 ° C. in the above embodiment. If the temperature difference is large, the cooling time can be shortened, but the thermal stress of the glass increases. Therefore, it is desirable to set optimum conditions for each object. Next, a method of manufacturing an FED according to the eighth embodiment of the present invention will be described. In the eighth embodiment, the configuration of the FED and the configuration other than the sealing step in the manufacturing method are the same as those of the above-described sixth embodiment, and different portions will be mainly described.
図 3 7 に示すよ う に、 封着工程において、 真空処理装置の 組立室に送られた前面基板 1 1 および背面基板 1 2 は、 対向 配置されたままホッ トプレー ト 1 3 1 、 1 3 2 に対して、 そ れぞれ外面が密着した状態に保持される。 すなわち、 背面基 板 1 2はホ ッ トプレー ト 1 3 2上に載置され、 前面基板 1 1 は落下しないよ う 固定治具 1 3 3 によって上側のホッ トプレ ー ト 1 3 1 に固定される。  As shown in Fig. 37, in the sealing process, the front substrate 11 and the rear substrate 12 sent to the assembly chamber of the vacuum processing apparatus are hot plates 131, 132 while facing each other. The outer surfaces are kept in close contact with each other. That is, the rear substrate 12 is placed on the hot plate 13 2, and the front substrate 11 is fixed to the upper hot plate 13 1 by the fixing jig 13 3 so as not to drop. .
続いて、 図 3 8 および図 3 9 に示すよ う に、 例えば、 銅か らなる厚さ約 0 . 2 m mの平板状の電極 3 0 を一対用意し、 これ らの電極 3 0 を前面基板 1 1 と背面基板 1 2 と の間に揷 入する。 この際、 一対の電極 3 0 は、 相対する位置に設け、 各電極の先端が前面基板 1 1側の封着層 2 1 b と背面基板 1 2側の封着層 2 1 a との間に位置する よ う に揷入する。 例え ば、 一対の電極 3 0 は、 基板の内、 対角方向に対向する 2つ の角部、 2 つの短辺、 あるいは 2 つの長辺にそれぞれ配置す る。  Subsequently, as shown in FIG. 38 and FIG. 39, for example, a pair of plate-like electrodes 30 made of copper and having a thickness of about 0.2 mm is prepared, and these electrodes 30 are attached to the front substrate. Insert between 1 1 and rear substrate 1 2. At this time, the pair of electrodes 30 are provided at opposing positions, and the tip of each electrode is placed between the sealing layer 21b on the front substrate 11 side and the sealing layer 21a on the rear substrate 12 side. Insert to be located. For example, the pair of electrodes 30 is disposed on two diagonally opposite corners, two short sides, or two long sides of the substrate.
次に、 上側のホッ トプレー ト 1 3 1 および前面基板 1 1 を 下降させ、 前面基板 1 1 に設け られた封着層 2 1 b のほぼ全 体を背面基板側の側壁 1 8 に設け られた封着層 2 1 a に接触 させる。 同時に、 前面基板 1 1 および背面基板 1 2 の少なく と も一方、 こ こ では、 両基板を互いに接近する方向へ所望の 圧力で加圧する。 その際、 上下の封着層 2 1 a、 2 l b 間に 各電極 3 0 を挟み込む。 これによ り、 各電極 3 0 は、 上下の イ ンジウム 2 1 に同時に電気的に接触する。 Next, the upper hot plate 13 1 and the front substrate 11 were lowered, and almost the entire sealing layer 21 b provided on the front substrate 11 was provided on the side wall 18 on the rear substrate side. Contact with sealing layer 21a. At the same time, the front board 1 1 and the rear board 1 2 On the other hand, here, both substrates are pressed with a desired pressure in a direction approaching each other. At that time, each electrode 30 is sandwiched between the upper and lower sealing layers 21a and 2lb. Thus, each electrode 30 electrically contacts the upper and lower indiums 21 at the same time.
こ の状態で、 電源から一対の電極 3 0 を通 して両封着層 2 1 a 、 2 1 b に 1 4 O Aの直流電流を定電流モー ドで通電す る。 これによ り 、 封着層を形成したイ ンジウムが加熱されて 溶融し、 前面基板 1 1 および側壁 1 8 が封着層 2 1 a、 2 1 b によ り 気密に接合される。 ·  In this state, a DC current of 14 O A is supplied from the power supply to the sealing layers 21 a and 21 b through the pair of electrodes 30 in the constant current mode. As a result, the indium on which the sealing layer is formed is heated and melted, and the front substrate 11 and the side wall 18 are hermetically joined by the sealing layers 21a and 21b. ·
その後、 通電を停止する こ と によ り 、 溶融したイ ンジウム が固ま り 、 外囲器 1 0 が形成される。 この よ う に して形成さ れた外囲器は、 冷却室 1 0 6 で常温まで冷却されて、 ア ン口 ー ド室 1 0 7 から取 り 出される。 以上の工程によ り 、 真空外 囲器が完成する。  Thereafter, by stopping the energization, the molten indium is solidified, and the envelope 10 is formed. The envelope formed in this way is cooled to room temperature in the cooling chamber 106 and taken out from the inlet chamber 107. Through the above steps, a vacuum envelope is completed.
第 8 の実施形態によれば、 前述 した実施形態と 同様に、 真 空雰囲気中で前面基板 1 1 および背面基板 1 2 の封着、 接合 を行 う こ と から、 ベーキングと電子線洗浄の併用によって表 面吸着ガス を十分に放出させる こ とができ、 吸着能力が優れ たゲッター膜を得る こ とができ る。 また、 イ ンジウムを通電 加熱する こ と によって封着、 接合する こ と によ り 、 前面基板 および背面基板全体を加熱する必要がなく 、 ゲッ ター膜の劣 化、 封着工程中に基板が割れるな どの不具合をな く すこ とが でき る。 同時に、 封着時間の短縮を図る こ とができ、 量産性 に優れた製造方法とする こ と が可能と なる。  According to the eighth embodiment, as in the previous embodiment, the front substrate 11 and the rear substrate 12 are sealed and joined in a vacuum atmosphere, so that baking and electron beam cleaning are used together. As a result, the surface adsorbed gas can be sufficiently released, and a getter film having an excellent adsorption ability can be obtained. In addition, by heating and heating the indium, the entire surface of the front substrate and the rear substrate are not required to be heated and sealed, so that the getter film is deteriorated and the substrate is broken during the sealing process. Troubles can be eliminated. At the same time, the sealing time can be shortened, and a manufacturing method with excellent mass productivity can be achieved.
また、 対向配置された前面基板 1 1 および背面基板 1 2 の 少なく と も一方を前面基板および背面基板が互いに接近する 方向に加圧 し、 封着層 2 1 a 、 2 l b の少な く と も一部が前 面基板おょぴ背面基板の周辺部間に挟持された状態で、 封着 層に通電して加熱溶融している。 これによ り 、 溶融後の封着 層は前面基板 1 1 と側壁 1 8 と の間には挟まれた状態となる そのため、 基板の周辺に沿った封着層 2 1 a 、 2 1 b の断面 積のばらつきや重力などによ り溶融ィ ンジゥムに局部的な凹 凸が生じよ う と しても、 前面基板 1 1 および側壁 1 8 間の空 間が制約されている ので、 過剰に凝集しよ う と した溶融ィ ン ジゥムが疎の部分に押し戻される。 その結果、 封着層におけ る凹凸の発生を抑える こ とができ る。 従って、 溶融後の封着 層の断面積は前面基板 1 1 および側壁 1 8 の全周に渡って均 一とな り 、 接合時、 封着層を全集に渡って均等に加熱する こ と ができ る。 このこ とから、 封着層の局部的な加熱による断 線、 基板のク ラ ック発生等を防止 し、 安定した接合を行う こ と が可能になる。 そ して、 安価に製造ができ、 信頼性が高く かつ良好な画像を得る こ とが可能な F E Dを提供する こ とが できる。 In addition, the front substrate 11 and the rear substrate 1 2 At least one of them is pressed so that the front substrate and the rear substrate come close to each other, and at least a part of the sealing layer 21 a, 2 lb is applied between the front substrate and the periphery of the rear substrate. In the sandwiched state, the sealing layer is energized and heated and melted. As a result, the sealing layer after the fusion is sandwiched between the front substrate 11 and the side wall 18, so that the sealing layers 21 a and 21 b along the periphery of the substrate are formed. Excessive cohesion due to the limited space between the front substrate 11 and the side walls 18 even if local irregularities occur in the molten image due to variations in cross-sectional area, gravity, etc. Attempted melting is pushed back to the sparse part. As a result, the occurrence of irregularities in the sealing layer can be suppressed. Therefore, the cross-sectional area of the sealing layer after melting is uniform over the entire circumference of the front substrate 11 and the side wall 18, and during bonding, the sealing layer can be heated evenly over the entire assembly. it can. From this, it is possible to prevent disconnection due to local heating of the sealing layer, cracks in the substrate, etc., and to perform stable bonding. Further, it is possible to provide an FED which can be manufactured at low cost, has high reliability, and can obtain good images.
上述した製造方法によれば、 各電極 3 0 を、 前面基板 1 1 側の封着層 2 1 b および側壁側の封着層 2 1 a の両方に同時 に電気的に接触し、 すなわち、 両封着層に等価に接触させた 状態で通電する こ と ができ る。 これによ り 、 それぞれの封着 層にほぼ同 じ量の電流を流すこ と ができ る。 その結果、 前面 基板 1 1 および背面基板 1 2 に設け られた封着層を均等に加 熱溶融し、 安定した接合を行う こ とができ る。 次に、 この発明の第 9 の実施形態に係る F E Dの製造方法 について説明する。 According to the above-described manufacturing method, each electrode 30 is simultaneously electrically contacted with both the sealing layer 21b on the front substrate 11 side and the sealing layer 21a on the side wall side. Electric current can be supplied in a state in which the sealing layer is in equivalent contact with the sealing layer. As a result, almost the same amount of current can flow through each sealing layer. As a result, the sealing layers provided on the front substrate 11 and the rear substrate 12 can be uniformly heated and melted, and stable bonding can be performed. Next, a method of manufacturing an FED according to a ninth embodiment of the present invention will be described.
上述した第 8 の実施形態では、 電極 3 0 を上下の封着層 2 1 a 、 2 1 b 間に挟み込んで両封着層に同時に電気的に接触 させる構成と した。 第 9 の実施形態によれば、 電極 3 0 を接 触させる部分において、 予め封着層 2 1 a、 2 1 b 同士を部 分的に溶着 し、 この溶着部に電極 3 0 を接触させている。  In the above-described eighth embodiment, the electrode 30 is sandwiched between the upper and lower sealing layers 21a and 21b, and is brought into electrical contact with both sealing layers at the same time. According to the ninth embodiment, the sealing layers 21a and 21b are partially welded to each other in advance at a portion where the electrode 30 is brought into contact, and the electrode 30 is brought into contact with the welded portion. I have.
詳細に述べる と、 真空処理装置の組立室 1 0 5 に送られて 来た前面基板 1 1 および背面基板 1 2 は、 図 4 0 に示すよ う に、 複数の支持ピン 1 2 8 によって保持され、 互いに接近す る方向に加圧される。 これによ り 、 前面基板 1 1 に設け られ た封着層 2 1 b および側壁 1 8 に設け られた封着層 2 1 a が 互いに接触する。 なお、 電極 3 0 が接触する部分において、 例えば、 前面基板 1 1 に設け られた封着層 2 1 b .は、 他の部 分よ り も外側に延出 した延出部 2 1 c を有している。 例えば 延出部 2 1 c は、 前面基板 1 1 の対向する 2 つの角部近傍に それぞれ設け られている。  More specifically, the front substrate 11 and the rear substrate 12 sent to the assembly chamber 105 of the vacuum processing apparatus are held by a plurality of support pins 128 as shown in FIG. Are pressed in the direction of approaching each other. Thereby, the sealing layer 21 b provided on the front substrate 11 and the sealing layer 21 a provided on the side wall 18 come into contact with each other. In a portion where the electrode 30 is in contact, for example, the sealing layer 21 b provided on the front substrate 11 has an extension 21 c that extends outward from other portions. are doing. For example, the extending portions 21 c are provided near two opposing corners of the front substrate 11, respectively.
続いて、 延出部 2 1 c に対応する位置で、 例えば、 背面基 板 1 2 の角部の下方に誘導加熱コイル 1 2 7 を対向配置する この誘導加熱コイ ル 1 2 7 によって封着層 2 1 a、 2 1 b を 局部的に高周波加熱し、 封着層同士を部分的に溶着する。 こ れによ り 、 対角方向に対向 した 2つの角部にそれぞれ溶着部 2 1 d を形成する。  Subsequently, at a position corresponding to the extension 21c, for example, an induction heating coil 127 is arranged to face the corner of the rear substrate 12 below the corner thereof, and the sealing layer is formed by the induction heating coil 127. 21a and 21b are locally heated with high frequency, and the sealing layers are partially welded to each other. Thereby, the welded portions 21 d are formed at the two corners opposing each other in the diagonal direction.
その後、 銅からなる厚さ約 0 . 2 m mの電極 3 0 を前面基 板 1 1 と背面基板 1 2 と の間に挿入し、 各溶着部 2 1 d にお ける延出部 2 1 c に接触させる。 この状態で、 電源から一対 の電極 3 0 を通 して封着層 2 1 a 、 2 l b に通電する。 これ によ り 、 イ ンジウムが加熱されて溶融し、 前面基板 1 1 およ び側壁 1 8 が封着層 2 1 a 、 2 1 b によ り 気密に接合される その後、 通電を停止する こ と によ り 、 溶融したイ ンジウム が固ま り 、 外囲器 1 0 が形成される。 この よ う に して形成さ れた外囲器は、 冷却室で常温まで冷却されて、 ア ンロー ド室 から取り 出される。 以上の工程によ り 、 真空外囲器が完成す る。 Thereafter, an electrode 30 made of copper having a thickness of about 0.2 mm is inserted between the front substrate 11 and the rear substrate 12, and is attached to each of the welded portions 21 d. To the extension 2 1 c. In this state, power is supplied to the sealing layers 21a and 2lb from a power source through a pair of electrodes 30. As a result, the indium is heated and melted, and the front substrate 11 and the side walls 18 are hermetically bonded by the sealing layers 21a and 21b. As a result, the molten indium is solidified, and the envelope 10 is formed. The envelope formed in this way is cooled to room temperature in the cooling chamber and taken out of the unloading chamber. Through the above steps, a vacuum envelope is completed.
なお、 他の構成は前述した実施形態と 同一であ り 、 同一の 部分には同一の参照符号を付してその詳細な説明を省略する 上記のよ う に構成された第 9 の実施の形態によれば、 電極 3 0 を接触させる位置において、 対向するイ ンジウム同士を 通電前に溶着させておく こ と によ り 、 前面基板 1 1側の封着 層 2 1 b および側壁 1 8側の封着層 2 1 a にほぼ同量の電流 を分流して流すこ と ができ る。 これによ り 、 両封着層 2 l a 2 1 b を均等に加熱溶融する こ と が可能と なる。 また、 前面 基板 1 1 および背面基板 1 2 を互いに接近する方向に加圧し た状態で封着層に通電するため、 上記第 8 の実施の形態 と同 様に、 溶融後の封着層の断面積変化を抑え、 封着層全体を均 等に加熱昇温する こ とが可能になる。 以上のこ と から、 前面 基板 1 1 および背面基板 1 2 を安定して接合し、 信頼性の向 上した F E Dを得る こ とができ る。  The other configuration is the same as that of the above-described embodiment, and the same portions are denoted by the same reference numerals and detailed description thereof will be omitted. The ninth embodiment configured as described above According to this, at the position where the electrode 30 is brought into contact, the opposing indiums are welded before energization, so that the sealing layer 21 b on the front substrate 11 side and the side wall 18 side are welded. Almost the same amount of current can be shunted and flown to the sealing layer 21a. This makes it possible to heat and melt both sealing layers 2 la 21 b uniformly. Further, since the sealing layer is energized while the front substrate 11 and the rear substrate 12 are pressed in a direction approaching each other, the sealing layer after melting is cut off in the same manner as in the eighth embodiment. The change in area can be suppressed, and the entire sealing layer can be uniformly heated and heated. From the above, it is possible to stably join the front substrate 11 and the rear substrate 12 to obtain a FED with improved reliability.
第 8および第 9 の実施形態において、 例えば、 予め電極を 基板に取 り付けた状態で真空処理装置に投入してもよ く 、 電 極の形状や材料も上記実施の形態に限られる ものではない。 また、 前面基板および側壁の両方に封着材を設けた状態で封 着する構成と したが、 前面基板および側壁の少な く と も一方 に封着材を設けた状態で封着しても よい。 In the eighth and ninth embodiments, for example, the electrodes may be put into a vacuum processing apparatus in a state where the electrodes are attached to a substrate in advance, The shapes and materials of the poles are not limited to those in the above embodiment. In addition, the sealing is performed with the sealing material provided on both the front substrate and the side wall. However, the sealing may be performed with the sealing material provided on at least one of the front substrate and the side wall. .
次に、 こ の発明の第 1 0 の実施形態に係る F E Dおよびそ の製造方法について説明する。  Next, an FED according to a tenth embodiment of the present invention and a method for manufacturing the same will be described.
図 4 2およぴ図 4 3 に示すよ う に、 F E Dは真空外囲器 1 0 および真空外囲器に取り 付け られた複数、 例えば、 一対の 電極 3 0 を備えている。 真空外囲器 1 0 は、 それぞれ矩形状 のガラス板からなる前面基板 1 1 および背面基板 1 2 を備え これらの基板 1 1 、 1 2 は、 矩形枠状の側壁 1 8 を介して周 縁部同士が接合されている。 前面基板 1 1 の内面には、 蛍光 体ス ク リ ーン 1 6、 メ タルノ ック 1 7、 ゲッター膜 1 3 が形 成されている。 背面基板 1 2 の内面上には、 蛍光体ス ク リ ー ン 1 6 の蛍光体層を励起する多数の電子放出素子 2 2 が設け られている。 また、 背面基板 1 2 の内面には、 電子放出素子 2 2 に電位を供給する多数本の配線 2 3 がマ ト リ ック ス状に 設け られ、 その端部は真空外囲器 1 0 の周縁部に引出されて いる。  As shown in FIGS. 42 and 43, the FED includes a vacuum envelope 10 and a plurality of, for example, a pair of electrodes 30 attached to the vacuum envelope. The vacuum envelope 10 includes a front substrate 11 and a rear substrate 12 each made of a rectangular glass plate, and these substrates 11 and 12 are arranged at a peripheral portion through a rectangular frame-shaped side wall 18. Are joined together. On the inner surface of the front substrate 11, a phosphor screen 16, a metal knock 17, and a getter film 13 are formed. On the inner surface of the rear substrate 12, a number of electron-emitting devices 22 for exciting the phosphor layer of the phosphor screen 16 are provided. A large number of wirings 23 for supplying a potential to the electron-emitting devices 22 are provided in a matrix on the inner surface of the rear substrate 12, and the ends of the wirings 23 are provided at the ends of the vacuum envelope 10. It is drawn out to the periphery.
一対の電極 3 0 は、 封着層 2 1 に電気的に導通 した状態で 外囲器 1 0 に取り付け られている。 これらの電極 3 0 は、 封 着層 2 1 に通電する際の電極と して用いられる。 図 4 4 に示 すよ う に、 各電極 3 0 は、 導電部材と して例えば 0 . 2 m m 厚の銅板を折り 曲げ加工して形成されている。 すなわち、 電 極 3 0 は、 断面がほぼ U字形状と なる よ う に折曲げられ、 装 着部 3 2 、 装着部から延出 し封着層に対する電流の通路とな る胴体部 3 4、 胴体部の延出端に位置し封着層に接触可能な 接触部 3 6 、 および装着部および胴体部の背面部によ り 形成 された平坦な導通部 3 8 を一体に備えている。 The pair of electrodes 30 is attached to the envelope 10 in a state of being electrically connected to the sealing layer 21. These electrodes 30 are used as electrodes when energizing the sealing layer 21. As shown in FIG. 44, each electrode 30 is formed by bending a copper plate having a thickness of, for example, 0.2 mm as a conductive member. That is, the electrode 30 is bent so that its cross section is substantially U-shaped, and Attachment part 32, body part 34 extending from the attachment part and serving as a current path to the sealing layer, contact part 36 located at the extended end of the body part and capable of contacting the sealing layer, and attachment part And a flat conducting portion 38 formed by the back of the body.
装着部 3 2 は、 ク リ ップ状に折り 曲げられた挟持部を一体 に備え、 前面基板 1 1 あるいは背面基板 1 2 の周縁部を挟持 して取り 付け可能と成っている。 接触部 3 6 は、 水平方向の 延出長さ Lが 2 m m以上に形成されている。 また、 胴体部 3 4 は帯状に形成され、 装着部 3 2 から斜め上方に傾斜して延 ぴている。 これによ り 、 接触部 3 6 は、 鉛直方向に沿って、 装着部 3 2および胴体部 3 4接触部 3 6 よ り も高 く位置 して いる。  The mounting portion 32 is integrally provided with a holding portion bent in a clip shape, and can be attached while holding the peripheral portion of the front substrate 11 or the rear substrate 12. The contact portion 36 has a horizontal extension L of 2 mm or more. Further, the body portion 34 is formed in a belt shape, and extends obliquely upward from the mounting portion 32. As a result, the contact portion 36 is located higher than the mounting portion 32 and the body portion 34 in the vertical direction.
図 4 2 および図 4 3, 4 4 に示すよ う に、 各電極 3 0 は、 真空外囲器 1 0 の例えば、 装着部 3 2 によ り 例えば背面基板 1 2 の周縁部を弾性的に挟持した状態で真空外囲器 1 0 に取 り付けられている。 各電極 3 0 の接触部 3 6 は、 それぞれ封 着層 2 1 に接触 し電気的に導通 している。 胴体部 3 4 は接触 部 3 6 か ら真空外囲器 1 0 の外側に延出 している と と も に、 導通部 3 8 は、 背面基板 1 2 の側面と対向 し真空外囲器 1 0 の外面に露出 している。 これら一対の電極 3 0 は、 真空外囲 器 1 0 の対角方向に離間 した 2 つの角部にそれぞれ設け られ 封着層 2 1 に対して対称に配置されている。  As shown in FIG. 42 and FIGS. 43 and 44, each electrode 30 is elastically attached to the peripheral portion of the rear substrate 12 by, for example, the mounting portion 32 of the vacuum envelope 10. It is attached to the vacuum envelope 10 while being clamped. The contact portion 36 of each electrode 30 is in contact with the sealing layer 21 and is electrically connected. The body portion 34 extends from the contact portion 36 to the outside of the vacuum envelope 10, and the conduction portion 38 faces the side surface of the rear substrate 12 and faces the vacuum envelope 1. Exposed on the outer surface of 0. The pair of electrodes 30 are provided at two diagonally separated corners of the vacuum envelope 10, respectively, and are arranged symmetrically with respect to the sealing layer 21.
上記 F E Dの他の構成は、 前述 した第 1 の実施形態と 同一 であ り 、 同一の部分には同一の参照符号を付してその詳細な 説明を省略する。 次に、 第 1 0 の実施の形態に係る F E Dの製造方法につい て詳細に説明する。 こ こでは、 第 1 の実施形態に係る製造方 法と異なる部分を中心に説明する。 The other configuration of the FED is the same as that of the above-described first embodiment, and the same portions are denoted by the same reference characters and will not be described in detail. Next, a method of manufacturing the FED according to the tenth embodiment will be described in detail. Here, the description will focus on the parts that are different from the manufacturing method according to the first embodiment.
まず、 第 1 の実施形態と 同様に、 蛍光体ス ク リ ーン 1 6お よびメ タルバック 1 7 が形成された前面基板 1 1 、 並びに、 電子放出素子 2 2 が形成された背面基板 1 2 を用意する。 続 いて、 大気中で低融点ガラス 1 9 によ り側壁 1 8 および支持 部材 1 4 を背面基板 1 2 の内面上に封着する。 その後、 側壁 1 8 の封着面の全周に渡ってイ ンジウムを所定の幅おょぴ厚 さに塗布 し封着層 2 1 a を形成する。 前面基板 1 1 の側壁と 対向する封着面にィ ンジゥムを所定の幅および厚さで矩形枠 状に塗布 し封着層 2 l b を形成する。  First, similarly to the first embodiment, a front substrate 11 on which a phosphor screen 16 and a metal back 17 are formed, and a rear substrate 12 on which an electron-emitting device 22 is formed Prepare Subsequently, the side wall 18 and the support member 14 are sealed on the inner surface of the rear substrate 12 with the low melting point glass 19 in the atmosphere. Thereafter, indium is applied to a predetermined width and thickness over the entire periphery of the sealing surface of the side wall 18 to form a sealing layer 21a. An image is applied to the sealing surface facing the side wall of the front substrate 11 in a rectangular frame shape with a predetermined width and thickness to form a sealing layer 2 lb.
続いて、 図 4 5 に示すよ う に、 側壁 1 8 が接合されている 背面基板 1 2 に一対の電極 3 0 を装着する。 この際、 各電極 3 0 は、 接触部 3 6 が封着層 2 1 a に接触せず、 封着層 と隙 間を置いて対向 した状態に装着する。 電極 3 0 は、 基板上で +極と一極の一対を必要と し、 一対の電極間で並列に通電さ れる封着層 2 1 a 、 2 1 b の各々 の通電経路はその長さ を等 しく する こ とが望ま しい。 そこで、 一対の電極 3 0 は、 背面 基板 1 2 の対角方向に対向する 2 つの角部に装着され、 電極 間に位置 した封着層 2 1 a 、 2 1 b の長さ は、 各電極の両側 でほぼ等 し く 設定されている。  Subsequently, as shown in FIG. 45, a pair of electrodes 30 is mounted on the back substrate 12 to which the side walls 18 are joined. At this time, each electrode 30 is mounted such that the contact portion 36 does not contact the sealing layer 21a and faces the sealing layer 21 with a gap. The electrode 30 requires a pair of a positive electrode and a single electrode on the substrate, and each energizing path of the sealing layers 21a and 21b, which are energized in parallel between the pair of electrodes, has its length It is desirable to make them equal. Therefore, a pair of electrodes 30 is mounted on two diagonally opposite corners of the rear substrate 12, and the length of the sealing layers 21 a and 21 b located between the electrodes is It is set almost equally on both sides of.
電極 3 0 を装着した後、 背面基板 1 2、 前面基板 1 1 を所 定間隔離して対向配置し、 この状態で、 図 9 に示した真空処 理装置 1 0 0 内に投入する。 前面基板 1 1 および背面基板 1 2 は、 ロー ド室 1 0 1 を介 してべ一キング、 電子線洗浄室 1 0 2 へ送られる。 ベーキング、 電子線洗浄室 1 0 2 では、 各 種部材を 3 0 0 °Cの温度に加熱し、 各基板の表面吸着ガスを 放出 させる。 同時に、 電子線発生装置から電子線を、 前面基 板 1 1 の蛍光体スク リ ーン面、 および背面基板 1 2 の電子放 出素子面に照射し、 蛍光体ス ク リ ーン面および電子放出素子 面の全面をそれぞれ電子線洗浄する。 After the electrodes 30 are mounted, the rear substrate 12 and the front substrate 11 are arranged facing each other with a predetermined interval therebetween, and in this state, they are put into the vacuum processing apparatus 100 shown in FIG. Front board 1 1 and rear board 1 2 is sent to the electron beam cleaning chamber 102 through the loading chamber 101 for baking. In the baking and electron beam cleaning chamber 102, the various members are heated to a temperature of 300 ° C. to release the gas adsorbed on the surface of each substrate. At the same time, an electron beam is irradiated from the electron beam generator onto the phosphor screen surface of the front substrate 11 and the electron emission element surface of the rear substrate 12 so that the phosphor screen surface and the electrons are emitted. The entire surface of the emission element surface is cleaned with an electron beam.
ベーキング工程において、 加熱によ り封着層 2 1 a、 2 1 b は一旦溶融して流動性を有するが、 各電極 3 0 の接触部 3 6 は封着層 2 1 a、 2 1 b に接触する こ と なく 隙間を置いて 対向 している。 そのため、 溶融したイ ンジウムが電極 3 0 を 通して背面基板 1 2 の外側へ流れ出すのを抑える こ とができ る。  In the baking step, the sealing layers 21a and 21b are once melted by heating to have fluidity, but the contact portions 36 of the electrodes 30 are connected to the sealing layers 21a and 21b. They face each other with a gap without contact. Therefore, it is possible to suppress the molten indium from flowing out of the rear substrate 12 through the electrode 30.
ベーキングおよび電子線洗浄された前面基板 1 1 および背 面基板 1 2 は冷却室 1 0 3 に送られ、 約 1 2 0 °Cの温度まで 冷却された後、 ゲッター膜の蒸着室 1 0 4 へと送られる。 こ の蒸着室 1 0 4 では、 メ タルバッ ク 1 7の外側にゲッター膜 2 7 と して B a 膜が蒸着形成される。 B a 膜は表面が酸素や 炭素などで汚染される こ と を防止する こ と ができ、 活性状態 を維持する こ と ができ る。  The front substrate 11 and the back substrate 12 that have been baked and cleaned with an electron beam are sent to the cooling chamber 103, cooled to a temperature of about 120 ° C, and then to the getter film deposition chamber 104. Is sent. In the deposition chamber 104, a Ba film is formed as a getter film 27 outside the metal back 17 by vapor deposition. The Ba film can prevent the surface from being contaminated with oxygen, carbon, and the like, and can maintain an active state.
続いて、 前面基板 1 1 および背面基板 1 2 は組立室 1 0 5 に送られる。 図 4 6 に示すよ う に、 この組立室 1 0 5 におい て、 前面基板 1 1 および背面基板 1 2 は、 対向配置された状 態で組立室内のホッ トプレー ト 1 3 1、 1 3 2 にそれぞれ保 持される。 前面基板 1 1 は落下しないよ う に、 固定治具 1 3 3 によ り 上側のホッ トプレー ト 1 3 1 に固定する。 Subsequently, the front substrate 11 and the rear substrate 12 are sent to the assembly room 105. As shown in Fig. 46, in this assembly room 105, the front substrate 11 and the rear substrate 12 are placed on the hot plates 131, 132 in the assembly room in a state where they are opposed to each other. Each is retained. Fixing jig 1 3 so that the front substrate 1 1 does not fall Fix to the upper hot plate 1 3 1 with 3.
その後、 前面基板 1 1 および背面基板 1 2 を約 1 2 0 °Cに 維持したまま、 互いに接近する方向へ移動させ、 所定の圧力 で加圧する。 基板の移動は、 前面基板 1 1 および背面基板 1 2 の両方を移動させて互いに接近させる方法、 あるいは前面 基板および背面基板のいずれか一方を移動させて互いに接近 させる方法のいずれでも よい。  Thereafter, the front substrate 11 and the rear substrate 12 are moved in a direction approaching each other while being maintained at about 120 ° C., and pressurized at a predetermined pressure. The substrate may be moved by moving both the front substrate 11 and the rear substrate 12 so as to approach each other, or by moving one of the front substrate and the rear substrate so as to approach each other.
図 4 7 に示すよ う に、 所定の圧力で加圧する こ と によ り 、 前面基板 1 1側の封着層 2 1 b と背面基板 1 2側の封着層 2 1 a と を互いに接触させる と と もに、 各電極 3 0 の接触部 3 6 を封着層 2 1 a 、 2 1 b の間に挟持し、 各電極 3 0 を封着 層 2 1 a 、 2 l b に電気的に接続する。 こ の際、 接触部 3 6 は 2 m m以上の水平方向長さ に形成されているため、 封着層 2 1 a 、 2 l b に対 し安定して接触する こ とができる。 なお 電極 3 0 の接触部 3 6 に予めイ ンジウムを塗布しておく こ と によ り 、 封着層に対 して一層良好な接触およぴ通電状態を得 る こ と ができ る。  As shown in FIG. 47, by applying a predetermined pressure, the sealing layer 21b on the front substrate 11 and the sealing layer 21a on the rear substrate 12 are brought into contact with each other. At the same time, the contact portion 36 of each electrode 30 is sandwiched between the sealing layers 21a and 21b, and each electrode 30 is electrically connected to the sealing layers 21a and 2lb. Connecting. At this time, since the contact portion 36 is formed with a horizontal length of 2 mm or more, the contact portion 36 can stably contact the sealing layers 21a and 21b. By applying indium to the contact portion 36 of the electrode 30 in advance, it is possible to obtain a better contact and energization state with respect to the sealing layer.
この状態で、 図 1 0 に示したよ う に、 一対の電極 3 0 に電 源 1 2 0 を電気的に接続した後、 側壁 1 8側の封着層 2 1 a および前面基板 1 1 側の封着層 2 1 b のそれぞれに例えば、 1 4 O Aの直流電流を定電流モー ドで印加する。 これによ り 封着層 2 1 a 、 2 l b を加熱しイ ンジウムを溶融させる。 こ の際、 電源 1 2 0 に接続された接続端子 4 0 を、 電極 3 0 の 導通部 3 8 に接触させる こ と によ り 、 電源と電極、 および電 極と封着層 2 1 a 、 2 1 b と を確実に導通させる こ とができ る。 また、 各電極 3 0 は封着層 2 1 a 、 2 1 b に対して等価 に接触しているため、 安定して通電する こ と ができ、 それぞ れの封着層にほぼ同量の電流を流し均等に加熱溶融させる こ とができ る。 In this state, as shown in FIG. 10, after the power supply 120 is electrically connected to the pair of electrodes 30, the sealing layer 21 a on the side wall 18 side and the front substrate 11 side are connected. For example, a direct current of 14 OA is applied to each of the sealing layers 21b in the constant current mode. This heats the sealing layers 21a and 2lb to melt the indium. At this time, by bringing the connection terminal 40 connected to the power supply 120 into contact with the conducting portion 38 of the electrode 30, the power supply and the electrode, and the electrode and the sealing layer 21 a, 2 1 b and can be reliably conducted. You. In addition, since each electrode 30 is in equivalent contact with the sealing layers 21a and 21b, it is possible to supply electricity stably, and to have approximately the same amount in each of the sealing layers. Electric current can be applied to heat and melt evenly.
イ ンジウムを溶融させる こ と によ り 、 封着層 2 1 a 、 2 1 b を融合させて封着層 2 1 を形成し、 この封着層によって前 面基板 1 1 の周縁部と側壁 1 8 と を封着する。 上記工程によ り 封着された前面基板 1 1 、 側壁 1 8 、 および背面基板 1 2 は、 冷却室 1 0 6で常温まで冷却され、 アンロー ド室 1 0 7 力 ら取り 出 される。 これによ り 、 F E Dの真空外囲器 1 0 が By fusing indium, the sealing layers 21 a and 21 b are fused to form a sealing layer 21, and the peripheral layer and the side wall 1 of the front substrate 11 are formed by the sealing layer. 8 Seal and. The front substrate 11, side wall 18, and rear substrate 12 sealed by the above process are cooled to room temperature in the cooling chamber 106, and are taken out from the unload chamber 107. As a result, the vacuum envelope 10 of the FED is
7Π成"!-る。 7 "!
なお、 真空外囲器 1 0 が完成した後、 必要であれば一対の 電極 3 0 を切除しても よい。  After the vacuum envelope 10 is completed, the pair of electrodes 30 may be cut off if necessary.
以上のよ う に構成された F E Dおよびその製造方法によれ ば、 通電加熱時、 背面基板に装着された電極 3 0 を介して封 着層 2 1 に安定した電流を流すこ とができる。 従って、 封着 時、 封着層を構成する導電性の低融点封着材料を予め定めた 通電時間で安定してかつ確実に溶融させるこ とができ、 その 結果、 封着層 2 1 に鼂裂等が発生する こ とな く 迅速かつ確実 な封着を行 う こ とができ る。  According to the FED configured as described above and the method of manufacturing the same, a stable current can be applied to the sealing layer 21 via the electrode 30 mounted on the rear substrate during the heating by energization. Accordingly, at the time of sealing, the conductive low-melting-point sealing material constituting the sealing layer can be stably and reliably melted for a predetermined energizing time, and as a result, the sealing layer 21 Quick and reliable sealing can be performed without cracks.
ベーキングと電子線洗浄の併用によって表面吸着ガスを十 分に放出させる こ とができ、 吸着能力が優れたゲッター膜を 得る こ とができ る。 また、 イ ンジウムを通電加熱する こ と に よって封着、 接合する こ と によ り 、 前面基板おょぴ背面基板 全体を加熱する必要がなく 、 基板全体を低温に維持しなが ら 封着作業を短時間でかつ安定して行う こ とができ る。 同時に ゲッター膜の劣化、 封着工程中に基板が割れるな どの不具合 をな く すこ とが可能と なる。 By using both baking and electron beam cleaning, the surface adsorbed gas can be sufficiently released, and a getter film with excellent adsorption ability can be obtained. Also, by sealing and joining the indium by energizing and heating the indium, it is not necessary to heat the entire front substrate and the rear substrate, while maintaining the entire substrate at a low temperature. The sealing operation can be performed quickly and stably. At the same time, it is possible to eliminate problems such as deterioration of the getter film and cracking of the substrate during the sealing process.
封着前の状態において、 電極の接触部は、 封着層に接触す る こ と な く 封着層 と隙間を置いて対向 している。 そのため、 ベーキング工程等において、 封着材が溶融した場合でも、 こ の溶融した封着材が電極を通して外部に流出する こ と防止で き る。 従って、 封着層を全周に渡って均一な厚さ に維持でき る と と も に、 封着材の流出に起因する配線のショ ー ト等を防 止する こ と が可能と なる。 以上のこ とから、 量産性に優れ、 同時に、 安定かつ良好な画像を得る こ とが可能な F E Dを安 価に得る こ と ができ る。  In the state before the sealing, the contact portion of the electrode faces the sealing layer with a gap without contacting the sealing layer. Therefore, even if the sealing material is melted in the baking step or the like, it is possible to prevent the melted sealing material from flowing out through the electrode. Accordingly, the sealing layer can be maintained at a uniform thickness over the entire circumference, and it is possible to prevent a short-circuit of the wiring due to the outflow of the sealing material. From the above, it is possible to inexpensively obtain an FED that is excellent in mass productivity and that can obtain a stable and good image.
上述した第 1 0 の実施形態において、 各電極 3 0 は、 接触 部 3 6 および胴体部 3 4 は同一の幅を有した帯状に形成され ている。 図 4 8 に示すよ う に、 胴体部 3 4 は、 接触部 3 6 の 幅よ り も狭い幅に形成されても よい。 こ こでは、 胴体部 3 4 は、 全長に渡って均一の幅を有した帯状に形成されている。 また、 図 4 9 に示すよ う に、 胴体部 3 4 は、 接触部 3 6 と繋 がった部分が、 接触部の幅よ り も狭い幅に形成され、 この接 触部から装着部 3 2 に向かって徐々 に幅が広く なる よ う に形 成しても よい。  In the tenth embodiment described above, the contact portion 36 and the body portion 34 of each electrode 30 are formed in a band shape having the same width. As shown in FIG. 48, the body portion 34 may be formed to have a width smaller than the width of the contact portion 36. Here, the body portion 34 is formed in a band shape having a uniform width over the entire length. Further, as shown in FIG. 49, the body portion 34 has a portion connected to the contact portion 36 formed to have a width smaller than the width of the contact portion. It may be formed so that the width gradually increases toward 2.
このよ う に、 胴体部 3 4 の幅、 特に、 少なく と も接触部 3 6 に繋がった部分における胴体部の幅が接触部の幅よ り も狭 く 形成された電極 3 0 を用いる こ と によ り 、 通電加熱時、 胴 体部 3 4 での発熱を接触部 3 6 を介 して速やかに封着層に伝 える こ とができ る。 従って、 封着層に一層安定して通電する こ とができ、 封着層全体がほぼ均一に昇温する よ う にな り 、 迅速かつ確実に接合を行う こ と が可能になる。 As described above, the electrode 30 is used in which the width of the body portion 34, particularly the width of the body portion at least in a portion connected to the contact portion 36 is smaller than the width of the contact portion. As a result, during energization heating, the heat generated in the body part 34 is quickly transmitted to the sealing layer via the contact part 36. Can be obtained. Therefore, it is possible to more stably supply current to the sealing layer, and the temperature of the entire sealing layer is almost uniformly increased, so that bonding can be performed quickly and reliably.
こ こ では、 胴体部 3 4 の幅を狭く したが、 胴体部に孔ゃ 切 り 込みを入れて制御 して も よ く 、 胴体部の厚さ を薄く し て制御 して も よい。 また、 胴体部 と それ以外の部分で材質 を変更等し、 板材の重ね合わせで発熱を制御 しても よい。  In this case, the width of the body portion 34 is narrowed, but the body portion may be controlled by making a cutout in the hole, or may be controlled by reducing the thickness of the body portion. Further, the material may be changed in the body part and other parts, and the heat generation may be controlled by overlapping the plate materials.
上述 した第 1 0 の実施形態において、 各電極 3 0の装着部 はク リ ップ状の挟持部を一体に備えた構成と したが、 図 5 0 および図 5 1 に示すよ う に、 挟持部と して機能する別体のク リ ップ 4 6 を備えた構成と しても よい。 すなわち、 電極 3 0 は、 接触部 3 6 、 胴体部 3 4、 および平坦な基台部 3 9 を有 し、 これは板材を折り 曲げて一体に形成されている。 また、 電極 3 0の装着部は、 基台部 3 9 、 およぴ別体のク リ ップ 4 6 によ り構成されている。 そ して、 電極 3 0 は、 基台部 3 9 および基板の周縁部、 こ こでは背面基板 1 2 の周縁部を、 ク リ ップ 4 6 で挟持する こ と によ り 、 背面基板 1 2 に取 り 付け られる。  In the above-described tenth embodiment, the mounting portion of each electrode 30 is configured to integrally include a clip-like holding portion. However, as shown in FIGS. It may be configured to include a separate clip 46 that functions as a unit. That is, the electrode 30 has a contact portion 36, a body portion 34, and a flat base portion 39, which are integrally formed by bending a plate material. The mounting portion for the electrode 30 is composed of a base portion 39 and a separate clip 46. The electrode 30 is formed by clamping the base 39 and the periphery of the substrate, here, the periphery of the rear substrate 12, with the clip 46, whereby the rear substrate 1 Attached to 2.
図 4 8 ない し図 5 1 に示す変形例において、 他の構成は前 述 した実施の形態と 同一であ り 、 同一の部分には同一の参照 符号を付してその詳細な説明を省略する。 そ して、 これらの 実施の形態においても、 前述した実施の形態と同様の作用効 果を得るこ とができ る。  In the modification shown in FIG. 48 or FIG. 51, other configurations are the same as those of the above-described embodiment, and the same portions are denoted by the same reference numerals and detailed description thereof will be omitted. . Also, in these embodiments, the same operation and effect as those of the above-described embodiment can be obtained.
第 1 0の実施形態では、 背面基板の対向する対角部分に一 対の電極を取付け、 基板同士を加圧した状態で封着層に通電 する構成と したが、 これに限らず、 前面基板側にも一対の電 極を取付け、 背面基板側と別々 に封着層に通電し加熱溶融す る構成と しても よい。 In the tenth embodiment, a pair of electrodes are attached to opposite diagonal portions of the rear substrate, and current is applied to the sealing layer while the substrates are pressed against each other. However, the present invention is not limited to this, and a pair of electrodes may also be attached to the front substrate side, and the sealing layer may be separately energized and heated and melted separately from the rear substrate side.
この場合、 図 5 2 に示すよ う に、 組立室に送られた前面基 板 1 1 および背面基板 1 2 は、 ホッ トプレー ト 1 3 1 、 1 3 2上に固定され対向配置された後、 互いに接近する方向へ移 動される。 背面基板 1 2 に取り 付け られた電極 3 0 の接触部 は前面基板 1 1側の封着層 2 1 b に電気的に接触 し、 前面基 板 1 1 に取 り 付け られた電極 3 0 の接触部は背面基板 1 2側 の封着層 2 1 a に電気的に接触する。 この際、 前面基板 1 1 側の封着層 2 1 b と背面基板 1 2側の封着層 2 1 a とは互い に接触しない状態で保持される。  In this case, as shown in FIG. 52, the front substrate 11 and the rear substrate 12 sent to the assembly room are fixed on the hot plates 131, 132, and are opposed to each other. They are moved toward each other. The contact portion of the electrode 30 attached to the rear substrate 12 electrically contacts the sealing layer 21b on the front substrate 11 side, and the contact portion of the electrode 30 attached to the front substrate 11 The contact portion makes electrical contact with the sealing layer 21a on the rear substrate 12 side. At this time, the sealing layer 21b on the front substrate 11 side and the sealing layer 21a on the rear substrate 12 side are held in a state where they do not contact each other.
こ の状態で電極 3 0 を通 して封着層 2 1 a 、 2 1 b に電流 を印加する こ と によ り 、 封着層 2 1 a および封着層 2 1 b は それぞれ別々 に溶融する。 溶融後、 通電を止め、 両基板 1 1 1 2 をさ らに互いに接近する方向へ移動して加圧する こ と に よ り 、 封着層 2 1 a 、 2 1 b を融合させて封着層 2 1 を形成 し、 この封着層 2 1 に よっ て前面基板 1 1 の周縁部と側壁 1 8 と を封着する。  By applying a current to the sealing layers 21a and 21b through the electrodes 30 in this state, the sealing layers 21a and 21b are separately melted. I do. After the melting, the energization is stopped, the two substrates 1 1 1 2 are moved further in the direction of approaching each other, and the pressure is applied, whereby the sealing layers 21 a and 21 b are fused to form a sealing layer. 21 is formed, and the peripheral portion of the front substrate 11 and the side wall 18 are sealed by the sealing layer 21.
一方の基板に 2対の電極を取付け、 1 対の電極で背面基板 1 2側の封着層 2 1 a に通電し、 他方の 1 対の電極で前面基 板 1 1側の封着層 2 1 b に通電する構成とする こ と も可能で ある。  Attach two pairs of electrodes to one of the substrates, apply electricity to the sealing layer 2 1a on the rear substrate 12 with one pair of electrodes, and apply the sealing layer 2 on the front substrate 1 1 with the other pair of electrodes. It is also possible to adopt a configuration that energizes 1b.
この場合、 図 5 3 に示すよ う に、 背面基板 1 2 に 2対の電 極 3 0 を取り 付ける。 組立室に送られた前面基板 1 1 および 背面基板 1 2 は、 ホ ッ トプレー ト 1 3 1 、 1 3 2 上に固定さ れ対向配置された後、 互いに接近する方向へ移動される。 背 面基板 1 2 に取り付け られた電極の内、 1対の電極の接触部 3 6 は前面基板 1 1 側の封着層 2 1 b に電気的に接触する。 他の 1 対の電極 3 0 は、 図 5 4 に示すよ う に、 電極の胴体部 3 4 に凸状部分 4 7 が形成されている。 前面基板 1 1 および 背面基板 1 2 が互いに接近する方向へ移動された際、 凸状部 分 4 7が、 前面基板 1 1 の周縁部に当接し、 電極の接触部は 3 6 は、 背面基板 1 2側の封着層 2 1 a方向に移動し、 この 封着層 2 1 a に電気的に接触する。 この際、 前面基板 1 1側 の封着層 2 1 b と背面基板 1 2側の封着層 2 1 a とは互いに 接触 しない状態で保持される。 In this case, as shown in FIG. 53, two pairs of electrodes 30 are attached to rear substrate 12. Front board 11 sent to the assembly room and The rear substrate 12 is fixed on the hot plates 13 1 and 13 2, and is arranged to face each other, and then moved in a direction approaching each other. Of the electrodes attached to the rear substrate 12, the contact portions 36 of a pair of electrodes are in electrical contact with the sealing layer 21 b on the front substrate 11 side. As shown in FIG. 54, the other pair of electrodes 30 has a convex portion 47 formed on the body 34 of the electrode. When the front substrate 11 and the rear substrate 12 are moved in a direction approaching each other, the convex portion 47 abuts on the peripheral edge of the front substrate 11, and the electrode contact portion 36 is the rear substrate. 12 Moves in the direction of the sealing layer 21a on the side, and makes electrical contact with the sealing layer 21a. At this time, the sealing layer 21b on the front substrate 11 side and the sealing layer 21a on the rear substrate 12 side are held in a state where they do not contact each other.
この状態で、 電極 3 0 力 ら封着層 2 1 a 、 2 1 b に電流を 印加する こ と によ り 、 封着層 2 1 a 、 2 1 b はそれぞれ別々 に加熱され溶融する。 溶融後、 通電を止め、 前面基板 1 1 お よび背面基板 1 2 をさ らに互いに接近する方向へ移動させ加 圧する。 これによ り 、 封着層 2 1 a 、 2 l b を融合させて封 着層 2 1 を形成し、 この封着層によって前面基板 1 1 の周縁 部と側壁 1 8 と を封着する。  In this state, by applying a current to the sealing layers 21a and 21b from the electrode 30 force, the sealing layers 21a and 21b are separately heated and melted. After the melting, the power supply is stopped, and the front substrate 11 and the rear substrate 12 are moved further closer to each other and pressurized. Thus, the sealing layers 21 a and 2 lb are fused to form a sealing layer 21, and the peripheral portion of the front substrate 11 and the side wall 18 are sealed by the sealing layer.
なお、 図 5 2 、 図 5 3、 およぴ図 5 4 に示 した変形例にお いて、 他の構成は前述 した第 1 0 の実施形態と 同一であ り 、 同一の部分には同一の参照符号を付してその詳細な説明を省 略する。 上記変形例においても、 前述 した実施形態と 同様の 作用効果を得る こ と ができ る。  In the modified examples shown in FIGS. 52, 53 and 54, the other configuration is the same as that of the above-described tenth embodiment, and the same parts are the same as those of the tenth embodiment. The detailed description is omitted by attaching the reference numerals. Also in the above modified example, the same operation and effect as in the above-described embodiment can be obtained.
一方、 上述した各実施形態において、 F E Dの真空外囲器 の封着が終了 した後、 電極を真空外囲器から除去 しても よい この発明の第 1 1 の実施形態に係る製造方法によれば、 封着 後、 真空外囲器 1 0から電極 3 0 を切除する よ う に構成され ている。 例えば、 第 1 0 の実施形態において、 封着後、 外囲 器 1 0 は、 真空処理装置のアンロー ド室 1 0 7 から取り 出さ れる。 この外囲器 1 0 には、 電極 3 0 が封着層 2 1 に強固に 接合されたまま残っている。 そこで、 これらの電極 3 0 を以 下の工程によ り 外囲器 1 0 から除去する。 On the other hand, in each of the above-described embodiments, the FED vacuum envelope After the sealing is completed, the electrode may be removed from the vacuum envelope. According to the manufacturing method according to the eleventh embodiment of the present invention, after the sealing, the electrode 3 is removed from the vacuum envelope 10. It is configured to excise zero. For example, in the tenth embodiment, after sealing, the envelope 10 is removed from the unload chamber 107 of the vacuum processing apparatus. In this envelope 10, the electrode 30 remains firmly bonded to the sealing layer 21. Therefore, these electrodes 30 are removed from the envelope 10 by the following steps.
まず、 図 5 5 に示すよ う に、 電極 3 0 と封着層 2 1 と の界 面に超音波カ ッター 6 0 の刃を揷入し、 電極の接触部 3 6 の 周囲に位置した封着層 2 1 を超音波切断して除去する。 超音 波カ ッター 6 0 を用いた場合、 超音波振動によって刃 と封着 層 2 1 と の摩擦力が小さ く な り 、 加圧をほと んどかけずに容 易に封着層を切断除去する こ とができ る。  First, as shown in Fig. 55, a blade of an ultrasonic cutter 60 was inserted into the interface between the electrode 30 and the sealing layer 21 to form a sealing member located around the contact portion 36 of the electrode. The adhesion layer 21 is removed by ultrasonic cutting. When the ultrasonic cutter 60 is used, the frictional force between the blade and the sealing layer 21 is reduced by the ultrasonic vibration, so that the sealing layer can be easily formed with little pressure. Can be cut and removed.
こ のよ う に して電極 3 0 の接触部 3 6周囲の封着層を除去 する と、 電極と封着層の接合力が弱く なる。 この状態で、 図 5 6 に示すよ う に、 電極 3 0 の装着部 3 2 を図示 しない保持 ジグによってチヤ ッキングし、 矢印方向に引き抜く 。 これに よ り 、 基板や封着層を損傷する こ となく 、 外囲器 1 0 から機 械的に電極 3 0 を除去する こ と ができ る。  When the sealing layer around the contact portion 36 of the electrode 30 is removed in this way, the bonding strength between the electrode and the sealing layer becomes weak. In this state, as shown in FIG. 56, the mounting portion 32 of the electrode 30 is chucked by a holding jig (not shown) and pulled out in the direction of the arrow. As a result, the electrode 30 can be mechanically removed from the envelope 10 without damaging the substrate or the sealing layer.
上記のよ う に構成された F E Dでは、 電極 3 0 を除去する こ と によ り 、 封着層 2 1 には、 電極の接触部 3 6 が配置され ていた跡に対応する凹部 4 1 が残る。 すなわち、 図 5 7 およ び図 5 8 に示すよ う に、 封着層 2 1 の う ち、 真空外囲器 1 0 の対角方向に対向 した 2 つの角部 4 0 a、 4 0 b に位置 した 2箇所には、 例えば、 それぞれ幅 5 m m、 奥行き約 1 m mの 凹部 4 1 が形成され、 それぞれ真空外囲器の外側に向かって 開 口 している。 これによ り 、 真空外囲器 1 0 の角部 4 0 a 、 4 0 b において、 封着層 2 1 は、 その幅が部分的に狭く なる よ う に形成されている。 In the FED configured as described above, by removing the electrode 30, the concave portion 41 corresponding to the trace where the electrode contact portion 36 is arranged is formed in the sealing layer 21. Remains. That is, as shown in FIGS. 57 and 58, two corners 40 a and 40 b of the sealing layer 21 opposed to each other in the diagonal direction of the vacuum envelope 10. Located in At two locations, for example, recesses 41 each having a width of 5 mm and a depth of about 1 mm are formed, each opening toward the outside of the vacuum envelope. Thereby, at corners 40 a and 40 b of vacuum envelope 10, sealing layer 21 is formed such that its width is partially reduced.
第 1 1 の実施形態において、 他の構成は前述した第 1 0 の 実施形態と 同一であ り 、 同一の部分には同一の参照符号を付 してその詳細な説明を省略する。  In the eleventh embodiment, the other configuration is the same as that of the above-described tenth embodiment, and the same portions are denoted by the same reference characters and will not be described in detail.
以上のよ う に構成された第 1 1 の実施形態に係る製造方法 および F E Dによれば、 前述した実施形態と 同様の作用効果 を得る こ と ができ る。 封着後の F E D において不要な部品 と なる電極を除去する こ と によ り 、 外囲器の取扱いが簡単にな る とい う 利点が得られる。 例えば、 F E Dをモニ ターと して キャ ビネ ッ ト に組み込む際、 電極が障害と なる こ と を防止で き る。 電極の基板から突き出た部分が他の装置や作業者を傷 つけ、 あるいは、 電極を介 して外囲器に負荷が作用 し外囲器 が破壌する等の問題を無く すこ と ができ る。 更には、 搬送装 置な どを電極に対応でき る よ う 改造する必要がな く 、 製造コ ス ト の低減が可能と なる。  According to the manufacturing method and the FED according to the first embodiment configured as described above, it is possible to obtain the same operation and effects as those of the above-described embodiment. By removing the electrodes that are unnecessary parts in the FED after sealing, there is an advantage that the handling of the envelope is simplified. For example, when the FED is incorporated into a cabinet as a monitor, it is possible to prevent the electrodes from becoming an obstacle. The part of the electrode protruding from the substrate may damage other equipment or workers, or the load on the enclosure via the electrode may cause problems such as breakage of the enclosure. . Further, it is not necessary to modify the transfer device and the like so as to be compatible with the electrodes, so that the manufacturing cost can be reduced.
超音波力 ッターな どの超音波振動切断を行 う こ と によ り 、 電極周囲の封着材を除去する こ と ができ、 電極を容易に取り 外すこ と ができ る。  By performing ultrasonic vibration cutting such as with an ultrasonic power meter, the sealing material around the electrode can be removed, and the electrode can be easily removed.
上述した第 1 1 の実施形態において、 真空外囲器 1 0 から 電極 3 0 を除去する際、 超音波カ ッターを用いたが、 以下の 方法によ り 除去する こ と もできる。 すなわち、 図 5 9 に示す よ う に、 超音波発生源 6 2 に接続された超音波振動子 6 4 を 電極 3 0 に接触させ、 直接、 電極 3 0 を超音波振動させる。 この場合、 電極 3 0 自体が超音波カ ッ ターの刃 と して機能し 電極の接触部 3 6 と封着層 2 1 と の界面を超音波振動切断す る。 これによ り 、 電極 3 0周囲の封着材を除去する こ と がで き、 電極を容易に取り 外すこ と が可能と なる。 In the first embodiment described above, when removing the electrode 30 from the vacuum envelope 10, an ultrasonic cutter was used. However, the electrode 30 may be removed by the following method. That is, as shown in Figure 59 Thus, the ultrasonic vibrator 64 connected to the ultrasonic wave generating source 62 is brought into contact with the electrode 30 and the electrode 30 is directly ultrasonically vibrated. In this case, the electrode 30 itself functions as a blade of the ultrasonic cutter, and ultrasonically cuts the interface between the contact portion 36 of the electrode and the sealing layer 21. Thus, the sealing material around the electrode 30 can be removed, and the electrode can be easily removed.
封着層 2 1 において、 封着された電極 3 0 の接触部 3 6近 傍の領域を部分的に加熱して軟化させ、 電極と封着層 2 1 と の接合力を弱めた状態で、 封着層から電極を引き抜いてもよ い。 これは、 電極 3 0 の接触部 3 6 近傍の封着層 2 1 を誘導 加熱する こ と によ り 行う。 すなわち、 図 6 0 に示すよ う に、 封着後、 例えば、 電極 3 0 の近傍で真空外囲器 1 0 の前面基 板 1 1 と 隣接対向 して誘導加熱コイル 6 6 を配置する。 誘導 加熱コイル 6 6 に高周波を印加する こ と によ り 、 前面基板 1 1 を介して封着層 2 1 を高周波加熱し、 封着層を部分的に軟 化させる。  In the sealing layer 21, a region near the contact portion 36 of the sealed electrode 30 is partially heated and softened, and the bonding strength between the electrode and the sealing layer 21 is reduced. The electrode may be pulled out from the sealing layer. This is performed by inductively heating the sealing layer 21 near the contact portion 36 of the electrode 30. That is, as shown in FIG. 60, after sealing, for example, the induction heating coil 66 is disposed adjacent to the front substrate 11 of the vacuum envelope 10 in the vicinity of the electrode 30. By applying a high frequency to the induction heating coil 66, the sealing layer 21 is heated at a high frequency via the front substrate 11, and the sealing layer is partially softened.
この場合、 予め電極 3 0 の装着部 3 2 を図示しない保持ジ グによってチヤ ッキングして基板外側方向に弱い引張力をか けておく 。 する と、 封着層 2 1 が軟化 した と ころで電極 3 0 と封着層 2 1 と の接合力が弱く な り 、 電極 3 0 を引き抜く こ とができ る。 電極 3 0 の引き抜き後、 誘導加熱コイル 6 6 の 通電を止めて真空外囲器 1 0から離すこ と によ り 、 封着層 2 1 の加熱された部分が速やかに冷却され、 F E D の真空外囲 器 1 0が完成する。  In this case, the mounting portion 32 of the electrode 30 is chucked in advance by a holding jig (not shown) to apply a weak tensile force to the outside of the substrate. Then, when the sealing layer 21 is softened, the bonding strength between the electrode 30 and the sealing layer 21 is weakened, and the electrode 30 can be pulled out. After the electrode 30 is pulled out, the heated portion of the sealing layer 21 is quickly cooled by stopping the energization of the induction heating coil 66 and separating the induction heating coil 66 from the vacuum envelope 10. The envelope 10 is completed.
図 6 0 に示す実施形態において、 電極 3 0 の接触部 3 6近 傍の封着層 2 1 を誘導加熱して溶融した後、 電極を機械的に 除去 しても よい。 この場合、 加熱時間が長いと封着層 2 1 の 広い領域が溶融して流れ出 して しまい、 外囲器の気密封着が 破れる恐れがある。 従って、 3 〜 3 0秒程度の短時間で加熱 を行 う こ と が望ま しい。 短時間であれば電極 3 0 の接触部 3 6近傍の封着材のみが溶融し、 外囲器 1 0 の真空気密性を確 保されたまま電極 3 0 を除去する こ と ができ る。 In the embodiment shown in FIG. 60, near the contact portion 36 of the electrode 30 After the adjacent sealing layer 21 is melted by induction heating, the electrode may be mechanically removed. In this case, if the heating time is long, a wide area of the sealing layer 21 melts and flows out, and the hermetic sealing of the envelope may be broken. Therefore, it is desirable to perform heating in a short time of about 3 to 30 seconds. In a short time, only the sealing material in the vicinity of the contact portion 36 of the electrode 30 is melted, and the electrode 30 can be removed while the vacuum tightness of the envelope 10 is maintained.
更に、 誘導加熱ではなく 、 局所ヒーターその他の方法によ つて電極周囲を加熱しても よい。  Further, instead of induction heating, the area around the electrode may be heated by a local heater or another method.
図 5 9 および図 6 0 にそれぞれ示した実施形態において、 他の構成は前述 した第 1 1 の実施形態と 同一であ り 、 同一の 部分には同一の参照符号を付してその詳細な説明を省略する その他、 F E Dにおいて、 封着層 2 1 には、 電極を配置す る位置や電極の形状に応じて、 図 6 1 Aない し 6 1 Eに示す よ う な凹部 4 1 が形成されても よい。 図 6 1 Aに示す変形例 によれば、 側壁 1 8 および封着層 2 1 の角部は直角に形成さ れ、 凹部 4 1 は封着層の角部に形成され対角方向に延びた矩 形状をな している。 図 6 1 B に示す変形例によれば、 側壁 1 8 および封着層 2 1 の角部は直角に形成され、 凹部 4 1 は封 着層の角部を面取り した形状に形成され対角方向に延ぴてい る。  In the embodiments shown in FIGS. 59 and 60, other configurations are the same as those of the above-described first embodiment, and the same portions are denoted by the same reference numerals and detailed description thereof will be omitted. In addition, in the FED, in the sealing layer 21, a concave portion 41 as shown in FIG. 61A or 61 E is formed in the sealing layer 21 according to the position where the electrode is arranged and the shape of the electrode. You may. According to the modification shown in FIG. 6A, the corners of the side wall 18 and the sealing layer 21 are formed at right angles, and the recesses 41 are formed at the corners of the sealing layer and extend diagonally. It has a rectangular shape. According to the modification shown in FIG. 61B, the corners of the side wall 18 and the sealing layer 21 are formed at right angles, and the recesses 41 are formed in a shape in which the corners of the sealing layer are chamfered, and the diagonal direction Has been extended.
図 6 1 C に示す変形例によれば、 側壁 1 8 および封着層 2 1 の角部は円弧状に形成され、 凹部 4 1 は封着層の角部に形 成され対角方向に延びた矩形状をな している。 図 6 1 D に示 す変形例によれば、 側壁 1 8 および封着層 2 1 の角部は円弧 状に形成され、 凹部 4 1 の底面部分は封着層の角部に形成さ れ対角方向に円弧状に突出 した形状をな している。 更に、 図 6 1 Eに示す変形例によれば、 側壁 1 8 および封着層 2 1 の 角部は円弧状に形成され、 凹部 4 1 は封着層の角部を面取り した形状に形成され対角方向に延びている According to the modification shown in FIG. 61C, the corners of the side wall 18 and the sealing layer 21 are formed in an arc shape, and the recess 41 is formed in the corner of the sealing layer and extends diagonally. It has a rectangular shape. According to the modification shown in FIG. 6 1D, the corners of the side wall 18 and the sealing layer 21 are arc-shaped. The bottom surface of the concave portion 41 is formed at a corner of the sealing layer and has a shape protruding in an arc shape in a diagonal direction. Further, according to the modification shown in FIG. 61E, the corners of the side wall 18 and the sealing layer 21 are formed in an arc shape, and the recess 41 is formed in a shape in which the corner of the sealing layer is chamfered. Extend diagonally
その他、 凹部 4 1 は、 使用する電極の形状によ り 、 上記以 外の他の形状であっても よい。 また、 電極 3 0 は、 封着層 2 1 の各々 の通電経路長さが等しく なる よ う に設定されていれ ば、 外囲器の角部に限らず、 例えば、 長辺または短辺の中央 部に配置しても よい。 この場合、 囬部 4 1 は電極 3 0 の配置 位置に対応 して封着層 2 1 の長辺または短辺の中央部に形成 される。 凹部 4 1 の位置や形状は任意に設定する こ とができ る。  In addition, the concave portion 41 may have a shape other than the above depending on the shape of the electrode used. The electrode 30 is not limited to the corner of the envelope, and may be, for example, the center of the long side or the short side as long as the energization path length of each of the sealing layers 21 is set to be equal. It may be arranged in a part. In this case, the upper part 41 is formed at the center of the long side or the short side of the sealing layer 21 corresponding to the position of the electrode 30. The position and shape of the recess 41 can be set arbitrarily.
前述した組立室 1 0 5 で封着を行う 際、 前面基板 1 1 およ び背面基板 1 2 に設け られた封着層 2 1 a 、 2 1 b にそれぞ れ別々 に通電し、 封着材が溶融した後、 両基板を互いに接近 する方向へ所望の圧力で加圧して封着する こ と もでき る。 こ の場合、 2 枚の基板用に 2対、 4個の電極 3 0 が必要と なる これらの電極は、 例えば、 背面基板 1 2 の 4つの角部にそれ ぞれ装着され、 1対の電極は背面基板 1 2 に設け られた封着 層 2 1 a への通電、 も う 1対の電極は前面基板 1 1 に設け ら れた封着層 2 l bへの通電に用い られる。 従って、 封着後、 電極を除去 した後、 真空外囲器 1 0 の封着層 2 1 には、 4つ の凹部 4 1 が形成されている。  When sealing is performed in the assembly chamber 105 described above, the sealing layers 21a and 21b provided on the front substrate 11 and the rear substrate 12 are separately energized and sealed. After the material is melted, the two substrates can be sealed by applying a desired pressure in a direction approaching each other. In this case, two pairs and four electrodes 30 are required for the two substrates.These electrodes are mounted, for example, on the four corners of the rear substrate 12, respectively. Is used to energize the sealing layer 21 a provided on the back substrate 12, and the other pair of electrodes is used to energize the sealing layer 2 lb provided on the front substrate 11. Therefore, after the electrodes are removed after the sealing, four concave portions 41 are formed in the sealing layer 21 of the vacuum envelope 10.
なお、 こ の凹部の数は、 上述 した 2箇所または 4箇所に限 られる も のではな く 、 使用する電極の数に応 じて任意の数と する こ と ができ る。 例えば、 接触部が二股に分かれた電極を 4個用いて通電封着を行った場合、 凹部は 8 箇所形成される 上述した第 1 1 の実施形態では、 電極全体を真空外囲器か ら取り 除く 構成と したが、 電極は一部を残した状態で除去し ても よい。 この発明の第 1 2 の実施形態に係る製造方法によ れば、 電極 3 0 を胴体部の途中で切断し、 接触部 3 6 を残し て電極の他の部分を外囲器から除去する。 The number of these recesses is limited to two or four as described above. Instead, the number can be arbitrarily determined according to the number of electrodes used. For example, when energization sealing is performed using four electrodes whose contact portions are bifurcated, eight recesses are formed. In the first embodiment described above, the entire electrode is taken out of the vacuum envelope. Although the configuration was excluded, the electrodes may be removed while leaving a part. According to the manufacturing method of the twelfth embodiment of the present invention, the electrode 30 is cut in the middle of the body, and the other part of the electrode except the contact part 36 is removed from the envelope.
詳細に述べる と、 例えば、 前述 した第 1 0 の実施形態と同 様の工程によ り 封着された前面基板 1 1 、 側壁 1 8、 および 背面基板 1 2 は、 真空処理装置の冷却室 1 0 6 に送られ常温 まで冷却される。 こ の状態で、 電極 3 0 の接触部 3 6 は、 封 着層 2 1 に強固に接合されている。 図 6 2 に示すよ う に、 冷 却室 1 0 6 には自動化カ ッター 7 0 が配設されている。 自動 化カ ッター 7 0 を電極 3 0 の胴体部 3 4 を挟むよ う に延出さ せ、 この 自動化カ ッターによ り 、 接触部 3 6 近傍で胴体部 3 4 を切断する。  More specifically, for example, the front substrate 11, the side walls 18, and the rear substrate 12 sealed by the same processes as those of the above-described tenth embodiment are connected to the cooling chamber 1 of the vacuum processing apparatus. It is sent to 06 and cooled to room temperature. In this state, the contact portion 36 of the electrode 30 is firmly joined to the sealing layer 21. As shown in Fig. 62, the cooling room 106 is equipped with an automatic cutter 70. The automated cutter 70 is extended so as to sandwich the body part 34 of the electrode 30, and the body part 34 is cut near the contact part 36 by the automated cutter.
続いて、 図 6 3 に示すよ う に、 切断された電極 3 0 の装着 部 3 2 を図示しない保持ジグによ ってチヤ ッ キングし、 矢印 方向に引 き抜いて背面基板 1 2 から取り 除く 。 これによ り 、 電極 3 0 の接触部 3 6 および胴体部 3 4 の一部を外囲器 1 0 側に残し、 装着部 3 2 を含む電極の他の部分を外囲器から離 脱する。 電極 3 0 の内、 接触部 3 6以外の部分は背面基板 1 2 に対して弾性的に挟持されただけの構成であるため、 基板 や封着層 2 1 を損傷する こ と な く 容易に取り 外すこ とができ る。 電極 3 0 の先端部を切断後、 外囲器 1 0 はア ンロー ド室 1 0 7 へ送られ、 ア ンロー ド室 1 0 7 力 ら取り 出 される。 こ れによ り 、 F E Dの真空外囲器 1 0が完成する。 Subsequently, as shown in FIG. 63, the mounting portion 32 of the cut electrode 30 is chucked by a holding jig (not shown), pulled out in the direction of the arrow, and removed from the rear substrate 12. Exclude As a result, the contact portion 36 of the electrode 30 and a part of the body portion 34 are left on the envelope 10 side, and the other portion of the electrode including the mounting portion 32 is separated from the envelope. . Since the portion of the electrode 30 other than the contact portion 36 is merely elastically sandwiched between the back substrate 12, the substrate 30 and the sealing layer 21 are easily damaged without being damaged. Can be removed You. After cutting the tip of the electrode 30, the envelope 10 is sent to the unloading chamber 107, and is taken out of the unloading chamber 107. Thus, the vacuum envelope 10 of the FED is completed.
上記のよ う に構成された F E Dでは、 電極 3 0 の大部分を 除去する こ と によ り 、 真空外囲器 1 0 の 2 つの角部には、 電 極 3 0 の接触部 3 6 および胴体部 3 4 の一部を含んだ導電体 片 7 1 のみがそれぞれ残る。  In the FED configured as described above, by removing most of the electrode 30, the two corners of the vacuum envelope 10 are brought into contact with the contact portion 36 of the electrode 30 and the electrode 30. Only the conductor pieces 7 1 including a part of the body 3 4 remain.
第 1 2 の実施形態において、 他の構成は前述した第 1 0 の 実施形態と 同一であ り 、 同一の部分には同一の参照符号を付 してその詳細な説明を省略する。  In the twelfth embodiment, the other configuration is the same as that of the above-described tenth embodiment, and the same portions are denoted by the same reference characters and will not be described in detail.
以上のよ う に構成された第 1 1 の実施形態に係る製造方法 および F E Dによれば、 前述した実施形態と同様の作用効果 を得る こ とができ る。 また、 封着後の F E Dにおいて不要な 部品 となる電極の大部分を除去する こ と によ り 、 外囲器の角 部には電極先端部が残存しているが、 その領域はごく 狭い範 囲であるため、 外囲器の取扱いが簡単になる とい う利点が得 られる。 例えば、 F E Dをモニターと してキャ ビネッ ト に組 み込む際、 電極が障害と なる こ と を防止できる。 電極の基板 から突き出た部分が他の装置や作業者を傷つけ、 あるいは、 電極を介 して外囲器に負荷が作用 し外囲器が破壌する等の問 題を無く すこ と ができ る。 更には、 搬送装置などを電極に対 応でき る よ う 改造する必要がな く 、 製造コ ス トの低減が可能 となる。 電極 3 0 を切断した後、 真空外囲器から取り 外すこ と によ り 、 封着層や基板を損傷するこ とな く 、 電極を容易に 取り 外すこ と ができ る。 なお、 上記第 1 2 の実施形態では、 真空処理装置の冷却室 内で電極を切断および除去する構成と したが、 冷却室内で電 極を切断し、 外囲器をア ンロー ド室を通して外部に取り 出 し た後、 手動によ り 背面基板 1 2 から電極の切断部分を取り外 して も よい。 According to the manufacturing method and the FED according to the first embodiment configured as described above, it is possible to obtain the same operation and effects as those of the above-described embodiment. Also, by removing most of the electrodes, which are unnecessary parts in the FED after sealing, the tip of the electrode remains at the corner of the envelope, but the area is very small. The advantage of the enclosure is that it is easier to handle the envelope. For example, when the FED is installed in a cabinet as a monitor, it is possible to prevent the electrodes from becoming obstacles. The part of the electrode protruding from the substrate can hurt other equipment and workers, or eliminate the problem that the load acts on the envelope via the electrode and the envelope breaks. . Furthermore, there is no need to modify the transfer device or the like to be compatible with the electrodes, and the manufacturing cost can be reduced. By removing the electrode 30 from the vacuum envelope after cutting, the electrode can be easily removed without damaging the sealing layer or the substrate. In the first and second embodiments, the electrodes are cut and removed in the cooling chamber of the vacuum processing apparatus. However, the electrodes are cut in the cooling chamber, and the envelope is passed through the unload chamber to the outside. After the removal, the cut portion of the electrode may be manually removed from rear substrate 12.
また、 電極を真空処理装置の冷却室に装着された自動化力 ッターで切断する構成と したが、 これに限らず、 真空処理装 置と は別に電極切断除去のための装置を準備 し、 その装置で 切断を行 う構成であっても よい。 電極が薄く 容易に切断でき る場合には、 力 ッタ一等によ り オペレーターが手動で切断を 行っても よい。  In addition, the electrode was cut by an automatic power meter attached to the cooling chamber of the vacuum processing device.However, the present invention is not limited to this, and a device for cutting and removing the electrode is prepared separately from the vacuum processing device. A configuration in which cutting is performed by using may be used. If the electrode is thin and can be cut easily, the operator may manually cut it with a pliers or the like.
上述した実施形態において、 背面基板側の封着層 2 1 a に 通電する一対の電極と、 前面基板側の封着層 2 1 b に通電す る一対の電極と を別々 に設け、 2対 4個の電極を用いて封着 層に通電しても よい。 この場合、 完成後の F E D には電極先 端部に相当する導電体片 7 1 が 4個残存する構成となる。 電 極の位置や形状、 個数については上記実施形態に限られる も ので無いこ と はい う までもない。  In the above-described embodiment, a pair of electrodes that energize the sealing layer 21a on the rear substrate side and a pair of electrodes that energize the sealing layer 21b on the front substrate side are separately provided. Electric current may be applied to the sealing layer using the electrodes. In this case, the completed FED has a structure in which four conductor pieces 71 corresponding to the electrode tip end remain. It goes without saying that the position, shape and number of the electrodes are not limited to the above embodiment.
次に、 この発明の第 1 3 の実施形態に係る F E Dの製造方 法および製造装置について説明する。 図 6 4 に本実施形態に よ り 製造される F E Dを示す。 F E Dの他の構成は、 前述し た実施形態で示した F E D と同一であ り 、 同一の部分には同 一の参照符号を付してその詳細な説明を省略する。  Next, a method and an apparatus for manufacturing an FED according to a thirteenth embodiment of the present invention will be described. FIG. 64 shows an FED manufactured by the present embodiment. The other configuration of the FED is the same as that of the FED shown in the above-described embodiment, and the same portions are denoted by the same reference characters and will not be described in detail.
第 1 3 の実施形態に係る F E Dの製造方法では、 まず、 前 述した実施形態と 同様に、 蛍光体スク リ ーン 1 6 およびメ タ ルバック 1 7 が形成された前面基板 1 1 、 並びに、 電子放出 素子 2 2 が形成された背面基板 1 2 を用意する。 In the method of manufacturing the FED according to the thirteenth embodiment, first, similarly to the above-described embodiment, the phosphor screen 16 and the A front substrate 11 on which a back 17 is formed and a rear substrate 12 on which an electron-emitting device 22 is formed are prepared.
大気中で低融点ガラスによ り側壁 1 8 および支持部材 1 4 を背面基板 1 2 の内面上に封着する。 その後、 側壁 1 8 の封 着面の全周に渡ってィ ンジゥムを所定の幅および厚さ に塗布 し矩形枠状の封着層 2 1 a を形成する。 前面基板 1 1 の側壁 と対向する封着面にィ ンジゥムを所定の幅おょぴ厚さで矩形 枠状に塗布 し、 背面基板 1 1側の封着層 2 1 a に対応 した矩 形枠状の封着層 2 1 b を形成する。  The side wall 18 and the support member 14 are sealed on the inner surface of the back substrate 12 with low melting glass in the air. Thereafter, an aluminum film is applied to a predetermined width and thickness over the entire periphery of the sealing surface of the side wall 18 to form a rectangular frame-shaped sealing layer 21a. An image is applied to the sealing surface facing the side wall of the front substrate 11 in a rectangular frame shape with a predetermined width and thickness, and a rectangular frame corresponding to the sealing layer 21a on the rear substrate 11 side. To form a sealing layer 21b.
次いで、 図 6 5 に示すよ う に、 側壁 1 8 が接合されている 背面基板 1 2 に、 通電用の一対の電極 3 0 を装着する。 各電 極 3 0 は、 導電部材と して例えば 0 . 2 m m厚の銅板を折り 曲げ加工して形成されている。 各電極 3 0 は、 背面基板 1 2 の周縁部を挟持して取り 付け可能な装着部 3 2、 後述する保 持ジグによって保持される舌片部 4 4、 封着層 2 1 a に接触 可能な接触部 3 6 を一体に備えている。 各電極 3 0 は、 装着 部 3 2 によ り 背面基板 1 2 の周縁部を弾性的に挟持した状態 で背面基板に取り 付け られる。 こ の際、 各電極 3 0 の接触部 3 6 を、 側壁 1 8 に形成された封着層 2 1 a に接触させ、 電 極を封着層に対して電気的に接続する。 舌片部 4 4 は、 背面 基板 1 2 から外方に突出 している。  Next, as shown in FIG. 65, a pair of conducting electrodes 30 are mounted on the back substrate 12 to which the side walls 18 are joined. Each electrode 30 is formed by bending a copper plate having a thickness of, for example, 0.2 mm as a conductive member. Each electrode 30 is capable of contacting the mounting portion 32 that can be attached to the periphery of the back substrate 12, the tongue piece 44 held by a holding jig described later, and the sealing layer 21 a. Contact portions 36 are integrally provided. Each of the electrodes 30 is attached to the rear substrate while the peripheral portion of the rear substrate 12 is elastically held by the mounting portion 32. At this time, the contact portion 36 of each electrode 30 is brought into contact with the sealing layer 21a formed on the side wall 18 to electrically connect the electrode to the sealing layer. The tongue piece 44 protrudes outward from the rear substrate 12.
一対の電極 3 0 を背面基板 1 2 に装着した後、 背面基板 1 2、 前面基板 1 1 を所定間隔離して対向配置し、 この状態で 真空処理装置内に投入する。 こ こでは、 例えば図 9 に示 した 真空処理装置 1 0 0 を用いる。 所定間隔離して配置された上述の前面基板 1 1 および背面 基板 1 2 は、 まず、 ロー ド室 1 0 1 に投入される。 そ して、 ロー ド室 1 0 1 内の雰囲気を真空雰囲気と した後、 ベーキン グ、 電子線洗浄室 1 0 2 へ送られる。 After the pair of electrodes 30 are mounted on the rear substrate 12, the rear substrate 12 and the front substrate 11 are arranged facing each other with a predetermined distance therebetween, and are put into a vacuum processing apparatus in this state. Here, for example, the vacuum processing apparatus 100 shown in FIG. 9 is used. The above-described front substrate 11 and rear substrate 12 arranged at a predetermined distance from each other are first loaded into a load chamber 101. After the atmosphere in the loading chamber 101 is changed to a vacuum atmosphere, it is sent to a baking and electron beam cleaning chamber 102.
ベーキ ング、 電子線洗浄室 1 0 2 では、 各種部材を 3 0 0 °Cの温度に加熱し、 各基板の表面吸着ガスを放出させる。 同時にべ一キング、 電子線洗浄室 1 0 2 に取り付けられた図 示 しない電子線発生装置から電子線を、 前面基板 1 1 の蛍光 体スク リ ーン面、 および背面基板 1 2 の電子放出素子面に照 射する。 その際、 電子線発生装置外部に装着された偏向装置 によって電子線を偏向走査する こ と によ り 、 蛍光体ス ク リ ー ン面および電子放出素子面の全面をそれぞれ電子線洗浄する , 電子線洗浄を行った前面基板 1 1 および背面基板 1 2 は冷 却室 1 0 3 に送られ、 約 1 2 0 °Cの温度まで冷却された後、 ゲッター膜の蒸着室 1 0 4へと送られる。 この蒸着室 1 0 4 では、 蛍光体層の外側にゲッター膜と してバ リ ウム膜が蒸着 形成される。 バリ ウム膜は表面が酸素や炭素などで汚染され る こ と を防止する こ とができ、 活性状態を維持する こ とがで さ る。  In the baking and electron beam cleaning chamber 102, various members are heated to a temperature of 300 ° C. to release gas adsorbed on the surface of each substrate. At the same time, the electron beam from the electron beam generator (not shown) attached to the baking and electron beam cleaning chamber 102 is used to emit the phosphor screen on the front substrate 11 and the electron-emitting devices on the rear substrate 12. Illuminate the surface. At this time, the electron beam is deflected and scanned by a deflector mounted outside the electron beam generator, thereby cleaning the entire phosphor screen surface and the electron emission element surface with the electron beam, respectively. The front substrate 11 and the rear substrate 12 after line cleaning are sent to the cooling chamber 103, cooled to a temperature of about 120 ° C, and then sent to the getter film deposition chamber 104. Can be In the vapor deposition chamber 104, a barium film is formed by vapor deposition as a getter film outside the phosphor layer. The barrier film can prevent the surface from being contaminated with oxygen, carbon, and the like, and can maintain an active state.
続いて、 前面基板 1 1 および背面基板 1 2 は組立室 1 0 5 に送られる。 組立室 1 0 5 の内部には、 図 6 6および図 6 7 に示すよ う に、 両基板を保持および加熱するためのホ ッ トプ レー ト 1 3 1、 1 3 2 、 下側のホ ッ ト プレー ト 1 3 2 を上下 方向に駆動するための駆動機構 1 5 0 、 封着層に通電するた めの配線 1 3 4、 一対の電極 3 0 とそれぞれ接触する一対の コンタク ト電極 1 3 5 、 一対の電極 3 0 を挟持して保持する ための保持装置 1 3 6 、 保持装置 1 3 6 を上下および面内方 向へ駆動するための駆動機構 1 3 7 、 基板を面内方向、 つま り 、 基板表面と平行な方向、 へ移動するための複数のガイ ド ローラ 1 3 8 が設置されている。 コ ンタク ト電極 1 3 5 は下 側のホッ ト プレー ト 1 3 2 に対して取り 付け られている。 配 線 1 3 4 は組立室 1 0 5外部に設け られた電源 1 2 0 に接続 されている。 · Subsequently, the front substrate 11 and the rear substrate 12 are sent to the assembly room 105. As shown in FIGS. 66 and 67, inside the assembly chamber 105, hot plates 131, 1332, and a lower hot plate for holding and heating both substrates are provided. A drive mechanism 150 for vertically driving the plate 13 2, a wire 13 4 for energizing the sealing layer, and a pair of electrodes 30 respectively in contact with the pair of electrodes 30. Contact electrode 13 5, holding device 13 6 for holding and holding a pair of electrodes 30, driving mechanism 13 7 for driving holding device 13 6 vertically and in-plane inward, substrate A plurality of guide rollers 1338 are provided for moving the substrate in an in-plane direction, that is, a direction parallel to the substrate surface. The contact electrode 135 is attached to the lower hot plate 132. The wiring 134 is connected to a power supply 120 provided outside the assembly room 105. ·
組立室 1 0 5 に送られた前面基板 1 1 および背面基板 1 2 は、 まず、 それぞれのホッ トプレー ト 1 3 1 、 1 3 2 に対し てガイ ドローラ 1 3 8 によって機械的に位置決め される。 こ のと き、 前面基板 1 1 は搬送ジグ上で位置決めされた後、 落 下しないよ う に公知の静電吸着技術によってホッ トプレー ト 1 3 1 に対して吸着固定される。 背面基板 1 2 は下側のホッ トプ レー ト 1 3 2に設置された後、 ガイ ドローラ 1 3 8 によ つて位置決めされる。 同時に、 一対の電極 3 0の舌片部 4 4 は、 それぞれ対応する コ ンタ ク ト電極 1 3 5 に接触し、 電気 的に接続される。  The front substrate 11 and the rear substrate 12 sent to the assembly chamber 105 are first mechanically positioned with respect to the respective hot plates 13 1 and 13 2 by the guide rollers 1 38. At this time, after the front substrate 11 is positioned on the transport jig, the front substrate 11 is suction-fixed to the hot plate 1331 by a known electrostatic suction technique so as not to drop. After the rear substrate 12 is set on the lower hot plate 132, it is positioned by the guide rollers 1338. At the same time, the tongue pieces 44 of the pair of electrodes 30 contact the corresponding contact electrodes 135 and are electrically connected.
前面基板 1 1 と背面基板 1 2 と の相互位置合わせ完了後、 ホッ トプレー ト駆動機構 1 5 0 が背面基板 1 2 を前面基板 1 1 方向へ移動し、 所定の圧力で加圧する。 これによ り 、 前面 基板 1 1 および背面基板 1 2 の封着層 2 1 b 、 2 1 a 間に各 電極 3 0 の接触部 3 6 が挟み込まれ、 各電極は、 両基板の封 着層に対して同時に電気的に接触する。  After the mutual alignment between the front substrate 11 and the rear substrate 12 is completed, the hot plate drive mechanism 150 moves the rear substrate 12 toward the front substrate 11 and pressurizes it with a predetermined pressure. As a result, the contact portion 36 of each electrode 30 is sandwiched between the sealing layers 21b and 21a of the front substrate 11 and the rear substrate 12 and each electrode is bonded to the sealing layer of both substrates. Electrical contact at the same time.
こ の状態で、 電源 1 2 0 から電極 3 0 を通 して封着層 2 1 a 、 2 1 b に 1 4 O Aの直流電流を定電流モー ドで通電する, これによ り 、 イ ンジウムが加熱されて溶融し、 前面基板 1 1 および背面基板 1 2 が気密に封着される。 通電を停止 した後 図 6 7 に示すよ う に、 駆動機構 1 3 7 が保持装置 1 3 6 を電 極 3 0 の舌片部 4 4 まで移動させ、 保持装置によ り 舌片部 4 4 を挟持する。 その後、 駆動機構 1 3 7 は、 背面基板 1 2 の 表面と平行な方向に沿って、 保持装置 1 3 6 を電極 3 0 と共 に基板外方向へ移動させ、 それぞれの電極 3 0 を溶融状態の イ ンジウムおよび背面基板 1 2 から離間する。 通電停止直後 はイ ンジウムが溶融した状態にあ り 、 電極 3 0 を容易に封着 層から脱離する こ とができ る。 電極 3 0離間後、 封着層 2 1 をそのままの状態で保持する と、 溶融したィ ンジゥムが固ま り 、 外囲器 1 0 が形成される。 封着後の外囲器 1 0 は、 冷却 室 1 0 6 に送られ、 常温まで冷却されて、 アンロー ド室 1 0 7から取り 出される。 以上の工程によ り 、 F E D の真空外囲 器 1 0が完成する。 In this state, the sealing layer 2 1 is passed from the power supply 120 through the electrode 30. A DC current of 14 OA is applied to a and 21b in the constant current mode, whereby the indium is heated and melted, and the front substrate 11 and the rear substrate 12 are hermetically sealed. You. After the energization is stopped, as shown in Fig. 67, the driving mechanism 13 7 moves the holding device 13 6 to the tongue piece 4 4 of the electrode 30 and the tongue piece 4 4 Sandwich. Then, the drive mechanism 13 7 moves the holding device 13 6 along with the electrodes 30 to the outside of the substrate along a direction parallel to the surface of the rear substrate 12, and the respective electrodes 30 are melted. Away from the indium and back substrate 12. Immediately after the power supply is stopped, the indium is in a molten state, and the electrode 30 can be easily detached from the sealing layer. If the sealing layer 21 is held as it is after the separation of the electrode 30, the melted solid is solidified and the envelope 10 is formed. The envelope 10 after sealing is sent to the cooling chamber 106, cooled to room temperature, and taken out of the unloading chamber 107. Through the above steps, the vacuum envelope 10 of the FED is completed.
以上のよ う に、 第 1 3 の実施形態に係るな F E Dの製造方 法および製造装置によれば、 真空雰囲気中で前面基板 1 1 お ょぴ背面基板 1 2 の封着、 接合を行う こ とから、 ベーキング と電子線洗浄の併用によって表面吸着ガスを十分に放出させ る こ とができ、 吸着能力が優れたゲッター膜を得る こ と がで きる。 イ ンジウムを通電加熱する こ と によって封着、 接合す る こ とによ り 、 前面基板および背面基板全体を加熱する必要 がな く 、 ゲッター膜の劣化、 封着工程中に基板が割れる など の不具合をなく すこ と ができ る。 同時に、 封着時間の短縮を 図る こ と ができ、 量産性に優れた製造方法とする こ と が可能 となる。 通電後に組立室内で電極をィ ンジゥムから脱離させ る こ と によ り 、 封着後の F E Dに電極が残存する こ と が無く なる。 そのため、 例えば、 F E Dがモニター と してキャ ビネ ッ ト に組み込まれる際に障害になった り 、 電極によ り 外囲器 が破壌した り とレ、 う よ う な不具合の発生を防でき る。 これに よ り 、 封着後の外囲器の取扱いが簡単になる とい う利点があ る。 As described above, according to the method and the apparatus for manufacturing an FED according to the thirteenth embodiment, the sealing and joining of the front substrate 11 and the rear substrate 12 are performed in a vacuum atmosphere. Therefore, the surface adsorbed gas can be sufficiently released by using the baking and the electron beam cleaning in combination, and a getter film having excellent adsorption ability can be obtained. By sealing and joining the indium by energizing and heating it, it is not necessary to heat the entire front and back substrates, and the getter film may be degraded and the substrate may be cracked during the sealing process. Defects can be eliminated. At the same time, shorten the sealing time This makes it possible to achieve a manufacturing method with excellent mass productivity. By removing the electrode from the insulator in the assembly chamber after energization, the electrode does not remain on the FED after sealing. Therefore, for example, it is possible to prevent the FED from being obstructed when the FED is incorporated into a cabinet as a monitor, or to prevent the enclosure from being broken by the electrodes, and other problems. You. This has the advantage that handling of the envelope after sealing is simplified.
上記第 1 3 の実施形態では、 背面基板 1 2 に一対の電極 3 0 を取り 付けた後、 真空処理装置内に投入したが、 これに限 らず、 真空処理装置内に通電用の電極を設置 し、 基板には電 極を取り 付けずに真空処理装置内に投入する よ う な製造方法 および製造装置であっても よい。  In the above-described thirteenth embodiment, a pair of electrodes 30 was attached to the rear substrate 12 and then charged into the vacuum processing apparatus. However, the present invention is not limited to this. The manufacturing method and the manufacturing apparatus may be such that they are installed and charged into a vacuum processing apparatus without attaching an electrode to the substrate.
図 6 8 に示すよ う に、 この発明の第 1 4 の実施形態に係る F E Dの製造装置は、 両基板を固定して加熱保持するための ホッ トプレー ト 1 3 1 、 1 3 2 、 下側のホ ッ トプレー ト 1 3 2 を上下方向に駆動するための駆動機構 1 5 0、 封着層に通 電するための配線 1 3 4および電極 1 4 5 、 電極 1 4 5 を基 板の表面と平行な方向および基板表面と垂直な方向へ駆動す るための駆動機構 1 3 7 、 基板をその表面と平行な方向に移 動させ位置決めする複数のガイ ドローラ 1 3 8 を備えている 通電配線 1 3 4は組立室外部の電源 1 2 0 に接続されている 製造装置の他の構成は、 前述した第 1 3 の実施形態と 同一で あ り 、 同一の部分には同一の参照符号を付してその詳細な説 明を省略する。 第 1 4 の実施形態において、 組立室 1 0 5 に送られた前面 基板 1 1 および背面基板 1 2 は、 まず、 それぞれ対応するホ ッ トプレー ト 1 3 1 、 1 3 2 に対 してガイ ドローラ 1 3 8 に よって機械的に位置決めされる。 この際、 前面基板 1 1 は搬 送ジグ上で位置決めされた後、 落下しないよ う に公知の静電 吸着技術によってホッ トプレー ト 1 3 1 に対して吸着される 次いで、 電極駆動機構 1 3 7 およびホ ッ トプレー ト駆動機 構 1 5 0 が電極 1 4 5 および背面基板 1 2 を前面基板 1 1 方 向へ移動 し、 所望の圧力で加圧する。 これによ り 、 両基板の 封着層 2 1 a 、 2 1 b 間に各電極 1 4 5 が挟み込まれ、 各電 極は、 両基板の封着層に同時に電気的に接触する。 As shown in FIG. 68, the FED manufacturing apparatus according to the fifteenth embodiment of the present invention includes hot plates 13 1, 13 2, and a lower plate for fixing and heating and holding both substrates. The drive mechanism 150 for driving the hot plate 13 2 in the vertical direction, the wiring 13 4 for conducting electricity to the sealing layer, the electrode 14 5, and the electrode 14 5 are the surface of the substrate. Drive mechanism 13 7 for driving in a direction parallel to the substrate and in a direction perpendicular to the surface of the board, and a plurality of guide rollers 13 8 for moving and positioning the board in a direction parallel to the surface. 1 34 is connected to a power supply 120 outside the assembly room. The other configuration of the manufacturing apparatus is the same as that of the above-described 13th embodiment, and the same parts are denoted by the same reference numerals. The detailed explanation is omitted. In the 14th embodiment, the front substrate 11 and the rear substrate 12 sent to the assembling chamber 105 firstly receive guide rollers 13 1, 13 2 corresponding to the respective hot plates 13 1, 13 2. It is mechanically positioned by 1 3 8. At this time, after the front substrate 11 is positioned on the transport jig, the front substrate 11 is attracted to the hot plate 13 1 by a known electrostatic attraction technique so as not to drop. Then, the electrode driving mechanism 13 7 The hot plate driving mechanism 150 moves the electrode 144 and the rear substrate 12 in the direction of the front substrate 11 and pressurizes them at a desired pressure. As a result, each electrode 145 is sandwiched between the sealing layers 21a and 21b of both substrates, and each electrode comes into electrical contact with the sealing layer of both substrates simultaneously.
こ の状態で、 電源 1 2 0 から電極 1 4 5 を通して封着層 2 1 a 、 2 1 b に 1 4 O Aの直流電流を定電流モー ドで通電す る。 これによ り 、 イ ンジウムが加熱されて溶融し、 前面基板 1 1 および背面基板 1 2 が気密に封着される。 通電を停止 し た後、 電極駆動機構 1 3 7 が電極 1 4 5 を基板外方向へ移動 させ、 溶融状態のイ ンジウムから離間させる。 通電停止直後 はイ ンジウムが溶融した状態にあるため、 電極 1 4 5 を容易 にイ ンジウム力ゝら脱離する こ とができ る。 電極離間後、 数分 間そのままの状態で保持する と、 溶融したイ ンジウムが固ま り 、 外囲器 1 0 が形成される。 封着後の外囲器 1 0 は、 冷却 室 1 0 6 に送られ、 常温まで冷却されて、 アンロー ド室 1 0 7力 ら取り 出 される。  In this state, a DC current of 14 OA is supplied from the power supply 120 through the electrode 144 to the sealing layers 21a and 21b in the constant current mode. Thereby, the indium is heated and melted, and the front substrate 11 and the rear substrate 12 are hermetically sealed. After the energization is stopped, the electrode driving mechanism 1337 moves the electrode 144 outward from the substrate, and separates it from the molten indium. Immediately after the power is turned off, the indium is in a molten state, so that the electrode 145 can be easily separated from the indium force. If the electrodes are kept as they are for several minutes after the separation of the electrodes, the molten indium solidifies and the envelope 10 is formed. The envelope 10 after sealing is sent to a cooling chamber 106, cooled to room temperature, and taken out from the unloading chamber 107.
第 1 4 の実施形態において、 他の構成は第 1 3 の実施形態 と同一であ り 、 同一の部分の説明は省略する。 上記構成によれば、 通電のための電極 1 4 5 は組立室 1 0 5 内に設置され、 通電後に封着層から脱離される。 そのため 第 1 3 の実施形態と同様に、 封着後の F E Dに電極が残存す る こ とが無く なる。 F E D をモニターと してキャ ビネ ッ ト に 組み込む際、 電極が障害になった り 、 電極に起因 して外囲器 が破壌した り とい う よ う な問題を防ぐこ と ができ る。 In the fifteenth embodiment, other configurations are the same as those of the thirteenth embodiment, and the description of the same parts will be omitted. According to the above configuration, the electrode 145 for energization is installed in the assembly chamber 105, and is detached from the sealing layer after energization. Therefore, similarly to the thirteenth embodiment, the electrode does not remain on the FED after sealing. Incorporating the FED into the cabinet as a monitor will prevent problems such as electrode failure or envelope rupture caused by the electrodes.
第 1 4 の実施形態において、 電極を 2対、 4個 と し、 前面 基板側の封着層 と背面基板側の封着層 とへ各々 1 対ずつ接触 させて通電し、 電極を脱離後に基板同士を加圧するプロ セス であっても良い。 電極の位置や形状、 個数については上記実 施例に限られる もので無いこ と はい う までもない。  In the 14th embodiment, two pairs of electrodes are provided, and four pairs of electrodes are brought into contact with the sealing layer on the front substrate side and the sealing layer on the rear substrate side, each of which is energized. It may be a process of pressurizing the substrates. It goes without saying that the position, shape and number of electrodes are not limited to the above embodiment.
この発明は上述した種々 の実施形態に限定される こ と なく この発明の範囲内で種々変形可能である。 上述 した複数の実 施形態は、 前面基板と背面基板と で側壁を挟みこむ構成の真 空外囲器を用いたが、 側壁が前面基板あるいは背面基板と一 体化された構成と しても よ く 、 また、 側壁が前面基板と背面 基板を側面から覆う よ う に接合された構成と しても よい。 更 に、 封着材の通電加熱によ り封着される封着面は、 前面基板 と側壁と の間、 および背面基板と側壁との間の 2 面であって もよい。  The present invention is not limited to the various embodiments described above, and can be variously modified within the scope of the present invention. In the embodiments described above, the vacuum envelope having the configuration in which the side wall is sandwiched between the front substrate and the rear substrate is used, but the configuration in which the side wall is integrated with the front substrate or the rear substrate is also used. Also, the configuration may be such that the side walls are joined so as to cover the front substrate and the rear substrate from the side surfaces. Furthermore, the sealing surfaces to be sealed by energizing heating of the sealing material may be two surfaces between the front substrate and the side wall and between the rear substrate and the side wall.
上述した実施形態では、 前面基板側の封着材と背面基板側 の封着材と を接触させて通電加熱したが、 これ ら の封着材が 非接触状態で通電加熱した後、 固化するまでの間に接合させ ても良い。 蛍光体スク リ ーンの構成や、 電子放出素子の構成 は、 本発明の実施の形態に限定される ものではなく 、 他の構 成と しても よい。 また、 In the above-described embodiment, the sealing material on the front substrate and the sealing material on the rear substrate are brought into contact with each other and heated by energization.However, after these sealing materials are heated in a non-contact state and then solidified, It may be joined between. The configuration of the phosphor screen and the configuration of the electron-emitting device are not limited to the embodiment of the present invention, but may be other configurations. It may be good. Also,
封着材はィ ンジゥムに限る も のではなく 、 導電性があれば 他の材料でも よい。 一般的に金属であれば相変化する際に急 激な抵抗値変化が生じるため、 封着材料と して使用する こ と ができ る。 例えば、 封着材と して、 少なく と も I n、 S n、 P b 、 G a 、 B i のいずれかを含む金属、 合金を用いる こ と ができ る。  The sealing material is not limited to an insulator, but may be any other material having conductivity. In general, if a metal undergoes a phase change, a sharp change in resistance occurs, so that it can be used as a sealing material. For example, a metal or alloy containing at least one of In, Sn, Pb, Ga, and Bi can be used as the sealing material.
上述した F E Dは、 電極を一対あるいは 2対備えた構成と したが、 予め外囲器に取り 付け られた少な く と も 1 つの電極 を備えた構成と し、 封着工程において、 他の必要な電極を外 囲器に装着 し、 通電加熱する構成と しても良い。 また、 複数 の電極は、 電極間に位置する封着層の通電経路が互いに等し い長さ と なる よ う に配置されていれば、 あるいは、 封着層に 対して対称な位置に配設されていればよ く 、 外囲器の角部に 限らず、 他の位置に設けてもよい。  The above-mentioned FED has a configuration in which one or two pairs of electrodes are provided, but has a configuration in which at least one electrode is attached to an envelope in advance, and other necessary components are used in the sealing process. A configuration may be adopted in which the electrodes are mounted on an envelope and heated by energization. In addition, the plurality of electrodes are arranged so that the energization paths of the sealing layer located between the electrodes are equal in length to each other, or are arranged at positions symmetrical with respect to the sealing layer. As long as it is provided, it may be provided not only at the corner of the envelope but also at another position.
上述した実施形態では、 背面基板側および前面基板側の両 方にそれぞれイ ンジウムからなる封着層を設ける構成と した が、 いずれか一方のみに封着層を設けた状態で、 前面基板と 背面基板と を封着する構成と しても良い。  In the above-described embodiment, the sealing layer made of indium is provided on both the rear substrate side and the front substrate side. However, in a state where the sealing layer is provided on only one of the front substrate and the rear substrate, A configuration in which the substrate and the substrate are sealed may be employed.
真空外囲器の外形状や支持部材の構成は上記実施形態に限 定されない。 マ ト リ ッ ク ス状の光吸収層と蛍光体層を形成 し 断面が十字型の柱状支持部材を光吸収層に対して位置決め し て封着する構成と しても よい。 電子放出素子は、 p n型の冷 陰極素子あるいは表面伝導型の電子放出素子等を用いても よ い。 上記実施形態では、 真空雰囲気中で基板を接合する工程 について述べたが、 その他の雰囲気環境で実施する こ と も可 能である。 The outer shape of the vacuum envelope and the configuration of the support member are not limited to the above embodiment. A matrix-shaped light absorbing layer and a phosphor layer may be formed, and a columnar support member having a cross-shaped cross section may be positioned and sealed to the light absorbing layer. As the electron-emitting device, a pn-type cold cathode device, a surface conduction electron-emitting device, or the like may be used. In the above embodiment, the step of bonding the substrates in a vacuum atmosphere However, it is also possible to implement in other atmosphere environment.
この発明は、 F E Dに限定される こ と なく 、 S E Dや P D P等の他の画像表示装置、 あるいは、 外囲器内部が高真空と な らない画像表示装置にも適用する こ と ができ る。  The present invention is not limited to the FED, and can be applied to other image display devices such as an SED and a PDP, or to an image display device in which the inside of the envelope does not have a high vacuum.
産業上の利用可能性 Industrial applicability
以上説明 したよ う に本願発明によれば、 封着作業を安定し てかつ迅速に行 う こ と ができ、 信頼性が高く 良好な画像表示 が可能な画像表示装置、 画像表示装置の製造方法および製造 装置を提供する こ と ができ る。  As described above, according to the present invention, a sealing operation can be performed stably and quickly, and an image display device and a method of manufacturing an image display device capable of displaying a high-quality image with high reliability. And manufacturing equipment can be provided.

Claims

求 の 範 囲 Range of request
1 . 前面基板と、 この前面基板に対向配置された背面基 板と を有し、 導電性の封着材を含有した封着層によ り 上記前 面基板および背面基板の周縁部同士が封着された外囲器と、 上記封着層に電気- _的p に接触した状態で上記外囲器に取 り 付 け られ、 上記封着層に通電するための電極部材と、  1. It has a front substrate and a rear substrate opposed to the front substrate, and a peripheral layer of the front substrate and the rear substrate is sealed by a sealing layer containing a conductive sealing material. An attached envelope, an electrode member attached to the envelope in a state where the envelope is in electrical contact with the sealing layer, and energized to the sealing layer.
を備えた画像表示装置。  An image display device comprising:
2 · 上記.電極部材は、 金属板を折り 曲げて形成され、 隙 間を置いて対向 した第 1 板部および第 2板部と、 これら第 1 および第 2板部を連結した上記導通部と を備え、 上記第 1 お よび第 2板部間に上記前面基板あるいは背面基板の周縁部を 挟持して外囲器に取り 付け られている請求項 1 に記載の画像 表示装置。  The above-mentioned electrode member is formed by bending a metal plate and facing the first plate portion and the second plate portion with a gap therebetween, and the conductive portion connecting the first and second plate portions. The image display device according to claim 1, further comprising: an outer peripheral portion of the front substrate or the rear substrate sandwiched between the first and second plate portions.
3 . 上記第 1 板部は、 上記封着層に電気的に接触した接 触部を備えている請求項 2 に記載の画像表示装置。  3. The image display device according to claim 2, wherein the first plate portion includes a contact portion electrically contacting the sealing layer.
4 . 上記外囲器は、 上記背面基板および背面基板の周縁 部間に接合された枠状の側壁を備え、 上記背面基板および前 面基板の少なく と も一方が上記封着層を介して上記側壁に封 着され、 上記電極部材は、 上記第 1 および第 2板部間に、 上 記背面基板および前面基板の上記少な く と も一方の周縁部と 上記側壁と を挟持して外囲器に取り 付け られている請求項 2 に記載の画像表示装置。  4. The envelope has a frame-like side wall joined between the rear substrate and a peripheral portion of the rear substrate, and at least one of the rear substrate and the front substrate is provided with the sealing layer interposed therebetween. The electrode member is sealed to a side wall, and the electrode member sandwiches the at least one peripheral portion of the rear substrate and the front substrate and the side wall between the first and second plate portions. The image display device according to claim 2, wherein the image display device is attached to a device.
5 . 上記電極部材は、 上記封着層に電気的に接触した接 触部と、 上記接触部から上記外囲器の外側に向かって延出 し た胴体部と、 上記外囲器の外部に露出 した導通部と、 を有し 上記胴体部は、 鉛直方向に沿って上記接触部よ り も高く 位置 した流出規制部を有している請求項 1 に記載の画像表示装置,5. The electrode member includes: a contact portion electrically contacting the sealing layer; a body extending from the contact portion toward the outside of the envelope; and an outer portion of the envelope. Having an exposed conductive portion, and The image display device according to claim 1, wherein the body portion has an outflow regulating portion positioned higher than the contact portion along the vertical direction.
6 . 上記電極部材は、 上記封着層に電気的に接触 した接 触部と、 上記接触部から上記外囲器の外側に向かって延出 し た胴体部おょぴ ド レイ ン部と、 を有し、 上記胴体部は、 鉛直 方向に沿って上記接触部よ り も高く位置した流出規制部を有 し、 上記 ド レイ ン部は、 鉛直方向に沿って上記接触部よ り も 低く 位置している請求項 1 に記載の画像表示装置。 6. The electrode member comprises: a contact portion electrically contacting the sealing layer; a body portion extending from the contact portion toward the outside of the envelope; The body portion has a flow-out regulating portion positioned higher than the contact portion along the vertical direction, and the drain portion is positioned lower than the contact portion along the vertical direction. The image display device according to claim 1, wherein
7 . 上記電極部材は、 上記外囲器の外部に露出あるいは 突出 した導通部を有している請求項 5 又は 6 に記載の画像表 示装置。  7. The image display device according to claim 5, wherein the electrode member has a conductive portion that is exposed or protrudes outside the envelope.
8 . 上記電極部材は、 上記前面基板あるいは背面基板の 周縁部を挟持した装着部を有し、 上記外囲器に取り 付け られ ている請求項 5 又は 6 に記載の画像表示装置。  8. The image display device according to claim 5, wherein the electrode member has a mounting portion sandwiching a peripheral portion of the front substrate or the rear substrate, and is attached to the envelope.
9 . 上記電極部材は、 金属板を折 り 曲げて形成されてい る請求項 5 又は 6 に記載の画像表示装置。  9. The image display device according to claim 5, wherein the electrode member is formed by bending a metal plate.
1 0 . 上記電極部材の接触部は、 水平方向の延出長さが 2 m m以上の水平部分を有している請求項 5 又は 6 に記載の 画像表示装置。  10. The image display device according to claim 5, wherein the contact portion of the electrode member has a horizontal portion having a horizontal extension length of 2 mm or more.
1 1 . 上記電極部材の上記 ド レイ ン部は上記胴体部の幅 よ り も狭い幅を有している こ と を特徴とする請求項 6 に記載 の画像表示装置。  11. The image display device according to claim 6, wherein the drain portion of the electrode member has a width smaller than a width of the body portion.
1 2 . 上記電極部材の接触部およびその近傍領域に導電 性材料が充填されている こ と を特徴とする請求項 5又は 6 に 記載の画像表示装置。 12. The image display device according to claim 5, wherein a contact portion of the electrode member and a region in the vicinity thereof are filled with a conductive material.
1 3 . 上記電極部材の接触部おょぴその近傍領域、 並ぴ に、 ド レイ ン部およびその近傍領域に導電性材料が充填され ている こ と を特徴とする請求項 6 に記載の画像表示装置。 13. The image according to claim 6, wherein a conductive material is filled in a contact portion of the electrode member and a region in the vicinity thereof, as well as a drain region and a region in the vicinity thereof. Display device.
1 4 . 上記電極部材は、 上記封着層に電気的に接触した 接触部と、 上記接触部から上記外囲器の外側に向かって延出 した胴体部と、 を有し、 上記胴体部の少なく と も一部は、 上 記接触部の断面積よ り も小さい断面積を有している請求項 1 に記載の画像表示装置。  14. The electrode member includes: a contact portion electrically contacting the sealing layer; and a body extending from the contact to the outside of the envelope. 2. The image display device according to claim 1, wherein at least a part has a cross-sectional area smaller than a cross-sectional area of the contact portion.
1 5 . 上記電極部材の接触部は、 鉛直方向に沿って上記 胴体部よ り も高く位置している請求項 1 4 に記載の画像表示  15. The image display according to claim 14, wherein the contact portion of the electrode member is located higher than the body portion along the vertical direction.
6 上記電極部材は、 それぞれ上記封着層に電気的に 接触している と と もに上記封着材を流出可能な隙間を置いて 並んだ複数の接触部を有している請求項 1 に記載の画像表示 装置。 (6) The electrode member according to (1), wherein the electrode member has a plurality of contact portions which are in electrical contact with the sealing layer and are arranged with a gap through which the sealing material can flow out. Image display device as described.
1 7 . 上記電極部材は、 上記外囲器の 1 つ角部の両側で 上記封着層にそれぞれ接触した複数の接触部を有している言 求項 1 6 に記載の画像表示装置。  17. The image display device according to claim 16, wherein the electrode member has a plurality of contact portions in contact with the sealing layer on both sides of one corner of the envelope.
1 8 . 上記電極部材は、 上記外囲器の 1 つ角部の片側で 上記封着材にそれぞれ接触した複数の接触部を有している請 求項 1 6 に記載の画像表示装置。  18. The image display device according to claim 16, wherein the electrode member has a plurality of contact portions in contact with the sealing material on one side of one corner of the envelope.
1 9 . 上記電極部材は、 2つの接触部を有した Y字形状 に形成されている請求項 1 6 に記載の画像表示装置。  19. The image display device according to claim 16, wherein the electrode member is formed in a Y-shape having two contact portions.
2 0 . 上記封着層はほぼ矩形枠状に形成され、 上記電極 部材は上記封着層に対して対称に複数個設け られ、 それぞれ 上記封着層に電気的に接続されている請求項 1 に記載の画像 表示装置。 20. The sealing layer is formed in a substantially rectangular frame shape, and a plurality of the electrode members are provided symmetrically with respect to the sealing layer. The image display device according to claim 1, wherein the image display device is electrically connected to the sealing layer.
2 1 . 上記封着層はほぼ矩形枠状に形成され、 上記電極 部材は、 上記背面基板に取 り付け られ上記封着層に電気的に 接続された第 1 電極と 、 上記前面基板に取り 付け られ上記封 着層に電気的に接続された第 2電極と、 を含んでいる請求項 1 に記載の画像表示装置。  21. The sealing layer is formed in a substantially rectangular frame shape, and the electrode member is mounted on the back substrate and electrically connected to the sealing layer with the first electrode and the front substrate. The image display device according to claim 1, further comprising: a second electrode attached and electrically connected to the sealing layer.
2 2 . 上記封着材は少なく と も I n、 S n、 P b 、 G a B i のいずれかを含んでいる請求項 1 に記載の画像表示装置 22. The image display device according to claim 1, wherein the sealing material contains at least one of In, Sn, Pb, and GaBi.
2 3 . 上記電極部材は、 少な く と も C u、 A l 、 F e 、 N i 、 C o 、 B e 、 C r の何れかを含む、 単元素または合金 で形成されている請求項 1 に記載の画像表示装置。 23. The electrode member is formed of a single element or an alloy containing at least one of Cu, Al, Fe, Ni, Co, Be, and Cr. 3. The image display device according to 1.
2 4 . 上記前面基板の内面上に設けられた蛍光体層 と、 上記背面基板上に設け られ、 それぞれ上記蛍光体層を励起す る複数の電子放出素子と、 を備えている請求項 1 に記載の画 像表示装置。  24. The method according to claim 1, further comprising: a phosphor layer provided on an inner surface of the front substrate; and a plurality of electron-emitting devices provided on the rear substrate, each of which excites the phosphor layer. The image display device described in the above.
2 5 . 上記外囲器は、 上記前面基板および背面基板の周 縁部間に接合された枠状の側壁を有し、 上記封着層は、 上記 前面基板および上記背面基板の少なく と も一方と 上記側壁と 間に設け られている請求項 1 に記載の画像表示装置。  25. The envelope has a frame-shaped side wall joined between peripheral portions of the front substrate and the rear substrate, and the sealing layer is at least one of the front substrate and the rear substrate. The image display device according to claim 1, wherein the image display device is provided between the side wall and the side wall.
2 6 . 対向配置されている と と もに導電性を有する封着 材によって周縁部が接合された前面基板および背面基板を備 えた外囲器と、  26. An envelope having a front substrate and a rear substrate, both of which are arranged to face each other and whose peripheral edges are joined by a sealing material having conductivity,
それぞれ少なく と も一部が導電性材料層によ り 被覆され、 それぞれ導電性材料層を介 して上記封着材に電気的に接触し て設けられた複数の電極部材と、 At least a part of each is covered with a conductive material layer, and each of them is electrically contacted with the sealing material via the conductive material layer. A plurality of electrode members provided by
を備えた画像表示装置。  An image display device comprising:
2 7 . 上記外囲器は、 前面基板および背面基板の周縁部 間に接合された枠状の側壁を有し、 上記封着材は、 上記前面 基板および上記背面基板の少な く と も一方と上記側壁と 間に 設け られている請求項 2 6 に記載の画像表示装置。  27. The envelope has a frame-like side wall joined between the peripheral portions of the front substrate and the rear substrate, and the sealing material is at least one of the front substrate and the rear substrate. 27. The image display device according to claim 26, provided between the side wall and the side wall.
2 8 . 上記封着材は、 上記外囲器の周縁部に沿って枠状 に設けられている と と もに、 上記複数の電極部材は、 上記外 囲器の少な く と も 2つの角部に設け られている請求項 2 6 に 記載の画像表示装置。  28. The sealing material is provided in a frame shape along the peripheral edge of the envelope, and the plurality of electrode members are provided at least at two corners of the envelope. The image display device according to claim 26, wherein the image display device is provided in a unit.
2 9 . 上記各電極部材は、 少なく と も C u、 A l 、 F e N i 、 C o 、 B e 、 C r の何れかを含む、 単元素または合金 で形成されている請求項 2 6 に記載の画像表示装置。  29. The electrode member according to claim 26, wherein each of the electrode members is formed of a single element or an alloy containing at least one of Cu, Al, FeNi, Co, Be, and Cr. 3. The image display device according to 1.
3 0 . 上記封着材は、 I n、 S n、 P b 、 G a 、 B i の いずれかを含んでいる こ と を特徴とする請求項 2 6 に記載の 画像表示装置。  30. The image display device according to claim 26, wherein the sealing material contains any one of In, Sn, Pb, Ga, and Bi.
3 1 . 上記導電性材料層は、 I n、 S n、 P b 、 G a 、 31. The conductive material layer is composed of In, Sn, Pb, Ga,
B i のいずれかを含んでいる請求項 2 6 に記載の画像表示装 置。 27. The image display device according to claim 26, comprising any one of B i.
3 2. 対向配置された前面基板および背面基板と、 上記 前面基板および背面基板の少なく と も一方の内面周縁部に沿 つて配置され導電性を有する封着材を含有 した封着層 と を有 し、 上記封着層を介して前面基板および背面基板の周辺部同 士が接合された外囲器と、 この外囲器内に設け られた複数の 画素と、 を備え、 上記封着層は、 それぞれ外囲器の外方に向 かって開 口 した複数の凹部を有している特徴とする画像表示 3 2. A front substrate and a rear substrate that are arranged to face each other, and a sealing layer that contains a conductive sealing material and is disposed along at least one inner peripheral edge of the front substrate and the rear substrate. And an envelope in which peripheral portions of the front substrate and the rear substrate are joined via the sealing layer, and a plurality of pixels provided in the envelope. , Each facing the outside of the envelope Image display characterized by having a plurality of recesses that have been opened
3 3 . 上記複数の凹部は、 上記外囲器の 2つあるいは 4 つの角部に位置している請求項 3 2 に記載の画像表示装置。 33. The image display device according to claim 32, wherein the plurality of recesses are located at two or four corners of the envelope.
3 4 . 対向配置された前面基板および背面基板と、 上記 前面基板および背面基板の少な く と も一方の内面周縁部に沿 つて配置され導電性を有する封着材を含有 した封着層 と を有 し、 上記封着層を介 して前面基板および背面基板の周辺部同 士が接合された外囲器と、 この外囲器内に設けられた複数の 画素と、 を備え、  34. A front substrate and a rear substrate that are arranged to face each other, and a sealing layer containing a conductive sealing material that is disposed along at least one inner peripheral edge of the front substrate and the rear substrate. An envelope in which peripheral portions of the front substrate and the rear substrate are joined together via the sealing layer, and a plurality of pixels provided in the envelope.
上記外囲器は、 それぞれ上記封着層に接合された接触部を 含み上記外囲器の周縁部に位置した複数の導電体片 (注 : 電 極と の差別化が難しい) を有している画像表示装置。  The envelope includes a plurality of conductor pieces (note: it is difficult to differentiate the electrode from the electrode) and includes a contact portion bonded to the sealing layer and is located at a peripheral portion of the envelope. Image display device.
3 5 . 上記導電体片は、 上記外囲器の角部に配置さ えて いる請求項 3 4 に記載の画像表示装置。  35. The image display device according to claim 34, wherein the conductor pieces are arranged at corners of the envelope.
3 6 . 対向配置されている と と も に周辺部同士が接合さ れた前面基板および背面基板を有する外囲器を備えた画像表 示装置の製造方法であって、  36. A method for manufacturing an image display device including an envelope having a front substrate and a rear substrate, both of which are disposed to face each other and whose peripheral portions are joined together,
上記前面基板および背面基板の少な く と も一方の周縁部に 導電性を有した封着材を配置して封着層を形成し、  Forming a sealing layer by disposing a conductive sealing material on at least one peripheral portion of the front substrate and the rear substrate;
上記封着層の形成された上記前面基板および背面基板の上 記少なく と も一方に、 電極部材を取り 付けて上記封着層に電 気的に接続し、  An electrode member is attached to at least one of the front substrate and the rear substrate on which the sealing layer is formed, and electrically connected to the sealing layer.
上記前面基板および背面基板を対向配置 した状態で上記電 極部材を通 して上記封着層に通電し、 上記封着層を加熱溶融 させて上記前面基板および背面基板の周辺部同士を接合する 画像表示装置の製造方法。 With the front substrate and the rear substrate facing each other, electricity is supplied to the sealing layer through the electrode member, and the sealing layer is heated and melted. And bonding the peripheral portions of the front substrate and the rear substrate to each other.
3 7 . 対向配置されている と と も に周辺部同士が接合さ れた前面基板おょぴ背面基板を有する外囲器を備えた画像表 示装置の製造方法であって、  37. A method for manufacturing an image display device including an envelope having a front substrate and a rear substrate which are arranged opposite to each other and whose peripheral portions are joined together,
上記前面基板および背面基板の周縁部に、 導電性を有した 封着材を配置して封着層をそれぞれ形成し、  At the peripheral portions of the front substrate and the rear substrate, a sealing material having conductivity is arranged to form sealing layers, respectively.
上記前面基板および背面基板の上記少なく と も一方に電極 部材を取り 付け上記少なく と も一方に形成された上記封着層 に電気的に接続し、 .  An electrode member is attached to at least one of the front substrate and the back substrate, and is electrically connected to the sealing layer formed on at least one of the at least one substrate;
上記前面基板および背面基板を対向配置し、 上記電極部材 を上記前面基板および背面基板の他方に形成された封着層に 電気的に接触させた後、 上記電極部材を通 して上記封着層に 通電し、 上記封着層を加熱溶融させて上記前面基板および背 面基板の周辺部同士を接合する画像表示装置の製造方法。  After the front substrate and the rear substrate are arranged to face each other, the electrode member is brought into electrical contact with a sealing layer formed on the other of the front substrate and the rear substrate, and then the sealing layer is passed through the electrode member. And a method of manufacturing an image display device in which the sealing layer is heated and melted to join peripheral portions of the front substrate and the rear substrate.
3 8 . 対向配置されている と と も に周辺部同士が接合さ れた前面基板および背面基板を有する外囲器を備えた画像表 示装置の製造方法であって、  38. A method for manufacturing an image display device comprising an envelope having a front substrate and a rear substrate which are arranged opposite to each other and whose peripheral portions are joined together,
上記前面基板および背面基板の少な く と も一方の周縁部に 導電性を有した封着材を配置して封着層を形成し、  Forming a sealing layer by disposing a conductive sealing material on at least one peripheral portion of the front substrate and the rear substrate;
接触部と、 上記接触部から延出 している と と もに鉛直方向 に沿って上記接触部よ り も高く 位置した流出規制部を有した 胴体部と、 導通部と、 を具備した電極部材を用意 し、  An electrode member comprising: a contact portion; a body portion having a flow-out restricting portion extending from the contact portion and being vertically higher than the contact portion; and a conducting portion. Prepare
上記電極部材を上記胴体部が上記封着層から外側に延出 し 上記導通部が外部に露出あるいは突出 した状態で、 上記封着 層の形成された上記前面基板および背面基板の上記少な く と も一方に取り 付け、 上記接触部を上記封着層に電気的に接触 させ、 The electrode member is sealed with the body portion extending outward from the sealing layer and the conductive portion being exposed or projected to the outside. Attaching to the at least one of the front substrate and the rear substrate on which the layer is formed, bringing the contact portion into electrical contact with the sealing layer,
上記前面基板および背面基板を対向配置した状態で上記電 極部材を通 して上記封着層に通電し、 上記封着層を加熱溶融 させて上記前面基板および背面基板の周辺部同士を接合する 画像表示装置の製造方法。  In a state where the front substrate and the rear substrate are opposed to each other, electricity is supplied to the sealing layer through the electrode member, and the sealing layer is heated and melted to join the peripheral portions of the front substrate and the rear substrate. A method for manufacturing an image display device.
3 9 . 対向配置されている と と もに周辺部同士が接合さ れた前面基板および背面基板を有する外囲器を備えた画像表 示装置の製造方法であって、  39. A method for manufacturing an image display device comprising an envelope having a front substrate and a rear substrate which are arranged opposite to each other and whose peripheral portions are joined together,
上記前面基板および背面基板の少な く と も一方の周縁部に 導電性を有した封着材を配置して封着層を形成し、  Forming a sealing layer by disposing a conductive sealing material on at least one peripheral portion of the front substrate and the rear substrate;
接触部と、 上記接触部から延出 している と と も に鉛直方向 に沿って上記接触部よ り も高く 位置した流出規制部を有した 胴体部と、 上記接触部から延出 している と と もに鉛直方向に 沿って上記接触部よ り も低く 位置した ド レイ ン部と、 を具備 した電極部材を用意し、  A body portion having a contact portion, an outflow regulation portion extending vertically from the contact portion, and being higher than the contact portion in the vertical direction, and extending from the contact portion. And an electrode member provided with a drain portion located lower than the contact portion along the vertical direction, and
上記電極部材を上記胴体部および ド レイ ン部が上記封着層 から外側に延出 し上記導通部が外部に露出あるいは突出 した 状態で、 上記封着層の形成された上記前面基板および背面基 板の上記少な く と も一方に取り 付け、 上記接触部を上記封着 層に電気的に接触させ、  With the body member and the drain portion extending outward from the sealing layer and the conductive portions exposed or protruding to the outside, the electrode substrate is provided with the front substrate and the back substrate on which the sealing layer is formed. At least one of the plates is attached to the plate, and the contact portion is brought into electrical contact with the sealing layer,
上記前面基板および背面基板を対向配置した状態で上記電 極部材を通 して上記封着層に通電して上記封着層を加熱溶融 させ、 上記前面基板および背面基板を互いに接近する方向に 加圧して上記前面基板および背面基板の周辺部同士を上記溶 融した封着材によ り 接合する と と もに、 溶融した余剰の封着 材を上記電極部材の ド レイ ン部から外部へ流出させる画像表 示装置の製造方法。 In a state where the front substrate and the rear substrate are arranged to face each other, electricity is supplied to the sealing layer through the electrode member to heat and melt the sealing layer, and the front substrate and the rear substrate are brought closer to each other. The peripheral portions of the front substrate and the rear substrate are joined together with the melted sealing material by applying pressure, and excess molten sealing material is discharged from the drain portion of the electrode member to the outside. A method for manufacturing an image display device to be leaked.
4 0 . 対向配置されている と と もに周辺部同士が接合さ れた前面基板おょぴ背面基板を有する外囲器を備えた画像表 示装置の製造方法であって、  40. A method for manufacturing an image display device including an envelope having a front substrate and a rear substrate, both of which are opposed to each other and whose peripheral portions are joined together,
上記前面基板および背面基板の周縁部間に、 導電性を有し た封着材を配置して封着層を形成 し、  A sealing layer having conductivity is arranged between the peripheral portions of the front substrate and the rear substrate to form a sealing layer,
封着材を流出可能な隙間を置いて並んだ複数の接触部を有 した電極部材を用意し、  An electrode member having a plurality of contact portions arranged with a gap allowing the sealing material to flow out is prepared,
上記電極部材の複数の接触部をそれぞれ上記封着層に電気 的に接触させ、  A plurality of contact portions of the electrode member are brought into electrical contact with the sealing layer, respectively;
上記前面基板および背面基板を互いに接近する方向に加圧 した状態で、 上記電極部材を介 して上記封着層に通電 し封着 材を加熱溶融させ、 上記前面基板および背面基板の周辺部同 士を上記溶融した封着材によ り 接合する と と もに、 溶融した 余剰の封着材を上記電極部材の接触部間の隙間から外部に流 出させる画像表示装置の製造方法。  While the front substrate and the rear substrate are pressed in a direction approaching each other, electricity is supplied to the sealing layer through the electrode member to heat and melt the sealing material. A method of manufacturing an image display device, comprising joining an adhesive by the above-mentioned molten sealing material, and flowing out excess molten sealing material to the outside through a gap between contact portions of the electrode members.
4 1 . 対向配置されている と と もに周辺部同士が接合さ れた前面基板おょぴ背面基板を有する外囲器を備えた画像表 示装置の製造方法であって、  41. A method for manufacturing an image display device including an envelope having a front substrate and a rear substrate, which are arranged facing each other and whose peripheral portions are joined together,
上記前面基板および背面基板の周縁部間に、 導電性を有し た封着材を配置 して封着層を形成 し、  A sealing layer having conductivity is disposed between the peripheral portions of the front substrate and the rear substrate to form a sealing layer,
それぞれ少な く と も一部が導電性材料層によって被覆され た複数の電極部材を用意し、 At least a part of each is covered with a conductive material layer. Prepare multiple electrode members
上記電極部材を上記導電性材料層を介して上記封着層に電 気的に接触させ、  Electrically contacting the electrode member with the sealing layer via the conductive material layer,
上記電極部材を介 して上記封着層に通電して封着材を融解 させ、 前面基板および背面基板の周辺部同士を接合する画像 表示装置の製造方法。  A method for producing an image display device, comprising: applying an electric current to the sealing layer via the electrode member to melt the sealing material; and joining peripheral portions of the front substrate and the rear substrate.
4 2 . 超音波を印加しなが ら導電性材料を上記電極部材 に供給し、 上記導電性材料層を形成する請求項 4 1 に記載の 画像表示装置の製造方法。  42. The method according to claim 41, wherein a conductive material is supplied to the electrode member while applying ultrasonic waves to form the conductive material layer.
4 3 . 上記前面基板および背面基板の周縁部間に枠状の 側壁を配置し、 上記前面基板および背面基板の少なく と も一 方と上記側壁と の間に上記封着層を設け、 こ の封着層に上記 電極部材を介して通電し封着材を融解する請求項 3 6 ないし 4 1 のいずれか 1 項に記載の画像表示装置の製造方法。  43. A frame-shaped side wall is arranged between the peripheral portions of the front substrate and the rear substrate, and the sealing layer is provided between at least one of the front substrate and the rear substrate and the side wall. The method for manufacturing an image display device according to any one of claims 36 to 41, wherein a current is applied to the sealing layer through the electrode member to melt the sealing material.
4 4 . 上記封着材と して、 少なく と も I n、 S n、 P b G a 、 B i のいずれかを含む金属を用いる請求項 3 6 ない し 4 1 のいずれか 1 項に記載の画像表示装置の製造方法。  Claim 4. A metal containing at least one of In, Sn, PbGa, and Bi is used as the sealing material, as described in any one of claims 36 to 41. Manufacturing method of an image display device.
4 5 . 上記封着材に通電する直前の上記前面基板おょぴ 背面基板の温度を、 上記封着材の融点よ り も低く 設定する請 求項 3 6 ない し 4 1 のいずれか 1 項に記載の画像表示装置の 製造方法。  4 5. Claims for setting the temperature of the front substrate and the rear substrate immediately before energizing the sealing material to be lower than the melting point of the sealing material 3 6 or 4 1 5. The method for manufacturing an image display device according to item 1.
4 6 . 上記外囲器を真空雰囲気中に維持した状態で上記 封着層に通電する請求項 3 6 ない し 4 1 のいずれか 1 項に記 載の画像表示装置の製造方法。  46. The method for manufacturing an image display device according to any one of claims 36 to 41, wherein electricity is supplied to the sealing layer while the envelope is maintained in a vacuum atmosphere.
4 7 . 真空雰囲気中で上記前面基板および背面基板を加 熱して脱ガス させた後、 真空雰囲気を維持した状態で上記封 着材の融点よ り も低い温度まで冷却し、 4 7. Add the front and rear substrates in a vacuum After degassing by heating, it is cooled to a temperature lower than the melting point of the sealing material while maintaining the vacuum atmosphere,
上記封着層に通電する こ と によ り 上記封着材のみを加熱溶 融し、  By energizing the sealing layer, only the sealing material is heated and melted.
上記封着層への通電を停止 し、 上記封着層の熱を上記前面 基板および背面基板に伝導する こ とによ り 封着層を冷却固化 させる請求項 3 6 ない し 4 1 のいずれか 1 項に画像表示装置 の製造方法。  The method according to any one of claims 36 to 41, wherein the energization of the sealing layer is stopped, and the heat of the sealing layer is conducted to the front substrate and the rear substrate to cool and solidify the sealing layer. Section 1 describes a method for manufacturing an image display device.
4 8 . 対向配置されている と と も に周辺部同士が接合さ れた前面基板および背面基板を有した外囲器と、 上記外囲器 内に設け られた複数の画素と を備えた画像表示装置の製造方 法であって、  48. An image comprising: an envelope having a front substrate and a rear substrate, which are arranged facing each other and whose peripheral portions are joined together, and a plurality of pixels provided in the envelope. A method of manufacturing a display device,
上記前面基板おょぴ背面基板の少な く と も一方の周辺部に 導電性を有した封着材を配置して封着層を形成し、  Forming a sealing layer by arranging a conductive sealing material on at least one peripheral portion of the front substrate and the rear substrate;
上記封着材を挟んで上記前面基板と背面基板と を対向 して 配置し、  The front substrate and the rear substrate are arranged so as to face each other with the sealing material interposed therebetween,
上記対向配置された前面基板および背面基板の少な く と も 一方を上記前面基板および背面基板が互いに接近する方向に 加圧し、 上記封着材の少な く と も一部を上記前面基板おょぴ 背面基板の周辺部間に接触 した状態で挟持 し、  At least one of the front substrate and the rear substrate arranged opposite to each other is pressed in a direction in which the front substrate and the rear substrate approach each other, and at least a part of the sealing material is used as the front substrate. Hold it in contact with the peripheral part of the rear substrate,
上記加圧した状態で、 電極部材によ り 上記封着層に通電し て封着材を加熱溶融する画像表示装置の製造方法。  A method for manufacturing an image display device, wherein an electric current is applied to the sealing layer by an electrode member in the pressurized state to heat and melt the sealing material.
4 9 . 上記前面基板の周辺部および背面基板の周辺部に 導電性を有した封着材をそれぞれ配置 して封着層を形成し、 上記封着層同士の少な く と も一部が互いに接触した状態で、 これらの封着層に通電する請求項 4 8 に記載の画像表示装置 の製造方法。 49. A sealing layer having conductivity is disposed around the periphery of the front substrate and the periphery of the back substrate to form a sealing layer, and at least a part of the sealing layers is at least partially connected to each other. While in contact, The method for producing an image display device according to claim 48, wherein electricity is supplied to these sealing layers.
5 0 . 対向配置されている と と もに周辺部同士が側壁を 挟んで接合された前面基板および背面基板を有した外囲器と 上記外囲器内に設け られた複数の画素と を備えた画像表示装 置の製造方法であって、  50. An envelope having a front substrate and a rear substrate, which are arranged to face each other and whose peripheral portions are joined to each other with a side wall interposed therebetween, and a plurality of pixels provided in the envelope. A method for manufacturing an image display device,
上記前面基板および背面基板の少な く と も一方の基板の周 辺部と、 上記側壁と 、 の少なく と も一方に、 導電性を有した 封着材を配置 し、  A sealing material having conductivity is arranged on at least one of the periphery of the front substrate and the back substrate, and the at least one of the side walls, and
上記封着材および側壁を挟んで上記前面基板と背面基板と を対向して配置し、  The front substrate and the rear substrate are arranged facing each other with the sealing material and the side wall interposed therebetween,
上記対向配置された前面基板および背面基板の少な く と も 一方を上記前面基板おょぴ背面基板が互いに接近する方向に 加圧 し、 上記封着材の少なく と も一部を上記前面基板および 背面基板の少なく と も一方の周辺部と上記側壁と の間に接触 した状態で挟持し、  At least one of the front substrate and the rear substrate disposed opposite to each other is pressed in a direction in which the front substrate and the rear substrate approach each other, and at least a part of the sealing material is used as the front substrate and the rear substrate. Sandwiching at least one peripheral portion of the rear substrate in contact with the side wall,
上記加圧した状態で、 電極部材によ り 上記封着材に通電し て封着材を加熱溶融する画像表示装置の製造方法。  A method for manufacturing an image display device, wherein an electric current is applied to the sealing material by an electrode member in the pressurized state to heat and melt the sealing material.
5 1 . 上記前面基板および背面基板の少なく と も一方の 基板の周辺部と、 上記側壁と に、 導電性を有した封着材をそ れぞれ配置して封着層を形成し、 上記封着層同士の少な く と も一部が互いに接触 した状態で、 これらの封着材に通電する 請求項 5 0 に記載の画像表示装置の製造方法。  51. A sealing layer having conductivity is formed by disposing sealing materials having conductivity on at least a peripheral portion of at least one of the front substrate and the rear substrate and the side wall. The method for manufacturing an image display device according to claim 50, wherein current is applied to these sealing materials in a state where at least a part of the sealing layers is in contact with each other.
5 2 . 上記封着層同士の間に上記電極部材を挟み込み、 この電極部材を通して封着材に通電する請求項 4 8又は 5 1 に記載の画像表示装置の製造方法。 52. The electrode according to claim 48 or 51, wherein the electrode member is sandwiched between the sealing layers, and a current is applied to the sealing material through the electrode member. 3. The method for manufacturing an image display device according to item 1.
5 3 . 対向配置されている と と もに周辺部同士が接合さ れた前面基板および背面基板を有した外囲器と、 上記外囲器 内に設け られた複数の画素と を備えた画像表示装置の製造方 法において、  5 3. An image including an envelope having a front substrate and a rear substrate that are arranged facing each other and whose peripheral portions are joined together, and a plurality of pixels provided in the envelope. In the manufacturing method of the display device,
上記前面基板および背面基板の周辺部に、 導電性を有 した 封着材をそれぞれ配置 して封着層を形成し、  A sealing layer having conductivity is disposed around the front substrate and the rear substrate to form a sealing layer.
上記封着層を挟んで上記前面基板と背面基板と を対向 して 配置し、  The front substrate and the rear substrate are disposed so as to face each other with the sealing layer interposed therebetween,
上記対向配置された前面基板および背面基板に設け られた 封着層の少なく と も一部を互いに溶着させ、  At least a part of the sealing layers provided on the front substrate and the rear substrate disposed opposite to each other are welded to each other,
上記溶着部に電極部材を接触させ、 この電極部材を介 して 上記両方の封着層に通電し上記封着材を加熱溶融する画像表 示装置の製造方法。  A method for producing an image display device, wherein an electrode member is brought into contact with the welding portion, and both the sealing layers are energized through the electrode member to heat and melt the sealing material.
5 4 . 対向配置されている と と もに周辺部同士が接合さ れた前面基板および背面基板を有する外囲器を備えた画像表 示装置の製造方法であって、  54. A method for manufacturing an image display device including an envelope having a front substrate and a rear substrate, which are arranged opposite to each other and whose peripheral portions are joined together,
上記前面基板および背面基板の少なく と も一方の周縁部に 導電性を有した封着材を配置して封着層を形成し、  Forming a sealing layer by disposing a conductive sealing material on at least one peripheral portion of the front substrate and the rear substrate;
上記前面基板および背面基板の少なく と も一方に装着可能 な装着部と 、 上記封着層に接触可能な接触部と、 を具備 した 電極部材を用意し、  An electrode member comprising: a mounting portion that can be mounted on at least one of the front substrate and the rear substrate; and a contact portion that can be in contact with the sealing layer.
上記接触部が上記封着層に対し隙間を置いた状態で上記電 極を上記前面基板および背面基板の上記少なく と も一方に取 り 付け、 上記接触部と上記封着層 との隙間を維持した状態で、 上記 前面基板および背面基板を対向配置し、 The electrode is attached to at least one of the front substrate and the rear substrate in a state where the contact portion has a gap with respect to the sealing layer, While maintaining a gap between the contact portion and the sealing layer, the front substrate and the rear substrate are arranged to face each other,
上記対向配置された前面基板おょぴ背面基板を互いに接近 する方向に加圧 し、 上記封着層を介して上記前面基板および 背面基板を接触させる と と もに、 上記電極部材の接触部を上 記封着層に電気的に接触させ、  The front substrate and the rear substrate arranged opposite to each other are pressed in a direction to approach each other, and the front substrate and the rear substrate are brought into contact with each other via the sealing layer. Electrical contact with the sealing layer,
上記加圧 した状態で、 上記電極部材を通 して上記封着層に 通電 し、 上記封着層を加熱溶融させて上記前面基板および背 面基板の周辺部同士を接合する画像表示装置の製造方法。  In the pressurized state, an electric current is applied to the sealing layer through the electrode member, and the sealing layer is heated and melted to join the peripheral portions of the front substrate and the rear substrate to each other. Method.
5 5 . 対向配置されている と と も に周辺部同士が接合さ れた前面基板および背面基板を有する外囲器を備えた画像表 示装置の製造方法であって、  55. A method for manufacturing an image display device comprising an envelope having a front substrate and a rear substrate, which are arranged opposite to each other and whose peripheral portions are joined together,
上記前面基板および背面基板の少な く と も一方の周縁部に 導電性を有した封着材を配置して封着層を形成し、  Forming a sealing layer by disposing a conductive sealing material on at least one peripheral portion of the front substrate and the rear substrate;
上記前面基板および背面基板の少な く と も一方に装着可能 な装着部と 、 上記封着層に接触可能な接触部と、 を具備 した 電極部材を用意し、  An electrode member comprising: a mounting portion that can be mounted on at least one of the front substrate and the rear substrate; and a contact portion that can be in contact with the sealing layer.
上記接触部が上記封着層に対し隙間を置いた状態で上記電 極部材を上記前面基板および背面基板に取り 付け、  Attaching the electrode member to the front substrate and the rear substrate with the contact portion leaving a gap with respect to the sealing layer;
上記接触部と上記封着層 との隙間を維持した状態で、 上記 前面基板および背面基板を対向配置し、  While maintaining a gap between the contact portion and the sealing layer, the front substrate and the rear substrate are arranged to face each other,
上記対向配置された前面基板および背面基板を互いに接近 する方向に移動 し、 上記前面基板に取 り 付けた電極部材の接 触部を上記背面基板の封着層に電気的に接触させ、 かつ上記 背面基板に取り 付けた電極部材の接触部を上記前面基板の封 着層に電気的に接触させ Moving the front substrate and the rear substrate disposed opposite to each other in a direction approaching each other, electrically contacting a contact portion of an electrode member attached to the front substrate with a sealing layer of the rear substrate; The contact part of the electrode member attached to the rear substrate is sealed Electrical contact with the coating
上記電極部材を上記封着層に電気的に接触した状態で、 上 記電極部材を通 して上記封着層に通電し、 上記封着層を加熱 溶融させ、 上記対向配置された前面基板および背面基板を互 いに接近する方向に加圧して上記前面基板および背面基板の 周辺部同士を接合する画像表示装置の製造方法。  In a state where the electrode member is in electrical contact with the sealing layer, a current is applied to the sealing layer through the electrode member to heat and melt the sealing layer, A method of manufacturing an image display device, wherein the peripheral portions of the front substrate and the rear substrate are joined by pressing the rear substrates in a direction approaching each other.
5 6 . 対向配置されている と と もに周辺部同士が接合さ れた前面基板および背面基板を有する外囲器を備えた画像表 示装置の製造方法であって、  56. A method for manufacturing an image display device, comprising: an envelope having a front substrate and a rear substrate, both of which are arranged opposite to each other and whose peripheral portions are joined together,
上記前面基板おょぴ背面基板の少な く と も一方の周縁部に 導電性を有 した封着材を配置して封着層を形成し、  Forming a sealing layer by disposing a conductive sealing material on at least one peripheral portion of the front substrate and the rear substrate;
上記前面基板および背面基板の少な く と も一方に装着可能 な装着部と 、 上記封着層に接触可能な接触部と、 を具備した 電極部材を用意し、  An electrode member comprising: a mounting portion attachable to at least one of the front substrate and the rear substrate; and a contact portion capable of contacting the sealing layer.
上記接触部が上記封着層に対し隙間を置いた状態で上記電 極部材を上記前面基板または背面基板の一方に取り付け、 上記接触部と上記封着層 との隙間を維持した状態で、 上記 前面基板おょぴ背面基板を対向配置し、  The electrode member is attached to one of the front substrate and the rear substrate in a state where the contact portion has a gap with respect to the sealing layer, and the gap is maintained between the contact portion and the sealing layer. The front substrate and the rear substrate are arranged facing each other,
上記対向配置された前面基板および背面基板を互いに接近 する方向に移動 し、  The front substrate and the rear substrate arranged opposite to each other are moved in a direction approaching each other,
上記電極部材の接触部を上記封着層に電気的に接触させ、 上記電極部材を上記封着層に電気的に接触した状態で、 上 記電極部材を通 して上記封着層に通電し、 上記封着層を加熱 溶融させ、 上記対向配置された前面基板および背面基板を互 いに接近する方向に加圧して上記前面基板おょぴ背面基板の 周辺部同士を接合する画像表示装置の製造方法。 The contact portion of the electrode member is brought into electrical contact with the sealing layer, and in a state where the electrode member is in electrical contact with the sealing layer, a current is applied to the sealing layer through the electrode member. Then, the sealing layer is heated and melted, and the front substrate and the rear substrate arranged opposite to each other are pressed in a direction approaching each other, so that the front substrate and the rear substrate are pressed. A method for manufacturing an image display device in which peripheral portions are joined to each other.
5 7 . 上記前面基板および背面基板を加熱して前面基板 および背面基板から吸着ガスを放出させた後、 上記対向配置 された前面基板および背面基板を互いに接近する方向に加圧 する請求項 5 4 に記載の画像表示装置の製造方法。  57. After heating the front substrate and the rear substrate to release the adsorbed gas from the front substrate and the rear substrate, pressurize the opposed front and rear substrates in a direction approaching each other. 3. The method for manufacturing an image display device according to item 1.
5 8 . 上記前面基板および背面基板の少なく と も一方に 電子線を照射して電子線洗浄した後、 上記対向配置された前 面基板および背面基板を互いに接近する方向に加圧する特徴 とする請求項 5 4 に記載の画像表示装置の製造方法。  58. At least one of the front substrate and the rear substrate is irradiated with an electron beam to clean the electron beam, and then the front substrate and the rear substrate disposed opposite to each other are pressed in a direction to approach each other. Item 54. The method for manufacturing an image display device according to Item 54.
5 9 . 上記吸着ガスを放出 させた後、 上記前面基板の内 面にゲッタ膜を形成 し、 その後、 上記対向配置された前面基 板おょぴ背面基板を互いに接近する方向に加圧する請求項 5 7 に記載の画像表示装置の製造方法。  59. After releasing the adsorbed gas, a getter film is formed on the inner surface of the front substrate, and then the opposed front substrate and rear substrate are pressurized in a direction approaching each other. 57. The method for manufacturing an image display device according to item 7.
6 0 . 上記電極部材の接触部に予め I n あるいは I n を 含む合金を塗布する請求項 5 4 に記載の画像表示装置の製造 方法。  60. The method for manufacturing an image display device according to claim 54, wherein In or an alloy containing In is applied to a contact portion of the electrode member in advance.
6 1 . 上記電極部材の装着部は、 上記上記前面基板およ び背面基板の少なく と も一方の基板の周縁部を挟持可能なク リ ップ状の挟持部を有している請求項 5 4 に記載の画像表示 装置の製造方法。  61. The mounting portion of the electrode member has a clip-like holding portion capable of holding a peripheral portion of at least one of the front substrate and the back substrate. 4. The method for manufacturing the image display device according to 4.
6 2 . 上記電極部材は、 上記装着部から延出 した胴部と 導通部と を有し、 上記接触部は上記胴部から延出 している請 求項 5 4 に記載の画像表示装置の製造方法。  62. The image display device according to claim 54, wherein the electrode member has a trunk extending from the mounting portion and a conductive portion, and the contact portion extends from the trunk. Production method.
6 3 . 上記封着材は、 I n、 S n、 P b 、 G a 、 B i の いずれかを含む金属である請求項 4 8 ない し 6 2 のいずれか 1 項に記載の画像表示装置の製造方法。 6 3. The sealing material is a metal containing any of In, Sn, Pb, Ga, and Bi. 2. The method for manufacturing an image display device according to item 1.
6 4 . 真空雰囲気中で上記封着層を通電加熱する請求項 4 8 ないし 6 2 のいずれか 1項に記載の画像表示装置の製造 方法。  64. The method for manufacturing an image display device according to any one of claims 48 to 62, wherein the sealing layer is electrically heated in a vacuum atmosphere.
6 5 . 対向配置されている と と もに封着層を介して周辺 部同士が接合された前面基板および背面基板を有する外囲器 と、 上記外囲器内に設けられた複数の画素と、 を備えた画像 表示装置の製造方法であって、  65. An envelope having a front substrate and a rear substrate, which are arranged to face each other and whose peripheral portions are joined to each other via a sealing layer, and a plurality of pixels provided in the envelope. A method for manufacturing an image display device comprising:
上記前面基板および背面基板の少なく と も一方の内面周縁 部に沿って、 導電性を有した封着材を配置して封着層を形成 し、  Forming a sealing layer by arranging a conductive sealing material along at least one inner peripheral edge of the front substrate and the rear substrate;
上記前面基板および背面基板を対向配置した状態で、 上記 封着層に電気的に接触した電極部材を介 して上記封着層に通 電し、 上記封着層を加熱溶融させて上記前面基板および背面 基板の周辺部同士を上記溶融した封着材によ り 接合し、  In a state in which the front substrate and the rear substrate are opposed to each other, electricity is passed to the sealing layer via an electrode member that is in electrical contact with the sealing layer, and the sealing layer is heated and melted to form the front substrate. And the peripheral portions of the back substrate are joined with the above-mentioned molten sealing material,
接合後に上記電極部材を除去する画像表示装置の製造方法 Method for manufacturing image display device for removing the electrode member after bonding
6 6 . 超音波切断によ り 上記電極部材と封着層と の界面 を切断し上記電極部材を除去する請求項 6 5 に記載の画像表 示装置の製造方法。 66. The method for manufacturing an image display device according to claim 65, wherein an interface between the electrode member and the sealing layer is cut by ultrasonic cutting to remove the electrode member.
6 7 . 上記電極部材に超音波を印加 して上記電極部材と 封着層との界面を超音波切断し、 上記電極部材を除去する請 求項 6 6 に記載の画像表示装置の製造方法。  67. The method for manufacturing an image display device according to claim 66, wherein ultrasonic waves are applied to the electrode member to ultrasonically cut an interface between the electrode member and the sealing layer to remove the electrode member.
6 8 . 上記前面基板および背面基板を接合した後、 上記 電極部材の周辺部で上記封着層を加熱して軟化または溶融さ せた状態で、 上記電極部材を除去する請求項 6 5 に記載の画 像表示装置の製造方法。 68. The method according to claim 65, wherein after bonding the front substrate and the back substrate, the electrode member is removed in a state where the sealing layer is heated and softened or melted around the electrode member. Painting A method for manufacturing an image display device.
6 9 . 対向配置されている と と もに周辺部同士が接合さ れた前面基板および背面基板を有する外囲器と、 上記外囲器 內に設け られた複数の画素と を備えた画像表示装置の製造方 法であって、  6 9. An image display comprising: an envelope having a front substrate and a rear substrate which are arranged opposite to each other and whose peripheral portions are joined together, and a plurality of pixels provided in the envelope 內. A method of manufacturing the device,
上記前面基板および背面基板の少なく と も一方の内面周縁 部に沿って導電性を有した封着材を配置して封着層を形成し 電極部材の接触部を上記封着層に電気的に接触させ、 上記前面基板および背面基板を対向配置した状態で、 上記 電極部材を介して上記封着層に通電し、 上記封着層を加熱溶 融させ、 上記前面基板および背面基板の周辺部同士を上記溶 融した封着材によ り 接合し、  A sealing material having conductivity is arranged along at least one inner peripheral edge of the front substrate and the rear substrate to form a sealing layer, and a contact portion of an electrode member is electrically connected to the sealing layer. When the front substrate and the rear substrate are opposed to each other, electricity is supplied to the sealing layer via the electrode member, and the sealing layer is heated and melted. Are joined by the above-mentioned molten sealing material,
上記接合後、 上記電極部材の上記封着層に接触した接触部 近傍を切断し、 上記電極部材の接触部近傍以外の部分を除去 する面像表示装置の製造方法。  A method for manufacturing a planar image display device, comprising: cutting the vicinity of a contact portion of the electrode member contacting the sealing layer after the joining, and removing a portion other than the vicinity of the contact portion of the electrode member.
7 0 . 上記電極部材は、 上記前面基板おょぴ背面基板の 少な く と も一方に装着された装着部と、 上記装着部から上記 接触部まで延びた胴体部と、 を備え、  70. The electrode member comprises: a mounting portion mounted on at least one of the front substrate and the rear substrate; and a body extending from the mounting portion to the contact portion.
上記接合後、 上記接触部の近傍で上記胴体部を切断し、 こ の胴体部および装着部を上記外囲器から除去する請求項 6 9 に記載の画像表示装置の製造方法。  The method according to claim 69, wherein after the joining, the body is cut in the vicinity of the contact portion, and the body and the mounting portion are removed from the envelope.
7 1 . 対向配置されている と と もに周辺部同士が接合さ れた前面基板おょぴ背面基板を有する外囲器と、 上記外囲器 内に設けられた複数の画素と を備えた画像表示装置の製造方 法であって、 上記前面基板および背面基板の少な く と も一方の内面周縁 部に沿って、 導電性を有する封着材を配置 し、 7 1. An envelope having a front substrate and a rear substrate that are arranged opposite to each other and whose peripheral portions are joined together, and a plurality of pixels provided in the envelope are provided. A method of manufacturing an image display device, A conductive sealing material is disposed along at least one inner peripheral edge of the front substrate and the rear substrate,
上記前面基板おょぴ背面基板を対向配置した状態で、 上記 封着材に電気的に接触した電極部材を介して上記封着材に通 電し、 上記封着材を加熱溶融させ、  With the front substrate and the rear substrate facing each other, electricity is passed to the sealing material via an electrode member that is in electrical contact with the sealing material, and the sealing material is heated and melted.
上記通電終了後、 上記封着材が溶融した状態で、 上記電極 部材を封着材から除去離間 し、  After completion of the energization, in a state where the sealing material is melted, the electrode member is removed and separated from the sealing material,
上記前面基板おょぴ背面基板の周辺部同士を上記溶融した 封着林によ り接合する画像表示装置の製造方法。  A method for manufacturing an image display device, wherein the peripheral portions of the front substrate and the rear substrate are joined to each other by the melted sealing forest.
7 2 . 上記電極部材を上記通電の直前に上記封着材に接 触させ、 上記通電終了後、 上記封着材から除去離間する請求 項 7 1 に記載の画像表示装置の製造方法。  72. The method for manufacturing an image display device according to claim 71, wherein the electrode member is brought into contact with the sealing material immediately before the energization, and is removed and separated from the sealing material after the energization is completed.
7 3 . 対向配置されている と と もに周辺部同士が接合さ れた前面基板および背面基板を有する外囲器と、 上記外囲器 内に設け られた複数の画素と を備えた画像表示装置の製造方 法であって、  7 3. An image display comprising an envelope having a front substrate and a rear substrate that are arranged opposite to each other and whose peripheral portions are joined together, and a plurality of pixels provided in the envelope. A method of manufacturing the device,
上記前面基板および背面基板の少なく と も一方の内面周縁 部に沿って、 導電性を有する枠状部材と、 加熱によ り 溶融す る封着材と を配置し、  A conductive frame member and a sealing material that is melted by heating are arranged along at least one inner peripheral edge of the front substrate and the rear substrate.
上記前面基板および背面基板を対向配置した状態で、 上記 枠状部材に電気的に接触した電極部材を介して上記枠状部材 に通電し、 上記枠状部材の発熱によ り 上記封着材を溶融させ 上記通電終了後、 上記封着材が溶融した状態で上記電極部 材を上記枠状部材から除去離間 し、  In a state where the front substrate and the rear substrate are arranged to face each other, electricity is supplied to the frame member via an electrode member that is in electrical contact with the frame member, and the sealing material is heated by the heat generated by the frame member. After the completion of the energization, the electrode member is removed from the frame-shaped member while the sealing material is melted, and separated.
上記前面基板および背面基板の周辺部同士を上記溶融した 封着材によ り 接合する画像表示装置の製造方法。 The peripheral parts of the front substrate and the rear substrate were fused together. A method for manufacturing an image display device to be joined with a sealing material.
7 4 . 上記電極部材を上記通電の直前に上記枠状部材に 接触させ、 上記通電終了後、 上記枠状部材から除去離間する 請求項 7 3 に記載の画像表示装置の製造方法。  74. The method for manufacturing an image display device according to claim 73, wherein the electrode member is brought into contact with the frame member immediately before the energization, and is removed and separated from the frame member after the energization is completed.
7 5 . 上記封着材は少な く と も I n、 S n、 P b 、 G a B i のいずれかを含む金属である請求項 7 1 又は 7 3 に記載 の画像表示装置の製造方法。  75. The method according to claim 71 or 73, wherein the sealing material is a metal containing at least one of In, Sn, Pb, and GaBi.
7 6 . 対向配置されている と と もに周辺部同士が接合さ れた前面基板おょぴ背面基板を有する外囲器と、 上記前面基 板および背面基板の少なく と も一方の内面周縁部に沿つて配 置された導電性を有する材料を含む封着層 と 、 上記外囲器内 に設け られた複数の画素と を備えた画像表示装置の製造装置 であって、  76. An envelope having a front substrate and a rear substrate which are arranged opposite to each other and whose peripheral portions are joined together, and at least one inner peripheral edge of the front substrate and the rear substrate. A manufacturing apparatus for an image display device, comprising: a sealing layer including a material having conductivity disposed along a plurality of pixels; and a plurality of pixels provided in the envelope.
上記封着層に電気的に接触可能な電極部材と、  An electrode member capable of electrically contacting the sealing layer,
上記電極部材を介して電流を供給する電源と、  A power supply for supplying a current through the electrode member,
上記電極部材を保持固定する保持装置と、  A holding device for holding and fixing the electrode member,
上記保持装置を上記前面基板または背面基板の面內方向に 移動させる駆動機構と 、  A driving mechanism for moving the holding device in a plane direction of the front substrate or the rear substrate;
を備えた画像表示装置の製造装置。  An apparatus for manufacturing an image display device, comprising:
7 7 . 対向配置されている と と もに周辺部同士が接合さ れた前面基板および背面基板を有する外囲器と、 上記前面基 板および背面基板の少なく と も一方の内面周縁部に沿って配 置された導電性を有する材料を含む封着層 と、 上記外囲器内 に設けられた複数の画素と を備えた画像表示装置の製造装置 であって、 上記封着材に電気的に接触可能に設け られた複数の電極部 材と、 7 7. An envelope having a front substrate and a rear substrate which are arranged opposite to each other and whose peripheral portions are joined together, and along at least one inner peripheral edge of the front substrate and the rear substrate. A manufacturing apparatus for an image display device, comprising: a sealing layer including a material having conductivity, which is disposed and a plurality of pixels provided in the envelope. A plurality of electrode members provided so as to be able to electrically contact the sealing material;
上記電極部材を介して上記封着層に電流を供給する電源と 上記電極部材を上記前面基板および背面基板の少な く と も 一方の面内方向に駆動する駆動機構と、  A power supply for supplying a current to the sealing layer via the electrode member, and a drive mechanism for driving the electrode member in at least one of the front substrate and the rear substrate in an in-plane direction;
を備えた画像表示装置の製造装置。  An apparatus for manufacturing an image display device, comprising:
PCT/JP2003/008929 2002-07-15 2003-07-14 Image display device, image display device manufacturing method, and manufacturing device WO2004008471A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020047020410A KR100686668B1 (en) 2002-07-15 2003-07-14 Image display device, image display device manufacturing method, and manufacturing device
JP2005505099A JPWO2004008471A1 (en) 2002-07-15 2003-07-14 Image display apparatus, image display apparatus manufacturing method, and manufacturing apparatus
EP03741381A EP1542255A1 (en) 2002-07-15 2003-07-14 Image display device, image display device manufacturing method, and manufacturing device
US11/035,322 US20050179360A1 (en) 2002-07-15 2005-01-14 Image display device, method of manufacturing image display device, and manufacturing apparatus

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP2002-206176 2002-07-15
JP2002206176 2002-07-15
JP2002-242044 2002-08-22
JP2002242044 2002-08-22
JP2002-265757 2002-09-11
JP2002265757 2002-09-11
JP2003-4410 2003-01-10
JP2003004410 2003-01-10
JP2003-12199 2003-01-21
JP2003012199 2003-01-21
JP2003-26227 2003-02-03
JP2003026227 2003-02-03
JP2003-141994 2003-05-20
JP2003141994 2003-05-20
JP2003-161034 2003-06-05
JP2003161034 2003-06-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/035,322 Continuation US20050179360A1 (en) 2002-07-15 2005-01-14 Image display device, method of manufacturing image display device, and manufacturing apparatus

Publications (1)

Publication Number Publication Date
WO2004008471A1 true WO2004008471A1 (en) 2004-01-22

Family

ID=30119542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008929 WO2004008471A1 (en) 2002-07-15 2003-07-14 Image display device, image display device manufacturing method, and manufacturing device

Country Status (6)

Country Link
EP (1) EP1542255A1 (en)
JP (1) JPWO2004008471A1 (en)
KR (1) KR100686668B1 (en)
CN (1) CN1663006A (en)
TW (1) TWI278886B (en)
WO (1) WO2004008471A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064880A1 (en) * 2004-12-17 2006-06-22 Kabushiki Kaisha Toshiba Seal material, image display device using seal material, method of producing image display device, and image display device produced by the production method
JP2007523311A (en) * 2004-02-05 2007-08-16 チタニウム メタルズ コーポレイション Method and apparatus for cleaning the periphery in a cryogenic furnace refining
US7303457B2 (en) * 2004-03-02 2007-12-04 Kabushiki Kaisha Toshiba Method of bonding display substrates by application of an electric current to heat and melt a bonding material
JP2009181840A (en) * 2008-01-31 2009-08-13 Sony Corp Flat display device
JP2012509513A (en) * 2008-11-20 2012-04-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Semi-automated regeneration method for peeling display

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100927722B1 (en) * 2007-12-24 2009-11-18 삼성에스디아이 주식회사 Plasma Display Panel And Method Of Manufacturing The Same
TWI476491B (en) * 2011-11-07 2015-03-11 Au Optronics Corp Packaging structure and packaging method of display apparatus
TWI596980B (en) * 2012-06-11 2017-08-21 友達光電股份有限公司 Plate limiting structure
CN105158941B (en) * 2015-09-16 2018-04-03 中山市拓电电子科技有限公司 A kind of oscillatory type liquid crystal display disassembles cutter structure
CN115148935A (en) * 2022-06-28 2022-10-04 昆山国显光电有限公司 Connecting film and display module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5827102A (en) * 1996-05-13 1998-10-27 Micron Technology, Inc. Low temperature method for evacuating and sealing field emission displays
JP2000200543A (en) * 1999-01-07 2000-07-18 Sony Corp Sealed panel device and its manufacture
JP2001229825A (en) * 2000-02-14 2001-08-24 Toshiba Corp Manufacturing method and apparatus for vacuum envelope, manufacturing method and apparatus for picture display device, vacuum envelope and picture display device
JP2002100311A (en) * 2000-09-22 2002-04-05 Toshiba Corp Picture display device and its manufacturing method
WO2002089169A1 (en) * 2001-04-23 2002-11-07 Kabushiki Kaisha Toshiba Image display device, and method and device for producing image display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5827102A (en) * 1996-05-13 1998-10-27 Micron Technology, Inc. Low temperature method for evacuating and sealing field emission displays
JP2000200543A (en) * 1999-01-07 2000-07-18 Sony Corp Sealed panel device and its manufacture
JP2001229825A (en) * 2000-02-14 2001-08-24 Toshiba Corp Manufacturing method and apparatus for vacuum envelope, manufacturing method and apparatus for picture display device, vacuum envelope and picture display device
JP2002100311A (en) * 2000-09-22 2002-04-05 Toshiba Corp Picture display device and its manufacturing method
WO2002089169A1 (en) * 2001-04-23 2002-11-07 Kabushiki Kaisha Toshiba Image display device, and method and device for producing image display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007523311A (en) * 2004-02-05 2007-08-16 チタニウム メタルズ コーポレイション Method and apparatus for cleaning the periphery in a cryogenic furnace refining
US7303457B2 (en) * 2004-03-02 2007-12-04 Kabushiki Kaisha Toshiba Method of bonding display substrates by application of an electric current to heat and melt a bonding material
WO2006064880A1 (en) * 2004-12-17 2006-06-22 Kabushiki Kaisha Toshiba Seal material, image display device using seal material, method of producing image display device, and image display device produced by the production method
JP2009181840A (en) * 2008-01-31 2009-08-13 Sony Corp Flat display device
JP2012509513A (en) * 2008-11-20 2012-04-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Semi-automated regeneration method for peeling display

Also Published As

Publication number Publication date
TWI278886B (en) 2007-04-11
JPWO2004008471A1 (en) 2005-11-10
EP1542255A1 (en) 2005-06-15
KR100686668B1 (en) 2007-02-27
CN1663006A (en) 2005-08-31
KR20050010928A (en) 2005-01-28
TW200411695A (en) 2004-07-01

Similar Documents

Publication Publication Date Title
US20050179360A1 (en) Image display device, method of manufacturing image display device, and manufacturing apparatus
WO2002089169A1 (en) Image display device, and method and device for producing image display device
WO2004008471A1 (en) Image display device, image display device manufacturing method, and manufacturing device
US20060250565A1 (en) Image display device and method of manufacturing the same
WO2004109740A1 (en) Image display and method for manufacturing same
KR20070007843A (en) Method of producing image display device
TW200301503A (en) Image display device and the manufacturing method thereof
JP3940577B2 (en) Flat display device and manufacturing method thereof
JP2002319346A (en) Display device and its manufacturing method
JP3940583B2 (en) Flat display device and manufacturing method thereof
US7303457B2 (en) Method of bonding display substrates by application of an electric current to heat and melt a bonding material
JP2002184313A (en) Manufacturing method of image display device and sealant filling device
JP2005235452A (en) Display device
JP2005044529A (en) Image display device and its manufacturing method
JP2003068238A (en) Display device and manufacture thereof
TW200425201A (en) Image display device and a manufacturing method of the same
JP2004247260A (en) Manufacturing method of image forming apparatus, and image forming apparatus
JP2006114404A (en) Manufacturing method for image display device
JP2005302579A (en) Manufacturing method of image display device
JP2000195426A (en) Sealing method and closed housing and image display device and evacuation device
JP2003132822A (en) Panel display device and manufacturing method therefor
JP2004273134A (en) Method of producing image display device
JP2005174739A (en) Manufacturing method and manufacturing device of picture display device
JP2005174688A (en) Manufacturing method and manufacturing device for picture display device
JP2005251476A (en) Method for manufacturing image display device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005505099

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020047020410

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038140438

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11035322

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003741381

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020047020410

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003741381

Country of ref document: EP