WO2000002066A1 - Glass product with conductive antireflection film and cathode ray tube using it - Google Patents

Glass product with conductive antireflection film and cathode ray tube using it Download PDF

Info

Publication number
WO2000002066A1
WO2000002066A1 PCT/JP1999/003494 JP9903494W WO0002066A1 WO 2000002066 A1 WO2000002066 A1 WO 2000002066A1 JP 9903494 W JP9903494 W JP 9903494W WO 0002066 A1 WO0002066 A1 WO 0002066A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
refractive index
transparent dielectric
glass
Prior art date
Application number
PCT/JP1999/003494
Other languages
French (fr)
Japanese (ja)
Inventor
Terufusa Kunisada
Yasunori Taninaka
Koji Nakanishi
Etsuo Ogino
Original Assignee
Nippon Sheet Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Company, Limited filed Critical Nippon Sheet Glass Company, Limited
Priority to KR1020007014931A priority Critical patent/KR20010071668A/en
Publication of WO2000002066A1 publication Critical patent/WO2000002066A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/20Manufacture of screens on or from which an image or pattern is formed, picked up, converted or stored; Applying coatings to the vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3615Coatings of the type glass/metal/other inorganic layers, at least one layer being non-metallic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3649Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer made of metals other than silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/86Vessels; Containers; Vacuum locks
    • H01J29/867Means associated with the outside of the vessel for shielding, e.g. magnetic shields
    • H01J29/868Screens covering the input or output face of the vessel, e.g. transparent anti-static coatings, X-ray absorbing layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/22Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/30Iron, e.g. steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • C03C2217/734Anti-reflective coatings with specific characteristics comprising an alternation of high and low refractive indexes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/89Optical components associated with the vessel
    • H01J2229/8913Anti-reflection, anti-glare, viewing angle and contrast improving treatments or devices
    • H01J2229/8918Anti-reflection, anti-glare, viewing angle and contrast improving treatments or devices by using interference effects

Definitions

  • the present invention relates to a glass article coated with an antireflection film having both conductivity and light absorption.
  • a resin plate or glass frit etc. is used on the front of the display section of a faceplate used in a display device that displays an image by exciting a phosphor with an accelerated electron beam such as a cathode ray tube.
  • the present invention relates to a glass article such as a glass plate used by bonding with an adhesive, and a cathode ray tube using the same. Background art
  • a display quality is improved by lowering a reflection rate of external light on a display surface.
  • a display device using this cathode ray tube since a high voltage is used by using an electron gun, the image display surface is charged, thereby attracting dust and dirt in the air. In order to prevent or suppress the phenomenon caused by such charging, the front surface of the image display device is made conductive.
  • the front surface of the display unit is covered with a conductive film for the purpose of shielding electromagnetic waves.
  • a glass plate coated with a conductive anti-reflection film is attached to a face plate of a cathode ray tube, or an outer surface of a face plate is directly coated with a conductive anti-reflection film.
  • the glass plate / metal Z oxide disclosed in JP-A-64-77001 can be used as the conductive anti-reflection film coated on the glass article for the purpose of improving the display quality of the above-mentioned cathode ray tube.
  • a laminate represented by titanium / silicon oxide, or a glass plate / magnesium fluoride / metal / titanium oxide / fiber disclosed in Japanese Patent Application Laid-Open No. 1-180333 is disclosed.
  • the metal film used in these prior arts is composed of a thin film of stainless steel, titanium, chromium, zirconium, molybdenum, and nickel.
  • a metal or alloy specifically disclosed in the above-mentioned prior art is used as a metal film, and a transparent dielectric film is laminated on the metal or alloy to form a conductive anti-reflection film, which increases the transmittance of visible light. Therefore, when the thickness of the metal film is reduced to 5 nm or less, there is a problem that the electric resistance is significantly increased and the antistatic function and the electromagnetic wave shielding function are significantly reduced.c.
  • the conductive anti-reflection film used for the metal film is coated on the front surface of the glass face plate and the face plate and the funnel are heated and joined with a glass frit
  • the conductive anti-reflection is used in the heating process Since the electrical resistance of the film increases significantly and the transmittance increases, a cathode ray tube that ensures light absorption and has an excellent antistatic function is manufactured. It was difficult to build. That is, the conventional technology could not solve the problem that the electrical resistance and the visible light transmittance of the conductive antireflection film did not change significantly even when the cathode ray tube was subjected to a heat treatment in the assembling process. Disclosure of the invention
  • a first aspect of the present invention is that, on a glass substrate having a refractive index of 1.4 to 1.7 at a wavelength of 550 nm, a first layer metal film and a second layer A high-refractive-index transparent dielectric film having a refractive index of 2.0 to 2.4 at a wavelength of 55 O nm and a refractive index of 1.35 to 1.3 at a wavelength of 55 O nm of the third layer.
  • 46 A glass article coated with a conductive anti-reflection film laminated with a low-refractive-index transparent dielectric film according to 6, wherein the metal film is a nickel-iron alloy film and has a visible light reflectance of 1% or less.
  • a glass article provided with a conductive anti-reflection film (Hereinafter, this is referred to as a first embodiment.)
  • a second aspect of the present invention is a glass substrate having a refractive index of 1.4 to 1.7 at a wavelength of 550 nm.
  • the refractive index of the layer at a wavelength of 55 Onm has a refractive index of 1.7 to 1.9
  • the fourth layer has a refractive index of 1.35 to 1.46 at a wavelength of 55 Onm.
  • This is a glass article with a conductive anti-reflection film. (Hereinafter, this is referred to as a second aspect.)
  • a third aspect of the present invention is that, on a glass substrate having a refractive index of 1.4 to 1.7 at a wavelength of 55 Onm, a metal film of a first layer and a 55 High refractive index transparent dielectric film with a refractive index of 2.0 to 2.4 at a wavelength of, a third layer of metal film, and a refractive index of a fourth layer at a wavelength of 55 Onm of 2.0 to 2
  • the conductive anti-reflective coating is composed of a high-refractive-index transparent dielectric film of No. 4 and a low-refractive-index transparent dielectric film of a fifth layer having a refractive index at a wavelength of 550 nm of 1.35 to 1.46.
  • a coated glass article characterized in that at least one of the first layer metal film and the third layer metal film is made of a nickel-iron alloy and has a visible light reflectance of 1% or less. It is a glass article with a conductive anti-reflection film. (Hereinafter referred to as a third embodiment.) Brief description of the drawings
  • FIG. 1 is a cross-sectional view of an embodiment of the article with a conductive antireflection film of the present invention.
  • FIG. 2 is a partial cross-sectional view for explaining a laminated structure of the conductive anti-reflection film of the present invention.
  • FIG. 3 is a diagram showing transmission and reflection characteristics in the visible region according to the embodiment of the present invention.
  • the metal film of the first embodiment of the present invention needs to be a nickel-iron alloy film.
  • the nickel content in the metal film is preferably 5% by weight or more, More preferably, the amount is at least%. It is most preferable that the content be 70% by weight or more. If the nickel content is less than 5%, the metal film approaches the thermal properties of a metal film consisting of a single component of iron, and when heated, the electrical resistance increases significantly and the transmittance changes significantly. Is not preferred.
  • the nickel content in the metal film is preferably 95% by weight or less.
  • the metal film approaches the thermal properties of a metal film composed of a single component of nickel, and the electrical resistance becomes remarkable especially when the thickness of the metal film is less than 4 nm. It is not preferable because it rises.
  • the thickness of the metal film is preferably set to 1.5 nm to 8 nm. If the thickness is less than 1.5 nm, the electric resistance value is undesirably increased. On the other hand, when the thickness exceeds 8 nm, the transmittance is lowered and the displayed image becomes dark, which is not preferable.
  • the height of the second layer is increased.
  • the thickness of the refractive index transparent dielectric film is 5 ⁇ !
  • the thickness of the low-refractive-index transparent dielectric film of the third layer is set to 5 ⁇ ! It is preferable to set to ⁇ 12 Onm.
  • the metal film according to the second aspect of the present invention needs to be a nickel-iron alloy film.
  • the nickel content in the metal film is preferably at least 5% by weight, more preferably at least 10% by weight, most preferably at least 70% by weight. If the nickel content is less than 5% by weight, the metal film approaches the thermal properties of a metal film composed of a single component of iron, and when heated, the electrical resistance value increases significantly and the transmittance increases. It is not preferable because it changes.
  • the nickel content in the metal film is preferably 95% by weight or less.
  • the metal film approaches the thermal properties of a metal film consisting of a single component of nickel, and the electrical resistance becomes remarkable especially when the thickness of the metal film is less than 4 nm. It is not preferable because it rises.
  • the thickness of the metal film is preferably set to 1.5 nm to 8 nm. preferable.
  • the thickness is less than 1.5 nm, the electric resistance is undesirably increased.
  • it exceeds 8 nm the transmittance is remarkably reduced, and the displayed image is dark, which is not preferable.
  • the height of the second layer is increased.
  • the thickness of the refractive index transparent dielectric film is 5 ⁇ !
  • the thickness of the third layer of the medium refractive index transparent dielectric film is 10 ⁇ ⁇ ! 1100 nm
  • the thickness of the fourth layer of the low refractive index transparent dielectric film is preferably 50 nm 1120 nm.
  • the metal film needs to be an alloy film of nickel and iron.
  • the nickel content in the metal film is preferably at least 5% by weight, more preferably at least 10% by weight, and most preferably at least 0% by weight. If the nickel content is less than 5% by weight, the metal film approaches the thermal properties of a metal film composed of a single component of iron, and when heated, the electrical resistance increases significantly and the transmittance increases. It is not preferable because it greatly changes.
  • the nickel content in the metal film is preferably 95% by weight or less. If the nickel content exceeds 95% by weight, the metal film approaches the thermal properties of a metal film consisting of a single component of nickel, and the electrical resistance increases significantly, especially when the thickness is less than 4 nm. Is not preferred.
  • the thickness of each of the first and third metal films is 1.5 ⁇ ! It is preferable that the total thickness be 9 nm or less. The reason for limiting the thickness range of each metal layer is the same as in the first or second embodiment of the present invention. If the total thickness exceeds 9 nm, the transparency becomes small as an antireflection film provided on the front surface of the display device, and the display screen becomes dark, which is not preferable.
  • the height of the second layer is increased.
  • the thickness of the refractive index transparent dielectric film is 1 ⁇ ⁇ ⁇ ! ⁇ 7 O nm
  • the thickness of the high refractive index transparent dielectric film of the fourth layer is 10 nm-70 nm
  • the thickness of the low refractive index transparent dielectric film of the fifth layer is 70 nm ⁇ 120 nm. Is preferred.
  • a glass face plate or a transparent or colorless glass plate can be used as the glass substrate, and the glass composition thereof is particularly limited. is not.
  • a glass having a soda-lime-silica composition, a borosilicate composition, an alumino-silicate composition, an alumino-borosilicate composition, or the like, which is processed by bending or air-cooling as necessary can be used.
  • titanate Puraseojiumu as a high refractive index transparent Yuden film (P r T i 0 3) , titanium oxide (T i 0 2), oxide tantalum (T a 2 0 5) and Sani ⁇ zirconium (Z R_ ⁇ 2) film of Ru one can be exemplified.
  • praseodymium titanate is preferable because a transparent and dense film can be obtained without introducing oxygen gas when forming a film by vacuum deposition, and therefore, the metal film is not oxidized and deteriorated during the film formation.
  • examples of the low-refractive-index transparent dielectric film include magnesium fluoride and silicon dioxide.
  • magnesium fluoride is preferable because the refractive index is as low as 1.35 and the difference between the refractive index and the refractive index of the high-refractive-index transparent dielectric film is large, so that it is easy to lower the reflectance.
  • M g O medium refractive index transparent dielectric
  • Ru can be exemplified niobium oxide (N b 2 0 5) and silicon monoxide (S I_ ⁇ ) or the like.
  • magnesium oxide is preferable because a transparent and dense film can be obtained without introducing oxygen gas at the time of film formation by vacuum deposition, so that the metal film is not oxidized and deteriorated during the film formation.
  • a transparent dielectric layer (hereinafter, referred to as a base film) can be provided between the glass substrate and the first layer metal film.
  • This underlayer film breaks contact between the glass surface and the first metal film, that is, prevents water and other impurities on the glass surface from entering the metal film, thereby preventing the electrical resistance of the metal film from increasing. It is provided for the purpose of doing.
  • the material constituting the base film is not particularly limited, but praseodymium titanate, magnesium oxide, and magnesium fluoride (MgF 2 ) can be exemplified as preferable ones.
  • the thickness of the base film is preferably 3 nm or more from the viewpoint of smoothing the first metal film and thereby reducing the electrical resistance of the metal film.
  • the thickness is preferably 7 nm or less, and more preferably 5 nm or less, from the viewpoint of reducing the surface irregularities of the base film itself.
  • the metal layer made of nickel and iron has the above heat resistance in order to finely adjust the degree of light absorption and the reflection color tone.
  • a third metal may be added as long as the properties are not significantly deteriorated.
  • Each layer constituting the conductive anti-reflection film according to the first, second, and third aspects of the present invention can be formed by a known method such as a vacuum evaporation method or a ion plating method.
  • the cathode ray tube is a ferrite coated with the conductive antireflection film according to the present invention.
  • it can be manufactured by a method of heating and joining a plate and a funnel, or by a method of joining a conductive antireflection film according to the present invention after joining a ⁇ -plate and a funnel.
  • FIG. 1 is a cross-sectional view of an embodiment of an article 1 with a conductive anti-reflection film according to the present invention, in which a glass anti-reflection film 2 is coated with a conductive anti-reflection film 2 on an image display portion. Let's do it.
  • FIG. 2 is a partial cross-sectional view for explaining a laminated structure of the conductive anti-reflection film 2 of the present invention.
  • the conductive anti-reflection film 2 is configured by sequentially laminating a metal film 4, a high-refractive-index transparent dielectric film 5, and a low-refractive-index transparent dielectric film 6 on a face plate 3. ing.
  • FIG. 1 is a cross-sectional view of an embodiment of an article 1 with a conductive anti-reflection film according to the present invention, in which a glass anti-reflection film 2 is coated with a conductive anti-reflection film 2 on an image display portion. Let's do it.
  • FIG. 2 is
  • the conductive anti-reflection film 2 is composed of a metal film 4, a high-refractive-index transparent dielectric film 5, a medium-refractive-index transparent dielectric film 7, and a low-refractive index The transparent dielectric films 6 are sequentially laminated.
  • the conductive anti-reflection film 2 is composed of a base film 8, a metal film 4, a high-refractive-index transparent dielectric film 5, a metal film 4, and a high-refractive-index transparent dielectric film on a face plate 3. 5 and a low refractive index transparent dielectric film 6 are sequentially laminated.
  • FIG. 3 is a spectral characteristic diagram of reflection and transmission in the visible light region of the sample obtained in Example 6 of the present invention.
  • each film was used when formed by vacuum evaporation.
  • the deposited materials used are as follows.
  • Nickel-iron film of Example Nickel-iron alloy wire of predetermined composition
  • Nickel film of Comparative Examples 1 and 3 Nickel wire
  • Nickel-iron alloy films of Comparative Examples 4 and 5 Nickel-alloy alloy films of predetermined composition
  • Nickel-chromium film of Comparative Example 6 Nickel-chromium alloy wires of specific composition Praseodymium titanate film: Me r ck brand name SUB STANCEH 2
  • Magnesium oxide film Magnesium oxide grains
  • a well-washed 10 mm Ox100 mm x 3 mm thick glass plate of soda lime silica composition was placed in a vacuum evaporation tank and heated to 300 ° C by a substrate heating heater installed in the evaporation apparatus.
  • a conductive antireflection film having a laminated structure shown in the column of Example 1 in Table 1 was coated on a glass plate.
  • the evaporation material was evaporated by the electron beam evaporation method, the distance from the evaporation crucible to the glass plate was set to 100 cm, and the evaporation was performed while rotating the glass plate.
  • the ultimate vacuum degree before the start of vapor deposition was exhausted to 0.003 Pa with an oil diffusion pump for all films.
  • Nickel-iron alloy films, praseodymium titanate films, magnesium oxide films, and magnesium fluoride films were deposited without introducing oxygen gas.
  • the obtained sample was taken out of the vapor deposition apparatus, and the transmittance (wavelength: 550 nm), the reflectance on the film-coated side (wavelength: 550 nm), and the sheet resistance were measured as evaluation characteristics of antistatic performance.
  • the composition of the metal film was measured by chemical analysis. Table 2 shows the measurement results.
  • the transmittance, the reflectance on the film-coated side, and the sheet resistance after heat-treating the sample at 450 ° C for 1 hour in the atmosphere were measured. The results are shown in the column of Example 1 in Table 2.
  • the reflectance of the sample was 1% or less, which is required from a practical point of view, and this value was maintained at 1% or less without being significantly changed even after the heat treatment.
  • the sheet resistance was 282 ⁇ square, which is low enough to have an antistatic function, and the resistance did not deteriorate (increase) even after being subjected to heat treatment, but rather decreased.
  • the transmittance was only a small change of 0.7% from 66.5% to 67.2% .c This value was used by sticking it to the faceplate of a cathode ray tube or a transparent faceplate. From the practical point of view, the useful transmittance was in the range of 40 to 80% for the front glass panel.
  • Example 2 In the same manner as in Example 1, a conductive antireflection film having the film configuration shown in Table 1 was coated on a glass plate, and the obtained sample was subjected to the same test as in Example 1 to obtain the results. Shown in Each of the samples of Examples 2 to 10 had a reflectance of 1% or less both at the initial stage and after the heat treatment. It was found that the initial sheet resistance of each sample was as low as 500 ⁇ / b or less, and that it did not increase significantly after heat treatment, but rather decreased. The change in transmittance due to the heat treatment was a small value of 2.2% or less.
  • Example 4 is a film obtained by adding a base film of praseodymium titanate to the film structure of Example 2
  • Example 7 is a film obtained by adding a base film of praseodymium titanate to the film structure of Example 6. Comparing Example 2 with Example 4, and Example 6 with Example 7, it can be seen that the sheet resistance is reduced by additionally inserting the underlayer.
  • a comparative sample was obtained in the same manner as in Example 1 except that the metal film was a film having a single composition of nickel, and the conductive antireflection film having the laminated structure shown in the column of Comparative Example 1 in Table 3 was coated in the same manner as in Example 1.
  • the results of evaluating this comparative sample in the same manner as in Example 1 are shown in the column of Comparative Example 1 in Table 4.
  • This comparative sample had a reflectance of 1% or less and good thermal stability of transmittance, but the sheet resistance was 2 M (mega) ⁇ / b or more both at the initial stage and after heat treatment. No antistatic function could be obtained. '
  • a comparative sample was obtained in the same manner as in Example 1 except that the metal film was a film having a single composition of iron, and the conductive antireflection film having the laminated structure shown in the column of Comparative Example 2 in Table 3 was coated in the same manner as in Example 1.
  • This ratio The results of evaluation of the comparative sample in the same manner as in Example 1 are shown in the column of Comparative Example 2 in Table 4.
  • the initial reflectance of this comparative sample was as low as 0.43%, but the heat treatment increased the transmittance to 18.7% and the reflectance to 4.08%.
  • the sheet resistance was 2 M (mega) ⁇ or more both at the initial stage and after the heat treatment, and a good antistatic function could not be obtained.
  • the results of evaluating this comparative sample in the same manner as in Example 1 are shown in the column of Comparative Example 3 in Table 4.
  • the reflectance before and after the heat treatment was 1% or less, and the thermal stability of the transmittance was good.
  • the sheet resistance was 2M (mega) ⁇ or more both at the initial stage and after the heat treatment, and the antistatic property was good. Did not get the function.
  • a comparative sample was obtained in exactly the same manner as in Comparative Example 1 except that the metal film was a two-component system of nickel and chromium. As shown in the column of Comparative Example 6 in Table 4, in this comparative sample, the change in the transmittance due to the heat treatment was as large as 12.5%, and the sheet resistance was increased by three orders of magnitude. Table 3
  • the conductive performance of the conductive anti-reflection film with antistatic function provided on the front of the image display section is approximately lk Q / CI or less, and preferably about 500 ⁇ / b or less in order to have the ability to block radiated electromagnetic waves in consideration of the effect on the human body. From this viewpoint, it can be seen that the conductive anti-reflection film of the sample obtained in the example of the present invention has sufficient practical performance.
  • the metal film of the antireflection film composed of the laminate of the metal film and the transparent dielectric film is formed of a single film of nickel or a single film of iron, they are subjected to a heat treatment. Surprisingly, this was achieved by experimentally finding the expected I ⁇ effect of improving the stability of electrical resistance by using nickel and iron alloy films. Things.
  • the metal film constituting the conductive anti-reflection film of the present invention was formed of a nickel-iron alloy film, the conductive anti-reflection film had excellent thermal stability. Therefore, even when subjected to a high-temperature heat treatment, changes in the transmittance and the reflectance are small.
  • the metal film of the conductive antireflection film is formed of a film of an alloy of nickel and iron, the sheet resistance is stable even when subjected to a high-temperature heat treatment.
  • the optical properties and electrical resistance properties of the conductive anti-reflection film of the present invention are thermally stable, a glass face plate coated with the conductive anti-reflection film of the present invention is heated and joined with funnel and frit glass. However, the performance before the heat bonding can be maintained, and the cathode ray tube can be manufactured without impairing the optical characteristics and the antistatic function.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

A glass product covered with a conductive antireflection film comprising a glass substrate with a refractive index of 1.4 to 1.7 at a wavelength of 550 nm and, laminated on the glass substrate in the mentioned order from the substrate side, a metal film, a high-refractive-index, transparent dielectric film with a refractive index of 2.0 to 2.4 and a low-refractive-index, transparent dielectric film with a refractive index of 1.35 to 1.46, wherein the metal film is a nickel-iron alloy film and has a visible light reflection factor of 1 % or lower. A cathode ray tube capable of being produced with performances before heat bonding maintained and without sacrifice in optical characteristics and antistatic functions even when heat bonded with a funnel and fritted glass because the conductive antireflection film has thermally stabilized optical and electric resistance characteristics.

Description

明 細 書 導電性反射防止膜付きガラス物品およびそれを用いた陰極線管 術分野  Description Glass article with conductive anti-reflective coating and cathode ray tube using the same
本発明は、 導電性と光吸収性を兼ね備えた反射防止膜が被覆されたガラス物品 に関する。 とりわけ陰極線管などのように加速された電子線が蛍光体を励起して 画像を表 する表示装置に用いられるフエ一スプレートゃフェ一スプし一 卜の表 示部前面に樹脂またはガラスフリット等の接着剤で貼り合わせて用いられるガラ ス板などのガラス物品に関し、 またそれを用いた陰極線管に関する。 背景技術  The present invention relates to a glass article coated with an antireflection film having both conductivity and light absorption. In particular, a resin plate or glass frit etc. is used on the front of the display section of a faceplate used in a display device that displays an image by exciting a phosphor with an accelerated electron beam such as a cathode ray tube. The present invention relates to a glass article such as a glass plate used by bonding with an adhesive, and a cathode ray tube using the same. Background art
テレビジョン等のように陰極線管を用いた表示装置では、 表示面での外光の反 射率を低くして表示品質をよくすることが行われている。 また、 この陰極線管を 用いた表示装置では、 電子銃の使用により高電圧が用いられるため、 画像表示面 に帯電が生じ、 これに tり空気中のゴミゃ埃が引きつけられる。 このような帯電 により生じる現象を防止、 抑制するために画像表示装置の前面を導電性にするこ とが行われている。  2. Description of the Related Art In a display device using a cathode ray tube, such as a television, a display quality is improved by lowering a reflection rate of external light on a display surface. Further, in a display device using this cathode ray tube, since a high voltage is used by using an electron gun, the image display surface is charged, thereby attracting dust and dirt in the air. In order to prevent or suppress the phenomenon caused by such charging, the front surface of the image display device is made conductive.
また、 高電压で加速された電子線によって電磁波が発生すると、 これが人体へ 悪影響を及ぼす恐れがあるとされている。 そこで、 電磁波遮蔽の目的で表示部の 前面を導電性の被膜で被覆することが行われている。  In addition, it is said that if an electromagnetic wave is generated by an electron beam accelerated by a high voltage, this may have an adverse effect on the human body. Therefore, the front surface of the display unit is covered with a conductive film for the purpose of shielding electromagnetic waves.
上述のような目的で、 導電性反射防止膜を被覆したガラス板を陰極線管のフエ ースプレートに貼りつけたり、 フェースプレートの外表面に直接導電性反射防止 膜を被覆することが行われている。  For the above-mentioned purpose, a glass plate coated with a conductive anti-reflection film is attached to a face plate of a cathode ray tube, or an outer surface of a face plate is directly coated with a conductive anti-reflection film.
上記の陰極線管の表示品質を向上させる目的でガラス物品に被覆される導電性 反射防止膜としては、 特閧昭 6 4— 7 0 7 0 1号公報に開示されているガラス板 /金属 Z酸化チタン /酸化珪素で表される積層体や、 特開平 1— 1 8 0 3 3 3号 公報に開示されているガラス板/フッ化マグネシウム/金属/酸化チタン/フヅ 化マグネシウムで表される積層体や、 特許公報第 2 5 6 5 5 3 8号に開示されて いるガラス板/チ夕ン酸プラセォジゥム /金属/チタン酸プラセォジゥム /フッ 化マグネシゥムで表せる積層体がある。 As the conductive anti-reflection film coated on the glass article for the purpose of improving the display quality of the above-mentioned cathode ray tube, the glass plate / metal Z oxide disclosed in JP-A-64-77001 can be used. A laminate represented by titanium / silicon oxide, or a glass plate / magnesium fluoride / metal / titanium oxide / fiber disclosed in Japanese Patent Application Laid-Open No. 1-180333 is disclosed. There is a laminate represented by magnesium fluoride and a laminate represented by glass plate / praseodymium thiocyanate / metal / praseodymium titanate / magnesium fluoride disclosed in Patent Publication No. 256553/38. .
そしてこれらの先行技術において用いられる金属膜としては、 ステンレス、 チ タン、 クロム、 ジルコニウム、 モリブデン、 ニッケルの薄膜で構成することが開 示されている。  It has been disclosed that the metal film used in these prior arts is composed of a thin film of stainless steel, titanium, chromium, zirconium, molybdenum, and nickel.
しかしながら、 上記の従来技術に具体的に開示されている金属または合金を金 属膜とし、 それと透明誘電体膜を積層して導電性反射防止膜としたものは、 可視 光線の透過率を高くするために金属膜を 5 n m以下にすると、 電気抵抗が著しく 上昇して帯電防止機能や電磁波遮蔽機能が著しく低下するという問題点があつた c また、 上記従来技術で開示されている金属または合金を金属膜に用いた反射防 止膜をガラス製フェースプレートの前面に被覆した後、 そのフェースプレートと ファンネルをガラスフリツ卜で加熱接合する陰極線管の製造方法を採用する場合、 加熱工程で導電性反射防止膜の電気抵抗が著しく増加してしまい、 また透過率が 大きくなつてしまうので、 光吸収性を確保しかつ優れた帯電防止機能を有する陰 極線管を製造することは困難であった。 すなわち従来技術では、 陰極線管の組立 工程で熱処理を受けても、 導電性反射防止膜の電気抵抗および可視光線透過率が 大きく変化しないという課題を解決することはできなかった。 発明の開示  However, a metal or alloy specifically disclosed in the above-mentioned prior art is used as a metal film, and a transparent dielectric film is laminated on the metal or alloy to form a conductive anti-reflection film, which increases the transmittance of visible light. Therefore, when the thickness of the metal film is reduced to 5 nm or less, there is a problem that the electric resistance is significantly increased and the antistatic function and the electromagnetic wave shielding function are significantly reduced.c. When a cathode ray tube manufacturing method is used, in which the anti-reflection film used for the metal film is coated on the front surface of the glass face plate and the face plate and the funnel are heated and joined with a glass frit, the conductive anti-reflection is used in the heating process Since the electrical resistance of the film increases significantly and the transmittance increases, a cathode ray tube that ensures light absorption and has an excellent antistatic function is manufactured. It was difficult to build. That is, the conventional technology could not solve the problem that the electrical resistance and the visible light transmittance of the conductive antireflection film did not change significantly even when the cathode ray tube was subjected to a heat treatment in the assembling process. Disclosure of the invention
本発明の第 1は、 5 5 0 n mの波長での屈折率が 1 . 4〜 1 . 7のガラス基体 上に、 該ガラス基体側から順に、 第 1層の金属膜と、 第 2層の 5 5 O n mの波長 での屈折率が 2 . 0〜2 . 4の高屈折率透明誘電体膜と、 第 3層の 5 5 O n mの 波長での屈折率が 1 . 3 5〜 1 . 4 6の低屈折率透明誘電体膜が積層された導電 性反射防止膜が被覆されたガラス物品であって、 該金属膜をニッケル鉄合金の膜 とし、 かつ、 可視光線反射率を 1 %以下としたことを特徴とする導電性反射防止 膜付きガラス物品である。 (以下、 第 1態様という。 )  A first aspect of the present invention is that, on a glass substrate having a refractive index of 1.4 to 1.7 at a wavelength of 550 nm, a first layer metal film and a second layer A high-refractive-index transparent dielectric film having a refractive index of 2.0 to 2.4 at a wavelength of 55 O nm and a refractive index of 1.35 to 1.3 at a wavelength of 55 O nm of the third layer. 46 A glass article coated with a conductive anti-reflection film laminated with a low-refractive-index transparent dielectric film according to 6, wherein the metal film is a nickel-iron alloy film and has a visible light reflectance of 1% or less. A glass article provided with a conductive anti-reflection film. (Hereinafter, this is referred to as a first embodiment.)
本発明の第 2は、 5 5 0 n mの波長での屈折率が 1 . 4〜 1 . 7のガラス基体 上に、 該ガラス基体側から順に、 第 1層の金属膜と、 第 2層の 55 Onmの波長 での屈折率が 2. 0〜2. 4の高屈折率透明誘電体膜と、 第 3層の 55 Onmの 波長での屈折率が 1. 7〜1. 9の中屈折率透明誘電体膜と、 第 4層の 55 On mの波長での屈折率が 1. 35〜 1. 46の低屈折率透明誘電体膜が積層された 反射防止膜が被覆されたガラス物品であって、 該金属膜をニッケル鉄合金の膜と し、 可視光線反射率を 1%以下としたことを特徴とする導電性反射防止膜付きガ ラス物品である。 (以下、 第 2態様という。 ) A second aspect of the present invention is a glass substrate having a refractive index of 1.4 to 1.7 at a wavelength of 550 nm. A first layer of a metal film, a second layer of a high-refractive-index transparent dielectric film having a refractive index of 2.0 to 2.4 at a wavelength of 55 Onm, The refractive index of the layer at a wavelength of 55 Onm has a refractive index of 1.7 to 1.9, and the fourth layer has a refractive index of 1.35 to 1.46 at a wavelength of 55 Onm. A glass article coated with an anti-reflection film laminated with a low-refractive-index transparent dielectric film, wherein the metal film is a nickel-iron alloy film and has a visible light reflectance of 1% or less. This is a glass article with a conductive anti-reflection film. (Hereinafter, this is referred to as a second aspect.)
本発明の第 3は、 55 Onmの波長での屈折率が 1. 4〜1. 7のガラス基体 上に、 該ガラス基体側から順に、 第 1層の金属膜と、 第 2層の 55 Onmの波長 での屈折率が 2. 0〜2. 4の高屈折率透明誘電体膜と、 第 3層の金属膜と、 第 4層の 55 Onmの波長での屈折率が 2. 0〜2. 4の高屈折率透明誘電体膜と、 第 5層の 550 nmの波長での屈折率が 1. 35〜1. 46の低屈折率透明誘電 体膜が積層された導電性反射防止膜が被覆されたガラス物品であって、 第 1層の 金属膜と第 3層の金属膜のうちの少なくとも一方をニッケル鉄合金の膜とし、 可 視光線反射率を 1 %以下としたことを特徴とする導電性反射防止膜付きガラス物 品である。 (以下、 第 3態様という。 ) 図面の簡単な説明  A third aspect of the present invention is that, on a glass substrate having a refractive index of 1.4 to 1.7 at a wavelength of 55 Onm, a metal film of a first layer and a 55 High refractive index transparent dielectric film with a refractive index of 2.0 to 2.4 at a wavelength of, a third layer of metal film, and a refractive index of a fourth layer at a wavelength of 55 Onm of 2.0 to 2 The conductive anti-reflective coating is composed of a high-refractive-index transparent dielectric film of No. 4 and a low-refractive-index transparent dielectric film of a fifth layer having a refractive index at a wavelength of 550 nm of 1.35 to 1.46. A coated glass article, characterized in that at least one of the first layer metal film and the third layer metal film is made of a nickel-iron alloy and has a visible light reflectance of 1% or less. It is a glass article with a conductive anti-reflection film. (Hereinafter referred to as a third embodiment.) Brief description of the drawings
図 1は、 本発明の導電性反射防止膜付き物品の一実施例の断面図である。 図 2 は、 本発明の導電性反射防止膜の積層構成を説明するための一部断面図である。 図 3は、 本発明の実施例の可視域の透過、 反射特性を示す図である。  FIG. 1 is a cross-sectional view of an embodiment of the article with a conductive antireflection film of the present invention. FIG. 2 is a partial cross-sectional view for explaining a laminated structure of the conductive anti-reflection film of the present invention. FIG. 3 is a diagram showing transmission and reflection characteristics in the visible region according to the embodiment of the present invention.
図中の数値は、 それそれ 1 :導電性反射防止膜付きガラス物品、 2 :導電性反 射防止膜、 3 :ガラス基体、 4 :金属膜、 5 :高屈折率透明誘電体膜、 6 :低屈 折率透明誘電体膜、 :中屈折率透明誘電体膜、 8 :下地膜を示す。 発明を実施するための最良の形態  Numerical values in the figure are as follows: 1: Glass article with conductive anti-reflective coating, 2: Conductive anti-reflective coating, 3: Glass substrate, 4: Metal film, 5: High refractive index transparent dielectric film, 6: Low refractive index transparent dielectric film,: Medium refractive index transparent dielectric film, 8: Underlayer. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の第 1態様の金属膜は、 二ッケルと鉄の合金膜であることが必要である。 金属膜中のニッケル含有量は 5重量%以上とするのが好ましく、 さらに 10重 量%以上とするのがさらに好ましい。 また 7 0重量以上%とするのが最も好まし レ、。 ニッケル含有量が 5 %未満であると、 金属膜は鉄の単一成分からなる金属膜 の熱的性質に近づき、 加熱されることにより電気抵抗値が著しく上昇し、 また透 過率が大きく変化するので好ましくない。 The metal film of the first embodiment of the present invention needs to be a nickel-iron alloy film. The nickel content in the metal film is preferably 5% by weight or more, More preferably, the amount is at least%. It is most preferable that the content be 70% by weight or more. If the nickel content is less than 5%, the metal film approaches the thermal properties of a metal film consisting of a single component of iron, and when heated, the electrical resistance increases significantly and the transmittance changes significantly. Is not preferred.
また、 金属膜中のニッケル含有量は 9 5重量%以下とするのが好ましい。 ニッ ケル含有量が 9 5重量%を越えると、 金属膜はニッケルの単一成分からなる金属 膜の熱的性質に近づき、 とくに金属膜の厚みが 4 n m未満である場合に電気抵抗 値が著しく上昇するので好ましくない。  Further, the nickel content in the metal film is preferably 95% by weight or less. When the nickel content exceeds 95% by weight, the metal film approaches the thermal properties of a metal film composed of a single component of nickel, and the electrical resistance becomes remarkable especially when the thickness of the metal film is less than 4 nm. It is not preferable because it rises.
本発明の第 1態様においては、 金属膜の厚みを 1 . 5 n m〜8 n mとするのが 好ましい。 厚みが 1 . 5 n m以下であると、 電気抵抗値が著しく増加するので好 ましくない。 また、 厚みが 8 nmを越えると透過率が低下し、 表示画像が暗くな るので好ましくない。  In the first embodiment of the present invention, the thickness of the metal film is preferably set to 1.5 nm to 8 nm. If the thickness is less than 1.5 nm, the electric resistance value is undesirably increased. On the other hand, when the thickness exceeds 8 nm, the transmittance is lowered and the displayed image becomes dark, which is not preferable.
また本発明の第 1態様においては、 可視光線反射率を 1 %以下にするとともに、 陰極線管に用いるガラス製品として反射の色調が目立った色にならないようにす る観点から、 第 2層の高屈折率透明誘電体膜の厚みを 5 ηπ!〜 1 4 O n mとし、 第 3層の低屈折率透明誘電体膜の厚みを 5 Ο η π!〜 1 2 O n mとするのが好まし い。  Further, in the first embodiment of the present invention, from the viewpoint of reducing the visible light reflectance to 1% or less and preventing the color tone of reflection from becoming a noticeable color as a glass product used for a cathode ray tube, the height of the second layer is increased. The thickness of the refractive index transparent dielectric film is 5ηπ! And the thickness of the low-refractive-index transparent dielectric film of the third layer is set to 5 ηπ! It is preferable to set to ~ 12 Onm.
本発明の第 2態様の金属膜は、 二ッケルと鉄の合金膜であることが必要である。 金属膜中のニッケル含有量は 5重量%以上とするのが好ましく、 さらに 1 0重 量%以上とするのが好ましく、 7 0重量%以上とするのが最も好ましい。 ニッケ ル含有量が 5重量%未満であると、 金属膜は鉄の単一成分からなる金属膜の熱的 性質に近づき、 加熱されることにより電気抵抗値が著しく上昇し、 また透過率が 大きく変化するので好ましくない。  The metal film according to the second aspect of the present invention needs to be a nickel-iron alloy film. The nickel content in the metal film is preferably at least 5% by weight, more preferably at least 10% by weight, most preferably at least 70% by weight. If the nickel content is less than 5% by weight, the metal film approaches the thermal properties of a metal film composed of a single component of iron, and when heated, the electrical resistance value increases significantly and the transmittance increases. It is not preferable because it changes.
また、 金属膜中のニッケル含有量は 9 5重量%以下とするのが好ましい。 ニッ ケル含有量が 9 5重量%を越えると、 金属膜はニッケルの単一成分からなる金属 膜の熱的性質に近づき、 とくに金属膜の厚みを 4 nm未満である場合に電気抵抗 値が著しく上昇するので好ましくない。  Further, the nickel content in the metal film is preferably 95% by weight or less. When the nickel content exceeds 95% by weight, the metal film approaches the thermal properties of a metal film consisting of a single component of nickel, and the electrical resistance becomes remarkable especially when the thickness of the metal film is less than 4 nm. It is not preferable because it rises.
本発明の第 2態様においては、 金属膜の厚みを 1 . 5 n m〜8 nmとするのが 好ましい。 1 . 5 nm以下であると、 電気抵抗が著しく増加するので好ましくな い。 また、 8 n mを越えると透過率が著しく低下し、 表示画像が暗くなるので好 ましくない。 In the second embodiment of the present invention, the thickness of the metal film is preferably set to 1.5 nm to 8 nm. preferable. When the thickness is less than 1.5 nm, the electric resistance is undesirably increased. On the other hand, if it exceeds 8 nm, the transmittance is remarkably reduced, and the displayed image is dark, which is not preferable.
また本発明の第 2態様においては、 可視光線反射率を 1 %以下にするとともに、 陰極線管に用いるガラス製品として反射の色調が目立った色にならないようにす る観点から、 第 2層の高屈折率透明誘電体膜の厚みを 5 ηπ!〜 7 O nmとし、 第 3層の中屈折率透明誘電体膜の厚みを 1 0 η π!〜 1 0 0 n mとし、 第 4層の低屈 折率透明誘電体膜の厚みを 5 0 n m〜 1 2 0 n mとするのが好ましい。  Further, in the second embodiment of the present invention, from the viewpoint of reducing the visible light reflectance to 1% or less and preventing the color tone of reflection from becoming noticeable as a glass product used for a cathode ray tube, the height of the second layer is increased. The thickness of the refractive index transparent dielectric film is 5ηπ! And the thickness of the third layer of the medium refractive index transparent dielectric film is 10 η π! 1100 nm, and the thickness of the fourth layer of the low refractive index transparent dielectric film is preferably 50 nm 1120 nm.
本発明の第 3態様においても、 金属膜は、 ニッケルと鉄の合金膜であることが 必要である。 金属膜中のニッケル含有量は 5重量%以上とするのが好ましく、 1 0重量%以上とするのがさらに好ましく、 Ί 0重量%以上とするのが最も好まし い。 ニッケル含有量が 5重量%未満であると、 金属膜は鉄の単一成分からなる金 属膜の熱的性質に近づき、 加熱されることにより電気抵抗値が著しく上昇し、 ま た透過率が大きく変化するので好ましくない。  Also in the third aspect of the present invention, the metal film needs to be an alloy film of nickel and iron. The nickel content in the metal film is preferably at least 5% by weight, more preferably at least 10% by weight, and most preferably at least 0% by weight. If the nickel content is less than 5% by weight, the metal film approaches the thermal properties of a metal film composed of a single component of iron, and when heated, the electrical resistance increases significantly and the transmittance increases. It is not preferable because it greatly changes.
また、 金属膜中のニッケル含有量は 9 5重量%以下とするのが好ましい。 ニッ ケル含有量が 9 5重量%を越えると、 金属膜はニッケルの単一成分からなる金属 膜の熱的性質に近づき、 とくに厚みが 4 nm未満である場合に電気抵抗値が著し く上昇するので好ましくない。  Further, the nickel content in the metal film is preferably 95% by weight or less. If the nickel content exceeds 95% by weight, the metal film approaches the thermal properties of a metal film consisting of a single component of nickel, and the electrical resistance increases significantly, especially when the thickness is less than 4 nm. Is not preferred.
本発明の第 3態様においては、 第 1層と第 3層の金属膜のそれそれの厚みを 1 . 5 ηπ!〜 7 . 5 n mとし、 その合計厚みを 9 n m以下とするのが好ましい。 金属 層のそれぞれの厚み範囲の限定理由は、 本発明の第 1態様または第 2態様と同じ である。 合計厚みが 9 n mを越えると、 表示装置の前面に設けられる反射防止膜 として透明性が小さくなり表示画面が暗くなるので好ましくない。  In a third embodiment of the present invention, the thickness of each of the first and third metal films is 1.5 ηπ! It is preferable that the total thickness be 9 nm or less. The reason for limiting the thickness range of each metal layer is the same as in the first or second embodiment of the present invention. If the total thickness exceeds 9 nm, the transparency becomes small as an antireflection film provided on the front surface of the display device, and the display screen becomes dark, which is not preferable.
また本発明の第 3態様においては、 可視光線反射率を 1 %以下にするとともに、 陰極線管に用いられるガラス製品として反射の色調を目立った色にならないよう にする観点から、 第 2層の高屈折率透明誘電体膜の厚みを 1 Ο η π!〜 7 O n m、 第 4層の高屈折率透明誘電体膜の厚みを 1 0 n m〜7 0 n m、 第 5層の低屈折率 透明誘電体膜の厚みを 7 0 n m〜 1 2 0 n mとするのが好ましい。 本発明の第 1態様、 第 2態様、 第 3態様のいずれにおいても、 ガラス基体とし てガラス製フェースプレートや透明あるいは無色のガラス板を用いることができ、 それらのガラス組成は特に限定されるものではない。 たとえばソ一ダ石灰珪酸組 成、 ホウ珪酸組成、 アルミノ珪酸組成、 アルミノホウ珪酸組成などのガラスを必 要により曲げ加工や風冷強化などにより加工したものを用いることができる。 本発明の第 1態様、 第 2態様、 第 3態様のいずれにおいても、 高屈折率透明誘 電体膜としてチタン酸プラセォジゥム (P r T i 03) 、 酸化チタン (T i 02) 、 酸化タンタル (T a 205) および酸ィ匕ジルコニウム (Z r〇2) の膜が例示でき一 る。 なかでも、 チタン酸プラセォジゥムは、 真空蒸着で成膜するときに酸素ガス を導入しなくても透明で緻密な膜が得られることから、 成膜中に金属膜を酸化劣 化させないので好ましい。 Further, in the third embodiment of the present invention, from the viewpoint of reducing the visible light reflectance to 1% or less and preventing the color tone of reflection from becoming conspicuous as a glass product used for a cathode ray tube, the height of the second layer is increased. When the thickness of the refractive index transparent dielectric film is 1 η η π! ~ 7 O nm, the thickness of the high refractive index transparent dielectric film of the fourth layer is 10 nm-70 nm, and the thickness of the low refractive index transparent dielectric film of the fifth layer is 70 nm ~ 120 nm. Is preferred. In any of the first, second, and third aspects of the present invention, a glass face plate or a transparent or colorless glass plate can be used as the glass substrate, and the glass composition thereof is particularly limited. is not. For example, a glass having a soda-lime-silica composition, a borosilicate composition, an alumino-silicate composition, an alumino-borosilicate composition, or the like, which is processed by bending or air-cooling as necessary can be used. The first aspect of the present invention, the second aspect, in any of the third aspect, titanate Puraseojiumu as a high refractive index transparent Yuden film (P r T i 0 3) , titanium oxide (T i 0 2), oxide tantalum (T a 2 0 5) and Sani匕zirconium (Z R_〇 2) film of Ru one can be exemplified. Above all, praseodymium titanate is preferable because a transparent and dense film can be obtained without introducing oxygen gas when forming a film by vacuum deposition, and therefore, the metal film is not oxidized and deteriorated during the film formation.
本発明の第 1態様、 第 2態様、 第 3態様において、 低屈折率透明誘電体膜とし てフッ化マグネシウムと二酸化珪素を例示できる。 なかでも、 フッ化マグネシゥ ムは屈折率が 1 . 3 5と低く、 高屈折率透明誘電体膜の屈折率との差が大きいの で、 反射率を低くすることが容易となるので好ましい。  In the first, second, and third aspects of the present invention, examples of the low-refractive-index transparent dielectric film include magnesium fluoride and silicon dioxide. Among them, magnesium fluoride is preferable because the refractive index is as low as 1.35 and the difference between the refractive index and the refractive index of the high-refractive-index transparent dielectric film is large, so that it is easy to lower the reflectance.
本発明の第 2態様における、 中屈折率透明誘電体 Ji莫としては酸化マグネシゥム (M g O ) 、 酸化ニオブ (N b 205) および一酸化珪素 (S i〇) 等を例示でき る。 なかでも、 酸化マグネシウムは真空蒸着による成膜時に酸素ガスを導入しな くても透明で緻密な膜が得られることから、 成膜中に金属膜を酸化劣化させない ので好ましい。 In the second aspect of the present invention, a medium refractive index transparent dielectric Ji as the trillions oxide Maguneshiumu (M g O), Ru can be exemplified niobium oxide (N b 2 0 5) and silicon monoxide (S I_〇) or the like. Among them, magnesium oxide is preferable because a transparent and dense film can be obtained without introducing oxygen gas at the time of film formation by vacuum deposition, so that the metal film is not oxidized and deteriorated during the film formation.
本発明の第 1態様、 第 2態様、 第 3態様において、 ガラス基体と第 1層の金属 膜の間に透明誘電体層 (以下、 下地膜と呼ぶ) を設けることができる。 この下地 膜は、 ガラス表面と第 1層の金属膜の接触を断つ、 すなわちガラス表面の水分な どの不純物が金属膜中に進入するのを防止して金属膜の電気抵抗が増大するのを 防止する目的で設けられる。  In the first, second, and third aspects of the present invention, a transparent dielectric layer (hereinafter, referred to as a base film) can be provided between the glass substrate and the first layer metal film. This underlayer film breaks contact between the glass surface and the first metal film, that is, prevents water and other impurities on the glass surface from entering the metal film, thereby preventing the electrical resistance of the metal film from increasing. It is provided for the purpose of doing.
下地膜を構成する物質は特に限定されないが、 チタン酸プラセォジゥム、 酸化 マグネシウム、 フヅ化マグネシウム (M g F 2) が好ましいものとして例示でき 下地膜の厚みは、 第 1層の金属膜を平滑にし、 それにより金属膜の電気抵抗を 低減させるという観点から、 3 n m以上とするのが好ましい。 また、 下地膜自体 の表面凹凸を小さくする観点から 7 n m以下とするのが好ましく、 5 n m以下と するのがさらに好ましい。 The material constituting the base film is not particularly limited, but praseodymium titanate, magnesium oxide, and magnesium fluoride (MgF 2 ) can be exemplified as preferable ones. The thickness of the base film is preferably 3 nm or more from the viewpoint of smoothing the first metal film and thereby reducing the electrical resistance of the metal film. The thickness is preferably 7 nm or less, and more preferably 5 nm or less, from the viewpoint of reducing the surface irregularities of the base film itself.
本発明の第 1態様、 第 2態様、 第 3態様のいずれにおいても、 ニッケルと鉄か らなる金属層には、 光吸収の程度や反射色調を微妙に調整する等のために、 上記 の耐熱性が大きく劣化しない範囲で第三の金属を添加してもよい。  In any of the first, second, and third aspects of the present invention, the metal layer made of nickel and iron has the above heat resistance in order to finely adjust the degree of light absorption and the reflection color tone. A third metal may be added as long as the properties are not significantly deteriorated.
本発明の第 1態様、 第 2態様、 第 3態様の導電性反射防止膜を構成する各層は、 真空蒸着法ゃィオンプレ一ティング法などの公知の方法で成膜することができる 本発明にかかる陰極線管は、 本発明にかかる導電性反射防止膜を被覆したフエ Each layer constituting the conductive anti-reflection film according to the first, second, and third aspects of the present invention can be formed by a known method such as a vacuum evaporation method or a ion plating method. The cathode ray tube is a ferrite coated with the conductive antireflection film according to the present invention.
—スプレートとファンネルを加熱接合する方法によっても、 フ: π—スプレートと ファンネルを接合後本発明にかかる導電性反射防止膜を被覆する方法によっても 製造することができる。 Alternatively, it can be manufactured by a method of heating and joining a plate and a funnel, or by a method of joining a conductive antireflection film according to the present invention after joining a π-plate and a funnel.
本発明を以下に図面および実施例を用いて説明する。  The present invention will be described below with reference to the drawings and examples.
図 1は、 本発明の導電性反射防止膜付き物品 1の一実施例の断面図で、 ガラス 製のフ: E—スプレ一ト 3の画像表示部に導電性反射防止膜 2が被覆されてレ、る。 図 2は.、 本発明の導電性反射防止膜 2の積層構成を説明するための一部断面図 である。 図 2 ( a ) では、 導電性反射防止膜 2は、 フェースプレート 3の上に金 属膜 4、 高屈折率透明誘電体膜 5および低屈折率透明誘電体膜 6が順次積層され て構成されている。 図 2 ( b ) では、 導電性反射防止膜 2は、 フ: π—スプレート 3の上に金属膜 4、 高屈折率透明誘電体膜 5、 中屈折率透明誘電体膜 7および低 屈折率透明誘電体膜 6が順次積層されて構成されている。 図 2 ( c ) では、 導電 性反射防止膜 2は、 フェースプレート 3の上に下地膜 8、 金属膜 4、 高屈折率透 明誘電体膜 5、 金属膜 4、 高屈折率透明誘電体膜 5および低屈折率透明誘電体膜 6が順次積層されて構成されている。  FIG. 1 is a cross-sectional view of an embodiment of an article 1 with a conductive anti-reflection film according to the present invention, in which a glass anti-reflection film 2 is coated with a conductive anti-reflection film 2 on an image display portion. Let's do it. FIG. 2 is a partial cross-sectional view for explaining a laminated structure of the conductive anti-reflection film 2 of the present invention. In FIG. 2 (a), the conductive anti-reflection film 2 is configured by sequentially laminating a metal film 4, a high-refractive-index transparent dielectric film 5, and a low-refractive-index transparent dielectric film 6 on a face plate 3. ing. In FIG. 2 (b), the conductive anti-reflection film 2 is composed of a metal film 4, a high-refractive-index transparent dielectric film 5, a medium-refractive-index transparent dielectric film 7, and a low-refractive index The transparent dielectric films 6 are sequentially laminated. In FIG. 2 (c), the conductive anti-reflection film 2 is composed of a base film 8, a metal film 4, a high-refractive-index transparent dielectric film 5, a metal film 4, and a high-refractive-index transparent dielectric film on a face plate 3. 5 and a low refractive index transparent dielectric film 6 are sequentially laminated.
図 3は、 本発明の実施例 6で得られたサンプルの可視光域の反射、 透過の分光 特性図である。  FIG. 3 is a spectral characteristic diagram of reflection and transmission in the visible light region of the sample obtained in Example 6 of the present invention.
以下の実施例および比較例において、 各膜を真空蒸着により成膜したときに用 いた蒸着材料は下記の通りである。 In the following Examples and Comparative Examples, each film was used when formed by vacuum evaporation. The deposited materials used are as follows.
実施例のニッケル鉄膜:所定組成のニッケルと鉄の合金ワイヤ一  Nickel-iron film of Example: Nickel-iron alloy wire of predetermined composition
比較例 1、 3のニッケル膜:ニッケルワイヤ一  Nickel film of Comparative Examples 1 and 3: Nickel wire
比較例 2の鉄膜:鉄ワイヤ一  Iron film of Comparative Example 2: iron wire
比較例 4、 5のニッケル鉄ク口ム膜:所定組成の二 'ソケル鉄ク口ム合金ヮィャ 比較例 6のニッケルクロム膜:所定の組成のニッケルクロム合金ワイヤ一 チ夕ン酸プラセォジゥム膜: Me r ck社製商品名 SUB STANCEH 2ぺ レヅ 卜  Nickel-iron alloy films of Comparative Examples 4 and 5: Nickel-alloy alloy films of predetermined composition Nickel-chromium film of Comparative Example 6: Nickel-chromium alloy wires of specific composition Praseodymium titanate film: Me r ck brand name SUB STANCEH 2
·酸化マグネシゥム膜:酸化マグネシゥム粒  · Magnesium oxide film: Magnesium oxide grains
フッ化マグネシゥム膜: フッ化マグネシゥム粒 実施例 1  Magnesium fluoride film: Magnesium fluoride particles Example 1
よく洗浄した 1 0 Ommx 100 mmx厚み 3 mmのソ一ダライムシリカ組成 のガラス板を真空蒸着槽にいれ、 蒸着装置内に設置された基板加熱ヒー夕一によ り 300°Cに加熱した状態で、 表 1の実施例 1の欄に示す積層構成の導電性反射 防止膜をガラス板上.に被覆した。 蒸着材料の蒸発は電子ビーム蒸着法で行い、 蒸 着るつぼからガラス板までの距離を 1 00 cmとし、 ガラス板を回転させながら 行った。 蒸着開始前の到達真空度はいずれの膜についても、 油拡散ポンプで 0, 003 P aまで排気を行った。 ニッケル鉄の合金膜、 チタン酸プラセォジゥム膜、 酸化マグネシウム膜、 フッ化マグネシウム膜については、 酸素ガスを導入せずに 蒸着を行った。  A well-washed 10 mm Ox100 mm x 3 mm thick glass plate of soda lime silica composition was placed in a vacuum evaporation tank and heated to 300 ° C by a substrate heating heater installed in the evaporation apparatus. A conductive antireflection film having a laminated structure shown in the column of Example 1 in Table 1 was coated on a glass plate. The evaporation material was evaporated by the electron beam evaporation method, the distance from the evaporation crucible to the glass plate was set to 100 cm, and the evaporation was performed while rotating the glass plate. The ultimate vacuum degree before the start of vapor deposition was exhausted to 0.003 Pa with an oil diffusion pump for all films. Nickel-iron alloy films, praseodymium titanate films, magnesium oxide films, and magnesium fluoride films were deposited without introducing oxygen gas.
得られたサンプルを蒸着装置から取り出して、 透過率 (波長: 550 nm) 、 膜被覆面側の反射率 (波長: 550 nm) 、 帯電防止性能の評価特性としてシー ト抵抗を測定した。 金属膜の組成を化学分析により測定した。 各測定結果を表 2 に示す。 また、 サンプルを大気中で 450°Cで 1時間熱処理した後の透過率、 膜 被覆面側の反射率、 シート抵抗を測定した。 結果を表 2の実施例 1の欄に示す。 サンプルの反射率は実用的観点から要求される 1 %以下であり、 この値は熱処 理を受けても大きく変化せず 1 %以下が維持された。 また、 シート抵抗が 2 8 2 ΩΖ口と帯電防止機能を有するには十分低い抵抗であり、 かつ、 熱処理を受けて も抵抗は劣化する (大きくなる) ことはなく、 むしろ小さくなつた。 さらに、 透 過率は、 6 6 . 5 %から 6 7 . 2 %とわずか 0 . 7 %の小さな変化にとどまった c この値は、 陰極線管のフェースプレートあるいは透明なフェースプレートに貼り つけて用いる前面ガラスパネルとし、 実用的観点から有用な透過率が 4 0〜8 0 %の範囲内であった。 The obtained sample was taken out of the vapor deposition apparatus, and the transmittance (wavelength: 550 nm), the reflectance on the film-coated side (wavelength: 550 nm), and the sheet resistance were measured as evaluation characteristics of antistatic performance. The composition of the metal film was measured by chemical analysis. Table 2 shows the measurement results. In addition, the transmittance, the reflectance on the film-coated side, and the sheet resistance after heat-treating the sample at 450 ° C for 1 hour in the atmosphere were measured. The results are shown in the column of Example 1 in Table 2. The reflectance of the sample was 1% or less, which is required from a practical point of view, and this value was maintained at 1% or less without being significantly changed even after the heat treatment. In addition, the sheet resistance was 282 Ω square, which is low enough to have an antistatic function, and the resistance did not deteriorate (increase) even after being subjected to heat treatment, but rather decreased. Furthermore, the transmittance was only a small change of 0.7% from 66.5% to 67.2% .c This value was used by sticking it to the faceplate of a cathode ray tube or a transparent faceplate. From the practical point of view, the useful transmittance was in the range of 40 to 80% for the front glass panel.
実施例 2〜実施例 1 0 Example 2 to Example 10
実施例 1と同じようにして、 表 1で示される膜構成の導電性反射防止膜をガラ ス板上に被覆して、 得られたサンプルについて実施例 1と同様の試験をした結果 を表 2に示す。 実施例 2〜実施例 1 0のサンプルのいずれも、 反射率については 初期および熱処理後とも 1 %以下であった。 初期のシート抵抗はいずれのサンプ ルも 5 0 0 Ω /ロ以下と低く、 かつ熱処理を受けても大きく増加することはなく、 むしろ低下することが判明した。 また透過率の熱処理による変化は、 2 . 2 %以 下と小さい値であった。  In the same manner as in Example 1, a conductive antireflection film having the film configuration shown in Table 1 was coated on a glass plate, and the obtained sample was subjected to the same test as in Example 1 to obtain the results. Shown in Each of the samples of Examples 2 to 10 had a reflectance of 1% or less both at the initial stage and after the heat treatment. It was found that the initial sheet resistance of each sample was as low as 500 Ω / b or less, and that it did not increase significantly after heat treatment, but rather decreased. The change in transmittance due to the heat treatment was a small value of 2.2% or less.
実施例 2の膜構成にチタン酸プラセォジゥムの下地膜を追加したものが実施例 4であり、 実施例 6の膜構成にチタン酸プラセォジゥム下地膜を追加したものが 実施例 7である。 実施例 2と実施例 4、 実施例 6と実施例 7を比較すると、 下地 膜を追加挿入することにより,シート抵抗が低くなることが分かる。 Example 4 is a film obtained by adding a base film of praseodymium titanate to the film structure of Example 2, and Example 7 is a film obtained by adding a base film of praseodymium titanate to the film structure of Example 6. Comparing Example 2 with Example 4, and Example 6 with Example 7, it can be seen that the sheet resistance is reduced by additionally inserting the underlayer.
実施例 膜 1 膜 2 膜 3 膜 4 膜 5 膜 6 金属膜組成Example Film 1 Film 2 Film 3 Film 4 Film 5 Film 6 Metal film composition
1 NiFe PrTi03 MgO MgF2 Fe/Ni 1 NiFe PrTi0 3 MgO MgF 2 Fe / Ni
(3.2) ( 127.4) (45.4) (71.7) 20/80 (3.2) (127.4) (45.4) (71.7) 20/80
2 NiFe PrTi03 MgO MgF2 ie/Ni 2 NiFe PrTi0 3 MgO MgF 2 ie / Ni
(3.2) ( 127.4) (45.4) (71.7) 10/90 (3.2) (127.4) (45.4) (71.7) 10/90
3 NiFe PrTi03 MgO MgF2 Fe/Ni 3 NiFe PrTi0 3 MgO MgF 2 Fe / Ni
(3.2) ( 127.4) (45.4) (71.7) 30/70 (3.2) (127.4) (45.4) (71.7) 30/70
4 PrTi03 NiFe PrTi03 MgO MgF2 Fe/Ni 4 PrTi0 3 NiFe PrTi0 3 MgO MgF 2 Fe / Ni
(5.0) (2.0) ( 101.4) (36.3) (80.8) 20/80 (5.0) (2.0) (101.4) (36.3) (80.8) 20/80
5 PrTi03 NiFe PrTi03 MgF2 Fe/Ni 5 PrTi0 3 NiFe PrTi0 3 MgF 2 Fe / Ni
(5.0) (3.2) ( 134.5 ) (96.8) 50/50 (5.0) (3.2) (134.5) (96.8) 50/50
6 NiFe PrTi03 NiFe PrTi03 MgF2 Fe/Ni 6 NiFe PrTi0 3 NiFe PrTi0 3 MgF 2 Fe / Ni
(4.6) (26.0) (2.4) (35.0) (79.0) 20/80 (4.6) (26.0) (2.4) (35.0) (79.0) 20/80
7 MgO NiFe PrTi03 NiFe PrTi03 gF2 Fe/Ni 7 MgO NiFe PrTi0 3 NiFe PrTi0 3 gF 2 Fe / Ni
(5.0) (4.6) (26.0 ) {2.4.) (35.0) (79.0) 40/60 (5.0) (4.6) (26.0) (2.4.) (35.0) (79.0) 40/60
8 Pr i03 NiFe PrTi'J3 Fe/Ni 8 Pr i0 3 NiFe PrTi'J 3 Fe / Ni
(5.0) (2.2) (34.8) (93.6 ) 95/5 (5.0) (2.2) (34.8) (93.6) 95/5
9 PrTi03 NiFe PrTi03 MgF2 Fe/Ni 9 PrTi0 3 NiFe PrTi0 3 MgF 2 Fe / Ni
(5.0) (2.4) (34.8) (93.6 ) 5/95 (5.0) (2.4) (34.8) (93.6) 5/95
1 0 NiFe PrTi03 MgF2 Fe/Ni 1 0 NiFe PrTi0 3 MgF 2 Fe / Ni
(3.2) (34.8) ( 93.6) 5/95 上段は膜の物質、 下段は膜の厚み (単位 nm) 、 金属膜の組成は重量% 表 2 透過率 (%) 反射率 (%) シ-卜抵抗 (Ω/口) 刖 後 差 刖 後 m 後 差 実施例 1 66.5 67.2 0.7 0.22 0.25 0.03 282 258 -24 実施例 2 65.2 66.3 1.1 0.26 0.28 0.02 305 245 -60 実施例 3 66.0 67.8 1.8 0.23 0.29 0.06 295 226 -69 実施例 4 75.2 76.2 1.0 0.25 0.26 0.01 207 174 - 33 実施例 5 67.0 67.7 0.7 0.19 0.30 0.11 198 184 -14 実施例 6 47.0 49.2 2.2 0.11 0.28 0.17 98 96 -2 実施例 7 46.6 47.5 0.9 0.17 0.20 0.03 87 85 -2 実施例 8 61.2 61.8 0.6 0.81 0.85 0.04 341 330 -11 実施例 9 70.2 70.2 0.0 0.70 0.50 0.20 279 247 - 32 実施例 10 67.2 67.6 0.4 0.34 0.41 0.07 486 484 -2 前:熱処理前、 後:熱処理後 差は熱処理後一熱処理前の値 比較例 1 (3.2) (34.8) (93.6) 5/95 The upper part is the material of the film, the lower part is the thickness of the film (unit: nm), and the composition of the metal film is% by weight. Table 2 Transmittance (%) Reflectance (%) Sheet resistance (Ω / port) 刖 Difference after difference m Difference after m Example 1 66.5 67.2 0.7 0.22 0.25 0.03 282 258 -24 Example 2 65.2 66.3 1.1 0.26 0.28 0.02 305 245 -60 Example 3 66.0 67.8 1.8 0.23 0.29 0.06 295 226 -69 Example 4 75.2 76.2 1.0 0.25 0.26 0.01 207 174-33 Example 5 67.0 67.7 0.7 0.19 0.30 0.11 198 184 -14 Example 6 47.0 49.2 2.2 0.11 0.28 0.17 98 96 -2 Example 7 46.6 47.5 0.9 0.17 0.20 0.03 87 85 -2 Example 8 61.2 61.8 0.6 0.81 0.85 0.04 341 330 -11 Example 9 70.2 70.2 0.0 0.70 0.50 0.20 279 247 -32 Example 10 67.2 67.6 0.4 0.34 0.41 0.07 486 484 -2 Before: Before heat treatment, After: After heat treatment Difference is after heat treatment and before heat treatment Comparative Example 1
金属膜をニッケル単一組成の膜とし、 表 3の比較例 1の欄に示す積層構成の導 電性反射防止膜を、 実施例 1と同様の方法により被覆した比較サンプルを得た。 この比較サンプルを実施例 1と同じ方法で評価した結果を表 4の比較例 1の欄に 示す。 この比較サンプルは、 反射率が 1%以下であり、 また透過率の熱安定性が 良好であつたが、 シート抵抗の初期および熱処理後ともに 2 M (メガ) Ω/ロ以 上であり、 良好な帯電防止機能を得ることができなかった。 '  A comparative sample was obtained in the same manner as in Example 1 except that the metal film was a film having a single composition of nickel, and the conductive antireflection film having the laminated structure shown in the column of Comparative Example 1 in Table 3 was coated in the same manner as in Example 1. The results of evaluating this comparative sample in the same manner as in Example 1 are shown in the column of Comparative Example 1 in Table 4. This comparative sample had a reflectance of 1% or less and good thermal stability of transmittance, but the sheet resistance was 2 M (mega) Ω / b or more both at the initial stage and after heat treatment. No antistatic function could be obtained. '
比較例 2 Comparative Example 2
金属膜を鉄単一組成の膜とし、 表 3の比較例 2の欄に示す積層構成の導電性反 射防止膜を、 実施例 1と同様の方法により被覆した比較サンプルを得た。 この比 較サンプルを実施例 1と同じ方法で評価した結果を表 4の比較例 2の欄に示す。 この比較サンプルの初期の反射率は 0 . 4 3 %と低い値であつたが、 熱処理によ り透過率は 1 8 . 7 %に、 反射率は 4 . 0 8 %にそれぞれ上昇した。 またシート 抵抗の初期および熱処理後ともに 2 M (メガ) Ω以上であり、 良好な帯電防 機 能を得ることができなかった。 A comparative sample was obtained in the same manner as in Example 1 except that the metal film was a film having a single composition of iron, and the conductive antireflection film having the laminated structure shown in the column of Comparative Example 2 in Table 3 was coated in the same manner as in Example 1. This ratio The results of evaluation of the comparative sample in the same manner as in Example 1 are shown in the column of Comparative Example 2 in Table 4. The initial reflectance of this comparative sample was as low as 0.43%, but the heat treatment increased the transmittance to 18.7% and the reflectance to 4.08%. In addition, the sheet resistance was 2 M (mega) Ω or more both at the initial stage and after the heat treatment, and a good antistatic function could not be obtained.
比較例 3 Comparative Example 3
金属膜をニッケル単一組成の膜とし、 表 3の比較例 3の欄に示すようにガラス 板と第 1の金属層の間にチタン酸プラセォジゥムの下地膜を設けた積層構成の比 較サンプルを得た。 この比較サンプルを実施例 1と同じ方法で評価した結果を表 4の比較例 3の欄に示す。 熱処理前後の反射率は 1 %以下であり、 また透過率の 熱安定性も良好であつたが、 シート抵抗の初期および熱処理後ともに 2 M (メ ガ) Ωノロ以上であり、 良好な帯電防止機能を得ることができなかった。  A comparative sample of a laminated structure in which the metal film was a film of a single composition of nickel and a base film of praseodymium titanate was provided between the glass plate and the first metal layer as shown in the column of Comparative Example 3 in Table 3 was used. Obtained. The results of evaluating this comparative sample in the same manner as in Example 1 are shown in the column of Comparative Example 3 in Table 4. The reflectance before and after the heat treatment was 1% or less, and the thermal stability of the transmittance was good. However, the sheet resistance was 2M (mega) Ω or more both at the initial stage and after the heat treatment, and the antistatic property was good. Did not get the function.
比較例 4および比較例 5 Comparative Example 4 and Comparative Example 5
金属膜をニッケル、 鉄、 クロムの三成分系の膜として、 表 3の比較例 4および 比較例 5の欄に示す積層構成の比較サンプルを得た。 この比較サンプルを実施例 1と同じ方法で評価した結果を 表 4の比較例 4と比較例 5の欄に示す c クロム が 2 8重量%含有する比較サン-プルは.. 透過率の熱処理による変化が 9 . 8 % 加し、 クロムが 1 6 %含有する比較サンプル 5は、 9 . 2 %増加し、 熱安定性が 大きく劣化することが分かった。 また、 シート抵抗についても熱処理により、 比 較サンプル 4では増加し、 比較サンプル 5では減少するという不規則な変化をす ることが認められた。  Using the metal film as a three-component film of nickel, iron, and chromium, comparative samples having a laminated configuration shown in the columns of Comparative Example 4 and Comparative Example 5 in Table 3 were obtained. The results of evaluating this comparative sample in the same manner as in Example 1 are shown in the columns of Comparative Example 4 and Comparative Example 5 in Table 4. The comparative sample containing 28% by weight of c chromium was obtained by heat treatment for transmittance. The change was increased by 9.8%, and Comparative Sample 5 containing 16% of chromium was found to increase by 9.2%, and the thermal stability was significantly deteriorated. It was also recognized that the heat treatment caused an irregular change in the sheet resistance, which increased in Comparative Sample 4 and decreased in Comparative Sample 5.
比較例 6 Comparative Example 6
比較例 1とは、 金属膜を二ッケルとクロムの 2成分系にした他は全く同じよう にして比較サンプルを得た。 表 4の比較例 6の欄に示すように、 この比較サンプ ルは、 透過率の熱処理による変化が 1 2 . 5 %と大きく、 またシート抵抗も三桁 の増加がみられた。 表 3 A comparative sample was obtained in exactly the same manner as in Comparative Example 1 except that the metal film was a two-component system of nickel and chromium. As shown in the column of Comparative Example 6 in Table 4, in this comparative sample, the change in the transmittance due to the heat treatment was as large as 12.5%, and the sheet resistance was increased by three orders of magnitude. Table 3
Figure imgf000015_0001
Figure imgf000015_0001
上段は膜の物質、 下段は膜の厚み (単位 n m) 、 金属膜の組成は重量% 表 4 透過率 (%) 反射率 (%) シ-ト抵抗 (Ω /口) 例 刖 刖 刖 比較例 1 62.6 63. 1 0.5 0.45 0.58 0. 13 >2M >2M 比較例 2 64.3 83.0 18.7 0.43 4.20 4.08 >2M >2M 比較例 3 63.6 64.2 0.6 0.65 0.52 -0. 13 >2M >2M 比較例 4 66.7 76.5 9.8 0.37 1.54 1. 17 1140 2950 1810 比較例 5 47.3 56.5 9.2 0.25 0.34 0.09 1173 554 -619 比較例 6 63.2 75.7 12.5 0.51 3. 10 2.59 769 406K 前:熱処理前、 後:熱処理後 差は熱処理後-熱処理前の値 以上説明したように、 いずれの比較サンプルも、 熱処理に対して透過率および シート抵抗がともに安定した特性を有するものではなかった。 これに対し、 本発 明の実施例のサンプルでは、 透過率および反射率は熱処理を受けても安定し、 さ らにシート抵抗はむしろ小さくなり、 帯電防止機能および電磁波遮蔽機能の両機 能が維持されることが分かる。 Table 4 Transmittance (%) Reflectivity (%) Sheet Resistance (Ω / port) Example 刖 比較 Comparative Example 1 62.6 63. 1 0.5 0.45 0.58 0.13>2M> 2M Comparative Example 2 64.3 83.0 18.7 0.43 4.20 4.08>2M> 2M Comparative Example 3 63.6 64.2 0.6 0.65 0.52 -0.13>2M> 2M Comparative Example 4 66.7 76.5 9.8 0.37 1.54 1.17 1140 2950 1810 Comparative Example 5 47.3 56.5 9.2 0.25 0.34 0.09 1173 554 -619 Comparative Example 6 63.2 75.7 12.5 0.51 3.10 2.59 769 406K Before: Before heat treatment, After: After heat treatment Difference after heat treatment-Before heat treatment The value of the As described above, none of the comparative samples had stable characteristics in terms of transmittance and sheet resistance to heat treatment. In contrast, in the sample of the example of the present invention, the transmittance and the reflectance are stable even after the heat treatment, the sheet resistance is rather reduced, and both the antistatic function and the electromagnetic wave shielding function are maintained. It is understood that it is done.
蛍光体に電子線を加速照射して表示する陰極線管などの表示装置では、 画像表 示部の前面に設けられる帯電防止機能を有する導電性反射防止膜の導電性能は、 シート抵抗がおよそ l k Q/CI以下であることが好ましく、 また、 人体への影響 を考慮して放射される電磁波の遮断能をもたせるには、 およそ 5 0 0 Ω /ロ以下 とするのが好ましい。 かかる観点から本発明の実施例で得られたサンプルの導電 性反射防止膜は、 その実用的な性能を十分に備えていることがわかる。  In a display device such as a cathode ray tube that displays a phosphor by irradiating the phosphor with an electron beam at an accelerated rate, the conductive performance of the conductive anti-reflection film with antistatic function provided on the front of the image display section is approximately lk Q / CI or less, and preferably about 500 Ω / b or less in order to have the ability to block radiated electromagnetic waves in consideration of the effect on the human body. From this viewpoint, it can be seen that the conductive anti-reflection film of the sample obtained in the example of the present invention has sufficient practical performance.
以上説明したように、 本発明は、 金属膜と透明誘電体膜の積層体からなる反射 防止膜の金属膜を、 ニッケルの単独膜あるいは鉄の単独膜で構成した場合、 それ らが熱処理を受けると電気抵抗が劣化 (上昇) するが、 驚くべきことにニッケル と鉄の合金膜とすることにより、 電気抵抗の安定性が向上するという予期されな Iヽ効果を実験により見いだしたことによりなされたものである。  As described above, according to the present invention, when the metal film of the antireflection film composed of the laminate of the metal film and the transparent dielectric film is formed of a single film of nickel or a single film of iron, they are subjected to a heat treatment. Surprisingly, this was achieved by experimentally finding the expected I ヽ effect of improving the stability of electrical resistance by using nickel and iron alloy films. Things.
本発明の導電性反射防止膜を構成する金属膜を二ッケルと鉄の合金膜で構成し たので、 導電性反射防止膜は熱安定性が優れたものになった。 このため高温の熱 処理を受けても、 その透過率および反射率の変化が小さい。 また、 導電性反射防 止膜の金属膜をニッケルと鉄の合金の膜で構成したので、 高温の熱処理を受けて も、 そのシート抵抗は安定している。 産業上の利用可能性  Since the metal film constituting the conductive anti-reflection film of the present invention was formed of a nickel-iron alloy film, the conductive anti-reflection film had excellent thermal stability. Therefore, even when subjected to a high-temperature heat treatment, changes in the transmittance and the reflectance are small. In addition, since the metal film of the conductive antireflection film is formed of a film of an alloy of nickel and iron, the sheet resistance is stable even when subjected to a high-temperature heat treatment. Industrial applicability
本発明の導電性反射防止膜の光学特性および電気抵抗特性は熱的に安定してい るので、 本発明の導電性反射防止膜を被覆したガラス製フェースプレートをファ ンネルとフリットガラスで加熱接合しても、 加熱接合前の性能が維持でき、 光学 特性と帯電防止機能を損なうことなく陰極線管を製造することができる。  Since the optical properties and electrical resistance properties of the conductive anti-reflection film of the present invention are thermally stable, a glass face plate coated with the conductive anti-reflection film of the present invention is heated and joined with funnel and frit glass. However, the performance before the heat bonding can be maintained, and the cathode ray tube can be manufactured without impairing the optical characteristics and the antistatic function.

Claims

請 求 の 範 囲 The scope of the claims
1. 550 nmの波長での屈折率が 1. 4〜1. 7のガラス基体上に、 該ガラ ス基体側から順に、 第 1層の金属膜と、 第 2層の 550 nmの波長での屈折率が 2. 0〜2. 4の高屈折率透明誘電体膜と、 第 3層の 55 Onmの波長での屈折 率が 1. 35〜1. 46の低屈折率透明誘電体膜が積層された導電性反射防止膜 が被覆されたガラス物品であって、 該金属膜をニッケル鉄合金の膜とし、 かつ、 可視光線反射率を 1 %以下としたことを特徴とする導電性反射防止膜付きガラス 物品。 1. On a glass substrate having a refractive index of 1.4 to 1.7 at a wavelength of 550 nm, in order from the glass substrate side, a first layer of a metal film and a second layer of a 550 nm wavelength. A high-refractive-index transparent dielectric film with a refractive index of 2.0 to 2.4 and a low-refractive-index transparent dielectric film with a refractive index of 1.35 to 1.46 at a wavelength of 55 Onm of the third layer are laminated. A glass article coated with the coated conductive anti-reflection film, wherein the metal film is a nickel-iron alloy film and the visible light reflectance is 1% or less. With glass articles.
2. 該金属膜中の二ッケル含有量を 5重量%以上 95重量%以下としたことを 特徴とする請求の範囲第 1項に記載の導電性反射防止膜付きガラス物品。 2. The glass article with a conductive antireflection film according to claim 1, wherein the nickel content in the metal film is 5% by weight or more and 95% by weight or less.
3. 該金属膜の厚みを 1. 5ηπ!〜 8nmとしたことを特徴とする請求の範囲 第 1項または第 2項に記載の導電性反射防止膜付きガラス物品。  3. Increase the thickness of the metal film to 1.5ηπ! The glass article with a conductive anti-reflection film according to claim 1 or 2, wherein the glass article has a thickness of from 8 to 8 nm.
4. 第 2層の高屈折率透明誘電体膜の厚みを 5 ηπ!〜 14 Onmとし、 第 3層 の低屈折率透明誘電体膜の厚みを 50 nm~ 120 nmとした請求の範囲第 1項 4. Increase the thickness of the high refractive index transparent dielectric film of the second layer to 5 ηπ! The thickness of the low-refractive-index transparent dielectric film of the third layer is set to 50 nm to 120 nm.
〜第 3項のいずれかに記載の導電性反射防止膜付きガラス物品 c A glass article with a conductive anti-reflection film according to any one of-
5. 550 nmの波長での屈折率が 1. 4〜1. 7のガラス基体上に、 該カラ ス基体側から順に、 第 1層の金属膜と、 第 2層の 550 nmの波長での屈折率が 2. 0〜2. 4の高屈折率透明誘電体膜と、 第 3層の 550 nmの波長での屈折 率が 1. 7〜1. 9の中屈折率透明誘電体膜と、 第 4層の 55 Onmの波長での 屈折率が 1. 35〜 1. 46の低屈折率透明誘電体膜が積層された導電性反射防 止膜が被覆されたガラス物品であって、 該金属膜をニッケル鉄合金の膜とし、 可 視光線反射率を 1%以下としたことを特徴とする導電性反射防止膜付きガラス物 口  5. On a glass substrate having a refractive index of 1.4 to 1.7 at a wavelength of 550 nm, in order from the glass substrate side, a metal film of a first layer and a metal film of a second layer at a wavelength of 550 nm. A high-refractive-index transparent dielectric film having a refractive index of 2.0 to 2.4, and a medium-refractive-index transparent dielectric film of a third layer having a refractive index of 1.7 to 1.9 at a wavelength of 550 nm; A glass article coated with a conductive anti-reflection film on which a low-refractive-index transparent dielectric film having a refractive index of 1.35 to 1.46 at a wavelength of 55 Onm of the fourth layer is laminated, wherein the metal A glass material with a conductive anti-reflection film, characterized in that the film is a nickel-iron alloy film and the visible light reflectance is 1% or less.
PPo  PPo
6. 該金属膜中のニッケル含有量を 5重量%以上 95重量%以下としたことを 特徴とする請求の範囲第 5項に記載の導電性反射防止膜付きガラス物品。 6. The glass article with a conductive antireflection film according to claim 5, wherein the nickel content in the metal film is 5% by weight or more and 95% by weight or less.
7. 該金属膜の厚みを 1. 5nm〜8nmとしたことを特徴とする請求の範囲 第 5項または第 6項に記載の導電性反射防止膜付きガラス物品。 7. The glass article with a conductive antireflection film according to claim 5, wherein the thickness of the metal film is 1.5 nm to 8 nm.
8. 第 2層の高屈折率透明誘電体膜の厚みを 5 nm〜 70 nm、 第 3層の中間 屈折率透明誘電体膜の厚みを 10 ηπ!〜 100 nm、 第 4層の低屈折率透明誘電 体膜の厚みを 50nm〜l 20 nmとしたことを特徴とする請求の範囲第 5項〜 第 7項のいずれかに記載の導電性反射防止膜付きガラス物品。 8. The thickness of the high refractive index transparent dielectric film of the second layer is 5 nm to 70 nm, and the thickness of the intermediate refractive index transparent dielectric film of the third layer is 10 ηπ! The conductive antireflection according to any one of claims 5 to 7, wherein the low-refractive-index transparent dielectric film of the fourth layer has a thickness of 50 nm to 120 nm. Glass article with film.
9. 55 Onmの波長での屈折率が 1. 4〜1. 7のガラス基体上に、 該ガラ ス基体側から順に、 第 1層の金属膜と、 第 2層の 55 Onmの波長での屈折率が 2. 0〜2. 4の高屈折率透明誘電体膜と、 第 3層の金属膜と、 第 4層の 550 nmの波長での屈折率が 2. 0〜2. 4の高屈折率透明誘電体膜と、 第 5層の 5 50 nmの波長での屈折率が 1. 35〜 1. 46の低屈折率透明誘電体膜が積層 された導電性反射防止膜が被覆されたガラス物品であって、 第 1層の金属膜と第 3層の金属膜のうちの少なくとも一方をニッケル鉄合金の膜とし、 可視光線反射 率を 1%以下としたことを特徴とする導電性反射防止膜付きガラス物品。  9. On a glass substrate having a refractive index of 1.4 to 1.7 at a wavelength of 55 Onm, the metal film of the first layer and the second layer at a wavelength of 55 Onm are sequentially arranged from the glass substrate side. A high-refractive-index transparent dielectric film having a refractive index of 2.0 to 2.4, a third metal film, and a fourth layer having a refractive index of 2.0 to 2.4 at a wavelength of 550 nm. A conductive anti-reflective coating consisting of a laminated refractive index transparent dielectric film and a low refractive index transparent dielectric film with a refractive index of 1.35 to 1.46 at a wavelength of 550 nm of the fifth layer was coated. A glass article, wherein at least one of the first layer metal film and the third layer metal film is a nickel-iron alloy film, and has a visible light reflectance of 1% or less. Glass article with a protective film.
10. 該ニッケル鉄合金膜中のニッケル含有量を 5重量%以上 95重量%以下と したことを特徴とする請求の範囲第 9項に記載の導電性反射防止膜付きガラス物 品。  10. The glass article with a conductive antireflection film according to claim 9, wherein the nickel content in the nickel-iron alloy film is 5% by weight or more and 95% by weight or less.
11. 第 1層と第 3層の金属膜の厚みをそれそれ 1. 5 ηπ!〜 7. 5 nm、 その 合計厚みを 9 nm以下としたことを特徴とする請求の範囲第 9項または第 10項 に記載の導電性反射防止膜付きガラス物品。  11. The thickness of the first and third layers of metal film varies 1.5 ηπ! The glass article with a conductive antireflection film according to claim 9 or 10, wherein the total thickness is 9 nm or less.
12. 第 2層の高屈折率透明誘電体膜の厚みを 10nm〜7 Onm、 第 4層の高 屈折率透明誘電体膜の厚みを 10 ηπ!〜 70 nm、 第 5層の低屈折率透明誘電体 膜の厚みを 7 Οηπ!〜 120 nmとしたことを特徴とする請求の範囲第 9項〜第 1 1項のいずれかに記載の導電性反射防止膜付きガラス物品。  12. The thickness of the high refractive index transparent dielectric film of the second layer is 10 nm to 7 Onm, and the thickness of the high refractive index transparent dielectric film of the fourth layer is 10 ηπ! ~ 70 nm, 5th layer low refractive index transparent dielectric film with thickness of 7 誘 電 ηπ! The glass article with a conductive anti-reflection film according to any one of claims 9 to 11, wherein the glass article has a thickness of from 120 to 120 nm.
13. 該ガラス基体と第 1層の金属膜の間に透明誘電体膜を設けたことを特徴と する請求の範囲第 1項〜第 12項のいずれかに記載の導電性反射防止膜付きガラ ス物品。  13. The glass with a conductive anti-reflection film according to any one of claims 1 to 12, wherein a transparent dielectric film is provided between the glass substrate and the first metal film. Goods.
14. 該ガラス基体が陰極線管用ガラス製フェースプレートである請求の範囲第 1項〜第 13項のいずれかに記載の導電性反射防止膜付きガラス物品。  14. The glass article with a conductive anti-reflection film according to any one of claims 1 to 13, wherein the glass substrate is a glass face plate for a cathode ray tube.
15. 請求の範囲第 14項に記載の導電性反射防止膜付きガラス物品をフアンネ ルにガラスフリットで加熱接合して得られる陰極線管。 15. A glass article with a conductive anti-reflection coating according to claim 14 A cathode ray tube obtained by heating and joining to a glass frit.
PCT/JP1999/003494 1998-07-01 1999-06-29 Glass product with conductive antireflection film and cathode ray tube using it WO2000002066A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020007014931A KR20010071668A (en) 1998-07-01 1999-06-29 Glass product with conductive antireflection film and cathode ray tube using it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/186606 1998-07-01
JP10186606A JP2000021336A (en) 1998-07-01 1998-07-01 Glass article having conductive reflection preventive film and cathode-ray tube using it

Publications (1)

Publication Number Publication Date
WO2000002066A1 true WO2000002066A1 (en) 2000-01-13

Family

ID=16191520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003494 WO2000002066A1 (en) 1998-07-01 1999-06-29 Glass product with conductive antireflection film and cathode ray tube using it

Country Status (6)

Country Link
JP (1) JP2000021336A (en)
KR (1) KR20010071668A (en)
CN (1) CN1307688A (en)
ES (1) ES2212863B1 (en)
TW (1) TW428202B (en)
WO (1) WO2000002066A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113651545A (en) * 2021-08-13 2021-11-16 福建福特科光电股份有限公司 Neutral density tablet and preparation method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100388013C (en) * 2005-01-14 2008-05-14 索尼株式会社 Optical device, transmission lens, image pickup device and electronic device
WO2017086316A1 (en) * 2015-11-20 2017-05-26 旭硝子株式会社 Curved substrate provided with film, method for manufacturing same, and image display device
CN107861175B (en) * 2017-12-05 2019-06-11 深圳市华星光电技术有限公司 A kind of design method of anti-reflection layer, array substrate and liquid crystal display panel
CN112987141A (en) * 2021-02-05 2021-06-18 中国科学院西安光学精密机械研究所 Long-life antistatic space optical lens

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480904A (en) * 1987-09-22 1989-03-27 Nippon Sheet Glass Co Ltd Transparent plate stuck with conductive antireflection film
JPH01168855A (en) * 1987-12-23 1989-07-04 Nippon Sheet Glass Co Ltd Transparent sheet coated with antireflection film containing metal film
JPH01180501A (en) * 1988-01-12 1989-07-18 Nippon Sheet Glass Co Ltd Transparent plate adhered with antireflection film having metallic film
JPH0756004A (en) * 1993-08-17 1995-03-03 Fuji Photo Optical Co Ltd Conductive antireflection film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480904A (en) * 1987-09-22 1989-03-27 Nippon Sheet Glass Co Ltd Transparent plate stuck with conductive antireflection film
JPH01168855A (en) * 1987-12-23 1989-07-04 Nippon Sheet Glass Co Ltd Transparent sheet coated with antireflection film containing metal film
JPH01180501A (en) * 1988-01-12 1989-07-18 Nippon Sheet Glass Co Ltd Transparent plate adhered with antireflection film having metallic film
JPH0756004A (en) * 1993-08-17 1995-03-03 Fuji Photo Optical Co Ltd Conductive antireflection film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113651545A (en) * 2021-08-13 2021-11-16 福建福特科光电股份有限公司 Neutral density tablet and preparation method thereof

Also Published As

Publication number Publication date
KR20010071668A (en) 2001-07-31
ES2212863A1 (en) 2004-08-01
CN1307688A (en) 2001-08-08
JP2000021336A (en) 2000-01-21
ES2212863B1 (en) 2005-09-16
TW428202B (en) 2001-04-01

Similar Documents

Publication Publication Date Title
US5874801A (en) Anti-reflection member, manufacturing method thereof, and cathode-ray tube
JP3996229B2 (en) Alkali metal diffusion barrier layer
US5942319A (en) Light absorptive antireflector
JP4147743B2 (en) Light-absorbing antireflection body and method for producing the same
CN1329746C (en) Display device and reflction preventing substrate
US6627322B2 (en) Functional film having optical and electrical properties
US5728456A (en) Methods and apparatus for providing an absorbing, broad band, low brightness, antireflection coating
JP4784849B2 (en) Alkali metal diffusion barrier layer
EP1194385B9 (en) Protective layers for sputter coated article
JP4067141B2 (en) Transparent conductive film, method for producing the same, and sputtering target
JP2002323606A (en) Functional thin film having optical and electrical properties
JP3190240B2 (en) Light-absorbing antireflective body and method for producing the same
WO2000002066A1 (en) Glass product with conductive antireflection film and cathode ray tube using it
JP3135010B2 (en) Conductive anti-reflective coating
JPH11171596A (en) Reflection preventing film
WO2000044029A1 (en) Crt panel glass and production method thereof and crt
JP3581783B2 (en) Glass article coated with conductive anti-reflective coating
JP2697000B2 (en) Article coated with optical film
JPS6082660A (en) Formation of oxide layer
JP2007140371A (en) Surface mirror
KR970000382B1 (en) Low-reflection coating glass and its process
TW440705B (en) Optical articles and cathode-ray tube using the same
JP2003139909A (en) Conductive antireflection film and glass panel for cathode ray tube
JP2677281B2 (en) Picture tube and picture tube reflection and antistatic treatment method
KR100259236B1 (en) Anti-reflective coating substrate with light absorption layer and a method for manufacturing thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99807996.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN ES KR SG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 200050082

Country of ref document: ES

Ref document number: P200050082

Country of ref document: ES

WWE Wipo information: entry into national phase

Ref document number: 1020007014931

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020007014931

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1020007014931

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 200050082

Country of ref document: ES

Kind code of ref document: A

WWG Wipo information: grant in national office

Ref document number: 200050082

Country of ref document: ES

Kind code of ref document: A

WWW Wipo information: withdrawn in national office

Ref document number: 200050082

Country of ref document: ES

Kind code of ref document: A