US7034793B2 - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
US7034793B2
US7034793B2 US10/063,918 US6391802A US7034793B2 US 7034793 B2 US7034793 B2 US 7034793B2 US 6391802 A US6391802 A US 6391802A US 7034793 B2 US7034793 B2 US 7034793B2
Authority
US
United States
Prior art keywords
voltage
liquid crystal
capacitance value
capacitance
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime, expires
Application number
US10/063,918
Other versions
US20020175907A1 (en
Inventor
Kazuo Sekiya
Hajime Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AU Optronics Corp
Original Assignee
AU Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AU Optronics Corp filed Critical AU Optronics Corp
Assigned to INTERNATIONAL BUSINESS MACHINES CORPORATION reassignment INTERNATIONAL BUSINESS MACHINES CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NAKAMURA, HAJIME, SEKIYA, KAZUO
Publication of US20020175907A1 publication Critical patent/US20020175907A1/en
Application granted granted Critical
Publication of US7034793B2 publication Critical patent/US7034793B2/en
Assigned to AU OPTRONICS CORPORATION reassignment AU OPTRONICS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INTERNATIONAL BUSINESS MACHINES CORPORATION
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0252Improving the response speed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0285Improving the quality of display appearance using tables for spatial correction of display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/16Determination of a pixel data signal depending on the signal applied in the previous frame

Definitions

  • the present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device for improving the response time of the liquid crystal display.
  • LCD liquid crystal display
  • TFT thin film transistors
  • a present TN mode TFT-LCD has its on/off response time equivalent to about 1 refresh cycle (16.7 ms at 60 Hz refresh), however, the response time delays greatly in a halftone level, resulting in up to several to ten refreshes.
  • video images such as TV images mostly have halftone images, so that correct brightness can not be obtained. Even when displaying text data on PCs, it takes a long time for a screen to become a good state where one can easily read if he performs a scroll operation.
  • a deterioration in image quality when displaying moving pictures on a TFT-LCD results from that a transition of brightness of each pixel does not complete within one frame period of 16.7 ms. Namely, even in the case of liquid crystals with a fast response, the capacitance of the liquid crystal changes in principle of the liquid crystal driving, wherein the targeted brightness can not be reached only by one time of charge/discharge of TFT as long as using the normal driving method, as a matter of course, resulting in the display response being unable to catch up with the image when it changes for each frame. Furthermore, since the response time differs between R, G and B for displaying color images because the response time varies depending on gray levels, a color shift (hue change) may occur in boundary areas of moving edges or thin lines.
  • overdrive for resolving the delay of the response time.
  • This method is to improve the response characteristics to a step input for the liquid crystal device by applying a voltage greater or smaller than the targeted voltage at the first frame of input changes.
  • Japanese Unexamined Patent Publication No. 1995-20828 discloses a technique that attempts to reproduce faithful brightness with hysteresis and afterimage characteristics being improved even for moving pictures or TV images accompanying active changes by processing input image signals so as to compensate the response characteristics of transmittance against a voltage applied to the liquid crystal, considering a predicted value of voltage response characteristics of the liquid crystal.
  • the overdrive technique is relatively easily implemented only by changing the driving method and needs no change of a liquid crystal device itself, which is otherwise bothersome.
  • the conventional overdrive techniques including the above publication may simply use a simple voltage value as a parameter. Since the voltage value, when not reaching the equilibrium state, takes the same value for a variety of gray levels of brightness or internal states, it is inappropriate as a parameter for determining a next overdrive voltage.
  • a liquid crystal display device includes a liquid crystal cell such as a TFT-LCD forming an image display area, and a driver applying a voltage to the liquid crystal cell, and an overdrive controller controlling the driver to apply an overdrive voltage that exceeds a targeted pixel value to the liquid crystal cell.
  • the overdrive controller stores a predicted capacitance value of each pixel and interpolates the information about the voltage value stored in the memory based on the predicted capacitance value to calculate the overdrive voltage.
  • a method for driving a liquid crystal display wherein an input pixel value is overdriven to output a modified pixel value.
  • the method includes the steps of: predicting a capacitance value where each pixel will reach at one refresh cycle later when applying a predetermined voltage for the input pixel value; storing the predicted capacitance value; and calculating an overdrive voltage to be applied to each pixel based on an input pixel value at one refresh cycle later and the stored capacitance value.
  • a method for driving a liquid crystal display wherein a brightness change delays relative to a capacitance change comprising the steps of: predicting a capacitance value of each pixel of the liquid crystal display when applying a predetermined voltage; calculating a voltage exceeding the targeted pixel value based on an input targeted pixel value with using the predicted capacitance value as a parameter; and supplying a predetermined voltage to the liquid crystal display based on the calculated voltage.
  • FIG. 1 is a schematic diagram of an embodiment of a liquid crystal display (LCD) device according to the present invention.
  • FIG. 2 is a diagram illustrating the characteristics of a liquid crystal where a targeted capacitance is reached in a zigzag move.
  • FIG. 3 is a diagram illustrating the characteristics of a liquid crystal when applying an overdrive voltage.
  • FIG. 4 is a diagram illustrating a configuration of an overdrive controller according to the invention.
  • FIG. 5 is a flowchart illustrating the processing performed by the overdrive controller shown in FIG. 4 .
  • FIG. 6 is a table associated with a TN mode liquid crystal with 5 ⁇ m gap and depicting values used to obtain an overdrive voltage to be applied this time based on the present capacitance value obtained from simulation.
  • FIG. 7 is a table used to calculate a capacitance value at one frame period later for a pixel with a certain capacitance value.
  • an excessive voltage i.e., overdrive voltage
  • a targeted pixel value is applied with respect to a varied amount of the refresh cycle such that the brightness of a pixel reaches the targeted value within one refresh cycle time.
  • a starting value for calculating the applied voltage is based on the capacitance of each pixel.
  • a controller for a liquid crystal display device comprising: voltage calculating means for calculating a voltage to be applied to a liquid crystal cell based on targeted brightness at one refresh cycle later corresponding to a pixel value to be displayed this time and a present capacitance value of the pixel that is predicted in advance; capacitance predicting means for predicting a capacitance value of the pixel that will be reached after the refresh cycle when applying the voltage calculated by the voltage calculating means to the pixel with the present capacitance value; and storage means for storing the capacitance value predicted by the capacitance predicting means, wherein the voltage to be applied is calculated and the capacitance value is predicted, respectively, based on the capacitance value stored in the storage means.
  • the liquid crystal display device may further comprise a memory storing information used to obtain a voltage to be applied this time from a present capacitance value and information about a capacitance value where a pixel will reach when applying a predetermined voltage to the pixel with a predetermined capacitance value, wherein the voltage to be applied and the predicted capacitance are easily determined using a simple configuration.
  • Information stored in the memory may include discrete values in tabular form obtained by the simulation, for example, or may be values obtained based on transitions from static states.
  • a liquid crystal display drive circuit such as a controller.
  • a liquid crystal display drive circuit of the invention comprises: capacitance predicting means for predicting a capacitance value where each pixel will reach at one refresh cycle later when applying a predetermined voltage for targeted brightness; storage means for storing the predicted capacitance value; and voltage calculating means for calculating a voltage to be applied to each pixel based on targeted brightness at one refresh cycle later and the stored capacitance value.
  • the overdrive voltage to be applied is calculated using the stored capacitance value as a parameter at a start point and using an input pixel value as a targeted brightness at one refresh cycle later.
  • an ideal overdrive is implemented compared with when using a previous pixel value or brightness, or predicted voltage or brightness as a parameter at a start point.
  • a program for directing a computer to drive a liquid crystal display device comprising the functions of: predicting a capacitance value where each pixel will reach at one refresh cycle later when applying a predetermined voltage to the liquid crystal display device based on the pixel value to be displayed; storing the predicted capacitance value in a buffer of the computer; and calculating a voltage to be applied to each pixel based on a pixel value to be displayed at one refresh cycle later and the stored capacitance value.
  • This program may be provided to a computer controlling a liquid crystal display from a remote program transmission apparatus via a network, for example.
  • the program transmission apparatus may comprise storage means for storing a program such as a CD-ROM, DVD, memory, hard disk, etc., and transmission means for reading the program from the storage means and transmitting the program to an apparatus performing the program via a connector and a network such as the Internet or LAN.
  • the program may be provided by means of a storage medium such as a CD-ROM.
  • FIG. 1 is a schematic diagram of an embodiment of a liquid crystal display (LCD) device according to the present invention.
  • a liquid crystal module (LCD panel) is composed of a liquid crystal cell control circuit 1 and a liquid crystal cell 2 with a liquid crystal structure of thin film transistors (TFT).
  • the liquid crystal module (hereinafter called LC module) is formed in a display device separated from a system unit on the host's side such as a personal computer (PC) or in the display part of a notebook computer.
  • LCD device may be a standalone type of LCD connected to a host system via a line or an integrated type comprising both a host system and LCD.
  • RGB video data i.e., video signals
  • control signals and DC power supply are input to an LCD controller 4 via a video interface (I/F) 3 from a graphics controller LSI (not shown) in the system.
  • LC cell 2 may be a TFT liquid crystal of TN (twisted nematic) mode, for example.
  • DC-DC converter 5 generates a variety of DC power supply voltages necessary for liquid crystal cell control circuit 1 from DC power supply being supplied, and supplies them to a gate driver 6 , a source driver 7 and a fluorescent tube (not shown) for backlight, etc.
  • LCD controller 4 processes signals received from video I/F 3 and supplies processed signals to gate driver 6 and source driver 7 .
  • Source driver 7 is responsible to supply a voltage to each of the source electrodes of TFTs arranged in a horizontal direction (X direction) in a TFT array, which is arranged in a matrix fashion on liquid crystal cells 2 .
  • Gate driver 6 is responsible to supply a voltage to each of the gate electrodes arranged in a vertical direction (Y direction) in a TFT array.
  • Both gate driver 6 and source driver 7 are comprised of multiple ICs, wherein source driver 7 includes multiple source driver ICs 8 made of LSI chips, for example.
  • the maximum voltage rating of source driver 7 is typically 5V in TN mode for a notebook PC, wherein a 64 gray-level (6 bit) driver is used in notebook PCs without FRC (frame rate control) with consideration of the practical number of gray levels.
  • an LCD monitor typically employs an IPS (in-plane switching, i.e., lateral electric field) mode, wherein a 256 gray-level (8 bit) driver with a maximum voltage rating of about 15V is used, however, substantially half that voltage, that is, about 7.5V is used by utilizing a dot inversion driving scheme.
  • Source driver 7 for IPS can be used for TN liquid crystal (hereinafter TN-LC), wherein a high voltage greater than 5V is able to be used for overdrive.
  • FRC frame rate control
  • a TFT-LCD comprising LC cell 2 has a response time slower than the display device such as a CRT.
  • a “response time” is defined as time required to reaching the absolute brightness precision (one-half or one-quater of the gray-level interval considering gamma characteristics) corresponding to a targeted gray level.
  • the cause of slow response time includes a problem of the cumulative response and a problem resulting from that a liquid crystal is a viscous fluid, etc. Furthermore, the liquid crystal involves a problem of charge leak.
  • a targeted gray level is not reached by only one charge or discharge, hence it is asymptotically approached as a result of accumulation of a voltage applied over multiple frames.
  • V target a voltage corresponding to a targeted gray level
  • a targeted voltage is applied for each frame when displaying a static image, therefore, C target is approached in incremental or decremental steps in time sequence.
  • This problem of cumulative response also applies to other liquid crystals other than TN-LC as long as the dielectric constant differs between ON state and OFF state.
  • FIG. 2 is a diagram illustrating the characteristics of a liquid crystal where a targeted capacitance is reached in a zigzag move as described above.
  • the horizontal axis represents voltage, while the vertical axis represents capacitance (electric capacity), wherein a brightness vs. voltage curve and a capacitance vs. voltage curve are depicted.
  • Q is constant
  • liquid crystal is a viscous fluid
  • its displacement speed is slow.
  • the transition of brightness which is affected by both ⁇ and ⁇ , delays compared to that of capacitance that represents the average state of ⁇ . Namely, the brightness curve during the transition departs from that of a static state and strongly depends on a state at a start point. This delay can not be solved analytically, therefore, it must be obtained by simulation precisely.
  • a slope of director vector with respect to a vertical direction in TN mode is ⁇
  • a slope with respect to a horizontal direction is ⁇ .
  • IPS mode it is assumed that a slope with respect to a direction perpendicular to the glass substrate is ⁇ , while a slope with respect to a horizontal direction is ⁇ .
  • overdrive controller 10 within a stream of pixel values from LCD controller 4 , which passes to source driver 7 the pixel values overdriven to be modified.
  • overdrive means here that an excessive voltage exceeding a targeted voltage is applied for a starting gray level compared with a voltage to be applied when displaying a targeted gray level, wherein the applied voltage may be excessive on a plus (+) direction or may be excessive on a minus ( ⁇ ) direction (i.e., toward 0 V).
  • FIG. 3 is a diagram illustrating the characteristics of a liquid crystal when applying an overdrive voltage, which is applied to a first case of the most simple overdrive described below.
  • the horizontal axis represents voltage
  • the vertical axis represents capacitance, wherein a brightness vs. voltage curve and a capacitance vs. voltage curve are depicted.
  • the excessive voltage is applied on the plus direction.
  • the brightness reaches the targeted brightness on the brightness vs. voltage curve from its initial value.
  • the overdrive voltage depends on the state of a pixel liquid crystal at a staring point.
  • a pixel value input to overdrive controller 10 is a brightness value on which gamma correction has already been performed.
  • the input value may be an index value represents gray level rather than the brightness value as is.
  • the output pixel value is a voltage value to be applied to each pixel. If source driver 7 is a digital input type, the output value may be a value indicating a voltage.
  • FIG. 4 is a diagram illustrating a configuration of overdrive controller 10 according to the invention. It is herein constructed as a recursive system and comprises an overdrive voltage calculating section 11 for calculating an overdrive voltage to be applied to a pixel this time based on targeted brightness and a present capacitance value; capacitance predicting section 12 for predicting a capacitance value at one frame period later; and a frame buffer 13 for storing the capacitance value at one frame period later predicted by capacitance predicting section 12 .
  • FIG. 5 is a flowchart illustrating the processing performed by overdrive controller 10 shown in FIG. 4 .
  • the brightness to be displayed this time that is, targeted brightness at one refresh cycle later is input to overdrive voltage calculating section 11 (step 101 ).
  • Overdrive voltage calculating section 11 reads the present capacitance value (i.e., predicted capacitance value at one refresh cycle before) stored in frame buffer 13 and then calculates an overdrive voltage to be applied this time (step 102 ).
  • Capacitance predicting section 12 predicts a capacitance value that will be reached at one refresh cycle later when the overdrive voltage is applied to a pixel with the present capacitance value (i.e., previously predicted capacitance value) read from frame buffer 13 (step 103 ).
  • the capacitance value predicted by capacitance predicting section 12 is stored in frame buffer 13 (step 104 ).
  • the capacitance value stored in frame buffer 13 is used by overdrive voltage calculating section 11 and capacitance predicting section 12 as a capacitance value of the present pixel at one refresh cycle later.
  • it is characterized in that what is stored in frame buffer 13 is not the predicted voltage or brightness but the predicted capacitance value.
  • a voltage region that isn't used as a static applied voltage may be used, including 0V through 2V, 3V through 5V, and a voltage region higher than 5V (overvoltage region).
  • a “static voltage” means a voltage to be applied to a pixel in order to display its gray level in an equilibrium state (i.e., static state) where no change in gray levels occurs, wherein the brightness vs. voltage curve can be represented by a single curve such as a logistic curve as shown in FIGS. 2 and 3 .
  • a static voltage corresponding to gray level to be displayed is to be a targeted voltage to be reached.
  • FIG. 6 is a table associated with a TN mode liquid crystal with 5 ⁇ m gap and depicting values used to obtain an overdrive voltage to be applied this time based on the present capacitance value, which is obtained by the inventor's simulation.
  • this table is provided in overdrive voltage calculating section 11 and used as the reference data for interpolation.
  • the values shown in FIG. 6 are unique parameters to that LCD and are stored in a specified nonvolatile memory (not shown) provided in overdrive controller 10 .
  • C LC capacitance
  • a targeted brightness is shown in the second row, wherein the targeted brightness is set for nine levels of gray scale, that is, level 0 (full-ON, i.e., black) through level 8 (full-OFF, i.e., white).
  • the values shown in the table show the voltage to be applied.
  • C LC is represented in the unit of pF/mm 2 , however, in fact an absolute value of capacitance of the liquid crystal is not necessarily required, instead a relative value of all capacitance C all of a pixel may be used on the basis of a minimum capacitance C LCmin (i.e., OFF) of the liquid crystal.
  • FIG. 6 there is shown the gray levels corresponding to the equilibrium state (static state) in the first column and the first row, respectively.
  • the present capacitance corresponds to this gray level, so that an actual overdrive voltage is calculated using interpolation.
  • a simple linear interpolation may generate nearly satisfying results. It is seen that in the table shown in FIG. 6 , there are provided an extra portion in the first column that is described with voltage values ranging from 1.2V to 2.0V, which serves to perform interpolation around the threshold with a finer precision than nine gray levels.
  • FIG. 7 is a table used to calculate a capacitance value at one frame period later for a pixel with a certain capacitance value. More specifically, it is shown that what capacitance value a pixel reaches after 16.7 ms if applying a given voltage to the pixel with a given capacitance during a gate selection time (herein 21.7 ⁇ s for simulation). These information are provided and used in capacitance predicting section 12 shown in FIG. 4 .
  • the values shown in FIG. 7 are unique parameters to each LCD and are stored in a specified nonvolatile memory (not shown) provided in overdrive controller 10 .
  • the first column shows the capacitance at a start point, while the first row shows the voltage to be applied, wherein the predicted capacitance values at 16.7 ms later are shown in the table.
  • the present capacitance matches the capacitance shown in the first column, so that an actual calculation is performed using interpolation.
  • both the range of capacitance and the range of applied voltage go beyond the gray scale range defined in equilibrium.
  • the tables shown in FIGS. 6 and 7 are composed based on data that changes from an equilibrium state (static state). If using a parameter other than the capacitance as the one that represents the state at a start point, the values obtained based on a transition from a static state can not be used for a transition from a non-equilibrium state (dynamic state), accordingly the values in the table must be replaced depending on the history.
  • the capacitance is used as a parameter at a start point, thus what is required is only one kind of table that is composed of transition data from a static state on the grounds described below.
  • frame buffer 13 may store the capacitance on the order of ten bits for each of RGB pixels.
  • the number of bits has a tradeoff relationship with an overdrive precision.
  • the sensitivity depending on a change in an initial value C is not linear, it is conceivable to compress the capacitance value into on the order of eight bits by mapping it in a nonlinear fashion.
  • V apply V target ⁇ C target /C present where C present must be estimated by any means.
  • C present must be estimated by any means.
  • V apply V target ⁇ C target /C present
  • the targeted brightness can not be reached within one frame period even with using the overdrive.
  • Such examples may include, for example, a present TN-LC with 5 ⁇ m gap where a transition from full-ON to full-OFF takes time that is somewhat longer than one frame period in terms of brightness, or a present IPS-LC with 4 ⁇ m gap where a transition takes time for several frame periods.
  • V apply V target ⁇ C target /C present .
  • V it is necessary to determine V apply using a table where the voltage necessary to reach the targeted gray level is listed and an internal state represented by some kind of parameter is set as a start point. Estimation of the parameter is to be performed using a recursive system just like the second case.
  • Estimation of the parameter at one frame period later and determination of the overdrive voltage is performed using the table as shown in FIG. 6 or FIG. 7 because the response to the voltage is nonlinear.
  • the table is preferably composed of collection of discrete values, that is, coarsely to some extent, wherein the values in this table may be interpolated to calculate necessary values.
  • the voltage V may correspond to the capacitance in one-to-one relation in the equilibrium state (static state).
  • V present Q previous /C present where V present depends on the previous charge Q.
  • the same voltage V corresponds to innumerable capacitance values (i.e., internal states). Namely, use of a voltage V that has a physical meaning can not determine the next start point for overdriving uniquely.
  • Q becomes zero, so that the internal state can not be represented using the voltage V.
  • the brightness is specified as a parameter representing a state at a start point and the overdrive is applied such that the targeted brightness is reached at one frame period later.
  • the static voltage is to be applied since the targeted brightness is reached at the start point of the next frame, this may lead the overshoot to continue for several frame periods.
  • the capacitance will have somewhat overreached the equilibrium value (static value), therefore, the turned overdrive will be selected for the next frame with respect to the stepped change of gray level. Namely, the similar effect is achieved equivalent to putting a brake on the overshoot, wherein the brightness could be quickly converged at the targeted brightness with vibrating.
  • the calculation table for overdrive voltage only includes a single table as shown in FIG. 6 that starts from an equilibrium state, without the need to provide auxiliary parameters indicating whether a dynamic state or static state in the first order delay that stores internal states or without the need to provide delays in the second order or higher that represent histories so far as frame buffer 13 .
  • a source driver 7 a digital driver with 6 bit gray scale is used for a TN-LCD for notebook PCs and a digital driver with 8 bit gray scale is used for an IPS-LCD for monitors.
  • an intermediate gray level is defined within a narrow voltage range (latitude) between 2V to 3V except for full black and full white.
  • source driver 7 may include source driver ICs 8 that have more gray levels than the static gray levels by one or two bits, thereby increasing the number of voltages twice or four times. Among those, one set is allocated to generate the original static gray levels, while the remainder are allocated to voltage regions such as 0V to 2V and 3V to 5V as well as a voltage region higher than 5V and further the coarse portion in terms of voltage setting within the latitude. Reflecting the sparseness of gray level setting according to a gamma curve, the sets of overdrive voltages are determined.
  • the overdrive for whole gray levels without increasing the number of bits of source driver 7 , some of the static gray level voltages set in the latitude are moved to voltage regions such as 0V to 2V and 3V to 5V as well as a voltage region higher than 5V.
  • the targeted brightness may be achieved by continuing vibration like FRC using the voltage above and below.
  • This is also implemented using the overdrive based on the recursive system, however, it is more preferable to have auxiliary information indicative of execution of FRC for a pixel in the frame buffer in order to prevent problems such as flickering specific to FRC. Namely, as with the ordinary FRC, the timing of vibration may be shifted with respect to adjacent pixels to suppress flickering, wherein it is determined as to whether the timing should be moved or matched according to the auxiliary information.
  • the ordinary FRC is preferably performed using overdrive controller 10 . If LCD controller 4 outputs gray scale values subjected to FRC, flickering may be emphasized by the overdrive, the overdrive should not be applied to these pixels.
  • FRC is performed with high precision by overdrive controller 10 that has fine voltage allocations considering gamma characteristics rather than LCD controller 4 that applies FRC using the gray level values assumed to be linear.
  • the resolution of gray scale of source driver 7 should be enhanced and made linear much more than at present and gamma characteristics should be provided using the digital values rather than the reference voltages. According to such a configuration, the overdrive will be able to provide an ideal analog voltage.
  • overdrive controller 10 applies an excessive voltage (i.e., overdrive voltage) exceeding a targeted pixel value such that the brightness of a pixel reaches the targeted value within one refresh cycle time.
  • a feedback type of frame buffer 13 stores predicted capacitance at one refresh cycle later. Then based on the predicted capacitance, the overdrive voltage to be applied this time and the next predicted capacitance value are calculated. This allows that the targeted brightness is reached in a better state compared with the prior art.
  • frame buffer 13 is composed of only a single stage, that is, the first order delay.
  • capacitance value as a start point parameter, it becomes possible to put a brake on the overshoot that is generated by overdriving TN liquid crystal.
  • overdrive controller 10 between LCD controller 4 and source driver 7 , wherein a response time of LCD is improved by overdrive controller 10 , however, LCD controller 4 or source driver IC 8 may be responsible for it, or a host system may be responsible for it by performing software.
  • the first order recursive system described above may be programmed and installed in a computer on the part of a host system.
  • the present invention improves quality of scrolling of text, dragging of icons, or computer graphics (CG) animation displayed on LCDs, as well as reduces problems of color shifts, blurring and trailing that may appear on moving pictures displayed on LCDs.
  • CG computer graphics

Abstract

A liquid crystal display drive circuit includes capacitance predicting section for predicting a capacitance value each pixel will reach at one refresh cycle later when applying a predetermined voltage for targeted brightness, a frame buffer for storing the predicted capacitance value, and overdrive voltage calculating section for calculating a voltage to be applied to each pixel based on targeted brightness at one refresh cycle later and the stored capacitance value in frame buffer.

Description

BACKGROUND OF INVENTION
1. Field to the Invention
The present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device for improving the response time of the liquid crystal display.
2. Background of the Invention
Recently, a liquid crystal display (LCD) equipped with thin film transistors (TFT) has developed significantly due to its characteristics including light weight, thin shape and low power consumption. Conventionally, the use of LCDs for PCs was mainly directed to displaying static images, however, along with the progress of such LCDs, they have been substituted for CRTs such as when displaying moving pictures in a graphics system or displaying video images on monitors. Therefore, there is growing interest in displaying moving pictures using LCDs.
While a CRT is in the impulse type of light emission, an LCD is in the hold type with emitting continuous light during a whole period of a frame, thereby being unable to follow the CRT in terms of a quality of moving pictures if leaving them as they are. Accordingly, there have been proposed, for example, a scheme for doubling the refresh rate or the blanking scheme for emitting light intermittently for each frame in order to obtain the similar characteristics to CRT for moving pictures. This is an ideal solution but requires a special liquid crystal with a very fast response, so that the liquid crystals currently in use are not applicable due to their slow response.
For example, a present TN mode TFT-LCD has its on/off response time equivalent to about 1 refresh cycle (16.7 ms at 60 Hz refresh), however, the response time delays greatly in a halftone level, resulting in up to several to ten refreshes. In particular, video images such as TV images mostly have halftone images, so that correct brightness can not be obtained. Even when displaying text data on PCs, it takes a long time for a screen to become a good state where one can easily read if he performs a scroll operation.
As above, a deterioration in image quality when displaying moving pictures on a TFT-LCD results from that a transition of brightness of each pixel does not complete within one frame period of 16.7 ms. Namely, even in the case of liquid crystals with a fast response, the capacitance of the liquid crystal changes in principle of the liquid crystal driving, wherein the targeted brightness can not be reached only by one time of charge/discharge of TFT as long as using the normal driving method, as a matter of course, resulting in the display response being unable to catch up with the image when it changes for each frame. Furthermore, since the response time differs between R, G and B for displaying color images because the response time varies depending on gray levels, a color shift (hue change) may occur in boundary areas of moving edges or thin lines.
There exists a method called overdrive for resolving the delay of the response time. This method is to improve the response characteristics to a step input for the liquid crystal device by applying a voltage greater or smaller than the targeted voltage at the first frame of input changes. For example, Japanese Unexamined Patent Publication No. 1995-20828 discloses a technique that attempts to reproduce faithful brightness with hysteresis and afterimage characteristics being improved even for moving pictures or TV images accompanying active changes by processing input image signals so as to compensate the response characteristics of transmittance against a voltage applied to the liquid crystal, considering a predicted value of voltage response characteristics of the liquid crystal.
The overdrive technique is relatively easily implemented only by changing the driving method and needs no change of a liquid crystal device itself, which is otherwise bothersome. In addition, it is also possible to combine with other techniques for improvement. However, the conventional overdrive techniques including the above publication may simply use a simple voltage value as a parameter. Since the voltage value, when not reaching the equilibrium state, takes the same value for a variety of gray levels of brightness or internal states, it is inappropriate as a parameter for determining a next overdrive voltage.
Furthermore, since the charge is completely discharged in a transition to a full-OFF state, i.e., 0V, there exists no “cumulative response” component, which asymptotically approaches to the targeted gray level as a result of the accumulation of the applied voltage over multiple frames. It is noted that liquid crystals are a viscous fluid and have a slow displacement speed per se, thus this would be regarded as the only cause of slow response time, however, a predicted voltage is 0V insofar as prediction so that it is impossible to represent the process of transition by means of voltage. Though the publication cited above describes about using a low pass filter (LPF) to represent the process of transition in a pseudo manner, a peculiar low pass filter that is different from the one for other gray levels must be provided since the cumulative response does not exist during a full-OFF transition. Furthermore, since the “cumulative response” and “viscosity” are nonlinear over the all gray levels, it is difficult indeed to get the necessary predicted values using the LPF.
SUMMARY OF INVENTION
In view of the above technical problems, it is a feature of the present invention to improve scrolling of text, dragging of icons, computer graphics (CG) animation displayed on LCDs, as well as color shifts, blurring and trailing that may appear on moving pictures.
It is another feature of the invention to bring the pixel brightness close to a targeted value within a single refresh cycle time when the gray level displayed changes, for example.
A liquid crystal display device according to the invention includes a liquid crystal cell such as a TFT-LCD forming an image display area, and a driver applying a voltage to the liquid crystal cell, and an overdrive controller controlling the driver to apply an overdrive voltage that exceeds a targeted pixel value to the liquid crystal cell. The overdrive controller stores a predicted capacitance value of each pixel and interpolates the information about the voltage value stored in the memory based on the predicted capacitance value to calculate the overdrive voltage.
In a yet further aspect of the present invention, there is provided a method for driving a liquid crystal display, wherein an input pixel value is overdriven to output a modified pixel value. The method includes the steps of: predicting a capacitance value where each pixel will reach at one refresh cycle later when applying a predetermined voltage for the input pixel value; storing the predicted capacitance value; and calculating an overdrive voltage to be applied to each pixel based on an input pixel value at one refresh cycle later and the stored capacitance value.
In a still further aspect of the present invention, there is provided a method for driving a liquid crystal display wherein a brightness change delays relative to a capacitance change, the method comprising the steps of: predicting a capacitance value of each pixel of the liquid crystal display when applying a predetermined voltage; calculating a voltage exceeding the targeted pixel value based on an input targeted pixel value with using the predicted capacitance value as a parameter; and supplying a predetermined voltage to the liquid crystal display based on the calculated voltage.
Various other objects, features, and attendant advantages of the present invention will become more fully appreciated as the same becomes better understood when considered in conjunction with the accompanying drawings, in which like reference characters designated the same or similar parts throughout the several views.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1 is a schematic diagram of an embodiment of a liquid crystal display (LCD) device according to the present invention.
FIG. 2 is a diagram illustrating the characteristics of a liquid crystal where a targeted capacitance is reached in a zigzag move.
FIG. 3 is a diagram illustrating the characteristics of a liquid crystal when applying an overdrive voltage.
FIG. 4 is a diagram illustrating a configuration of an overdrive controller according to the invention.
FIG. 5 is a flowchart illustrating the processing performed by the overdrive controller shown in FIG. 4.
FIG. 6 is a table associated with a TN mode liquid crystal with 5 μm gap and depicting values used to obtain an overdrive voltage to be applied this time based on the present capacitance value obtained from simulation.
FIG. 7 is a table used to calculate a capacitance value at one frame period later for a pixel with a certain capacitance value.
DETAILED DESCRIPTION
In order to achieve the above purposes, according to the present invention, when the gray level displayed changes for each pixel of a TFT-LCD, an excessive voltage (i.e., overdrive voltage) exceeding a targeted pixel value is applied with respect to a varied amount of the refresh cycle such that the brightness of a pixel reaches the targeted value within one refresh cycle time. In this regard, it is characterized in that a starting value for calculating the applied voltage is based on the capacitance of each pixel.
In another aspect of the present invention, there is provided a controller for a liquid crystal display device, comprising: voltage calculating means for calculating a voltage to be applied to a liquid crystal cell based on targeted brightness at one refresh cycle later corresponding to a pixel value to be displayed this time and a present capacitance value of the pixel that is predicted in advance; capacitance predicting means for predicting a capacitance value of the pixel that will be reached after the refresh cycle when applying the voltage calculated by the voltage calculating means to the pixel with the present capacitance value; and storage means for storing the capacitance value predicted by the capacitance predicting means, wherein the voltage to be applied is calculated and the capacitance value is predicted, respectively, based on the capacitance value stored in the storage means.
The liquid crystal display device may further comprise a memory storing information used to obtain a voltage to be applied this time from a present capacitance value and information about a capacitance value where a pixel will reach when applying a predetermined voltage to the pixel with a predetermined capacitance value, wherein the voltage to be applied and the predicted capacitance are easily determined using a simple configuration. Information stored in the memory may include discrete values in tabular form obtained by the simulation, for example, or may be values obtained based on transitions from static states.
In a further aspect of the present invention, there is provided a liquid crystal display drive circuit such as a controller. Namely, a liquid crystal display drive circuit of the invention comprises: capacitance predicting means for predicting a capacitance value where each pixel will reach at one refresh cycle later when applying a predetermined voltage for targeted brightness; storage means for storing the predicted capacitance value; and voltage calculating means for calculating a voltage to be applied to each pixel based on targeted brightness at one refresh cycle later and the stored capacitance value.
It is noted that the overdrive voltage to be applied is calculated using the stored capacitance value as a parameter at a start point and using an input pixel value as a targeted brightness at one refresh cycle later. With this arrangement, an ideal overdrive is implemented compared with when using a previous pixel value or brightness, or predicted voltage or brightness as a parameter at a start point.
It is further noted that using a capacitance value as a parameter whose response time is faster than a brightness change, a brake effect for overshoot may be also expected.
In a further aspect of the present invention, there is provided a program for directing a computer to drive a liquid crystal display device, the program comprising the functions of: predicting a capacitance value where each pixel will reach at one refresh cycle later when applying a predetermined voltage to the liquid crystal display device based on the pixel value to be displayed; storing the predicted capacitance value in a buffer of the computer; and calculating a voltage to be applied to each pixel based on a pixel value to be displayed at one refresh cycle later and the stored capacitance value.
This program may be provided to a computer controlling a liquid crystal display from a remote program transmission apparatus via a network, for example. The program transmission apparatus may comprise storage means for storing a program such as a CD-ROM, DVD, memory, hard disk, etc., and transmission means for reading the program from the storage means and transmitting the program to an apparatus performing the program via a connector and a network such as the Internet or LAN. Alternatively, the program may be provided by means of a storage medium such as a CD-ROM.
Now the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a schematic diagram of an embodiment of a liquid crystal display (LCD) device according to the present invention. As for the LCD device shown in FIG. 1, a liquid crystal module (LCD panel) is composed of a liquid crystal cell control circuit 1 and a liquid crystal cell 2 with a liquid crystal structure of thin film transistors (TFT). The liquid crystal module (hereinafter called LC module) is formed in a display device separated from a system unit on the host's side such as a personal computer (PC) or in the display part of a notebook computer. Namely, LCD device may be a standalone type of LCD connected to a host system via a line or an integrated type comprising both a host system and LCD. In a liquid crystal cell control circuit 1 shown in FIG. 1, RGB video data (i.e., video signals), control signals and DC power supply are input to an LCD controller 4 via a video interface (I/F) 3 from a graphics controller LSI (not shown) in the system. LC cell 2 may be a TFT liquid crystal of TN (twisted nematic) mode, for example.
DC-DC converter 5 generates a variety of DC power supply voltages necessary for liquid crystal cell control circuit 1 from DC power supply being supplied, and supplies them to a gate driver 6, a source driver 7 and a fluorescent tube (not shown) for backlight, etc. LCD controller 4 processes signals received from video I/F 3 and supplies processed signals to gate driver 6 and source driver 7. There exists an overdrive controller 10 between LCD controller 4 and source driver 7. Source driver 7 is responsible to supply a voltage to each of the source electrodes of TFTs arranged in a horizontal direction (X direction) in a TFT array, which is arranged in a matrix fashion on liquid crystal cells 2. Gate driver 6 is responsible to supply a voltage to each of the gate electrodes arranged in a vertical direction (Y direction) in a TFT array. Both gate driver 6 and source driver 7 are comprised of multiple ICs, wherein source driver 7 includes multiple source driver ICs 8 made of LSI chips, for example.
The maximum voltage rating of source driver 7 is typically 5V in TN mode for a notebook PC, wherein a 64 gray-level (6 bit) driver is used in notebook PCs without FRC (frame rate control) with consideration of the practical number of gray levels. On the other hand, an LCD monitor typically employs an IPS (in-plane switching, i.e., lateral electric field) mode, wherein a 256 gray-level (8 bit) driver with a maximum voltage rating of about 15V is used, however, substantially half that voltage, that is, about 7.5V is used by utilizing a dot inversion driving scheme. Source driver 7 for IPS can be used for TN liquid crystal (hereinafter TN-LC), wherein a high voltage greater than 5V is able to be used for overdrive. It is noted that in FRC (frame rate control), is added to the least significant bit over four frames in order to represent 8 bit gray scale using 6 bit driving, wherein the low order two bits are changed to be controlled according to time modulation. It is also noted that since FRC assumes that a PC screen is static, a different color may be appear when scrolling a thin line continuously, for example. It is undesirable to perform FRC for moving portions because the number of gray levels may be sacrificed.
A TFT-LCD comprising LC cell 2 has a response time slower than the display device such as a CRT. Note that a “response time” is defined as time required to reaching the absolute brightness precision (one-half or one-quater of the gray-level interval considering gamma characteristics) corresponding to a targeted gray level. The cause of slow response time includes a problem of the cumulative response and a problem resulting from that a liquid crystal is a viscous fluid, etc. Furthermore, the liquid crystal involves a problem of charge leak.
The cumulative response is mentioned as follows: a targeted gray level is not reached by only one charge or discharge, hence it is asymptotically approached as a result of accumulation of a voltage applied over multiple frames. At a pixel, liquid crystal is displaced with keeping charge Q at the end of selection in accordance with the inverse proportional curve CV=Q where C is capacitance and V is a voltage. Assuming that a voltage Vtarget corresponding to a targeted gray level is applied to a pixel whose capacitance is Cstart at the start point, the charge after a selection will be Cstart Vtarget, which is greater or smaller than the charge that is essentially required at the targeted gray level, i.e., Qtarget=CtargetVtarget, by the ratio of Cstart/Ctarget. Namely, this means that the targeted gray level can not be achieved as long as applying a static voltage corresponding to that targeted gray level. For a TFT-LCD, a targeted voltage is applied for each frame when displaying a static image, therefore, Ctarget is approached in incremental or decremental steps in time sequence. The main cause of the slow response time of TN-LC in halftone levels, which is regarded as 16.7 ms response, is this cumulative response. This problem of cumulative response also applies to other liquid crystals other than TN-LC as long as the dielectric constant differs between ON state and OFF state.
FIG. 2 is a diagram illustrating the characteristics of a liquid crystal where a targeted capacitance is reached in a zigzag move as described above. The horizontal axis represents voltage, while the vertical axis represents capacitance (electric capacity), wherein a brightness vs. voltage curve and a capacitance vs. voltage curve are depicted. When a first voltage corresponding to a targeted brightness is applied starting with the initial capacitance, the capacitance reaches the first position on the capacitance vs. voltage curve during one refresh cycle where a pixel is not selected, by moving along the inverse proportional line of CV=Q (Q is constant). Likewise, when applying a second and third voltage corresponding to the targeted brightness, it is seen that the brightness reaches the targeted brightness in incremental or decremental steps starting with the initial value.
By the way, since liquid crystal is a viscous fluid, its displacement speed is slow. For example, in TN mode, since liquid crystal molecules become disordered upon transition both in degrees of freedom Θ and φ in a three-dimensional space, the transition of brightness, which is affected by both Θ and φ, delays compared to that of capacitance that represents the average state of Θ. Namely, the brightness curve during the transition departs from that of a static state and strongly depends on a state at a start point. This delay can not be solved analytically, therefore, it must be obtained by simulation precisely. Now it is assumed that a slope of director vector with respect to a vertical direction in TN mode is Θ, while a slope with respect to a horizontal direction is φ. Also in IPS mode, it is assumed that a slope with respect to a direction perpendicular to the glass substrate is φ, while a slope with respect to a horizontal direction is φ.
Next, concerning a problem of charge leak, if there exists in liquid crystal a significant charge leak from a pixel within a frame period, a flicker phenomenon may occur while the same brightness is displayed statically. Furthermore, when a change in gray level occurs, the leak becomes the cause of delay for ON transition, while becoming the cause of acceleration for OFF transition except for full-OFF (white; 0 V). The charge leak depends on backlight brightness and inversion polarities as well as parasitic capacitance with data lines. The effect of leak can be incorporated into overdrive by adjusting Q, that is CV=Q (const.), by a leak amount. When a leak amount differs greatly depending on inversion polarities, the drive voltage can be changed depending on the inversion polarity even with a static display image by applying an overdrive mechanism just as it is, whereby the flicker is reduced.
In view of these problems, according to the present invention, there exists an overdrive controller 10 within a stream of pixel values from LCD controller 4, which passes to source driver 7 the pixel values overdriven to be modified. The term “overdrive” means here that an excessive voltage exceeding a targeted voltage is applied for a starting gray level compared with a voltage to be applied when displaying a targeted gray level, wherein the applied voltage may be excessive on a plus (+) direction or may be excessive on a minus (−) direction (i.e., toward 0 V).
FIG. 3 is a diagram illustrating the characteristics of a liquid crystal when applying an overdrive voltage, which is applied to a first case of the most simple overdrive described below. As with FIG. 2, the horizontal axis represents voltage, while the vertical axis represents capacitance, wherein a brightness vs. voltage curve and a capacitance vs. voltage curve are depicted. In the drawing, there is shown the case where the excessive voltage is applied on the plus direction. Starting with an initial capacitance value, after an overdrive voltage is applied adding an excessive voltage to the voltage corresponding to the targeted brightness, the capacitance reaches the targeted position on the capacitance vs. voltage curve while the state moves along the inverse proportional line of CV=Q (Q is constant). As a result, the brightness reaches the targeted brightness on the brightness vs. voltage curve from its initial value. It is noted that the overdrive voltage depends on the state of a pixel liquid crystal at a staring point.
In order to implement the overdrive with good precision, it may be necessary to select source driver 7 with a greater number of gray levels than at present or to use a different voltage than at present in source driver 7. One can also consider that a pixel value input to overdrive controller 10 is a brightness value on which gamma correction has already been performed. Alternatively, the input value may be an index value represents gray level rather than the brightness value as is. The output pixel value is a voltage value to be applied to each pixel. If source driver 7 is a digital input type, the output value may be a value indicating a voltage.
FIG. 4 is a diagram illustrating a configuration of overdrive controller 10 according to the invention. It is herein constructed as a recursive system and comprises an overdrive voltage calculating section 11 for calculating an overdrive voltage to be applied to a pixel this time based on targeted brightness and a present capacitance value; capacitance predicting section 12 for predicting a capacitance value at one frame period later; and a frame buffer 13 for storing the capacitance value at one frame period later predicted by capacitance predicting section 12.
FIG. 5 is a flowchart illustrating the processing performed by overdrive controller 10 shown in FIG. 4. First, the brightness to be displayed this time, that is, targeted brightness at one refresh cycle later is input to overdrive voltage calculating section 11 (step 101). Overdrive voltage calculating section 11 reads the present capacitance value (i.e., predicted capacitance value at one refresh cycle before) stored in frame buffer 13 and then calculates an overdrive voltage to be applied this time (step 102). Capacitance predicting section 12 predicts a capacitance value that will be reached at one refresh cycle later when the overdrive voltage is applied to a pixel with the present capacitance value (i.e., previously predicted capacitance value) read from frame buffer 13 (step 103). The capacitance value predicted by capacitance predicting section 12 is stored in frame buffer 13 (step 104). The capacitance value stored in frame buffer 13 is used by overdrive voltage calculating section 11 and capacitance predicting section 12 as a capacitance value of the present pixel at one refresh cycle later. In the embodiment of the present invention, it is characterized in that what is stored in frame buffer 13 is not the predicted voltage or brightness but the predicted capacitance value.
It may be possible to use a voltage region that isn't used as a static applied voltage as an applied voltage. For example, in a typical TN mode with 5V, the voltage regions that are not used as static voltage may be used, including 0V through 2V, 3V through 5V, and a voltage region higher than 5V (overvoltage region). It is noted that a “static voltage” means a voltage to be applied to a pixel in order to display its gray level in an equilibrium state (i.e., static state) where no change in gray levels occurs, wherein the brightness vs. voltage curve can be represented by a single curve such as a logistic curve as shown in FIGS. 2 and 3. In an overdrive scheme, a static voltage corresponding to gray level to be displayed is to be a targeted voltage to be reached.
FIG. 6 is a table associated with a TN mode liquid crystal with 5 μm gap and depicting values used to obtain an overdrive voltage to be applied this time based on the present capacitance value, which is obtained by the inventor's simulation. In the embodiment, this table is provided in overdrive voltage calculating section 11 and used as the reference data for interpolation. The values shown in FIG. 6 are unique parameters to that LCD and are stored in a specified nonvolatile memory (not shown) provided in overdrive controller 10. Shown in the second column is capacitance (CLC) at a start point, while a targeted brightness is shown in the second row, wherein the targeted brightness is set for nine levels of gray scale, that is, level 0 (full-ON, i.e., black) through level 8 (full-OFF, i.e., white). The values shown in the table show the voltage to be applied. With regard to the capacitance, CLC is represented in the unit of pF/mm2, however, in fact an absolute value of capacitance of the liquid crystal is not necessarily required, instead a relative value of all capacitance Call of a pixel may be used on the basis of a minimum capacitance CLCmin (i.e., OFF) of the liquid crystal.
In FIG. 6, there is shown the gray levels corresponding to the equilibrium state (static state) in the first column and the first row, respectively. In general, it is a rare case that the present capacitance corresponds to this gray level, so that an actual overdrive voltage is calculated using interpolation. A simple linear interpolation may generate nearly satisfying results. It is seen that in the table shown in FIG. 6, there are provided an extra portion in the first column that is described with voltage values ranging from 1.2V to 2.0V, which serves to perform interpolation around the threshold with a finer precision than nine gray levels.
FIG. 7 is a table used to calculate a capacitance value at one frame period later for a pixel with a certain capacitance value. More specifically, it is shown that what capacitance value a pixel reaches after 16.7 ms if applying a given voltage to the pixel with a given capacitance during a gate selection time (herein 21.7 μs for simulation). These information are provided and used in capacitance predicting section 12 shown in FIG. 4. The values shown in FIG. 7 are unique parameters to each LCD and are stored in a specified nonvolatile memory (not shown) provided in overdrive controller 10.
As for FIG. 7, just like FIG. 6, the first column shows the capacitance at a start point, while the first row shows the voltage to be applied, wherein the predicted capacitance values at 16.7 ms later are shown in the table. In general, it is a rare case that the present capacitance matches the capacitance shown in the first column, so that an actual calculation is performed using interpolation. As seen from the table, both the range of capacitance and the range of applied voltage go beyond the gray scale range defined in equilibrium.
The tables shown in FIGS. 6 and 7 are composed based on data that changes from an equilibrium state (static state). If using a parameter other than the capacitance as the one that represents the state at a start point, the values obtained based on a transition from a static state can not be used for a transition from a non-equilibrium state (dynamic state), accordingly the values in the table must be replaced depending on the history. However, according to the embodiment of the invention, the capacitance is used as a parameter at a start point, thus what is required is only one kind of table that is composed of transition data from a static state on the grounds described below.
In the above example, the capacitance varies from 5.5 to 13.5, thus frame buffer 13 may store the capacitance on the order of ten bits for each of RGB pixels. The number of bits has a tradeoff relationship with an overdrive precision. Moreover, since the sensitivity depending on a change in an initial value C is not linear, it is conceivable to compress the capacitance value into on the order of eight bits by mapping it in a nonlinear fashion.
Next, the calculation method according to the invention will be described in order, starting with the first case that is most simple up to the sixth case that uses a TN-LCD.
In the first case, there will be described a fast response liquid crystal wherein a transition from full-ON to full-OFF is performed much faster than one frame period (i.e., one refresh cycle). In this case, an amount that must be accelerated using the overdrive scheme corresponds to the decrease in value of C·V=Q (const.) that has been described relating to a cumulative response, therefore, the following voltage should be applied: Vapply=Vtarget·Ctarget/Cpresent The overvoltage region used is up to the following: Vapply=VfullON·CfullON/CfullOFF If a transition of the liquid crystal is adequately fast both in ON direction and OFF direction and an internal state can approach thoroughly toward the equilibrium state within one frame period, a previous pixel value may be used as an index of Cpresent, wherein the system may be configured as a nonrecursive system with an ordinary frame buffer 13 serving as the first order delay. In this case, Vapply will be calculated if there are prepared in tables as many entries of gray levels value vs. capacitance value relationship and entries of gray levels value vs. voltage relationship as the number of gray levels in a static state (equilibrium state).
In the second case, consider where a transition from full-ON to full-OFF is performed within one frame period in terms of brightness, however, the internal state does not reach the equilibrium state. Since Cpresent value cannot be obtained in the nonrecursive system according to the first case, an error may occur in the overdrive in this nonrecursive system. Even with a TN-LC with 5 μm gap that is said to have a response time of less than 16 ms, it takes about 0.1 sec to 0.2 sec for the internal state to reach the equilibrium state under the threshold level (full-OFF, for example), so that about 6% to 20% error may occur if the capacitance at the point of 16.7 ms is used. Furthermore, referring to the capacitance vs. voltage curve of a TN-LC, it is seen that the brightness is saturated around a full-ON point (i.e., full black), while the capacitance has a slope. Even if the brightness has reached the full black within 16 ms, but the capacitance has not reached that of the full-ON state, its insufficient capacitance must be used for the next overdrive rather than the static capacitance corresponding to the full black level. If the static capacitance is continuously used as Cpresent, an error will be accumulated.
Namely, with regard to brightness, the following voltage should be used as an overdrive voltage: Vapply=Vtarget·Ctarget/Cpresent where Cpresent must be estimated by any means. For that purpose, it is necessary to use a recursive system that estimates the capacitance at one frame period later based on Cpresent and Vapply rather than using the nonrecursive system, because Cpresent would take values other than those that are defined statically corresponding to gray levels. Attempting to construct a nonrecursive system, all of the histories of pixel values must be remembered so that infinite frame buffer 13 will be required.
In the third case, consider where, in some transitions of a same LC, the targeted brightness can not be reached within one frame period even with using the overdrive. Such examples may include, for example, a present TN-LC with 5 μm gap where a transition from full-ON to full-OFF takes time that is somewhat longer than one frame period in terms of brightness, or a present IPS-LC with 4 μm gap where a transition takes time for several frame periods. In this case, there exists an additional cause of delay resulting from a viscous fluid in addition to a cumulative response, the overdrive voltage is unable to be calculated using the above equation, i.e., Vapply=Vtarget·Ctarget/Cpresent. So it is necessary to determine Vapply using a table where the voltage necessary to reach the targeted gray level is listed and an internal state represented by some kind of parameter is set as a start point. Estimation of the parameter is to be performed using a recursive system just like the second case.
Estimation of the parameter at one frame period later and determination of the overdrive voltage is performed using the table as shown in FIG. 6 or FIG. 7 because the response to the voltage is nonlinear. The table is preferably composed of collection of discrete values, that is, coarsely to some extent, wherein the values in this table may be interpolated to calculate necessary values. Just like the present embodiment, it is most preferable to use the capacitance as a basic parameter. The reason is that the capacitance can be used as a unique parameter representing an internal state at one frame period later for a TN-LC, because the capacitance represents the sum of displacement of liquid crystal molecules in Θ as long as φ does not have a significant effect on the capacitance vs. brightness delay.
When using the voltage V that appears on the surface of the liquid crystal rather than the capacitance in order to represent the internal state, the voltage V may correspond to the capacitance in one-to-one relation in the equilibrium state (static state). However, during a transition, the present voltage Vpresent is given by the following equation: Vpresent=Qprevious/Cpresent where Vpresent depends on the previous charge Q. As a result, the same voltage V corresponds to innumerable capacitance values (i.e., internal states). Namely, use of a voltage V that has a physical meaning can not determine the next start point for overdriving uniquely. Furthermore, for a transition where 0V is applied, Q becomes zero, so that the internal state can not be represented using the voltage V. In other words, when desiring to use the voltage V as a unique parameter indicating the internal state at a start point, it must be devised as some kind of hypothetical voltage rather than a physically substantial voltage V. If using the physical voltage V at that moment as a parameter, another auxiliary parameter needs to be used together with respect to information about previous charge Q or a transition associated with 0V. Therefore, it is preferable to use capacitance as a parameter just like the embodiment of the invention.
Now considering the fourth case, in a TN mode liquid crystal, there are two degrees of freedom Θ and φ, and it is not true that all molecules move orderly in unison, therefore, a displacement state of molecules during a transition and a displacement state in an equilibrium state are different even if they show the same brightness. The present inventor found that the change in capacitance during a transition precedes the change in brightness. Accordingly, if the overdrive is performed such that the brightness just reaches the targeted brightness at one frame period later, the capacitance will have gone past the static capacitance corresponding to the targeted gray level, while both capacitance and brightness will gradually converge in a state where the targeted gray level is outreached. This can not be suppressed even if applying the static voltage corresponding to the targeted gray level at the second frame, so that it takes several frame periods to return to the targeted brightness because this transient phenomenon corresponds to a transition associated with a small voltage difference. This transient phenomenon is called overshoot, which becomes bigger as a transition has a bigger gray scale difference.
Now let's consider the case where the brightness is specified as a parameter representing a state at a start point and the overdrive is applied such that the targeted brightness is reached at one frame period later. For the stepped change of gray level, though the static voltage is to be applied since the targeted brightness is reached at the start point of the next frame, this may lead the overshoot to continue for several frame periods. On the contrary, using the capacitance as a parameter that represents a state at a start point and performing the overdrive such that the targeted brightness is reached at one frame period later, the capacitance will have somewhat overreached the equilibrium value (static value), therefore, the turned overdrive will be selected for the next frame with respect to the stepped change of gray level. Namely, the similar effect is achieved equivalent to putting a brake on the overshoot, wherein the brightness could be quickly converged at the targeted brightness with vibrating.
Furthermore, it has been found from the simulation that if using capacitance as a start point parameter, the same voltage set as the overdrive voltage set that is used when starting from the equilibrium state may be used even when starting from the non-equilibrium state. This means that the relaxation time of Θ from the non-equilibrium state is short enough compared to one frame period considering that the capacitance is a parameter representative of Θ, and that a delay of brightness relative to capacitance that is believed to be resulting from a deviation of φ from an equilibrium state will become nearly identical at one frame period later regardless of either starting from an equilibrium state or non-equilibrium state.
On the contrary, it has been found that when using brightness as a start point parameter and applying the overdrive voltage set for starting from the equilibrium state to that for starting point from the non-equilibrium state, an error of the reached brightness becomes large near the full white (i.e., near the threshold). It is believed that this results from the fact that the misfit between brightness and major state parameters such as capacitance becomes large near the threshold. In any event, it is an advantage that the calculation table for overdrive voltage only includes a single table as shown in FIG. 6 that starts from an equilibrium state, without the need to provide auxiliary parameters indicating whether a dynamic state or static state in the first order delay that stores internal states or without the need to provide delays in the second order or higher that represent histories so far as frame buffer 13.
Now the fifth case will be described. As stated above, it is preferable for overdriving to use a voltage region (overvoltage region, that is, more than 5V for TN-LC and more than 7.5V for IPS-LC) that is higher than full-ON essentially with a static voltage to solve the cumulative response. However, there may be a case where such a voltage can not be used due to a maximum voltage rating of source driver 7 or limitations of a power supply. In this case, it is necessary to estimate the state of the liquid crystal at one frame period later where the target will not be reached and make it the start point for the next overdrive, as described above with reference to the third case. For the recursive system in the second and third case described above, frame buffer 13 can be implemented with a single stage.
Finally, the sixth case will be described. Presently, as a source driver 7, a digital driver with 6 bit gray scale is used for a TN-LCD for notebook PCs and a digital driver with 8 bit gray scale is used for an IPS-LCD for monitors. However, for a typical TN mode LC, an intermediate gray level is defined within a narrow voltage range (latitude) between 2V to 3V except for full black and full white. In order to implement a preferred overdrive, it is desirable to generate an analog voltage over a whole voltage region, including 0V to 2V and 3V to 5V that are not used for definition of gray levels as well as a voltage region higher than 5V (overvoltage region). However, digital driver has a limit on the number of voltages it can generate, so that the number of voltages and the precision of overdrive are in a trade-off relationship. Nevertheless, it is possible to compensate and converge an error as long as overdrive controller 10 is composed as a recursive system.
As a reasonable implementation, source driver 7 may include source driver ICs 8 that have more gray levels than the static gray levels by one or two bits, thereby increasing the number of voltages twice or four times. Among those, one set is allocated to generate the original static gray levels, while the remainder are allocated to voltage regions such as 0V to 2V and 3V to 5V as well as a voltage region higher than 5V and further the coarse portion in terms of voltage setting within the latitude. Reflecting the sparseness of gray level setting according to a gamma curve, the sets of overdrive voltages are determined.
If desiring to implement the overdrive for whole gray levels without increasing the number of bits of source driver 7, some of the static gray level voltages set in the latitude are moved to voltage regions such as 0V to 2V and 3V to 5V as well as a voltage region higher than 5V. There may be a case where static voltages can not be applied to stationary pixels, however, the targeted brightness may be achieved by continuing vibration like FRC using the voltage above and below. This is also implemented using the overdrive based on the recursive system, however, it is more preferable to have auxiliary information indicative of execution of FRC for a pixel in the frame buffer in order to prevent problems such as flickering specific to FRC. Namely, as with the ordinary FRC, the timing of vibration may be shifted with respect to adjacent pixels to suppress flickering, wherein it is determined as to whether the timing should be moved or matched according to the auxiliary information.
As is estimated from the above example, the ordinary FRC is preferably performed using overdrive controller 10. If LCD controller 4 outputs gray scale values subjected to FRC, flickering may be emphasized by the overdrive, the overdrive should not be applied to these pixels. However, FRC is performed with high precision by overdrive controller 10 that has fine voltage allocations considering gamma characteristics rather than LCD controller 4 that applies FRC using the gray level values assumed to be linear. Furthermore, in the future, the resolution of gray scale of source driver 7 should be enhanced and made linear much more than at present and gamma characteristics should be provided using the digital values rather than the reference voltages. According to such a configuration, the overdrive will be able to provide an ideal analog voltage.
As mentioned above, according to the present invention, overdrive controller 10 applies an excessive voltage (i.e., overdrive voltage) exceeding a targeted pixel value such that the brightness of a pixel reaches the targeted value within one refresh cycle time. At this time, a feedback type of frame buffer 13 stores predicted capacitance at one refresh cycle later. Then based on the predicted capacitance, the overdrive voltage to be applied this time and the next predicted capacitance value are calculated. This allows that the targeted brightness is reached in a better state compared with the prior art. Furthermore, by reason of the prediction feedback, frame buffer 13 is composed of only a single stage, that is, the first order delay. Moreover, using capacitance value as a start point parameter, it becomes possible to put a brake on the overshoot that is generated by overdriving TN liquid crystal.
It is noted that in the embodiment of the invention, there is provided overdrive controller 10 between LCD controller 4 and source driver 7, wherein a response time of LCD is improved by overdrive controller 10, however, LCD controller 4 or source driver IC 8 may be responsible for it, or a host system may be responsible for it by performing software. In this case, the first order recursive system described above may be programmed and installed in a computer on the part of a host system.
As mentioned above, the present invention improves quality of scrolling of text, dragging of icons, or computer graphics (CG) animation displayed on LCDs, as well as reduces problems of color shifts, blurring and trailing that may appear on moving pictures displayed on LCDs.
It is to be understood that the provided illustrative examples are by no means exhaustive of the many possible uses for my invention.
From the foregoing description, one skilled in the art can easily ascertain the essential characteristics of this invention and, without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions.
It is to be understood that the present invention is not limited to the sole embodiment described above, but encompasses any and all embodiments within the scope of the following claims:

Claims (18)

1. A liquid crystal display device comprising:
a liquid crystal cell forming an image display area;
a driver applying a voltage to said liquid crystal cell; and
an overdrive controller controlling said driver to apply an overdrive voltage that exceeds a targeted pixel value to said liquid crystal cell; wherein said overdrive controller predicts a capacitance value of a pixel at one frame period later when applying a predetermined voltage to the pixel with a certain capacitance value and stores the predicted capacitance value of each pixel and calculates said overdrive voltage based on the predicted capacitance value, wherein the predicted capacitance value accounts for dynamic changes in capacitance resulting from prior applications of voltages to said liquid crystal cell.
2. The liquid crystal display device according to claim 1, further comprising a memory storing information about a voltage value to be applied for a predetermined capacitance value, wherein said overdrive controller interpolates the information about the voltage value stored in said memory to calculate said overdrive voltage.
3. The liquid crystal display device according to claim 1, further comprising a memory storing information about a capacitance value of a pixel that will be reached at one frame period later when applying a predetermined voltage to the pixel with a certain capacitance value, wherein said overdrive controller interpolates the information about the capacitance value stored in said memory to calculate said predicted capacitance value.
4. The liquid crystal display device according to claim 1, wherein said liquid crystal cell has a nature where a brightness change delays compared with a capacitance change.
5. A liquid crystal display device comprising:
a liquid crystal cell displaying an image when a voltage is applied to each pixel having a TFT structure
a driver applying a voltage to each pixel of said liquid crystal cell; and a
controller controlling the driver to apply a voltage that exceeds an applied voltage to said liquid crystal cell when displaying targeted brightness on said liquid crystal cell, wherein said controller comprises voltage calculating means for calculating a voltage to be applied to said liquid crystal cell based on targeted brightness at one refresh cycle later corresponding to a pixel value to be displayed this time and a present capacitance value of the pixel that is predicted in advance, said controller further comprising:
capacitance predicting means for predicting a capacitance value of the pixel that will be reached after the refresh cycle when applying said voltage calculated by said voltage calculating means to the pixel with the present capacitance value, the predicted capacitance value accounting for dynamic changes in capacitance resulting from prior applications of voltages to said liquid crystal cell; and
storage means for storing said capacitance value predicted by said capacitance predicting means, wherein the voltage calculating means calculates the voltage to be applied and the capacitance predicting means predicts the capacitance value, respectively, based on said capacitance value stored in said storage means.
6. The liquid crystal display device according to claim 5, further comprising a memory storing information used to obtain a voltage to be applied this time from a present capacitance value and information about a capacitance value where a pixel will reach when applying a predetermined voltage to the pixel with a predetermined capacitance value.
7. The liquid crystal display device according to claim 6, wherein the information stored in said memory and used to obtain said voltage and the information about said capacitance value are both discrete values obtained by simulation.
8. The liquid crystal display device according to claim 6, wherein the information stored in said memory and used to obtain said voltage and the information about said capacitance value are both values obtained based on a transition from a static state.
9. A liquid crystal display drive circuit comprising:
capacitance predicting means for predicting a capacitance value where each pixel will reach at one refresh cycle later when applying a predetermined voltage for targeted brightness, the predicted capacitance value accounting for dynamic changes in capacitance resulting from prior applications of voltages to said liquid crystal cell;
storage means for storing the predicted capacitance value; and voltage calculating
means for calculating a voltage to be applied to each pixel based on targeted brightness at one refresh cycle later and the stored capacitance value.
10. The liquid crystal display drive circuit according to claim 9, wherein said capacitance predicting means reads predetermined information from a memory that stores information indicative of a capacitance value obtained at one refresh cycle later when applying a predetermined voltage to a pixel with a certain capacitance value, and interpolates the read information to predict the capacitance value.
11. The liquid crystal display drive circuit according to claim 9, wherein said voltage calculating means reads predetermined information from a memory that stores information for obtaining a voltage to be applied from certain capacitance value, and interpolates the read information based on said capacitance value stored in said storage means to calculate the voltage to be applied.
12. A method for driving a liquid crystal display, wherein an input pixel value is overdriven to output a modified pixel value, the method comprising the steps of:
predicting a capacitance value where each pixel will reach at one refresh cycle later when applying a predetermined voltage for the input pixel value, the predicted capacitance value accounting for dynamic changes in capacitance resulting from prior applications of voltages to said liquid crystal cell;
storing the predicted capacitance value; and
calculating an overdrive voltage to be applied to each pixel based on an input pixel value at one refresh cycle later and the stored capacitance value.
13. The method according to claim 12, wherein the overdrive voltage to be applied is calculated using the stored capacitance value as a parameter at a start point and using an input pixel value as targeted brightness at one refresh cycle later.
14. A method for driving a liquid crystal display wherein a brightness change delays relative to a capacitance change, the method comprising the steps of:
predicting a capacitance value of each pixel of said liquid crystal display when applying a predetermined voltage, the predicted capacitance value accounting for dynamic changes in capacitance resulting from prior applications of voltages to said liquid crystal cell;
calculating a voltage exceeding the targeted pixel value based on an input targeted pixel value with using said predicted capacitance value as a parameter; and
supplying a predetermined voltage to said liquid crystal display based on said calculated voltage.
15. A program for directing a computer to drive a liquid crystal display device, the program comprising the functions of:
predicting a capacitance value where each pixel will reach at one refresh cycle later when applying a predetermined voltage to the liquid crystal display device, the predicted capacitance value accounting for dynamic changes in capacitance resulting from prior applications of voltages to said liquid crystal cell;
storing the predicted capacitance value in a buffer of the computer; and calculating a voltage to be applied to each pixel based on a pixel value to be displayed
at one refresh cycle later and the stored capacitance value.
16. The liquid crystal display device according to claim 1, wherein said overdrive controller implements a recursive system for estimating the capacitance at one frame period later based on said predetermined voltage to be applied and said certain capacitance value.
17. The method according to claim 12, wherein said predicting step includes implementing recursion for estimating the capacitance at one frame period later based on said predetermined voltage to be applied and a certain capacitance value.
18. The method according to claim 14, wherein said predicting step includes implementing recursion for estimating the capacitance at one frame period later based on said predetermined voltage to be applied and a certain capacitance value.
US10/063,918 2001-05-23 2002-05-23 Liquid crystal display device Expired - Lifetime US7034793B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001154531A JP2002351409A (en) 2001-05-23 2001-05-23 Liquid crystal display device, liquid crystal display driving circuit, driving method for liquid crystal display, and program
JP2001-154531 2001-05-23

Publications (2)

Publication Number Publication Date
US20020175907A1 US20020175907A1 (en) 2002-11-28
US7034793B2 true US7034793B2 (en) 2006-04-25

Family

ID=18998858

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/063,918 Expired - Lifetime US7034793B2 (en) 2001-05-23 2002-05-23 Liquid crystal display device

Country Status (2)

Country Link
US (1) US7034793B2 (en)
JP (1) JP2002351409A (en)

Cited By (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050068343A1 (en) * 2003-09-30 2005-03-31 Hao Pan System for displaying images on a display
US20050151712A1 (en) * 2004-01-14 2005-07-14 Hannstar Display Corporation Method for driving a TFT-LCD
US20050243029A1 (en) * 2004-04-29 2005-11-03 Mun-Seok Kang Electron emission display (EED) device with variable expression range of gray level
US20050264223A1 (en) * 2004-05-31 2005-12-01 Lee Ji-Won Method of driving electron emission device with decreased signal delay
US20060044242A1 (en) * 2004-08-30 2006-03-02 Park Bong-Im Liquid crystal display, method for determining gray level in dynamic capacitance compensation on LCD, and method for correcting gamma of LCD
US20060290642A1 (en) * 2005-06-28 2006-12-28 Lg. Philips Lcd Co., Ltd. Method of overdriving LCD device and overdriving circuit for LCD device
US20070008253A1 (en) * 2005-07-06 2007-01-11 Arokia Nathan Method and system for driving a pixel circuit in an active matrix display
US20070195020A1 (en) * 2006-02-10 2007-08-23 Ignis Innovation, Inc. Method and System for Light Emitting Device Displays
WO2008019487A1 (en) * 2006-08-15 2008-02-21 Ignis Innovation Inc. Oled luminance degradation compensation
US20080191976A1 (en) * 2004-06-29 2008-08-14 Arokia Nathan Voltage-Programming Scheme for Current-Driven Arnoled Displays
US20100033469A1 (en) * 2004-12-15 2010-02-11 Ignis Innovation Inc. Method and system for programming, calibrating and driving a light emitting device display
US20100085290A1 (en) * 2008-10-02 2010-04-08 Apple Inc. Use of on-chip frame buffer to improve LCD response time by overdriving
US20110012884A1 (en) * 2005-06-08 2011-01-20 Ignis Innovation Inc. Method and system for driving a light emitting device display
US20110128262A1 (en) * 2009-12-01 2011-06-02 Ignis Innovation Inc. High resolution pixel architecture
US7978187B2 (en) 2003-09-23 2011-07-12 Ignis Innovation Inc. Circuit and method for driving an array of light emitting pixels
US20110193834A1 (en) * 2001-02-16 2011-08-11 Ignis Innovation Inc. Pixel driver circuit and pixel circuit having the pixel driver circuit
US8576217B2 (en) 2011-05-20 2013-11-05 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US8599191B2 (en) 2011-05-20 2013-12-03 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US8659518B2 (en) 2005-01-28 2014-02-25 Ignis Innovation Inc. Voltage programmed pixel circuit, display system and driving method thereof
US8743096B2 (en) 2006-04-19 2014-06-03 Ignis Innovation, Inc. Stable driving scheme for active matrix displays
US8803417B2 (en) 2009-12-01 2014-08-12 Ignis Innovation Inc. High resolution pixel architecture
US8901579B2 (en) 2011-08-03 2014-12-02 Ignis Innovation Inc. Organic light emitting diode and method of manufacturing
US8907991B2 (en) 2010-12-02 2014-12-09 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
US8922544B2 (en) 2012-05-23 2014-12-30 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US8994617B2 (en) 2010-03-17 2015-03-31 Ignis Innovation Inc. Lifetime uniformity parameter extraction methods
US9030506B2 (en) 2009-11-12 2015-05-12 Ignis Innovation Inc. Stable fast programming scheme for displays
US9058775B2 (en) 2006-01-09 2015-06-16 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US9070775B2 (en) 2011-08-03 2015-06-30 Ignis Innovations Inc. Thin film transistor
US9093028B2 (en) 2009-12-06 2015-07-28 Ignis Innovation Inc. System and methods for power conservation for AMOLED pixel drivers
US9111485B2 (en) 2009-06-16 2015-08-18 Ignis Innovation Inc. Compensation technique for color shift in displays
US9134825B2 (en) 2011-05-17 2015-09-15 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US9153172B2 (en) 2004-12-07 2015-10-06 Ignis Innovation Inc. Method and system for programming and driving active matrix light emitting device pixel having a controllable supply voltage
US9171504B2 (en) 2013-01-14 2015-10-27 Ignis Innovation Inc. Driving scheme for emissive displays providing compensation for driving transistor variations
US9171500B2 (en) 2011-05-20 2015-10-27 Ignis Innovation Inc. System and methods for extraction of parasitic parameters in AMOLED displays
US9190456B2 (en) 2012-04-25 2015-11-17 Ignis Innovation Inc. High resolution display panel with emissive organic layers emitting light of different colors
US9269322B2 (en) 2006-01-09 2016-02-23 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US9275579B2 (en) 2004-12-15 2016-03-01 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9280933B2 (en) 2004-12-15 2016-03-08 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9305488B2 (en) 2013-03-14 2016-04-05 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays
US9311859B2 (en) 2009-11-30 2016-04-12 Ignis Innovation Inc. Resetting cycle for aging compensation in AMOLED displays
US9324268B2 (en) 2013-03-15 2016-04-26 Ignis Innovation Inc. Amoled displays with multiple readout circuits
US9336717B2 (en) 2012-12-11 2016-05-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9343006B2 (en) 2012-02-03 2016-05-17 Ignis Innovation Inc. Driving system for active-matrix displays
US9351368B2 (en) 2013-03-08 2016-05-24 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9370075B2 (en) 2008-12-09 2016-06-14 Ignis Innovation Inc. System and method for fast compensation programming of pixels in a display
US9384698B2 (en) 2009-11-30 2016-07-05 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US9385169B2 (en) 2011-11-29 2016-07-05 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
US9430958B2 (en) 2010-02-04 2016-08-30 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US9437137B2 (en) 2013-08-12 2016-09-06 Ignis Innovation Inc. Compensation accuracy
US9466240B2 (en) 2011-05-26 2016-10-11 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
US9489891B2 (en) 2006-01-09 2016-11-08 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US9502653B2 (en) 2013-12-25 2016-11-22 Ignis Innovation Inc. Electrode contacts
US9530349B2 (en) 2011-05-20 2016-12-27 Ignis Innovations Inc. Charged-based compensation and parameter extraction in AMOLED displays
US9606607B2 (en) 2011-05-17 2017-03-28 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US9697771B2 (en) 2013-03-08 2017-07-04 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9721505B2 (en) 2013-03-08 2017-08-01 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9741282B2 (en) 2013-12-06 2017-08-22 Ignis Innovation Inc. OLED display system and method
US9747834B2 (en) 2012-05-11 2017-08-29 Ignis Innovation Inc. Pixel circuits including feedback capacitors and reset capacitors, and display systems therefore
US9761170B2 (en) 2013-12-06 2017-09-12 Ignis Innovation Inc. Correction for localized phenomena in an image array
US9773439B2 (en) 2011-05-27 2017-09-26 Ignis Innovation Inc. Systems and methods for aging compensation in AMOLED displays
USRE46561E1 (en) 2008-07-29 2017-09-26 Ignis Innovation Inc. Method and system for driving light emitting display
US9786209B2 (en) 2009-11-30 2017-10-10 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US9786223B2 (en) 2012-12-11 2017-10-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9799246B2 (en) 2011-05-20 2017-10-24 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9830857B2 (en) 2013-01-14 2017-11-28 Ignis Innovation Inc. Cleaning common unwanted signals from pixel measurements in emissive displays
US9842889B2 (en) 2014-11-28 2017-12-12 Ignis Innovation Inc. High pixel density array architecture
US9867257B2 (en) 2008-04-18 2018-01-09 Ignis Innovation Inc. System and driving method for light emitting device display
US9881587B2 (en) 2011-05-28 2018-01-30 Ignis Innovation Inc. Systems and methods for operating pixels in a display to mitigate image flicker
US9881532B2 (en) 2010-02-04 2018-01-30 Ignis Innovation Inc. System and method for extracting correlation curves for an organic light emitting device
US9886899B2 (en) 2011-05-17 2018-02-06 Ignis Innovation Inc. Pixel Circuits for AMOLED displays
US9947293B2 (en) 2015-05-27 2018-04-17 Ignis Innovation Inc. Systems and methods of reduced memory bandwidth compensation
US9952698B2 (en) 2013-03-15 2018-04-24 Ignis Innovation Inc. Dynamic adjustment of touch resolutions on an AMOLED display
US10013907B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US10012678B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US10019941B2 (en) 2005-09-13 2018-07-10 Ignis Innovation Inc. Compensation technique for luminance degradation in electro-luminance devices
US10074304B2 (en) 2015-08-07 2018-09-11 Ignis Innovation Inc. Systems and methods of pixel calibration based on improved reference values
US10078984B2 (en) 2005-02-10 2018-09-18 Ignis Innovation Inc. Driving circuit for current programmed organic light-emitting diode displays
US10089924B2 (en) 2011-11-29 2018-10-02 Ignis Innovation Inc. Structural and low-frequency non-uniformity compensation
US10089921B2 (en) 2010-02-04 2018-10-02 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10102808B2 (en) 2015-10-14 2018-10-16 Ignis Innovation Inc. Systems and methods of multiple color driving
US10134325B2 (en) 2014-12-08 2018-11-20 Ignis Innovation Inc. Integrated display system
US10152915B2 (en) 2015-04-01 2018-12-11 Ignis Innovation Inc. Systems and methods of display brightness adjustment
US10163401B2 (en) 2010-02-04 2018-12-25 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10163996B2 (en) 2003-02-24 2018-12-25 Ignis Innovation Inc. Pixel having an organic light emitting diode and method of fabricating the pixel
US10176752B2 (en) 2014-03-24 2019-01-08 Ignis Innovation Inc. Integrated gate driver
US10176736B2 (en) 2010-02-04 2019-01-08 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10181282B2 (en) 2015-01-23 2019-01-15 Ignis Innovation Inc. Compensation for color variations in emissive devices
US10192479B2 (en) 2014-04-08 2019-01-29 Ignis Innovation Inc. Display system using system level resources to calculate compensation parameters for a display module in a portable device
US10204540B2 (en) 2015-10-26 2019-02-12 Ignis Innovation Inc. High density pixel pattern
US10235933B2 (en) 2005-04-12 2019-03-19 Ignis Innovation Inc. System and method for compensation of non-uniformities in light emitting device displays
US10242619B2 (en) 2013-03-08 2019-03-26 Ignis Innovation Inc. Pixel circuits for amoled displays
US10311780B2 (en) 2015-05-04 2019-06-04 Ignis Innovation Inc. Systems and methods of optical feedback
US10319307B2 (en) 2009-06-16 2019-06-11 Ignis Innovation Inc. Display system with compensation techniques and/or shared level resources
US10373554B2 (en) 2015-07-24 2019-08-06 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
US10410579B2 (en) 2015-07-24 2019-09-10 Ignis Innovation Inc. Systems and methods of hybrid calibration of bias current
US10573231B2 (en) 2010-02-04 2020-02-25 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10586491B2 (en) 2016-12-06 2020-03-10 Ignis Innovation Inc. Pixel circuits for mitigation of hysteresis
US10657895B2 (en) 2015-07-24 2020-05-19 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
US10714018B2 (en) 2017-05-17 2020-07-14 Ignis Innovation Inc. System and method for loading image correction data for displays
US10867536B2 (en) 2013-04-22 2020-12-15 Ignis Innovation Inc. Inspection system for OLED display panels
US10971078B2 (en) 2018-02-12 2021-04-06 Ignis Innovation Inc. Pixel measurement through data line
US10996258B2 (en) 2009-11-30 2021-05-04 Ignis Innovation Inc. Defect detection and correction of pixel circuits for AMOLED displays
US10997901B2 (en) 2014-02-28 2021-05-04 Ignis Innovation Inc. Display system
US11025899B2 (en) 2017-08-11 2021-06-01 Ignis Innovation Inc. Optical correction systems and methods for correcting non-uniformity of emissive display devices
US11670900B2 (en) 2019-02-05 2023-06-06 Emergency Technology, Inc. Universal smart adaptor

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7064740B2 (en) 2001-11-09 2006-06-20 Sharp Laboratories Of America, Inc. Backlit display with improved dynamic range
JP4000515B2 (en) * 2002-10-07 2007-10-31 セイコーエプソン株式会社 Electro-optical device, matrix substrate, and electronic apparatus
JP4601949B2 (en) * 2002-12-27 2010-12-22 シャープ株式会社 Display device driving method, display device, program thereof, and recording medium storing program
US7298355B2 (en) * 2002-12-27 2007-11-20 Semiconductor Energy Laboratory Co., Ltd. Display device
US20040252114A1 (en) * 2003-06-11 2004-12-16 Steve Lin Power supply system for flat panel display and method for the same
EP1676259A1 (en) * 2003-08-22 2006-07-05 Philips Intellectual Property & Standards GmbH System for driving inertia-prone picture-reproducing devices
CN100350450C (en) * 2003-08-25 2007-11-21 胜华科技股份有限公司 Display device for playing motion picture
KR20070005649A (en) * 2004-04-01 2007-01-10 코닌클리케 필립스 일렉트로닉스 엔.브이. Overdriving a pixel of a matrix display
US20050225525A1 (en) * 2004-04-09 2005-10-13 Genesis Microchip Inc. LCD overdrive with data compression for reducing memory bandwidth
US7777714B2 (en) 2004-05-04 2010-08-17 Sharp Laboratories Of America, Inc. Liquid crystal display with adaptive width
US7872631B2 (en) 2004-05-04 2011-01-18 Sharp Laboratories Of America, Inc. Liquid crystal display with temporal black point
US7602369B2 (en) 2004-05-04 2009-10-13 Sharp Laboratories Of America, Inc. Liquid crystal display with colored backlight
US8395577B2 (en) 2004-05-04 2013-03-12 Sharp Laboratories Of America, Inc. Liquid crystal display with illumination control
WO2006038158A1 (en) * 2004-10-04 2006-04-13 Koninklijke Philips Electronics N.V. Overdrive technique for display drivers
US8188958B2 (en) * 2004-10-12 2012-05-29 Samsung Electronics Co., Ltd. Method, device and system of response time compensation
US7898519B2 (en) 2005-02-17 2011-03-01 Sharp Laboratories Of America, Inc. Method for overdriving a backlit display
US8115728B2 (en) * 2005-03-09 2012-02-14 Sharp Laboratories Of America, Inc. Image display device with reduced flickering and blur
US8050511B2 (en) 2004-11-16 2011-11-01 Sharp Laboratories Of America, Inc. High dynamic range images from low dynamic range images
US8050512B2 (en) 2004-11-16 2011-11-01 Sharp Laboratories Of America, Inc. High dynamic range images from low dynamic range images
CN100433084C (en) * 2005-03-28 2008-11-12 中华映管股份有限公司 Display brightness adjusting method
JP2007033864A (en) * 2005-07-27 2007-02-08 Mitsubishi Electric Corp Image processing circuit and image processing method
CN101253544B (en) * 2005-08-31 2010-07-21 夏普株式会社 LCD, liquid crystal display device, and their drive method
KR101253243B1 (en) * 2005-08-31 2013-04-16 엘지디스플레이 주식회사 Liquid crystal display device and method of driving the same
TWI357040B (en) * 2005-09-21 2012-01-21 Mstar Semiconductor Inc Liquid crystal display control circuit and thereof
US8121401B2 (en) 2006-01-24 2012-02-21 Sharp Labortories of America, Inc. Method for reducing enhancement of artifacts and noise in image color enhancement
US9143657B2 (en) 2006-01-24 2015-09-22 Sharp Laboratories Of America, Inc. Color enhancement technique using skin color detection
KR101195568B1 (en) * 2006-02-17 2012-10-30 삼성디스플레이 주식회사 Display apparatus and driving method thereof
JP5522334B2 (en) * 2006-03-14 2014-06-18 Nltテクノロジー株式会社 Liquid crystal driving method and liquid crystal driving device
US7952545B2 (en) * 2006-04-06 2011-05-31 Lockheed Martin Corporation Compensation for display device flicker
GB2439120A (en) * 2006-06-13 2007-12-19 Sharp Kk Response improving pixel overdrive based on flagged pixels in preceding frames.
US8941580B2 (en) 2006-11-30 2015-01-27 Sharp Laboratories Of America, Inc. Liquid crystal display with area adaptive backlight
JP2008257047A (en) * 2007-04-06 2008-10-23 Nano Loa Inc Liquid crystal device and driving method of liquid crystal device
KR101415064B1 (en) 2007-12-11 2014-07-04 엘지디스플레이 주식회사 Driving control apparatus and method for liquid crystal display device
JP5312779B2 (en) * 2007-12-13 2013-10-09 ルネサスエレクトロニクス株式会社 Liquid crystal display device, data driving IC, and liquid crystal display panel driving method
WO2009116200A1 (en) * 2008-03-18 2009-09-24 シャープ株式会社 Display device and drive method for the same
US8068087B2 (en) * 2008-05-29 2011-11-29 Sharp Laboratories Of America, Inc. Methods and systems for reduced flickering and blur
TWI417853B (en) * 2009-07-28 2013-12-01 Chunghwa Picture Tubes Ltd Driving device for tft-lcd and the method thereof
US20130088530A1 (en) * 2010-06-24 2013-04-11 Sharp Kabushiki Kaisha Method of driving liquid crystal display element and liquid crystal display element driving device
KR20130062612A (en) * 2011-12-05 2013-06-13 삼성디스플레이 주식회사 3 dimensional image display device and driving method thereof
CN102800290B (en) * 2012-08-13 2014-07-02 京东方科技集团股份有限公司 Frame-inserting method of liquid crystal display device and liquid crystal display device
CN106461990B (en) * 2014-06-04 2018-03-20 堺显示器制品株式会社 Liquid crystal display device and display methods
US10147370B2 (en) * 2015-10-29 2018-12-04 Nvidia Corporation Variable refresh rate gamma correction

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04365094A (en) 1991-06-12 1992-12-17 Casio Comput Co Ltd Liquid crystal panel driving device
JPH0720828A (en) 1993-06-30 1995-01-24 Toshiba Corp Liquid crystal display device
JPH0756532A (en) 1993-08-10 1995-03-03 Casio Comput Co Ltd Liquid crystal panel driving device
JPH07121138A (en) 1993-10-21 1995-05-12 Seiko Epson Corp Time-division color liquid crystal display device and its driving method
US5495265A (en) * 1990-11-19 1996-02-27 U.S. Philips Corporation Fast response electro-optic display device
JPH09106262A (en) 1995-10-13 1997-04-22 Fujitsu Ltd Liquid crystal display device
JPH11219153A (en) 1998-02-03 1999-08-10 Hitachi Ltd Information processor
JPH11326957A (en) 1998-03-20 1999-11-26 Toshiba Corp Liquid crystal display device
JPH11326868A (en) 1998-05-08 1999-11-26 Seiko Epson Corp Liquid crystal display device
JP2000231091A (en) 1998-12-08 2000-08-22 Fujitsu Ltd Liquid crystal display device and its drive method
US6304254B1 (en) * 1997-07-22 2001-10-16 U.S. Philips Corporation Display device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5495265A (en) * 1990-11-19 1996-02-27 U.S. Philips Corporation Fast response electro-optic display device
JPH04365094A (en) 1991-06-12 1992-12-17 Casio Comput Co Ltd Liquid crystal panel driving device
JPH0720828A (en) 1993-06-30 1995-01-24 Toshiba Corp Liquid crystal display device
JPH0756532A (en) 1993-08-10 1995-03-03 Casio Comput Co Ltd Liquid crystal panel driving device
JPH07121138A (en) 1993-10-21 1995-05-12 Seiko Epson Corp Time-division color liquid crystal display device and its driving method
JPH09106262A (en) 1995-10-13 1997-04-22 Fujitsu Ltd Liquid crystal display device
US6304254B1 (en) * 1997-07-22 2001-10-16 U.S. Philips Corporation Display device
JPH11219153A (en) 1998-02-03 1999-08-10 Hitachi Ltd Information processor
JPH11326957A (en) 1998-03-20 1999-11-26 Toshiba Corp Liquid crystal display device
JPH11326868A (en) 1998-05-08 1999-11-26 Seiko Epson Corp Liquid crystal display device
JP2000231091A (en) 1998-12-08 2000-08-22 Fujitsu Ltd Liquid crystal display device and its drive method

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
B.G. Rho (Korea national semiconductor) et al., "A new driving method for faster response of TFT LCD on the basis of equilibrium charge injection", IDW '00, session AMDp-9, pp. 1155-1156.
Baek-woon Lee (Samsung) et al., "TFT-LCD with sub-10ms of all gray response time: dynamic capacitance compensation", IDW '00, session AMD4-5, pp1153-1154.
H. Nakamura (IBM) et al., "Computational optimization of active-matrix drives for liquid crystal displays", IDW '00, session LCT4-4, pp81-84.
K. Nakao (Matsushita) et al., "Response time improvement of OCB mode TFT-LCDs by using capacitively coupled driving method", IDW '00, session AMD4-3, pp 215-218.
Y. Takubo (Matsushita) et al., "Response time improvement of TFT-LCDs by using capacitively coupled driving", AMLCD '95, session A4-5, pp 59-62.

Cited By (240)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8664644B2 (en) 2001-02-16 2014-03-04 Ignis Innovation Inc. Pixel driver circuit and pixel circuit having the pixel driver circuit
US20110193834A1 (en) * 2001-02-16 2011-08-11 Ignis Innovation Inc. Pixel driver circuit and pixel circuit having the pixel driver circuit
US8890220B2 (en) 2001-02-16 2014-11-18 Ignis Innovation, Inc. Pixel driver circuit and pixel circuit having control circuit coupled to supply voltage
US10163996B2 (en) 2003-02-24 2018-12-25 Ignis Innovation Inc. Pixel having an organic light emitting diode and method of fabricating the pixel
US9472138B2 (en) 2003-09-23 2016-10-18 Ignis Innovation Inc. Pixel driver circuit with load-balance in current mirror circuit
US7978187B2 (en) 2003-09-23 2011-07-12 Ignis Innovation Inc. Circuit and method for driving an array of light emitting pixels
US8553018B2 (en) 2003-09-23 2013-10-08 Ignis Innovation Inc. Circuit and method for driving an array of light emitting pixels
US10089929B2 (en) 2003-09-23 2018-10-02 Ignis Innovation Inc. Pixel driver circuit with load-balance in current mirror circuit
US9472139B2 (en) 2003-09-23 2016-10-18 Ignis Innovation Inc. Circuit and method for driving an array of light emitting pixels
US8941697B2 (en) 2003-09-23 2015-01-27 Ignis Innovation Inc. Circuit and method for driving an array of light emitting pixels
US9852689B2 (en) 2003-09-23 2017-12-26 Ignis Innovation Inc. Circuit and method for driving an array of light emitting pixels
US20050068343A1 (en) * 2003-09-30 2005-03-31 Hao Pan System for displaying images on a display
US8049691B2 (en) * 2003-09-30 2011-11-01 Sharp Laboratories Of America, Inc. System for displaying images on a display
US7466297B2 (en) * 2004-01-14 2008-12-16 Hannstar Display Corporation Method for driving a TFT-LCD
US20050151712A1 (en) * 2004-01-14 2005-07-14 Hannstar Display Corporation Method for driving a TFT-LCD
US7522131B2 (en) * 2004-04-29 2009-04-21 Samsung Sdi Co., Ltd. Electron emission display (EED) device with variable expression range of gray level
US20050243029A1 (en) * 2004-04-29 2005-11-03 Mun-Seok Kang Electron emission display (EED) device with variable expression range of gray level
US20050264223A1 (en) * 2004-05-31 2005-12-01 Lee Ji-Won Method of driving electron emission device with decreased signal delay
USRE45291E1 (en) 2004-06-29 2014-12-16 Ignis Innovation Inc. Voltage-programming scheme for current-driven AMOLED displays
US20080191976A1 (en) * 2004-06-29 2008-08-14 Arokia Nathan Voltage-Programming Scheme for Current-Driven Arnoled Displays
US8115707B2 (en) 2004-06-29 2012-02-14 Ignis Innovation Inc. Voltage-programming scheme for current-driven AMOLED displays
US8232939B2 (en) 2004-06-29 2012-07-31 Ignis Innovation, Inc. Voltage-programming scheme for current-driven AMOLED displays
USRE47257E1 (en) 2004-06-29 2019-02-26 Ignis Innovation Inc. Voltage-programming scheme for current-driven AMOLED displays
US20060044242A1 (en) * 2004-08-30 2006-03-02 Park Bong-Im Liquid crystal display, method for determining gray level in dynamic capacitance compensation on LCD, and method for correcting gamma of LCD
KR101017366B1 (en) 2004-08-30 2011-02-28 삼성전자주식회사 Liquid crystal display device and method for determining gray level of dynamic capacitance compensation of the same and rectifying gamma of the same
US7667679B2 (en) * 2004-08-30 2010-02-23 Samsung Electronics Co., Ltd. Liquid crystal display, method for determining gray level in dynamic capacitance compensation on LCD, and method for correcting gamma of LCD
US9153172B2 (en) 2004-12-07 2015-10-06 Ignis Innovation Inc. Method and system for programming and driving active matrix light emitting device pixel having a controllable supply voltage
US9741292B2 (en) 2004-12-07 2017-08-22 Ignis Innovation Inc. Method and system for programming and driving active matrix light emitting device pixel having a controllable supply voltage
US8994625B2 (en) 2004-12-15 2015-03-31 Ignis Innovation Inc. Method and system for programming, calibrating and driving a light emitting device display
US9280933B2 (en) 2004-12-15 2016-03-08 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US8259044B2 (en) 2004-12-15 2012-09-04 Ignis Innovation Inc. Method and system for programming, calibrating and driving a light emitting device display
US10012678B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US20100033469A1 (en) * 2004-12-15 2010-02-11 Ignis Innovation Inc. Method and system for programming, calibrating and driving a light emitting device display
US10699624B2 (en) 2004-12-15 2020-06-30 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US9970964B2 (en) 2004-12-15 2018-05-15 Ignis Innovation Inc. Method and system for programming, calibrating and driving a light emitting device display
US8816946B2 (en) 2004-12-15 2014-08-26 Ignis Innovation Inc. Method and system for programming, calibrating and driving a light emitting device display
US10013907B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US8736524B2 (en) 2004-12-15 2014-05-27 Ignis Innovation, Inc. Method and system for programming, calibrating and driving a light emitting device display
US9275579B2 (en) 2004-12-15 2016-03-01 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9728135B2 (en) 2005-01-28 2017-08-08 Ignis Innovation Inc. Voltage programmed pixel circuit, display system and driving method thereof
US8659518B2 (en) 2005-01-28 2014-02-25 Ignis Innovation Inc. Voltage programmed pixel circuit, display system and driving method thereof
US9373645B2 (en) 2005-01-28 2016-06-21 Ignis Innovation Inc. Voltage programmed pixel circuit, display system and driving method thereof
US10078984B2 (en) 2005-02-10 2018-09-18 Ignis Innovation Inc. Driving circuit for current programmed organic light-emitting diode displays
US10235933B2 (en) 2005-04-12 2019-03-19 Ignis Innovation Inc. System and method for compensation of non-uniformities in light emitting device displays
US8860636B2 (en) 2005-06-08 2014-10-14 Ignis Innovation Inc. Method and system for driving a light emitting device display
US20110012884A1 (en) * 2005-06-08 2011-01-20 Ignis Innovation Inc. Method and system for driving a light emitting device display
US9805653B2 (en) 2005-06-08 2017-10-31 Ignis Innovation Inc. Method and system for driving a light emitting device display
US9330598B2 (en) 2005-06-08 2016-05-03 Ignis Innovation Inc. Method and system for driving a light emitting device display
US10388221B2 (en) 2005-06-08 2019-08-20 Ignis Innovation Inc. Method and system for driving a light emitting device display
US20060290642A1 (en) * 2005-06-28 2006-12-28 Lg. Philips Lcd Co., Ltd. Method of overdriving LCD device and overdriving circuit for LCD device
US20070008253A1 (en) * 2005-07-06 2007-01-11 Arokia Nathan Method and system for driving a pixel circuit in an active matrix display
US8223177B2 (en) 2005-07-06 2012-07-17 Ignis Innovation Inc. Method and system for driving a pixel circuit in an active matrix display
US10019941B2 (en) 2005-09-13 2018-07-10 Ignis Innovation Inc. Compensation technique for luminance degradation in electro-luminance devices
US10262587B2 (en) 2006-01-09 2019-04-16 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US9489891B2 (en) 2006-01-09 2016-11-08 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US9058775B2 (en) 2006-01-09 2015-06-16 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US10229647B2 (en) 2006-01-09 2019-03-12 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US9269322B2 (en) 2006-01-09 2016-02-23 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US20070195020A1 (en) * 2006-02-10 2007-08-23 Ignis Innovation, Inc. Method and System for Light Emitting Device Displays
US7924249B2 (en) 2006-02-10 2011-04-12 Ignis Innovation Inc. Method and system for light emitting device displays
US9842544B2 (en) 2006-04-19 2017-12-12 Ignis Innovation Inc. Stable driving scheme for active matrix displays
US10453397B2 (en) 2006-04-19 2019-10-22 Ignis Innovation Inc. Stable driving scheme for active matrix displays
US9633597B2 (en) 2006-04-19 2017-04-25 Ignis Innovation Inc. Stable driving scheme for active matrix displays
US10127860B2 (en) 2006-04-19 2018-11-13 Ignis Innovation Inc. Stable driving scheme for active matrix displays
US8743096B2 (en) 2006-04-19 2014-06-03 Ignis Innovation, Inc. Stable driving scheme for active matrix displays
US8279143B2 (en) 2006-08-15 2012-10-02 Ignis Innovation Inc. OLED luminance degradation compensation
WO2008019487A1 (en) * 2006-08-15 2008-02-21 Ignis Innovation Inc. Oled luminance degradation compensation
US20080088648A1 (en) * 2006-08-15 2008-04-17 Ignis Innovation Inc. Oled luminance degradation compensation
US9530352B2 (en) 2006-08-15 2016-12-27 Ignis Innovations Inc. OLED luminance degradation compensation
US8026876B2 (en) 2006-08-15 2011-09-27 Ignis Innovation Inc. OLED luminance degradation compensation
US9125278B2 (en) 2006-08-15 2015-09-01 Ignis Innovation Inc. OLED luminance degradation compensation
US10325554B2 (en) 2006-08-15 2019-06-18 Ignis Innovation Inc. OLED luminance degradation compensation
US8581809B2 (en) 2006-08-15 2013-11-12 Ignis Innovation Inc. OLED luminance degradation compensation
US10555398B2 (en) 2008-04-18 2020-02-04 Ignis Innovation Inc. System and driving method for light emitting device display
US9867257B2 (en) 2008-04-18 2018-01-09 Ignis Innovation Inc. System and driving method for light emitting device display
US9877371B2 (en) 2008-04-18 2018-01-23 Ignis Innovations Inc. System and driving method for light emitting device display
USRE49389E1 (en) 2008-07-29 2023-01-24 Ignis Innovation Inc. Method and system for driving light emitting display
USRE46561E1 (en) 2008-07-29 2017-09-26 Ignis Innovation Inc. Method and system for driving light emitting display
US20100085290A1 (en) * 2008-10-02 2010-04-08 Apple Inc. Use of on-chip frame buffer to improve LCD response time by overdriving
US8259139B2 (en) 2008-10-02 2012-09-04 Apple Inc. Use of on-chip frame buffer to improve LCD response time by overdriving
US9824632B2 (en) 2008-12-09 2017-11-21 Ignis Innovation Inc. Systems and method for fast compensation programming of pixels in a display
US9370075B2 (en) 2008-12-09 2016-06-14 Ignis Innovation Inc. System and method for fast compensation programming of pixels in a display
US10134335B2 (en) 2008-12-09 2018-11-20 Ignis Innovation Inc. Systems and method for fast compensation programming of pixels in a display
US11030949B2 (en) 2008-12-09 2021-06-08 Ignis Innovation Inc. Systems and method for fast compensation programming of pixels in a display
US9117400B2 (en) 2009-06-16 2015-08-25 Ignis Innovation Inc. Compensation technique for color shift in displays
US9111485B2 (en) 2009-06-16 2015-08-18 Ignis Innovation Inc. Compensation technique for color shift in displays
US10319307B2 (en) 2009-06-16 2019-06-11 Ignis Innovation Inc. Display system with compensation techniques and/or shared level resources
US10553141B2 (en) 2009-06-16 2020-02-04 Ignis Innovation Inc. Compensation technique for color shift in displays
US9418587B2 (en) 2009-06-16 2016-08-16 Ignis Innovation Inc. Compensation technique for color shift in displays
US9030506B2 (en) 2009-11-12 2015-05-12 Ignis Innovation Inc. Stable fast programming scheme for displays
US10685627B2 (en) 2009-11-12 2020-06-16 Ignis Innovation Inc. Stable fast programming scheme for displays
US9818376B2 (en) 2009-11-12 2017-11-14 Ignis Innovation Inc. Stable fast programming scheme for displays
US10996258B2 (en) 2009-11-30 2021-05-04 Ignis Innovation Inc. Defect detection and correction of pixel circuits for AMOLED displays
US10679533B2 (en) 2009-11-30 2020-06-09 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US9786209B2 (en) 2009-11-30 2017-10-10 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US9311859B2 (en) 2009-11-30 2016-04-12 Ignis Innovation Inc. Resetting cycle for aging compensation in AMOLED displays
US10304390B2 (en) 2009-11-30 2019-05-28 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US10699613B2 (en) 2009-11-30 2020-06-30 Ignis Innovation Inc. Resetting cycle for aging compensation in AMOLED displays
US9384698B2 (en) 2009-11-30 2016-07-05 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
US8552636B2 (en) 2009-12-01 2013-10-08 Ignis Innovation Inc. High resolution pixel architecture
US20110128262A1 (en) * 2009-12-01 2011-06-02 Ignis Innovation Inc. High resolution pixel architecture
US9059117B2 (en) 2009-12-01 2015-06-16 Ignis Innovation Inc. High resolution pixel architecture
US8803417B2 (en) 2009-12-01 2014-08-12 Ignis Innovation Inc. High resolution pixel architecture
US9093028B2 (en) 2009-12-06 2015-07-28 Ignis Innovation Inc. System and methods for power conservation for AMOLED pixel drivers
US9262965B2 (en) 2009-12-06 2016-02-16 Ignis Innovation Inc. System and methods for power conservation for AMOLED pixel drivers
US10032399B2 (en) 2010-02-04 2018-07-24 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10176736B2 (en) 2010-02-04 2019-01-08 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10089921B2 (en) 2010-02-04 2018-10-02 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10395574B2 (en) 2010-02-04 2019-08-27 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10971043B2 (en) 2010-02-04 2021-04-06 Ignis Innovation Inc. System and method for extracting correlation curves for an organic light emitting device
US9430958B2 (en) 2010-02-04 2016-08-30 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10163401B2 (en) 2010-02-04 2018-12-25 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US9773441B2 (en) 2010-02-04 2017-09-26 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10573231B2 (en) 2010-02-04 2020-02-25 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US9881532B2 (en) 2010-02-04 2018-01-30 Ignis Innovation Inc. System and method for extracting correlation curves for an organic light emitting device
US11200839B2 (en) 2010-02-04 2021-12-14 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US8994617B2 (en) 2010-03-17 2015-03-31 Ignis Innovation Inc. Lifetime uniformity parameter extraction methods
US10460669B2 (en) 2010-12-02 2019-10-29 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
US8907991B2 (en) 2010-12-02 2014-12-09 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
US9489897B2 (en) 2010-12-02 2016-11-08 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
US9997110B2 (en) 2010-12-02 2018-06-12 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
US10249237B2 (en) 2011-05-17 2019-04-02 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US10515585B2 (en) 2011-05-17 2019-12-24 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9134825B2 (en) 2011-05-17 2015-09-15 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US9886899B2 (en) 2011-05-17 2018-02-06 Ignis Innovation Inc. Pixel Circuits for AMOLED displays
US9606607B2 (en) 2011-05-17 2017-03-28 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US9589490B2 (en) 2011-05-20 2017-03-07 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9093029B2 (en) 2011-05-20 2015-07-28 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9799246B2 (en) 2011-05-20 2017-10-24 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9530349B2 (en) 2011-05-20 2016-12-27 Ignis Innovations Inc. Charged-based compensation and parameter extraction in AMOLED displays
US10032400B2 (en) 2011-05-20 2018-07-24 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US10127846B2 (en) 2011-05-20 2018-11-13 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US8599191B2 (en) 2011-05-20 2013-12-03 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9799248B2 (en) 2011-05-20 2017-10-24 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US8576217B2 (en) 2011-05-20 2013-11-05 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9171500B2 (en) 2011-05-20 2015-10-27 Ignis Innovation Inc. System and methods for extraction of parasitic parameters in AMOLED displays
US10580337B2 (en) 2011-05-20 2020-03-03 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US9355584B2 (en) 2011-05-20 2016-05-31 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US10325537B2 (en) 2011-05-20 2019-06-18 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US10475379B2 (en) 2011-05-20 2019-11-12 Ignis Innovation Inc. Charged-based compensation and parameter extraction in AMOLED displays
US10706754B2 (en) 2011-05-26 2020-07-07 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
US9978297B2 (en) 2011-05-26 2018-05-22 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
US9640112B2 (en) 2011-05-26 2017-05-02 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
US9466240B2 (en) 2011-05-26 2016-10-11 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
US10417945B2 (en) 2011-05-27 2019-09-17 Ignis Innovation Inc. Systems and methods for aging compensation in AMOLED displays
US9984607B2 (en) 2011-05-27 2018-05-29 Ignis Innovation Inc. Systems and methods for aging compensation in AMOLED displays
US9773439B2 (en) 2011-05-27 2017-09-26 Ignis Innovation Inc. Systems and methods for aging compensation in AMOLED displays
US10290284B2 (en) 2011-05-28 2019-05-14 Ignis Innovation Inc. Systems and methods for operating pixels in a display to mitigate image flicker
US9881587B2 (en) 2011-05-28 2018-01-30 Ignis Innovation Inc. Systems and methods for operating pixels in a display to mitigate image flicker
US9070775B2 (en) 2011-08-03 2015-06-30 Ignis Innovations Inc. Thin film transistor
US9224954B2 (en) 2011-08-03 2015-12-29 Ignis Innovation Inc. Organic light emitting diode and method of manufacturing
US8901579B2 (en) 2011-08-03 2014-12-02 Ignis Innovation Inc. Organic light emitting diode and method of manufacturing
US10380944B2 (en) 2011-11-29 2019-08-13 Ignis Innovation Inc. Structural and low-frequency non-uniformity compensation
US9818806B2 (en) 2011-11-29 2017-11-14 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
US9385169B2 (en) 2011-11-29 2016-07-05 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
US10079269B2 (en) 2011-11-29 2018-09-18 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
US10089924B2 (en) 2011-11-29 2018-10-02 Ignis Innovation Inc. Structural and low-frequency non-uniformity compensation
US10453904B2 (en) 2011-11-29 2019-10-22 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
US10043448B2 (en) 2012-02-03 2018-08-07 Ignis Innovation Inc. Driving system for active-matrix displays
US9343006B2 (en) 2012-02-03 2016-05-17 Ignis Innovation Inc. Driving system for active-matrix displays
US9792857B2 (en) 2012-02-03 2017-10-17 Ignis Innovation Inc. Driving system for active-matrix displays
US10453394B2 (en) 2012-02-03 2019-10-22 Ignis Innovation Inc. Driving system for active-matrix displays
US9190456B2 (en) 2012-04-25 2015-11-17 Ignis Innovation Inc. High resolution display panel with emissive organic layers emitting light of different colors
USRE48002E1 (en) 2012-04-25 2020-05-19 Ignis Innovation Inc. High resolution display panel with emissive organic layers emitting light of different colors
US10424245B2 (en) 2012-05-11 2019-09-24 Ignis Innovation Inc. Pixel circuits including feedback capacitors and reset capacitors, and display systems therefore
US9747834B2 (en) 2012-05-11 2017-08-29 Ignis Innovation Inc. Pixel circuits including feedback capacitors and reset capacitors, and display systems therefore
US9741279B2 (en) 2012-05-23 2017-08-22 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US9940861B2 (en) 2012-05-23 2018-04-10 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US8922544B2 (en) 2012-05-23 2014-12-30 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US9368063B2 (en) 2012-05-23 2016-06-14 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US10176738B2 (en) 2012-05-23 2019-01-08 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US9536460B2 (en) 2012-05-23 2017-01-03 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US11030955B2 (en) 2012-12-11 2021-06-08 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9336717B2 (en) 2012-12-11 2016-05-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9997106B2 (en) 2012-12-11 2018-06-12 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9685114B2 (en) 2012-12-11 2017-06-20 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9786223B2 (en) 2012-12-11 2017-10-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US10311790B2 (en) 2012-12-11 2019-06-04 Ignis Innovation Inc. Pixel circuits for amoled displays
US10140925B2 (en) 2012-12-11 2018-11-27 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9978310B2 (en) 2012-12-11 2018-05-22 Ignis Innovation Inc. Pixel circuits for amoled displays
US9171504B2 (en) 2013-01-14 2015-10-27 Ignis Innovation Inc. Driving scheme for emissive displays providing compensation for driving transistor variations
US10847087B2 (en) 2013-01-14 2020-11-24 Ignis Innovation Inc. Cleaning common unwanted signals from pixel measurements in emissive displays
US11875744B2 (en) 2013-01-14 2024-01-16 Ignis Innovation Inc. Cleaning common unwanted signals from pixel measurements in emissive displays
US9830857B2 (en) 2013-01-14 2017-11-28 Ignis Innovation Inc. Cleaning common unwanted signals from pixel measurements in emissive displays
US9351368B2 (en) 2013-03-08 2016-05-24 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9721505B2 (en) 2013-03-08 2017-08-01 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US10242619B2 (en) 2013-03-08 2019-03-26 Ignis Innovation Inc. Pixel circuits for amoled displays
US9697771B2 (en) 2013-03-08 2017-07-04 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US10013915B2 (en) 2013-03-08 2018-07-03 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US10593263B2 (en) 2013-03-08 2020-03-17 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9659527B2 (en) 2013-03-08 2017-05-23 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9934725B2 (en) 2013-03-08 2018-04-03 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9922596B2 (en) 2013-03-08 2018-03-20 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9818323B2 (en) 2013-03-14 2017-11-14 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays
US10198979B2 (en) 2013-03-14 2019-02-05 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays
US9536465B2 (en) 2013-03-14 2017-01-03 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays
US9305488B2 (en) 2013-03-14 2016-04-05 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays
US9997107B2 (en) 2013-03-15 2018-06-12 Ignis Innovation Inc. AMOLED displays with multiple readout circuits
US9721512B2 (en) 2013-03-15 2017-08-01 Ignis Innovation Inc. AMOLED displays with multiple readout circuits
US9952698B2 (en) 2013-03-15 2018-04-24 Ignis Innovation Inc. Dynamic adjustment of touch resolutions on an AMOLED display
US9324268B2 (en) 2013-03-15 2016-04-26 Ignis Innovation Inc. Amoled displays with multiple readout circuits
US10460660B2 (en) 2013-03-15 2019-10-29 Ingis Innovation Inc. AMOLED displays with multiple readout circuits
US10867536B2 (en) 2013-04-22 2020-12-15 Ignis Innovation Inc. Inspection system for OLED display panels
US10600362B2 (en) 2013-08-12 2020-03-24 Ignis Innovation Inc. Compensation accuracy
US9990882B2 (en) 2013-08-12 2018-06-05 Ignis Innovation Inc. Compensation accuracy
US9437137B2 (en) 2013-08-12 2016-09-06 Ignis Innovation Inc. Compensation accuracy
US9761170B2 (en) 2013-12-06 2017-09-12 Ignis Innovation Inc. Correction for localized phenomena in an image array
US10395585B2 (en) 2013-12-06 2019-08-27 Ignis Innovation Inc. OLED display system and method
US10186190B2 (en) 2013-12-06 2019-01-22 Ignis Innovation Inc. Correction for localized phenomena in an image array
US9741282B2 (en) 2013-12-06 2017-08-22 Ignis Innovation Inc. OLED display system and method
US9502653B2 (en) 2013-12-25 2016-11-22 Ignis Innovation Inc. Electrode contacts
US9831462B2 (en) 2013-12-25 2017-11-28 Ignis Innovation Inc. Electrode contacts
US10439159B2 (en) 2013-12-25 2019-10-08 Ignis Innovation Inc. Electrode contacts
US10997901B2 (en) 2014-02-28 2021-05-04 Ignis Innovation Inc. Display system
US10176752B2 (en) 2014-03-24 2019-01-08 Ignis Innovation Inc. Integrated gate driver
US10192479B2 (en) 2014-04-08 2019-01-29 Ignis Innovation Inc. Display system using system level resources to calculate compensation parameters for a display module in a portable device
US10170522B2 (en) 2014-11-28 2019-01-01 Ignis Innovations Inc. High pixel density array architecture
US9842889B2 (en) 2014-11-28 2017-12-12 Ignis Innovation Inc. High pixel density array architecture
US10134325B2 (en) 2014-12-08 2018-11-20 Ignis Innovation Inc. Integrated display system
US10726761B2 (en) 2014-12-08 2020-07-28 Ignis Innovation Inc. Integrated display system
US10181282B2 (en) 2015-01-23 2019-01-15 Ignis Innovation Inc. Compensation for color variations in emissive devices
US10152915B2 (en) 2015-04-01 2018-12-11 Ignis Innovation Inc. Systems and methods of display brightness adjustment
US10311780B2 (en) 2015-05-04 2019-06-04 Ignis Innovation Inc. Systems and methods of optical feedback
US10403230B2 (en) 2015-05-27 2019-09-03 Ignis Innovation Inc. Systems and methods of reduced memory bandwidth compensation
US9947293B2 (en) 2015-05-27 2018-04-17 Ignis Innovation Inc. Systems and methods of reduced memory bandwidth compensation
US10657895B2 (en) 2015-07-24 2020-05-19 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
US10373554B2 (en) 2015-07-24 2019-08-06 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
US10410579B2 (en) 2015-07-24 2019-09-10 Ignis Innovation Inc. Systems and methods of hybrid calibration of bias current
US10339860B2 (en) 2015-08-07 2019-07-02 Ignis Innovation, Inc. Systems and methods of pixel calibration based on improved reference values
US10074304B2 (en) 2015-08-07 2018-09-11 Ignis Innovation Inc. Systems and methods of pixel calibration based on improved reference values
US10102808B2 (en) 2015-10-14 2018-10-16 Ignis Innovation Inc. Systems and methods of multiple color driving
US10446086B2 (en) 2015-10-14 2019-10-15 Ignis Innovation Inc. Systems and methods of multiple color driving
US10204540B2 (en) 2015-10-26 2019-02-12 Ignis Innovation Inc. High density pixel pattern
US10586491B2 (en) 2016-12-06 2020-03-10 Ignis Innovation Inc. Pixel circuits for mitigation of hysteresis
US10714018B2 (en) 2017-05-17 2020-07-14 Ignis Innovation Inc. System and method for loading image correction data for displays
US11025899B2 (en) 2017-08-11 2021-06-01 Ignis Innovation Inc. Optical correction systems and methods for correcting non-uniformity of emissive display devices
US11792387B2 (en) 2017-08-11 2023-10-17 Ignis Innovation Inc. Optical correction systems and methods for correcting non-uniformity of emissive display devices
US11847976B2 (en) 2018-02-12 2023-12-19 Ignis Innovation Inc. Pixel measurement through data line
US10971078B2 (en) 2018-02-12 2021-04-06 Ignis Innovation Inc. Pixel measurement through data line
US11670900B2 (en) 2019-02-05 2023-06-06 Emergency Technology, Inc. Universal smart adaptor

Also Published As

Publication number Publication date
US20020175907A1 (en) 2002-11-28
JP2002351409A (en) 2002-12-06

Similar Documents

Publication Publication Date Title
US7034793B2 (en) Liquid crystal display device
US6930663B2 (en) Liquid crystal display device
US9495927B2 (en) Liquid crystal display apparatus, driving method for same, and driving circuit for same
JP5419860B2 (en) Drive device
US6778160B2 (en) Liquid-crystal display, liquid-crystal control circuit, flicker inhibition method, and liquid-crystal driving method
KR100438649B1 (en) Driving method of image display device, driving device of image display device, and image display device
US7095396B2 (en) Liquid crystal display device using OCB cell and driving method thereof
US7696960B2 (en) Display device
US20070040784A1 (en) Method and apparatus for driving liquid crystal display deriving modulated data using approximation
KR20040054544A (en) Liquid crystal display apparatus
KR100299637B1 (en) Liquid crystal display device
JP4555063B2 (en) Liquid crystal display device, driving method and driving circuit thereof
US7136037B2 (en) Method and apparatus for driving liquid crystal display
WO2013118323A1 (en) Display device and display method
KR100783697B1 (en) Liquid Crystal Display device with a function of compensating a moving picture and driving apparatus and method thereof
KR100538189B1 (en) Liquid crystal display
US20170193959A1 (en) Display apparatus and method of operating the same
JP4671715B2 (en) Display device and driving method thereof
Sekiya et al. 9.5 L: Late‐News Paper: Overdrive Method for TN‐mode LCDs—Recursive System with Capacitance Prediction‐
KR101386569B1 (en) Apparatus and method for improving response speed of liquid crystal display
JP4413730B2 (en) Liquid crystal display device and driving method thereof
US20090010339A1 (en) Image compensation circuit, method thereof, and lcd device using the same
EP1914710B1 (en) Display device
KR101528927B1 (en) Liquid crystal display and driving method thereof
KR100788387B1 (en) Method and apparatus for setting gamma voltage

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SEKIYA, KAZUO;NAKAMURA, HAJIME;REEL/FRAME:013136/0266;SIGNING DATES FROM 20020529 TO 20020603

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: AU OPTRONICS CORPORATION, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:017663/0854

Effective date: 20060407

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553)

Year of fee payment: 12