US20140026775A1 - Reader apparatus and methods for verifying electropnic detonator position locations at a blasting site - Google Patents

Reader apparatus and methods for verifying electropnic detonator position locations at a blasting site Download PDF

Info

Publication number
US20140026775A1
US20140026775A1 US13/792,912 US201313792912A US2014026775A1 US 20140026775 A1 US20140026775 A1 US 20140026775A1 US 201313792912 A US201313792912 A US 201313792912A US 2014026775 A1 US2014026775 A1 US 2014026775A1
Authority
US
United States
Prior art keywords
detonator
processor
serial
electronic
portable reader
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/792,912
Inventor
Bryan E. Papillon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Austin Star Detonator Co
AUSTIN POWER Co
Original Assignee
AUSTIN POWER Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AUSTIN POWER Co filed Critical AUSTIN POWER Co
Priority to US13/792,912 priority Critical patent/US20140026775A1/en
Assigned to AUSTIN POWDER COMPANY reassignment AUSTIN POWDER COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PAPILLON, BRYAN E.
Publication of US20140026775A1 publication Critical patent/US20140026775A1/en
Assigned to AUSTIN STAR DETONATOR COMPANY reassignment AUSTIN STAR DETONATOR COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AUSTIN POWDER COMPANY
Assigned to AUSTIN STAR DETONATOR COMPANY reassignment AUSTIN STAR DETONATOR COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AUSTIN POWDER COMPANY
Assigned to AUSTIN STAR DETONATOR COMPANY reassignment AUSTIN STAR DETONATOR COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AUSTIN POWDER COMPANY
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/04Arrangements for ignition
    • F42D1/045Arrangements for electric ignition
    • F42D1/05Electric circuits for blasting
    • F42D1/055Electric circuits for blasting specially adapted for firing multiple charges with a time delay

Definitions

  • the present disclosure involves blasting technology in general, and particularly relates to verification of position locations at a blasting site.
  • detonators and explosives are buried in the ground, for example, in holes drilled into rock formations, etc., and the detonators are wired for external access to blasting machines that provide electrical signaling to initiate detonation of explosives.
  • Electronic detonators have been developed which implement programmable delay times such that an array of detonators can be actuated in a controlled sequence.
  • Such electronic detonators typically include an internally stored unique identification number, referred to herein as a detonator serial ID number, and logger devices can be used to program individual electronic detonators with a corresponding delay time according to a blasting plan.
  • a blasting site can include hundreds or even thousands of electronic detonators located in a large number of holes, which are referred to herein as positions.
  • electronic detonator data for a given blasting site is often logged using several different loggers, and in certain contexts the logging may be performed many weeks or months before blasting occurs.
  • tags or other physical indicators are often used to mark the positions at which the wiring for one or more electronic detonators are accessible.
  • Portable data reader apparatus which interrogates a detonator connected to a wire or wires at the position (hole) of the blasting site and receives a unique detonator serial ID number from the detonator.
  • the reader checks an internal memory and/or wirelessly queries an external device such as a computer at a dog house or other central location of the site, and obtains a position number corresponding to the received detonator serial ID number for display to the user.
  • personnel at a blasting site do not need to know which logger was used to initially log a given position, and do not need to carry all the loggers around the site to verify position numbers at holes for which a physical marker may be missing or unreadable.
  • the disclosed reader apparatus advantageously provides the corresponding position number without laborious searching through other blasting plan data commonly stored on multiple loggers. Furthermore, certain embodiments of the reader apparatus can be used to quickly verify geographic location information of a plan and to identify any detected discrepancies to the user at the position.
  • a portable reader apparatus which includes a housing with one or more terminals for electrical connection to wires associated with one or more electronic detonators as well as associated interface circuitry to send and receive electrical signals for communication with the connected detonator(s).
  • the apparatus includes a display and an electronic memory for storing unique detonator serial ID numbers and associated position numbers.
  • a processor in the reader apparatus receives a detonator serial ID number from the electronic detonator and compares this with the ID numbers stored in the electronic memory and uses the display to render a corresponding position number.
  • the reader apparatus includes a geophysical locator such as a GPS system, and the memory stores geographic location data corresponding to some or all of the stored detonator serial ID numbers. While the detonator is connected to the reader, the current geographic location is obtained using the locator and is compared to the geographic location data stored in the memory. The reader apparatus selectively displays a warning message if these do not match. In certain embodiments, moreover, the reader can display the location determined by the geophysical locator to the user.
  • a geophysical locator such as a GPS system
  • the memory stores geographic location data corresponding to some or all of the stored detonator serial ID numbers. While the detonator is connected to the reader, the current geographic location is obtained using the locator and is compared to the geographic location data stored in the memory. The reader apparatus selectively displays a warning message if these do not match. In certain embodiments, moreover, the reader can display the location determined by the geophysical locator to the user.
  • the portable data reader in certain embodiments includes one or more wired and/or wireless communications interfaces with which the processor can obtain the stored ID numbers and associated position numbers from an external device.
  • the communication interface allows easy connection of the reader apparatus to loggers and/or computers or other devices from which plan data can be uploaded, whether as a whole or at least by detonator serial ID numbers and corresponding position (hole) numbers (and possibly corresponding geographic location data in certain embodiments). In this manner, the reader can be easily transported around a blasting site, and includes the necessary data and associations to quickly verify electronic detonator position locations throughout the site regardless of which logger was used to initially log a given detonator.
  • a portable reader apparatus which has a wireless communication interface used to send a detonator serial ID number obtained from the connected detonator to an external device, and to receive a corresponding position number from the external device. The apparatus then displays the received position number to the user.
  • This wireless position number query can be used alone or in combination with an internal detonator serial ID number/position number database.
  • the portable reader apparatus may be adapted to notify a user in situations where communication with a given detonator was not possible and/or where no matches found for the serial ID number obtained from the detonator. Such messaging can advantageously prompt the user to further investigate inoperative detonators and/or prior activation status of a given detonator.
  • the methods include electronically coupling a portable reader device to one or more electronic detonators at the blasting site, communicating with the detonator to receive a detonator serial ID number therefrom, automatically obtaining a position number that corresponds to the received detonator serial ID number, and displaying the position number on the reader device.
  • the position number is automatically obtained by comparing the received serial ID number with ID numbers stored in an electronic memory of the reader device, and obtaining a corresponding position number from a plurality of position numbers stored in the electronic memory.
  • the position number is automatically obtained by providing the detonator serial ID number to an external device using a wireless communication interface, receiving a position number from the external device, and displaying the position number obtained from the external device on the portable reader.
  • FIG. 1 is a front elevation view illustrating an exemplary portable data reader apparatus for verifying electronic detonator position locations at a blasting site in accordance with one or more aspects of the present disclosure
  • FIG. 2 is a schematic diagram illustrating further details of the exemplary portable reader apparatus of FIG. 1 ;
  • FIG. 3 is a schematic diagram illustrating an exemplary table including entries having a detonator serial ID number, a corresponding position or hole number, and corresponding geographic location data stored in a memory of the portable data reader of FIGS. 1 and 2 ;
  • FIG. 4 is a partial schematic diagram illustrating operation of the portable data reader to obtain serial ID numbers and corresponding position/hole numbers from one or more logger devices and/or from an external computer device;
  • FIG. 5 is a flow diagram illustrating an exemplary method for verifying electronic detonator position locations at a blasting site in accordance with further aspects of the disclosure.
  • FIG. 6 is a front elevation view illustrating an exemplary embodiment of the reader apparatus communicating wirelessly with an external computer device for obtaining a position/hole number corresponding to a received detonator serial ID number in accordance with further aspects of the present disclosure.
  • FIG. 1 illustrates an exemplary portable reader apparatus 100 shown connected via terminals 104 A and 104 B to wires 212 of an exemplary electronic detonator 210 in a hole 204 in the ground 202 at a blasting site 200 . While illustrated as being connected to a single detonator 210 , the apparatus 100 can be used to communicate with a plurality of detonators 210 connected in groups using a single accessible wire or pair of wires 212 , where the apparatus 100 includes suitable interface circuitry 105 ( FIG. 2 ) to individually address detonators 210 connected to common wiring busses.
  • electronic detonators 210 provide communications interfaces for exchanging electronic signaling and data with the reader device 100 as well as with loggers and blasting machines (not shown) using conventional communications protocols as are known.
  • the apparatus 100 is connected to the wire or wires 212 and either automatically or through user command will begin exchanging information with the detonator 210 .
  • the wires 212 are connected to first and second field terminals 104 A and 104 B and the reader device 100 is powered on by the user.
  • the device 100 then sends a query message via the wires 212 to the detonator 210 , and the detonator 210 responds with one or more messages or data packets including the detonator's unique serial ID number 107 .
  • the reader device 100 may receive multiple reply messages and from these and can determine the number of detonators 210 with which it is currently connected.
  • one possible suitable communication protocol can be implemented with the reader device 100 operating as a master for communication along the wires 212 with the detonators 210 responding to identification request messages and thereafter to messages addressed individually according to the corresponding detonator serial ID numbers 107 .
  • the device 100 is connected to a group of detonators 210 , it will initially obtain the group of corresponding serial ID numbers 107 .
  • the portable reader 100 includes a housing 102 , preferably constructed to withstand the rigors of outdoor blasting site environments while providing externally accessible terminals 104 for connection with detonator wires 212 .
  • the reader 100 also includes a display 106 for rendering data and/or images to the user, and a keyboard or other input means 110 .
  • the display 106 can be an LCD, LED, OLED, plasma display, fluorescent display, or any other suitable display technology can be used. In practice, due to the environmental nature of blasting operations, the display 106 preferably is able to operate at extreme temperatures such as ⁇ 20° C. to +70° C.
  • the reader 100 includes one or more communication interfaces for exchanging data with external devices, which may include various communications circuits such as a serial port or UART, USB, I2C, SPI, etc.
  • the device 100 may include a USB port 112 with associated circuitry 122 within the housing 102 of the reader 100 , an externally-accessible RS- 232 port connection 114 and associated interior circuitry 124 , and/or the reader 100 may include wireless communication transceiver circuitry 126 with an external and/or internal antenna 116 .
  • the wireless transceiver 126 may be equipped with a GPS system 128 allowing the reader 102 obtain its current location (e.g., latitude, longitude and/or elevation) by suitable messaging with GPS satellites using known techniques.
  • the reader 100 in certain embodiments is battery-powered, and the RS-232 port 114 can be used to either connect the device for data exchange with a logger or other external device and/or for charging the internal battery (not shown).
  • a nickel cadmium or lithium ion battery, a Ni metal hydride battery or alkaline cells can be used with voltage restrictions consistent with inherently safe operation.
  • a lead acid battery may be used, such as in blasting machine implementations of the apparatus 100 .
  • power can be provided via the charge input 124 from an external device connected to the connector 114 (e.g., five pin connector 114 on the front face of the illustrated reader device 100 in FIG.
  • the various circuits and components shown in FIG. 2 may be implemented in a single or multiple circuit board configuration with suitable mounting in the interior of the housing 102 , and external ports or connections can be provided for the detonator wiring connection terminals 104 , a USB port 112 , an RS-232 port/charge input connector 114 and/or for any external wireless antenna 116 (in certain embodiments a wireless antenna 116 may be implemented within the interior of the housing 102 ). Also, suitable electrical connections are provided from such circuit board(s) to the display 106 and to the keyboard 110 for receiving user input by way of key presses.
  • the reader 100 in certain embodiments is an inherently safe device for use by blasting personnel at a blasting site 200 without danger of accidentally actuating electronic detonators 210 .
  • the interface circuitry 105 coupled with the detonator wire terminals 104 in certain embodiments is low-power circuitry and the reader 100 is not provided with suitable power, energy or voltage from the power supply 127 or elsewhere to initiate arming or firing of a connected electronic detonator 210 .
  • the reader apparatus 100 and components thereof are generally operated under control of a processor 120 ( FIG. 2 ), and the processor 120 is unable to send any arming or firing commands to a connected electronic detonator 210 .
  • the reader apparatus 100 maybe implemented in a logger or blasting machine, wherein blasting machine implementations need not be inherently safe, but may be operable in a “reader” mode in which the apparatus 100 will not generate sufficient voltage and/or current to cause actuation of an electronic detonator 200 and will not send any arming or firing commands to a detonator 210 .
  • the processor 120 is included in the interior of the housing 102 , and the processor 120 may be any suitable electronic processing device including without limitation a microprocessor, microcontroller, DSP, programmable logic, etc. and/or combinations thereof, which performs various operations by executing program code such as software, firmware, microcode, etc.
  • the reader includes an electronic memory 130 which can store program code and/or data, including electronic storage 132 of detonator serial ID numbers and corresponding position numbers. In certain embodiments, moreover, the memory 130 can also store corresponding geographic location data, such as latitude, longitude and/or elevation.
  • the portion 132 of the memory 130 provides a local database or data store of associations between position numbers and detonator serial ID numbers with which the reader 100 can easily tell the user (e.g., via the display 106 ) the shot number for an electronic detonator 210 to which it is currently connected via the wires 212 .
  • the memory 130 may be any suitable form of electronic memory, including without limitation EEPROM, flash, SD, a multimedia card, and/or a USB flash drive operatively associated with the USB port 112 ( FIG. 1 ).
  • FIG. 3 shows one example of the internal data store (e.g., memory portion 132 ) is illustrated in the memory 130 .
  • This data store 132 can be populated by obtaining corresponding blasting plan information from one or more loggers 300 and/or from a computer or other external device 400 ( FIG. 4 ).
  • the data set 132 in FIG. 3 includes many parameters associated with a given detonator ( 1 electronic detonator 210 per row in FIG. 3 ), and that one or some of these parameters may be omitted in a given portable reader apparatus implementation.
  • certain embodiments may only store detonator serial ID numbers 107 and corresponding hole numbers (position numbers) 108 in the electronic memory 130 , thereby conserving memory while allowing the processor 120 to query the memory by serial ID number 107 to obtain the corresponding position number 108 for display to the user.
  • the corresponding geographical location data 109 may be stored for one some or all of the serial ID numbers 107 .
  • the detonator serial ID number 107 can be a string of 12 hexadecimal characters, or may include up to 24 or 36 characters
  • the position data 108 can be a 12 alphanumeric character value, or in some implementations may include up to 24 or 36 characters.
  • the hole numbers 108 in certain embodiments may be globally unique, and thus individually indicate a specific hole location at a blast site. In certain embodiments, moreover, the hole numbers 108 may include an indication of one or more other pieces of information, such as plan number. In other embodiments, the hole numbers 108 may be unique within a given blasting plan, but a given bore hole location may be assigned different hole numbers 1084 different blasting plans.
  • the memory 130 may store further information, such as from a blasting plan database, including without limitation additional detonator numbers (a detonator number is a generic number within a blasting plan which is associated with one or more unique detonator serial ID numbers upon logging), a delay time value programmed into the corresponding detonator 210 , and/or other status flags to facilitate reader operation.
  • the data store 132 can be used to include data from detonators 210 logged using many different loggers 300 ( FIG. 3 ), and such logging may be done at different times by different personnel, where some of the logged data in a blasting plan may include geographic location information 109 and others may not.
  • the reader apparatus 100 may possibly include all of the data shown in FIG. 3 , and the processor 120 may be programmed to allow a user to access such data for display on the display 106 by using the keyboard 110 .
  • FIG. 4 illustrates several different ways in which the data 132 can be entered into the electronic memory 130 of the reader device 100 .
  • the initial data logging at the blasting site 200 for multiple electronic detonators 210 can involve multiple loggers 300 , three of which are illustrated in the figure.
  • individual users connect the logger 300 to communicate with a given detonator 210 , with the logger 300 obtaining the serial ID number 107 from the detonator 210 , and potentially programing a corresponding delay time 111 for that detonator 210 by sending a delay time value or message through the detonator wiring 212 .
  • delay time programming may not be needed or may not be permitted.
  • the loggers 300 collect serial ID numbers 107 from the logged detonators 210 and create an association between each serial ID number and a corresponding position number (whole number), which association can be created in any automated, semi-automated and/or manual manner.
  • the logger 300 may be programmed with a blasting plan file that identifies a particular position number 108 to which the operator of the logger 300 associates a connected detonator 210 and its corresponding serial ID number 107 , with the logger 300 storing that association along with other associations in its internal memory, which database may correspond to the data 132 shown in FIG. 3 above.
  • the associated serial ID number 107 of the fire detonators are stored internally in a blasting machine (not shown), and these numbers may be transferred to the reader apparatus 100 or computer 400 ( FIG. 4 ) or other central data collection site, and this “fired” indicator can be a data value in the reader 100 which can be displayed to a user and/or otherwise used to identify blast site issues.
  • a central computer or other database 400 maybe used to compile all the logged information into a blasting plan, for example, as a spreadsheet file or other suitable database form.
  • the loggers 300 may include suitable communications ports allowing connection to a laptop computer 400 , a USB memory stick, etc., for transfer of the serial ID numbers 107 and the corresponding position numbers 108 . From this compiled database, the detonator serial ID numbers 107 and the corresponding position numbers 108 can be transferred from the computer 400 to the portable data reader apparatus 100 by a variety of transfer mechanisms.
  • the computer 400 can be connected to the reader 100 via data cable connected to the RS- 232 port 114 , or a USB connection can be made via the USB port 112 .
  • the data transfer can be done wirelessly to send the serial ID numbers 107 and the corresponding position numbers 108 from the computer 400 to the reader 100 .
  • the loggers 300 can be individually connected to the reader 100 (e.g., whether by wired connection or wireless connection) to transfer the serial ID numbers 107 and corresponding position numbers 108 from each logger 300 to the reader 100 .
  • the reader 100 in this regard, can compile and maintain ID number/shot number data for a large number of blasting operations, and may maintain this data for long periods of time to facilitate identification of electronic detonators 210 that may have been installed in a given blasting site 200 many years previously, thereby allowing a user to determine that a previously unactuated or failed detonator 210 is present at the site 200 .
  • FIG. 5 illustrates a method 500 for verifying electronic detonator position locations at a blasting side 200 using the reader 100 .
  • a user can take the reader 100 to a given hole in the blasting site 200 , such as one for which there is no physical marker or where the associated tag/marker is unreadable for some reason.
  • the user connects the terminals 104 A and 104 B to the detonator wires 212 , and the processor 120 communicates with the detonator 210 if possible.
  • the processor 120 determines if a communication error has occurred, and if so (YES at 504 ) displays a communication error message at 506 .
  • the reader 100 in certain embodiments may further perform one or more further diagnostic tests on the unfired electronic detonator 210 to make sure that it is fully operational, and may display suitable messages to a user via the display 106 regarding the results of the diagnostic testing.
  • the reader 100 receives the detonator serial ID number 107 from the detonator 210 and automatically obtains a corresponding position number 108 for display to the user as described below.
  • This automatic operation can be self-initiated by the reader 100 upon receipt of the serial ID number 107 or may be initiated by a user pressing a button of the keypad 110 , both of which situations are automatic.
  • the processor 120 compares the received detonator serial ID number 107 with a plurality of detonator serial ID numbers 107 stored in the database 132 of the electronic memory 130 in association with corresponding hole numbers, and determines whether the received serial ID number is in the memory 130 .
  • the process 500 proceeds to 520 where the processor 120 causes the display 106 to render the corresponding position (hole) number 108 to the user (see FIG. 1 ).
  • the user is also provided with the detonator serial ID number 107 on the display 106 , and the reader 100 may also display any associated geographic location data 109 .
  • FIG. 1 illustrates a situation in which the connected detonator 210 has a serial ID number 9809B98324C6, and the processor 120 accesses the data store 132 in the memory 130 to locate this serial ID number (shown in the circled row in FIG. 3 ).
  • the processor 120 retrieves the associated hole number 108 (61021846 in this example) associated with the received detonator serial ID number 107 and renders this on the display 106 at 520 in FIG. 5 .
  • the database 132 includes latitude, longitude and elevation geographic data 109 , and in certain embodiments the processor 120 obtains these from the memory 130 and renders them on the display 106 as shown in FIG. 1 .
  • the reader 100 includes a wireless communication interface 116 allowing wireless communications between the reader apparatus 100 and an external computer or other wireless equipped device 400 .
  • the processor 120 uses the wireless communications to query the external computer device 400 by providing the received serial ID number 107 to the computer 400 .
  • the computer 400 receives the query and checks an internal data store 402 of serial ID numbers and corresponding position numbers. If a match is found for the received serial ID number 107 , the computer 400 returns the corresponding position number 108 by wireless communications to the reader 100 .
  • the processor 120 displays this received position number 108 on the display 106 . Also at 514 in FIG. 5 , if no match is found for the received detonator serial ID number 107 (in the memory 130 and/or in the external device 400 ), the processor may provide an error message to the user on the display 106 indicating that no match was found.
  • the external device 400 can be a computer local to the blasting site 200 , such as a computer in a “doghouse” location of the blast site 200 , and the external device 400 may internally store detonator serial ID numbers 107 and corresponding position numbers 108 in any suitable fashion by which the device 400 can be queried to verify a position location 108 corresponding to a received detonator ID number 107 .
  • the external device 400 may also be provisioned with corresponding geographic location data 109 which can be returned to a querying reader device 100 and rendered on the display 106 .
  • the reader apparatus 100 may be equipped with a GPS system 128 or other geophysical locator device ( FIG. 2 above), and the internal memory 130 and/or the database 402 of an wireless-equipped external device 400 may include geographical location data 109 corresponding to the logged position location.
  • the reader 100 in such embodiments can optionally verify the geographic location information 109 using the internal GPS system 128 .
  • the processor 120 obtains a current geographic location using the locator 120 while the detonator wires 212 are connected to the reader 100 , and compares this current geographic location with the geographic location data 109 stored in the electronic memory 130 (or with geographic location data 109 obtained from the external device 400 ).
  • the processor 120 displays an error message to the user via a display 106 indicating a discrepancy.
  • the processor 120 may be programmed to identify a match if the geographic location data 109 is within a certain range of the geographic location determined by the geophysical locator 128 to allow for a certain margin of error before providing an error message to the user.

Abstract

Portable data reader apparatus and methods are presented for verifying electronic detonator locations at a blasting site in which the reader electronically interrogates one or more detonators connected to wires accessible at the blasting site and receives a detonator serial ID number. The reader searches an internal data store or wirelessly queries an external device to obtain a position number corresponding to the received detonator serial ID number and displays the position number to the user.

Description

  • This application claims priority to and the benefit of U.S. Provisional Patent Application Ser. No. 61/610,217 that was filed on Mar. 13, 2012 and is entitled READER APPARATUS AND METHODS FOR VERIFYING ELECTRONIC DETONATOR POSITION LOCATIONS AT A BLASTING SITE, the entirety of which is incorporated by reference herein.
  • TECHNICAL FIELD
  • The present disclosure involves blasting technology in general, and particularly relates to verification of position locations at a blasting site.
  • BACKGROUND
  • In blasting operations, detonators and explosives are buried in the ground, for example, in holes drilled into rock formations, etc., and the detonators are wired for external access to blasting machines that provide electrical signaling to initiate detonation of explosives. Electronic detonators have been developed which implement programmable delay times such that an array of detonators can be actuated in a controlled sequence. Such electronic detonators typically include an internally stored unique identification number, referred to herein as a detonator serial ID number, and logger devices can be used to program individual electronic detonators with a corresponding delay time according to a blasting plan. In many applications, a blasting site can include hundreds or even thousands of electronic detonators located in a large number of holes, which are referred to herein as positions. In addition, electronic detonator data for a given blasting site is often logged using several different loggers, and in certain contexts the logging may be performed many weeks or months before blasting occurs. In the interim, tags or other physical indicators are often used to mark the positions at which the wiring for one or more electronic detonators are accessible. While such physical indicators are useful to tell personnel at the blasting site a position number from a blasting plan, the time span between logging of the detonator or detonators located at a given position and subsequent blasting can lead to situations where tags are missing or position information on a physical indicator is unreadable due to environmental exposure. In such circumstances, blasting personnel have no easy way of knowing the detonator data or even the position number of a given hole at the blasting site. This situation is currently addressed by laboriously looking up detonator data in the original logger or an external database which consumes valuable time. The use of multiple loggers at a given blasting site further complicates efforts to ascertain position data several weeks or months after the initial logging. Accordingly, there is need for improved apparatus and techniques by which position locations can be verified in-situ at a blasting site.
  • SUMMARY
  • Various aspects of the present disclosure are now summarized to facilitate a basic understanding of the disclosure, wherein this summary is not an extensive overview of the disclosure, and is intended neither to identify certain elements of the disclosure, nor to delineate the scope thereof. Instead, the primary purpose of this summary is to present some concepts of the disclosure in a simplified form prior to the more detailed description that is presented hereinafter. The disclosure relates to processes and apparatus for verifying detonator position locations at a blasting site by which the above and other difficulties and problems can be mitigated or overcome.
  • Portable data reader apparatus is described which interrogates a detonator connected to a wire or wires at the position (hole) of the blasting site and receives a unique detonator serial ID number from the detonator. The reader checks an internal memory and/or wirelessly queries an external device such as a computer at a dog house or other central location of the site, and obtains a position number corresponding to the received detonator serial ID number for display to the user. In this manner, personnel at a blasting site do not need to know which logger was used to initially log a given position, and do not need to carry all the loggers around the site to verify position numbers at holes for which a physical marker may be missing or unreadable. Moreover, the disclosed reader apparatus advantageously provides the corresponding position number without laborious searching through other blasting plan data commonly stored on multiple loggers. Furthermore, certain embodiments of the reader apparatus can be used to quickly verify geographic location information of a plan and to identify any detected discrepancies to the user at the position.
  • In accordance with one or more aspects of the disclosure, a portable reader apparatus is provided which includes a housing with one or more terminals for electrical connection to wires associated with one or more electronic detonators as well as associated interface circuitry to send and receive electrical signals for communication with the connected detonator(s). The apparatus includes a display and an electronic memory for storing unique detonator serial ID numbers and associated position numbers. A processor in the reader apparatus receives a detonator serial ID number from the electronic detonator and compares this with the ID numbers stored in the electronic memory and uses the display to render a corresponding position number.
  • In certain embodiments, the reader apparatus includes a geophysical locator such as a GPS system, and the memory stores geographic location data corresponding to some or all of the stored detonator serial ID numbers. While the detonator is connected to the reader, the current geographic location is obtained using the locator and is compared to the geographic location data stored in the memory. The reader apparatus selectively displays a warning message if these do not match. In certain embodiments, moreover, the reader can display the location determined by the geophysical locator to the user.
  • The portable data reader in certain embodiments includes one or more wired and/or wireless communications interfaces with which the processor can obtain the stored ID numbers and associated position numbers from an external device. The communication interface allows easy connection of the reader apparatus to loggers and/or computers or other devices from which plan data can be uploaded, whether as a whole or at least by detonator serial ID numbers and corresponding position (hole) numbers (and possibly corresponding geographic location data in certain embodiments). In this manner, the reader can be easily transported around a blasting site, and includes the necessary data and associations to quickly verify electronic detonator position locations throughout the site regardless of which logger was used to initially log a given detonator.
  • In accordance with further aspects of the present disclosure, a portable reader apparatus is provided which has a wireless communication interface used to send a detonator serial ID number obtained from the connected detonator to an external device, and to receive a corresponding position number from the external device. The apparatus then displays the received position number to the user. This wireless position number query can be used alone or in combination with an internal detonator serial ID number/position number database. In certain embodiments, moreover, the portable reader apparatus may be adapted to notify a user in situations where communication with a given detonator was not possible and/or where no matches found for the serial ID number obtained from the detonator. Such messaging can advantageously prompt the user to further investigate inoperative detonators and/or prior activation status of a given detonator.
  • Methods are provided in accordance with further aspects of the disclosure for verifying detonator position locations. The methods include electronically coupling a portable reader device to one or more electronic detonators at the blasting site, communicating with the detonator to receive a detonator serial ID number therefrom, automatically obtaining a position number that corresponds to the received detonator serial ID number, and displaying the position number on the reader device. In certain embodiments, the position number is automatically obtained by comparing the received serial ID number with ID numbers stored in an electronic memory of the reader device, and obtaining a corresponding position number from a plurality of position numbers stored in the electronic memory. In certain embodiments, moreover, the position number is automatically obtained by providing the detonator serial ID number to an external device using a wireless communication interface, receiving a position number from the external device, and displaying the position number obtained from the external device on the portable reader.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The following description and drawings set forth certain illustrative implementations of the disclosure in detail, which are indicative of several exemplary ways in which the various principles of the disclosure may be carried out. The illustrated examples, however, are not exhaustive of the many possible embodiments of the disclosure. Other objects, advantages and novel features of the disclosure will be set forth in the following detailed description of the disclosure when considered in conjunction with the drawings, in which:
  • FIG. 1 is a front elevation view illustrating an exemplary portable data reader apparatus for verifying electronic detonator position locations at a blasting site in accordance with one or more aspects of the present disclosure;
  • FIG. 2 is a schematic diagram illustrating further details of the exemplary portable reader apparatus of FIG. 1;
  • FIG. 3 is a schematic diagram illustrating an exemplary table including entries having a detonator serial ID number, a corresponding position or hole number, and corresponding geographic location data stored in a memory of the portable data reader of FIGS. 1 and 2;
  • FIG. 4 is a partial schematic diagram illustrating operation of the portable data reader to obtain serial ID numbers and corresponding position/hole numbers from one or more logger devices and/or from an external computer device;
  • FIG. 5 is a flow diagram illustrating an exemplary method for verifying electronic detonator position locations at a blasting site in accordance with further aspects of the disclosure; and
  • FIG. 6 is a front elevation view illustrating an exemplary embodiment of the reader apparatus communicating wirelessly with an external computer device for obtaining a position/hole number corresponding to a received detonator serial ID number in accordance with further aspects of the present disclosure.
  • DETAILED DESCRIPTION
  • Referring now to the figures, several embodiments or implementations of the present disclosure are hereinafter described in conjunction with the drawings, wherein like reference numerals are used to refer to like elements throughout, and wherein the various features and plots are not necessarily drawn to scale. The disclosure relates to position location verification at a blasting site, and the various devices and techniques disclosed herein can be employed in any type of blasting application, including without limitation seismic operations. In addition, these concepts find utility in any size blasting site, including those in which different blasting operations have been performed over a long period of time.
  • Referring initially to FIGS. 1 and 2, FIG. 1 illustrates an exemplary portable reader apparatus 100 shown connected via terminals 104A and 104B to wires 212 of an exemplary electronic detonator 210 in a hole 204 in the ground 202 at a blasting site 200. While illustrated as being connected to a single detonator 210, the apparatus 100 can be used to communicate with a plurality of detonators 210 connected in groups using a single accessible wire or pair of wires 212, where the apparatus 100 includes suitable interface circuitry 105 (FIG. 2) to individually address detonators 210 connected to common wiring busses. In particular, electronic detonators 210 provide communications interfaces for exchanging electronic signaling and data with the reader device 100 as well as with loggers and blasting machines (not shown) using conventional communications protocols as are known. In this regard, using suitable communication protocols, the apparatus 100 is connected to the wire or wires 212 and either automatically or through user command will begin exchanging information with the detonator 210. In one possible example, the wires 212 are connected to first and second field terminals 104A and 104B and the reader device 100 is powered on by the user. The device 100 then sends a query message via the wires 212 to the detonator 210, and the detonator 210 responds with one or more messages or data packets including the detonator's unique serial ID number 107. If there are two or more detonators 210 connected to the wires 212, the reader device 100 may receive multiple reply messages and from these and can determine the number of detonators 210 with which it is currently connected. In this respect, one possible suitable communication protocol can be implemented with the reader device 100 operating as a master for communication along the wires 212 with the detonators 210 responding to identification request messages and thereafter to messages addressed individually according to the corresponding detonator serial ID numbers 107. Thus, if the device 100 is connected to a group of detonators 210, it will initially obtain the group of corresponding serial ID numbers 107.
  • The portable reader 100 includes a housing 102, preferably constructed to withstand the rigors of outdoor blasting site environments while providing externally accessible terminals 104 for connection with detonator wires 212. The reader 100 also includes a display 106 for rendering data and/or images to the user, and a keyboard or other input means 110. In certain embodiments, the display 106 can be an LCD, LED, OLED, plasma display, fluorescent display, or any other suitable display technology can be used. In practice, due to the environmental nature of blasting operations, the display 106 preferably is able to operate at extreme temperatures such as −20° C. to +70° C.
  • In addition, the reader 100 includes one or more communication interfaces for exchanging data with external devices, which may include various communications circuits such as a serial port or UART, USB, I2C, SPI, etc. As seen in FIG. 2, for instance, the device 100 may include a USB port 112 with associated circuitry 122 within the housing 102 of the reader 100, an externally-accessible RS-232 port connection 114 and associated interior circuitry 124, and/or the reader 100 may include wireless communication transceiver circuitry 126 with an external and/or internal antenna 116. In certain embodiments, moreover, the wireless transceiver 126 may be equipped with a GPS system 128 allowing the reader 102 obtain its current location (e.g., latitude, longitude and/or elevation) by suitable messaging with GPS satellites using known techniques.
  • The reader 100 in certain embodiments is battery-powered, and the RS-232 port 114 can be used to either connect the device for data exchange with a logger or other external device and/or for charging the internal battery (not shown). In certain embodiments, a nickel cadmium or lithium ion battery, a Ni metal hydride battery or alkaline cells can be used with voltage restrictions consistent with inherently safe operation. In other possible embodiments, a lead acid battery may be used, such as in blasting machine implementations of the apparatus 100. In this regard, power can be provided via the charge input 124 from an external device connected to the connector 114 (e.g., five pin connector 114 on the front face of the illustrated reader device 100 in FIG. 1) and provided to charging circuitry within a power supply 127 for charging an internal battery. In addition, the power supply 127 provides suitable AC and/or DC power at one or more levels to drive the various circuitry of the reader 100. In general, the various circuits and components shown in FIG. 2 may be implemented in a single or multiple circuit board configuration with suitable mounting in the interior of the housing 102, and external ports or connections can be provided for the detonator wiring connection terminals 104, a USB port 112, an RS-232 port/charge input connector 114 and/or for any external wireless antenna 116 (in certain embodiments a wireless antenna 116 may be implemented within the interior of the housing 102). Also, suitable electrical connections are provided from such circuit board(s) to the display 106 and to the keyboard 110 for receiving user input by way of key presses.
  • The reader 100 in certain embodiments is an inherently safe device for use by blasting personnel at a blasting site 200 without danger of accidentally actuating electronic detonators 210. In this regard, the interface circuitry 105 coupled with the detonator wire terminals 104 in certain embodiments is low-power circuitry and the reader 100 is not provided with suitable power, energy or voltage from the power supply 127 or elsewhere to initiate arming or firing of a connected electronic detonator 210. In addition, the reader apparatus 100 and components thereof are generally operated under control of a processor 120 (FIG. 2), and the processor 120 is unable to send any arming or firing commands to a connected electronic detonator 210. In other possible embodiments, the reader apparatus 100 maybe implemented in a logger or blasting machine, wherein blasting machine implementations need not be inherently safe, but may be operable in a “reader” mode in which the apparatus 100 will not generate sufficient voltage and/or current to cause actuation of an electronic detonator 200 and will not send any arming or firing commands to a detonator 210.
  • In the illustrated implementation, the processor 120 is included in the interior of the housing 102, and the processor 120 may be any suitable electronic processing device including without limitation a microprocessor, microcontroller, DSP, programmable logic, etc. and/or combinations thereof, which performs various operations by executing program code such as software, firmware, microcode, etc. The reader includes an electronic memory 130 which can store program code and/or data, including electronic storage 132 of detonator serial ID numbers and corresponding position numbers. In certain embodiments, moreover, the memory 130 can also store corresponding geographic location data, such as latitude, longitude and/or elevation. In this manner, the portion 132 of the memory 130 provides a local database or data store of associations between position numbers and detonator serial ID numbers with which the reader 100 can easily tell the user (e.g., via the display 106) the shot number for an electronic detonator 210 to which it is currently connected via the wires 212. The memory 130 may be any suitable form of electronic memory, including without limitation EEPROM, flash, SD, a multimedia card, and/or a USB flash drive operatively associated with the USB port 112 (FIG. 1).
  • Referring also to FIGS. 3 and 4, FIG. 3 shows one example of the internal data store (e.g., memory portion 132) is illustrated in the memory 130. This data store 132 can be populated by obtaining corresponding blasting plan information from one or more loggers 300 and/or from a computer or other external device 400 (FIG. 4). It is noted that the data set 132 in FIG. 3 includes many parameters associated with a given detonator (1 electronic detonator 210 per row in FIG. 3), and that one or some of these parameters may be omitted in a given portable reader apparatus implementation. For instance, certain embodiments may only store detonator serial ID numbers 107 and corresponding hole numbers (position numbers) 108 in the electronic memory 130, thereby conserving memory while allowing the processor 120 to query the memory by serial ID number 107 to obtain the corresponding position number 108 for display to the user. In other embodiments, the corresponding geographical location data 109 may be stored for one some or all of the serial ID numbers 107. In certain embodiments, the detonator serial ID number 107 can be a string of 12 hexadecimal characters, or may include up to 24 or 36 characters, and the position data 108 can be a 12 alphanumeric character value, or in some implementations may include up to 24 or 36 characters. The hole numbers 108 in certain embodiments may be globally unique, and thus individually indicate a specific hole location at a blast site. In certain embodiments, moreover, the hole numbers 108 may include an indication of one or more other pieces of information, such as plan number. In other embodiments, the hole numbers 108 may be unique within a given blasting plan, but a given bore hole location may be assigned different hole numbers 1084 different blasting plans.
  • In addition, the memory 130 may store further information, such as from a blasting plan database, including without limitation additional detonator numbers (a detonator number is a generic number within a blasting plan which is associated with one or more unique detonator serial ID numbers upon logging), a delay time value programmed into the corresponding detonator 210, and/or other status flags to facilitate reader operation. In this regard, the data store 132 can be used to include data from detonators 210 logged using many different loggers 300 (FIG. 3), and such logging may be done at different times by different personnel, where some of the logged data in a blasting plan may include geographic location information 109 and others may not. To the extent memory is available, the reader apparatus 100 may possibly include all of the data shown in FIG. 3, and the processor 120 may be programmed to allow a user to access such data for display on the display 106 by using the keyboard 110.
  • FIG. 4 illustrates several different ways in which the data 132 can be entered into the electronic memory 130 of the reader device 100. As previously discussed, the initial data logging at the blasting site 200 for multiple electronic detonators 210 can involve multiple loggers 300, three of which are illustrated in the figure. Using these loggers 300, individual users connect the logger 300 to communicate with a given detonator 210, with the logger 300 obtaining the serial ID number 107 from the detonator 210, and potentially programing a corresponding delay time 111 for that detonator 210 by sending a delay time value or message through the detonator wiring 212. In certain seismic embodiments, however, such delay time programming may not be needed or may not be permitted. The loggers 300 collect serial ID numbers 107 from the logged detonators 210 and create an association between each serial ID number and a corresponding position number (whole number), which association can be created in any automated, semi-automated and/or manual manner. For instance, the logger 300 may be programmed with a blasting plan file that identifies a particular position number 108 to which the operator of the logger 300 associates a connected detonator 210 and its corresponding serial ID number 107, with the logger 300 storing that association along with other associations in its internal memory, which database may correspond to the data 132 shown in FIG. 3 above. In addition, it is noted that when holes 202 or electronic detonators 210 are fired, the associated serial ID number 107 of the fire detonators are stored internally in a blasting machine (not shown), and these numbers may be transferred to the reader apparatus 100 or computer 400 (FIG. 4) or other central data collection site, and this “fired” indicator can be a data value in the reader 100 which can be displayed to a user and/or otherwise used to identify blast site issues.
  • Once the logging is completed, a central computer or other database 400 maybe used to compile all the logged information into a blasting plan, for example, as a spreadsheet file or other suitable database form. In this regard, the loggers 300 may include suitable communications ports allowing connection to a laptop computer 400, a USB memory stick, etc., for transfer of the serial ID numbers 107 and the corresponding position numbers 108. From this compiled database, the detonator serial ID numbers 107 and the corresponding position numbers 108 can be transferred from the computer 400 to the portable data reader apparatus 100 by a variety of transfer mechanisms. In one example, the computer 400 can be connected to the reader 100 via data cable connected to the RS-232 port 114, or a USB connection can be made via the USB port 112. In another example, if the reader 100 is equipped with wireless transceiver circuitry 126 and an antenna 116 (e.g., FIG. 2), the data transfer can be done wirelessly to send the serial ID numbers 107 and the corresponding position numbers 108 from the computer 400 to the reader 100. Alternatively or in combination, the loggers 300 can be individually connected to the reader 100 (e.g., whether by wired connection or wireless connection) to transfer the serial ID numbers 107 and corresponding position numbers 108 from each logger 300 to the reader 100. It is noted that the reader 100 in this regard, can compile and maintain ID number/shot number data for a large number of blasting operations, and may maintain this data for long periods of time to facilitate identification of electronic detonators 210 that may have been installed in a given blasting site 200 many years previously, thereby allowing a user to determine that a previously unactuated or failed detonator 210 is present at the site 200.
  • Referring now to FIGS. 1 and 5, FIG. 5 illustrates a method 500 for verifying electronic detonator position locations at a blasting side 200 using the reader 100. Once the data 132 is stored in the internal memory 130 of the reader 100, a user can take the reader 100 to a given hole in the blasting site 200, such as one for which there is no physical marker or where the associated tag/marker is unreadable for some reason. At 502 in FIG. 5, the user connects the terminals 104A and 104B to the detonator wires 212, and the processor 120 communicates with the detonator 210 if possible. At 504, the processor 120 determines if a communication error has occurred, and if so (YES at 504) displays a communication error message at 506. The reader 100 in certain embodiments may further perform one or more further diagnostic tests on the unfired electronic detonator 210 to make sure that it is fully operational, and may display suitable messages to a user via the display 106 regarding the results of the diagnostic testing.
  • If communication with the electronic detonator 210 is successful (NO at 504), the reader 100 receives the detonator serial ID number 107 from the detonator 210 and automatically obtains a corresponding position number 108 for display to the user as described below. This automatic operation can be self-initiated by the reader 100 upon receipt of the serial ID number 107 or may be initiated by a user pressing a button of the keypad 110, both of which situations are automatic. At 512, the processor 120 compares the received detonator serial ID number 107 with a plurality of detonator serial ID numbers 107 stored in the database 132 of the electronic memory 130 in association with corresponding hole numbers, and determines whether the received serial ID number is in the memory 130. If the received ID number is in the reader memory 130 (YES at 512), the process 500 proceeds to 520 where the processor 120 causes the display 106 to render the corresponding position (hole) number 108 to the user (see FIG. 1). In certain embodiments, the user is also provided with the detonator serial ID number 107 on the display 106, and the reader 100 may also display any associated geographic location data 109.
  • FIG. 1 illustrates a situation in which the connected detonator 210 has a serial ID number 9809B98324C6, and the processor 120 accesses the data store 132 in the memory 130 to locate this serial ID number (shown in the circled row in FIG. 3). The processor 120 retrieves the associated hole number 108 (61021846 in this example) associated with the received detonator serial ID number 107 and renders this on the display 106 at 520 in FIG. 5. In this example, moreover, the database 132 includes latitude, longitude and elevation geographic data 109, and in certain embodiments the processor 120 obtains these from the memory 130 and renders them on the display 106 as shown in FIG. 1.
  • Referring also to FIG. 6, in certain embodiments, the reader 100 includes a wireless communication interface 116 allowing wireless communications between the reader apparatus 100 and an external computer or other wireless equipped device 400. In such a case, if the processor 120 does not find the received detonator serial ID number 107 in the memory 130 (NO at 512 in FIG. 5), the processor 120 uses the wireless communications to query the external computer device 400 by providing the received serial ID number 107 to the computer 400. In this situation, the computer 400 receives the query and checks an internal data store 402 of serial ID numbers and corresponding position numbers. If a match is found for the received serial ID number 107, the computer 400 returns the corresponding position number 108 by wireless communications to the reader 100. The processor 120 then displays this received position number 108 on the display 106. Also at 514 in FIG. 5, if no match is found for the received detonator serial ID number 107 (in the memory 130 and/or in the external device 400), the processor may provide an error message to the user on the display 106 indicating that no match was found. In certain embodiments, the external device 400 can be a computer local to the blasting site 200, such as a computer in a “doghouse” location of the blast site 200, and the external device 400 may internally store detonator serial ID numbers 107 and corresponding position numbers 108 in any suitable fashion by which the device 400 can be queried to verify a position location 108 corresponding to a received detonator ID number 107. In this regard, the external device 400 may also be provisioned with corresponding geographic location data 109 which can be returned to a querying reader device 100 and rendered on the display 106.
  • In certain embodiments, moreover, the reader apparatus 100 may be equipped with a GPS system 128 or other geophysical locator device (FIG. 2 above), and the internal memory 130 and/or the database 402 of an wireless-equipped external device 400 may include geographical location data 109 corresponding to the logged position location. At 530 in FIG. 5, the reader 100 in such embodiments can optionally verify the geographic location information 109 using the internal GPS system 128. In one possible implementation, the processor 120 obtains a current geographic location using the locator 120 while the detonator wires 212 are connected to the reader 100, and compares this current geographic location with the geographic location data 109 stored in the electronic memory 130 (or with geographic location data 109 obtained from the external device 400). If the current geographic location from the geophysical locator 128 does not match the geographic location data 109, the processor 120 displays an error message to the user via a display 106 indicating a discrepancy. In this regard, the processor 120 may be programmed to identify a match if the geographic location data 109 is within a certain range of the geographic location determined by the geophysical locator 128 to allow for a certain margin of error before providing an error message to the user.
  • The above examples are merely illustrative of several possible embodiments of various aspects of the present disclosure, wherein equivalent alterations and/or modifications will occur to others skilled in the art upon reading and understanding this specification and the annexed drawings. In particular regard to the various functions performed by the above described components (assemblies, devices, systems, circuits, and the like), the terms (including a reference to a “means”) used to describe such components are intended to correspond, unless otherwise indicated, to any component, such as hardware, processor-executed software and/or firmware, or combinations thereof, which performs the specified function of the described component (i.e., that is functionally equivalent), even though not structurally equivalent to the disclosed structure which performs the function in the illustrated implementations of the disclosure. In addition, although a particular feature of the disclosure may have been disclosed with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular application. Also, to the extent that the terms “including”, “includes”, “having”, “has”, “with”, or variants thereof are used in the detailed description and/or in the claims, such terms are intended to be inclusive in a manner similar to the term “comprising.”

Claims (20)

The following is claimed:
1. A portable reader apparatus for verifying electronic detonator position locations at a blasting site, comprising:
a housing;
at least one terminal on an outer side of the housing for connection with at least one electrical wire coupled with at least one electronic detonator at the blasting site;
interface circuitry in an interior of the housing and operatively coupled with the at least one terminal to send and receive electrical signals to and from the at least one electronic detonator;
a display mounted to the housing;
an electronic memory located in the interior of the housing and operative to store a plurality of unique detonator serial ID numbers and corresponding position numbers; and
at least one processor in an interior of the housing and operatively coupled with the interface circuitry, the display, and the electronic memory, the at least one processor being programed:
to receive a detonator serial ID number from the at least one electronic detonator via the at least one terminal and the interface circuitry,
to compare the received detonator serial ID number with the plurality of detonator serial ID numbers in the electronic memory, and
to cause the display to render a position number from the electronic memory that corresponds to the received detonator serial ID number.
2. The portable reader apparatus of claim 1, further comprising a geophysical locator operatively coupled with the at least one processor, wherein the electronic memory stores geographic location data corresponding to at least some of the stored detonator serial ID numbers, and wherein the at least one processor is programmed:
to obtain a current geographic location using the geophysical locator when the at least one terminal is operatively coupled with the at least one electronic detonator, to compare the current geographic location obtained using the geophysical locator with the geographic location data stored in the electronic memory, and
to selectively cause the display to render a warning message if the current geographic location obtained using the geophysical locator does not match the geographic location data stored in the electronic memory.
3. The portable reader apparatus of claim 1, comprising at least one communication interface operatively coupled with the at least one processor, wherein the at least one processor is operative to receive at least some of the detonator serial ID numbers and corresponding position numbers from an external device using the at least one communication interface.
4. The portable reader apparatus of claim 3, wherein the at least one communication interface is operative to wirelessly communicate with the external device.
5. The portable reader apparatus of claim 4, comprising a GPS system operatively coupled with the at least one processor, and wherein the at least one processor is programmed to obtain a current geographic location using the GPS system when the at least one terminal is operatively coupled with the at least one electronic detonator.
6. The portable reader apparatus of claim 5, wherein the at least one processor is programmed to cause the display to render the current geographic location obtained from the GPS system.
7. The portable reader apparatus of claim 3, wherein the at least one communication interface includes a universal serial bus (USB) port allowing the at least one processor to receive data from the at least one external device.
8. The portable reader apparatus of claim 1:
comprising at least one wireless communication interface operative to provide wireless communications between the portable reader apparatus and an external device;
wherein if the electronic memory does not include the received detonator serial ID number, the at least one processor is programed:
to provide the received detonator serial ID number to the external device using the at least one wireless communication interface,
to receive a position number from the external device, the position number corresponding to the received detonator serial ID number sent to the external device, and
to cause the display to render the position number obtained from the external device.
9. The portable reader apparatus of claim 8, wherein the at least one processor is programmed to cause the display to render an error message if the electronic memory does not include the received detonator serial ID number and if no corresponding position number is received from the external device.
10. The portable reader apparatus of claim 9, further comprising a geophysical locator operatively coupled with the at least one processor, where the electronic memory stores geographic location data corresponding to at least some of the stored detonator serial ID numbers, and wherein the at least one processor is programmed:
to obtain a current geographic location using the geophysical locator when the at least one terminal is operatively coupled with the at least one electronic detonator,
to compare the current geographic location obtained using the geophysical locator with the geographic location data stored in the electronic memory, and
to selectively cause the display to render a warning message if the current geographic location obtained using the geophysical locator does not match the geographic location data stored in the electronic memory.
11. The portable reader apparatus of claim 1, wherein the at least one processor is programmed to cause the display to render an error message if the electronic memory does not include the received detonator serial ID number.
12. The portable reader apparatus of claim 1, wherein the at least one processor is unable to send any arming or firing commands to a connected electronic detonator, wherein the portable reader apparatus does not have sufficient power, energy, or voltage to arm or fire the electronic detonator, and wherein the interface circuitry coupled with the at least one terminal consists of circuitry incapable of arming or firing a connected electronic detonator.
13. A portable reader apparatus for verifying electronic detonator position locations at a blasting site, comprising:
a housing;
at least one terminal on an outer side of the housing for connection with at least one electrical wire coupled with at least one electronic detonator at the blasting site;
interface circuitry in an interior of the housing and operatively coupled with the at least one terminal to send and receive electrical signals to and from the at least one electronic detonator;
a display mounted to the housing;
at least one wireless communication interface operative to provide wireless communications between the portable reader apparatus and an external device;
at least one processor in an interior of the housing and operatively coupled with the interface circuitry, the display, and the at least one wireless communication interface, the at least one processor being programed:
to receive a detonator serial ID number from the at least one electronic detonator via the at least one terminal and the interface circuitry,
to provide the detonator serial ID number to the external device using the at least one wireless communication interface,
to receive a position number from the external device, the position number corresponding to the detonator serial ID number sent to the external device, and
to cause the display to render the position number obtained from the external device.
14. The portable reader apparatus of claim 13, further comprising a geophysical locator operatively coupled with the at least one processor, wherein the at least one processor is programmed:
to obtain a current geographic location using the geophysical locator when the at least one terminal is operatively coupled with the at least one electronic detonator,
to receive geographic location data associated with the at least one electronic detonator from the external device,
to compare the current geographic location obtained using the geophysical locator with the geographic location data obtained from the external device, and
to selectively cause the display to render a warning message if the current geographic location obtained using the geophysical locator does not match the geographic location data obtained from the external device.
15. The portable reader apparatus of claim 14, wherein the at least one processor is programmed to cause the display to render the current geographic location obtained from the GPS system.
16. The portable reader apparatus of claim 13, wherein the at least one processor is programmed to cause the display to render an error message if no corresponding position number is received from the external device.
17. The portable reader apparatus of claim 1, wherein the at least one processor is unable to send any arming or firing commands to a connected electronic detonator, wherein the portable reader apparatus does not have sufficient power, energy, or voltage to arm or fire the electronic detonator, and wherein the interface circuitry coupled with the at least one terminal consists of circuitry incapable of arming or firing a connected electronic detonator.
18. A method for verifying electronic detonator position locations at a blasting site, the method comprising:
electrically coupling a portable reader device to at least one electronic detonator at the blasting site;
communicating with the at least one electronic detonator to receive a detonator serial ID number from the at least one electronic detonator;
automatically obtaining a position number that corresponds to the received detonator serial ID number; and
displaying the position number on the portable reader device.
19. The method of claim 18, wherein automatically obtaining the position number comprises:
comparing the received detonator serial ID number with a plurality of unique detonator serial ID numbers stored in an electronic memory of the portable reader device; and
obtaining a position number that corresponds to the received detonator serial ID number from a plurality of position numbers stored in the electronic memory.
20. The method of claim 18, wherein automatically obtaining the position number comprises:
providing the detonator serial ID number to an external device using a wireless communication interface of the portable reader device;
receiving a position number into the portable reader device from the external device; and
displaying the position number obtained from the external device on the portable reader device.
US13/792,912 2012-03-13 2013-03-11 Reader apparatus and methods for verifying electropnic detonator position locations at a blasting site Abandoned US20140026775A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/792,912 US20140026775A1 (en) 2012-03-13 2013-03-11 Reader apparatus and methods for verifying electropnic detonator position locations at a blasting site

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261610217P 2012-03-13 2012-03-13
US13/792,912 US20140026775A1 (en) 2012-03-13 2013-03-11 Reader apparatus and methods for verifying electropnic detonator position locations at a blasting site

Publications (1)

Publication Number Publication Date
US20140026775A1 true US20140026775A1 (en) 2014-01-30

Family

ID=49993601

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/792,912 Abandoned US20140026775A1 (en) 2012-03-13 2013-03-11 Reader apparatus and methods for verifying electropnic detonator position locations at a blasting site

Country Status (1)

Country Link
US (1) US20140026775A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103884245A (en) * 2014-04-11 2014-06-25 北京丹芯灵创科技有限公司 Communication method for multiple electronic detonators with shared leg wire
US20160313107A1 (en) * 2013-12-12 2016-10-27 Detnet South Africa (Pty) Ltd (Za) Blasting system control
US20170030695A1 (en) * 2014-04-22 2017-02-02 Detnet South Africa (Pty) Limited Blasting system control
US20170089680A1 (en) * 2013-12-02 2017-03-30 Austin Star Detonator Company Method and apparatus for wireless blasting
US9958247B2 (en) * 2013-09-06 2018-05-01 Austin Star Detonator Company Method and apparatus for logging electronic detonators
US20180120073A1 (en) * 2015-05-12 2018-05-03 Detnet South Africa (Pty) Ltd Detonator control system
US20200355483A1 (en) * 2018-01-26 2020-11-12 Pyylahti Oy Blasting plan logger, related methods and computer program products
CN113076951A (en) * 2020-01-06 2021-07-06 贵州新芯安腾科技有限公司 Bit data reading method and system of electronic detonator, electronic detonator and detonator
US11221200B2 (en) * 2018-12-28 2022-01-11 Hanwha Corporation Blasting system and operating method for same
KR20220030612A (en) * 2020-09-03 2022-03-11 주식회사 한화 Blasting device for simultaneously registering multiple detonators based on blasting pattern information and method of using the same
US11333476B2 (en) * 2018-12-28 2022-05-17 Hanwha Corporation Blasting system and operating method for same
US11493315B2 (en) * 2018-12-28 2022-11-08 Hanwha Corporation Blasting system and operating method for same
US20220404130A1 (en) * 2019-09-16 2022-12-22 Pyylahti Oy Control unit for interfacing with a blasting plan logger
US20240044631A1 (en) * 2021-12-21 2024-02-08 Hanwha Corporation Apparatus and method for controlling detonator blasting based on danger radius

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5894103A (en) * 1994-11-18 1999-04-13 Hatorex Ag Detonator circuit
US6644202B1 (en) * 1998-08-13 2003-11-11 Expert Explosives (Proprietary) Limited Blasting arrangement
US20040225431A1 (en) * 2000-05-05 2004-11-11 Walter Aebi Method for installing an ignition system, and ignition system
US20050103219A1 (en) * 2003-11-04 2005-05-19 Advanced Initiation Systems, Inc. Positional blasting system
US20060272536A1 (en) * 2005-02-16 2006-12-07 Lownds Charles M Apparatus and method for blasting
US7975613B2 (en) * 2006-10-26 2011-07-12 Detnet South Africa (Pty) Limited Blasting system and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5894103A (en) * 1994-11-18 1999-04-13 Hatorex Ag Detonator circuit
US6644202B1 (en) * 1998-08-13 2003-11-11 Expert Explosives (Proprietary) Limited Blasting arrangement
US20040225431A1 (en) * 2000-05-05 2004-11-11 Walter Aebi Method for installing an ignition system, and ignition system
US20050103219A1 (en) * 2003-11-04 2005-05-19 Advanced Initiation Systems, Inc. Positional blasting system
US20060272536A1 (en) * 2005-02-16 2006-12-07 Lownds Charles M Apparatus and method for blasting
US7975613B2 (en) * 2006-10-26 2011-07-12 Detnet South Africa (Pty) Limited Blasting system and method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9958247B2 (en) * 2013-09-06 2018-05-01 Austin Star Detonator Company Method and apparatus for logging electronic detonators
US11009331B2 (en) 2013-12-02 2021-05-18 Austin Star Detonator Company Method and apparatus for wireless blasting
US20170089680A1 (en) * 2013-12-02 2017-03-30 Austin Star Detonator Company Method and apparatus for wireless blasting
US10429162B2 (en) * 2013-12-02 2019-10-01 Austin Star Detonator Company Method and apparatus for wireless blasting with first and second firing messages
US10006750B2 (en) * 2013-12-12 2018-06-26 Detnet South Africa (Pty) Ltd (Za) Blasting system control
US20160313107A1 (en) * 2013-12-12 2016-10-27 Detnet South Africa (Pty) Ltd (Za) Blasting system control
CN103884245A (en) * 2014-04-11 2014-06-25 北京丹芯灵创科技有限公司 Communication method for multiple electronic detonators with shared leg wire
US9658045B2 (en) * 2014-04-22 2017-05-23 Detnet South Africa (Pty) Ltd Blasting system control
US20170030695A1 (en) * 2014-04-22 2017-02-02 Detnet South Africa (Pty) Limited Blasting system control
US20180120073A1 (en) * 2015-05-12 2018-05-03 Detnet South Africa (Pty) Ltd Detonator control system
US20200355483A1 (en) * 2018-01-26 2020-11-12 Pyylahti Oy Blasting plan logger, related methods and computer program products
US11221200B2 (en) * 2018-12-28 2022-01-11 Hanwha Corporation Blasting system and operating method for same
US11333476B2 (en) * 2018-12-28 2022-05-17 Hanwha Corporation Blasting system and operating method for same
US11493315B2 (en) * 2018-12-28 2022-11-08 Hanwha Corporation Blasting system and operating method for same
US20220404130A1 (en) * 2019-09-16 2022-12-22 Pyylahti Oy Control unit for interfacing with a blasting plan logger
CN113076951A (en) * 2020-01-06 2021-07-06 贵州新芯安腾科技有限公司 Bit data reading method and system of electronic detonator, electronic detonator and detonator
KR20220030612A (en) * 2020-09-03 2022-03-11 주식회사 한화 Blasting device for simultaneously registering multiple detonators based on blasting pattern information and method of using the same
KR102562319B1 (en) * 2020-09-03 2023-07-31 주식회사 한화 Blasting device for simultaneously registering multiple detonators based on blasting pattern information and method of using the same
US20240044631A1 (en) * 2021-12-21 2024-02-08 Hanwha Corporation Apparatus and method for controlling detonator blasting based on danger radius

Similar Documents

Publication Publication Date Title
US20140026775A1 (en) Reader apparatus and methods for verifying electropnic detonator position locations at a blasting site
US9958247B2 (en) Method and apparatus for logging electronic detonators
US11353307B2 (en) Automatic method and apparatus for logging preprogrammed electronic detonators
CN102121809B (en) Electronic detonator explosion network control device and control flow
BR112012019297B1 (en) electronic detonator programming and ignition system, associated process
CN103942061A (en) Battery firmware updating method, portable electronic device and rechargeable battery module
EP4167376A1 (en) Antenna extension system for an actuator of a heating, ventilation, air conditioning and cooling system
CN107450444A (en) A kind of control method and control system of explosion-proof cloud initiator
CN201764914U (en) Digital electronic detonator exploder with GPS locating function
CN103743295A (en) Control method for realizing networking detonation of electronic detonator with single headset
WO2014134913A1 (en) Detonation system having digital electronic detonator able to identify blast hole location and control method thereof
CN103134400A (en) Small digital electronic detonator online testing and detonation system and method
CN102664655A (en) Transponder message reading and writing device
CN106950875A (en) A kind of embedded programming device and its fixture system
US11333476B2 (en) Blasting system and operating method for same
CN203164350U (en) Intelligent distribution instrument
CN110278322A (en) Electronic device failure testing device and test method
CN207536134U (en) A kind of anti-dismounting device being integrated in unmanned plane locator
CN207396744U (en) A kind of anti-dismounting device of unmanned plane locator based on microswitch
CN202710716U (en) Novel programmer
US9038447B2 (en) Wireless timing light
CN203216392U (en) Personnel locating detonator detonating system in pit
CN214747549U (en) Electronic detonator control terminal module
CN206726117U (en) A kind of photovoltaic data collection process device
CN103217616B (en) Intelligent wiring instrument

Legal Events

Date Code Title Description
AS Assignment

Owner name: AUSTIN POWDER COMPANY, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PAPILLON, BRYAN E.;REEL/FRAME:029962/0285

Effective date: 20130311

AS Assignment

Owner name: AUSTIN STAR DETONATOR COMPANY, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AUSTIN POWDER COMPANY;REEL/FRAME:038532/0338

Effective date: 20160425

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: AUSTIN STAR DETONATOR COMPANY, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AUSTIN POWDER COMPANY;REEL/FRAME:050061/0987

Effective date: 20160425

AS Assignment

Owner name: AUSTIN STAR DETONATOR COMPANY, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AUSTIN POWDER COMPANY;REEL/FRAME:050075/0252

Effective date: 20160425