US20020000403A1 - Copolymers and blood filter using the same - Google Patents

Copolymers and blood filter using the same Download PDF

Info

Publication number
US20020000403A1
US20020000403A1 US09/858,564 US85856401A US2002000403A1 US 20020000403 A1 US20020000403 A1 US 20020000403A1 US 85856401 A US85856401 A US 85856401A US 2002000403 A1 US2002000403 A1 US 2002000403A1
Authority
US
United States
Prior art keywords
formula
meth
blood
acrylate
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/858,564
Inventor
Masaru Tanaka
Norifumi Tokunaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Assigned to TERUMO KABUSHIKI KAISHA reassignment TERUMO KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TANAKA, MASARU, TOKUNAGA, NORIFUMI
Publication of US20020000403A1 publication Critical patent/US20020000403A1/en
Priority to US11/057,280 priority Critical patent/US20050148748A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3627Degassing devices; Buffer reservoirs; Drip chambers; Blood filters
    • A61M1/3633Blood component filters, e.g. leukocyte filters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/281Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing only one oxygen, e.g. furfuryl (meth)acrylate or 2-methoxyethyl (meth)acrylate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/04Liquids
    • A61M2202/0413Blood
    • A61M2202/0427Platelets; Thrombocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/04Liquids
    • A61M2202/0413Blood
    • A61M2202/0439White blood cells; Leucocytes

Definitions

  • the present invention relates to a specified copolymer and a blood filter with using thereof. More particularly, the present invention relates to a blood filter material surface treating material that selectively captures leucocytes and platelets and passes erythrocytes therethrough and that could minimize damages the blood components would receive at the time of filtering.
  • graft-versus-host diseases GVHD
  • the methods of removing leucocytes are roughly classified into two methods, i.e., a method that filters leucocytes through a fibrous or spongy filter and a method that separates leucocytes from other blood components using a difference in relative density by using a centrifuge.
  • the method of removing leucocytes using a filter includes a method of simultaneously removing platelets and leucocytes and a method of removing leucocytes without accompanying removal of platelets.
  • the former is used mainly in making erythrocyte preparations and the latter is used mainly in making platelet preparations.
  • leucocyte removing filer for purifying platelets, comprising a filter having coated on the surface thereof polyalkoxy (meth)acrylate copolymer (Japanese Patent Application Laid-open No. Hei 5-262656) and leucocyte selectively removing filter containing a nonionic hydrophilic group and a basic nitrogen containing functional group (Japanese Examined Patent Publication No. Hei 6-51060).
  • HEMA 2-hydroxylethyl methacrylate
  • filters with a surface composed of a homopolymer of a quaternary amine only have high leucocyte removing ability.
  • they because of their high cation density, they show high degrees of nonspecific adsorption of erythrocyte and plasma proteins so that cells that adhered on the surface of the material show considerable activation (cf. Kataoka et al., Biomaterial, Corona, p. 152 (1999)). This causes problems such as a decrease in filtration rate and increased damage of blood components.
  • an object of the present invention is to provide a novel blood filter unit having high leucocyte and platelet removing ability.
  • Another object of the present invention is to provide a surface treating agent for blood filters that have obviated problems of activation of blood components at the time of filtration, which is the disadvantage of the conventional blood filters. That is, the present invention provides a blood filter unit which is excellent in blood compatibility and has good wettability with blood, filtration time property or erythrocyte recovery ratio. The present invention provides a blood filter unit having substantially excellent storage stability of blood preparations after filtration.
  • polyalkoxyalkyl (meth)acrylate and its copolymers are known as materials for medical use having high biocompatibility and antithrombotic activity. That is, when blood is contacted with polyalkoxyalkyl (meth)acrylate and its copolymers, it has been considered that the activation of blood thereby is low and platelets are difficult to be adsorbed thereon. Therefore, no one has conceived of adsorbing platelets with polyalkoxyalkyl (meth)acrylates.
  • a copolymer comprising as constituents an alkoxyalkyl (meth)acrylate represented by the following formula A and at least one comonomer selected from the group consisting of copolymers represented by formulae B, C, D and E.
  • R 1 is an alkylene group having 1 to 4 carbon atoms
  • R 2 is an alkyl group having 1 to 4 carbon atoms
  • R 3 independently represents hydrogen or a methyl group in each formula
  • R 4 and R 5 independently represent hydrogen or an alkyl group having 1 to 4 carbon atoms in each formula, n is an integer of 1 to 4 in each formula, and R 3 is as defined above)
  • R 3 and R 4 are as defined above, R6 independently represents hydrogen or an alkyl group having 1 to 4 carbon atoms in each formula, n is as defined above, and X ⁇ independently represents a halogen ion, sulfonic ion or hydrogen sulfate ion)
  • alkyl group having 1 to 4 carbon atoms refers to a methyl group, an ethyl group, a propyl group, an isopropyl group, a n-butyl group, an isobutyl group or t-butyl group, n is an integer of 1 to 4, preferably an integer of 1 to 3.
  • the copolymer of the present invention has the ability of adsorbing leucocytes and platelets and has the activity of preventing the activation of blood.
  • the blood filter material surface-treated with the copolymer has high ability of removing leucocytes and high ability of removing platelets and can prevent the production of bradykinin.
  • FIG. 1 is the cross sectional view of the filter unit of the present invention.
  • the surface of a filter material as used herein refers to the both surfaces of the filter material that contact blood to be treated and/or surface portions of pores in the filter material.
  • the copolymer of the present invention is a copolymer of one or more monomer of alkoxyalkyl (meth)acrylates represented by the following formula (A) and a comonomer having a basic functional group that is copolymerizable with the monomer.
  • the alkoxyalkyl (meth)acrylates include methoxymethyl (meth) acrylate, 2-methoxyethyl (meth)acrylate, 2-methoxypropyl (meth)acrylate, methoxybutyl (meth)acrylate, ethoxymethyl (meth)acrylate, ethoxyethyl (meth)acrylate, ethoxypropyl (meth)acrylate, ethoxybutyl (meth)acrylate, propoxymethyl (meth)acrylate, propoxyethyl (meth)acrylate, propoxypropyl (meth)acrylate, propoxybutyl (meth)acrylate, and the like.
  • (meth)acrylate stands for acrylate and methacrylate.
  • methoxyalkyl (meth)acrylates are preferred from the viewpoints of economy and ease of manipulation.
  • 2-methoxyethyl (meth)acrylate is preferred.
  • examples of the basic functional group include primary amino groups, secondary amino groups, tertiary amino groups, quaternary ammonium salts, a pyridyl group, an aziridine group, and an imidazolyl group.
  • Specific comonomers (copolymerizable monomers) of the functional group include the following ones.
  • Formula B represents aminoalkyl (meth)acrylates.
  • (meth)acrylic acid esters such as aminomethyl (meth)acrylate, aminoethyl (meth)acrylate, aminoisopropyl (meth)acrylate, amino-n-butyl (meth)acrylate, N-methylaminoethyl (meth)acrylate, N-ethylaminoisobutyl (meth)acrylate, N-isopropylaminomethyl (meth)acrylate, N-isopropylaminoethyl (meth)acrylate, N-n-butylaminoethyl (meth)acrylate, N-t-butylaminoethyl (meth)acrylate, N,N-dimethylaminomethyl (meth)acrylate, N,N-dimethylaminoethyl (meth)acrylate, N,N-dimethylaminopropyl (meth)acrylate, N,N-di
  • Formula C represents aminoalkyl (meth)acrylamide.
  • Specific examples thereof include, for example, aminomethyl (meth)acrylamide, aminoethyl (meth)acrylamide, aminoisopropyl (meth)acrylamide, amino-n-butyl (meth)acrylamide, N-methylaminoethyl (meth)acrylamide, N-ethylaminoisobutyl (meth)acrylamide, N-isopropylaminomethyl (meth)acrylamide, N-isopropylaminoethyl (meth)acrylamide, N-n-butylaminoethyl (meth)acrylamide, N-t-butylaminoethyl (meth)acrylamide, N,N-dimethylaminomethyl (meth)acrylamide, N,N-dimethylaminoethyl (meth)acrylamide, N,N-dimethylaminopropyl (meth)acrylamide, N,N-dimethylamin
  • Formula D and formula E represent each derivatives and the like obtained by treating the compounds of formula B and formula C with an alkyl halide, an alkyl sulfate or the like to convert them into quaternary ammonium salts.
  • Particularly preferred comonomers among the compounds described above are N,N-dialkylaminopropyl (meth)acrylamides corresponding to formula C in which n is 3, which are easy to synthesize on an industrial scale at low costs, and more specifically N,N-dimethylaminopropyl methacrylamide or N,N-dimethylaminopropyl acrylamide. Also, mention may be made of N,N-dimethylaminoethyl (meth)acrylate, N,N-dimethylaminopropyl (meth)acrylate and N,N-diethylaminoethyl (meth)acrylate corresponding to formula B in which n is 3.
  • the comonomer having a basic functional group that can be used in the present invention is not limited to the above-exemplified monomers. The monomer having a basic functional group may be used singly or two or more monomers may be used in combination.
  • alkoxyalkyl (meth)acrylates are used in proportions to alkoxyalkyl (meth)acrylates such that the compatibility of the polymer to be obtained to blood is not deteriorated.
  • the alkoxyalkyl (meth)acrylate is contained in a proportion of 90 to 10% by mole, preferably 80 to 20% by mole, more preferably 60 to 40% by mole. If the proportion of the alkoxyalkyl (meth)acrylate contained exceeds 90% by mole, the capturing ratio of platelets is too low. On the other hand, if it is below 10% by mole, water solubility increases too much to cause problems in safety and damages to membranes of blood cells are aggravated and the possibility of hemolysis is accompanied so that such copolymers cannot be used as they are.
  • the copolymers of the present invention may have a molecular weight of several thousands to several hundreds thousands, preferably 5,000 to 500,000. They may be any of random copolymers, block copolymers and graft copolymers. Copolymerization reaction for producing the copolymers is in itself not particularly limited and known methods such as radical polymerization, ion polymerization, photo polymerization, and polymerization using macromers can be used. Various copolymers thus produced are insoluble in water and when in use as a surface treating agent for filters, any one of the copolymers of the present invention may be used singly or plural copolymers may be used in admixture.
  • the blood filter unit of the present invention is a filter unit used for removing leucocytes and platelets from fluid containing platelets and leucocytes and is used for whole blood, human erythrocyte concentrate (MAP), blood plasma and any other leucocytes-containing and/or platelets-containing suspensions the like in the preparation of blood preparations such as erythrocyte preparations and plasma preparations, or in the therapy using the same.
  • MAP human erythrocyte concentrate
  • the blood filter unit of the present invention can be applied to cell separation filters such as filters for collecting hematopoietic stem cell and filters for recovering platelets.
  • the blood filter unit of the present invention is a housing 2 which has at least an inlet tube 7 and an outlet tube 8 and within which a filter material surface-treated with any of the specific copolymers of the present invention as mentioned above is provided.
  • the blood filter unit of the present invention is used to remove leucocytes and platelets from a suspension containing platelets and leucocytes.
  • the housing 2 comprises a base 22 and a cover 21 , which are engaged with each other on their lateral sides thereof.
  • the filter material surface-treated with the copolymer of the present invention is held within the housing 2 .
  • Between the housing 2 and the filter material are spaced apart a base support 4 and a cover support 41 in such a manner that the supports 4 and 41 in the housing can provide a suitable liquid flow.
  • the filter material is preferably composed of a two-layered carrier including the main filter material 6 which is surface-treated with the copolymer of the present invention and is located on the downstream side, and a prefilter material 10 which is a coarse carrier located on the upstream side to remove impurities and the like.
  • Exemplary types of the filter material for use in the blood filter unit of the present invention include nonwoven fabric, woven fabric, porous material and beads, and the filter material may be formed into a membrane such as porous flat membrane or hollow fiber membrane, a sheet, a tube or other shapes.
  • the material used for the filter material is not particularly limited and includes natural polymers such as cotton and hemp celluloses and derivatives thereof, synthetic polymer materials such as nylon, polyolefin, halogenated polyolefin, polyethylene terephthalate, polybutylene terephthalate, polyvinylidene fluoride, polyamide, polyimide, polyurethane, polyester, polysulfone, polyethersulfone, poly(meth)acrylate, ethylene-polyvinyl alcohol copolymer, polyacrylonitrile and butadiene-acrylonitrile copolymer, and mixtures thereof.
  • Polyurethane, polysulfone and polyethersulfone are preferably used for porous material and polyethylene terephthalate and polybutylene terephthalate are preferably used for nonwoven fabric.
  • the filament used may be a monofilament or a multifilament, or a porous filament or a deformed filament.
  • the average pore size is in the range of from 1 ⁇ m (1 ⁇ 10 3 nm) to 20 ⁇ m (20 ⁇ 10 3 nm) If the average pore size is 1 ⁇ m or less, the filter tends to be clogged while if it is above 20 ⁇ m, the removal rate of leucocytes or platelets decreases to 50% or less.
  • the nonwoven fabric When nonwoven fabric is used for the filter material, the nonwoven fabric has preferably an average fiber diameter of not more than 100 ⁇ m. If the fiber diameter exceeds this value, it is difficult for the base material to have a sufficient surface area for filtration.
  • the porous beads When porous beads are used for the filter material, the porous beads have preferably an average particle size of 25 ⁇ m to 300 ⁇ m. If the average particle size is less than 25 ⁇ m, filtration pressure is increased, whereas if the average particle size exceeds 300 ⁇ m, sufficiently high filtration efficiency cannot be obtained due to decrease of the surface area per volume.
  • the amount of the surface treating agent carried on the filter material is preferably in the range of from 0.1 to 50 mg/g, preferably 0.3 to 30 mg/g.
  • the object of the present invention can be achieved by having the copolymer of the present invention carried on the surface of the blood filter described above.
  • the blood filter material of the present invention may be obtained by being carried on the copolymer which is obtained by the copolymerizing the alkoxyalkyl (meth)acrylate represented by formula A with at least one copolymer selected from the group consisting of aminostyrene, N,N-dimethylaminostyrene, N,N-diethylaminostyrene, vinylpyridine, N-methyl-N-vinylpyridine, N-ethyl-N-vinylpyridine, vinylquinoline, ethyleneimine, propyleneimine, N-aminoethylethyleneimine, vinylimidazole, vinylpyrazoline, and vinylpyrazine.
  • the copolymer which is obtained by the copolymerizing the alkoxyalkyl (meth)acrylate represented by formula A with at least one copolymer selected from the group consisting of aminostyrene, N,N-dimethylaminostyrene, N,N-diethylaminost
  • Either the filter material of the present invention may be carried on the another copolymer obtained by reacting the resulting copolymer with an alkyl halide, an alkyl sulfate or the like to convert them into quaternary ammonium salts thereof.
  • the method for holding the copolymer on the surface of a filter material includes known methods such as a coating method, a graft copolymer using radioactive rays, electron beam and ultraviolet rays, and a method of introducing the copolymer using chemical reaction with functional groups in the base material.
  • the coating method is practically preferable since the production step is easy to perform.
  • the coating method includes an applying method, a spraying method, a dipping method and the like but is not particularly limited and any of them can be applied.
  • the coating treatment by the method of applying the copolymer can be practiced by simple operations such as dipping a filter material in a coating solution having dissolved the copolymer in a suitable organic solvent such as alcohols, chloroform, acetone, tetrahydrofuran or dimethylformamide, removing excessive solution and then air drying.
  • a suitable organic solvent such as alcohols, chloroform, acetone, tetrahydrofuran or dimethylformamide
  • the blood filter material having the copolymer of the present invention fixed on the surface thereof exhibits high removal rates for leucocytes and platelets, respectively, but shows less activation of blood components such as an increase in blood bradykinin so that it does not deteriorate the quality of blood after the filtration.
  • the copolymer of the invention can easily control the adsorbability of leucocytes and platelets by suitably changing the composition and ratio of comonomer having a basic functional group.
  • the copolymer contains alkoxyalkyl (meth)acrylate having excellent compatibility with blood as a component of the copolymer so that it has excellent wettability with blood and can realize a high bleeding rate and filtration rate.
  • the filter unit of the invention has a high erythrocyte recovery rate and causes no hemolysis after the filtration so that it can exhibit excellent long term storage stability of blood.
  • the removal rate of leucocytes in human erythrocyte concentrated solution by use of the filter unit of the present invention is 99% or more, particularly 99.5% or more.
  • the platelet removal rate is 99% or more.
  • the copolymer of the present invention in itself is a material excellent in compatibility with blood, it can be used not only as a blood filter but also as a surface modifier for various medical apparatuses and tools such as blood storage bag, blood circuit, indwelling needle, catheter, guide wire, stent, oxygenator, and dialyzer.
  • Examples 1 to 11 relate to production of surface treating agents and Example 12 and Comparative Examples 1 and 2 relate to characteristic tests of blood filter units.
  • the product was dissolved in acetone (Kanto Chemical) and the solution was dripped into n-hexane and thus purified twice.
  • the purified product was dried under reduced pressure over a whole day.
  • MEA 2-methoxyethyl acrylate
  • DMAPAAm dimethylaminopropylacrylamide
  • MEA 2-methoxyethyl acrylate
  • DMAPMAAm dimethylaminopropylacrylamide
  • MEA 2-methoxyethyl acrylate
  • DMAPMAAm dimethylaminopropylacrylamide
  • MEA 2-methoxyethyl acrylate
  • DMAEMA dimethylaminoethyl methacrylate
  • MEA 2-methoxyethyl acrylate
  • DMAEMA dimethylaminoethyl methacrylate
  • MEA 2-methoxyethyl acrylate
  • DEAEMA diethylaminoethyl methacrylate
  • MEA 2-methoxyethyl acrylate
  • DEAEMA diethylaminoethyl methacrylate
  • MEA 2-methoxyethyl acrylate
  • DAEA dimethylaminoethyl acrylate
  • MEA 2-methoxyethyl acrylate
  • DAEA dimethylaminoethyl acrylate
  • the surface treating agents prepared in Examples 1 to 11 were each dissolved in methanol and each of the solutions was coated on a urethane porous material (Nippon Miractorane E394 POTA, maximum pore size: 10 ⁇ m, porosity: 85%) and then washed by showering with warm water at 60° C. After drying it, the resulting blood filter material was punched to pieces of a size of 0.6 mm in thickness and 55 mm in diameter. These were assembled in a blood circuit and MAP (human erythrocyte concentrate) was treated in the blood circuit.
  • MAP human erythrocyte concentrate
  • Weights of blood before and after filtration, concentration of leucocytes, and concentration of platelets were calculated using automatic blood cell counter (Sysmex NE-6000, produced by Toa Medical Electronics) and then leucocyte removal ratio and platelet removal ratio were obtained.
  • Leucocyte removal ratio (1 ⁇ (number of leucocytes after filtration)/(number of leucocytes before filtration)) ⁇ 100
  • Platelet removal ratio (1 ⁇ (number of platelets after filtration)/(number of platelets before filtration)) ⁇ 100
  • bradykinin The production amount of bradykinin was determined by sampling blood at the time of filtering the blood. Upon measurement, 5 mM 1,1-phenanthroline (Tokyo Kasei) as a bradykinin decomposition inhibitor was added. Table 1 shows relationships of leucocyte removal ratio, platelet removal ratio and bradykinin production amount.
  • Non-treated urethane made porous material without coating was attached to a blood circuit similar to that used in Example 11 and MAP was filtered therewith and leucocyte removal ratio, platelet recovery ratio and bradykinin production amount were obtained. Table 1 shows the results.
  • Homopolymer consisting of poly(2-methoxyethyl acrylate) (PMEA) as a coating polymer was coated on a urethane made porous material in the same manner as in Example 12 to obtain a blood filter and MAP was filtered in a blood circuit therethrough and leucocyte removal ratio, platelet recovery ratio, and ratio of bradykinin production amount to that of non-treated film were obtained.
  • Table 1 shows the results. TABLE 1 Bradykinin Platelet production Leucocyte removal amount (vs.
  • Example 8: (MEA:DEAEMA 80:20) 19
  • a surface treating agent excellent in blood compatibility as a filter material for removing leucocytes enable one to efficiently remove leucocytes and platelets while suppressing the activation of blood components at the time of filtration to a low level so that effective means are provided in the field of safe and high quality blood preparations and leucocyte removal therapy against autoimmune diseases.
  • the present invention provides a surface treating agent that is very easy to produce and can be applied to blood compatible materials for medical apparatuses.
  • introduction of the copolymer of the present invention in at least a surface portion of the filter material can impart the filter with the above-described blood compatibility to decrease the activation of blood components at the time of filtration. Further, excellent affinity for blood leads to an increase in the characteristic of bleeding of blood through the filter so that filtration time can be shortened. If blood is retained in the filter at the time of filtration, an increased amount of bradykinin is produced. Hence, shortened filtration time will be effective in decreasing the production of bradykinin.

Abstract

A copolymer having excellent blood compatibility comprising an alkoxyalkyl (meth)acrylate and a comonomer having a basic functional group, a surface treating agent for blood filter using the same, and blood filter coated with the same on the surface thereof. The copolymer is useful as blood filter material for efficiently removing leucocytes and platelets while preventing damages of blood components at the time of blood filtration to a low level.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a specified copolymer and a blood filter with using thereof. More particularly, the present invention relates to a blood filter material surface treating material that selectively captures leucocytes and platelets and passes erythrocytes therethrough and that could minimize damages the blood components would receive at the time of filtering. [0001]
  • BACKGROUND OF THE INVENTION
  • Recently, in the field of blood transfusion, blood preparations free of leucocytes have been used to prevent graft-versus-host diseases (GVHD) and fever. The methods of removing leucocytes are roughly classified into two methods, i.e., a method that filters leucocytes through a fibrous or spongy filter and a method that separates leucocytes from other blood components using a difference in relative density by using a centrifuge. Further, the method of removing leucocytes using a filter includes a method of simultaneously removing platelets and leucocytes and a method of removing leucocytes without accompanying removal of platelets. The former is used mainly in making erythrocyte preparations and the latter is used mainly in making platelet preparations. [0002]
  • As examples of the latter filter, there have been proposed leucocyte removing filer for purifying platelets, comprising a filter having coated on the surface thereof polyalkoxy (meth)acrylate copolymer (Japanese Patent Application Laid-open No. Hei 5-262656) and leucocyte selectively removing filter containing a nonionic hydrophilic group and a basic nitrogen containing functional group (Japanese Examined Patent Publication No. Hei 6-51060). [0003]
  • Besides side effects by leucocytes, those side effects that would be considered to be attributable to activation of coagulation system or complement system at the time of blood filtration have been concerned about. For example, during blood filtration, there may be sometimes observed anaphylaxis symptoms such as blood pressure depression, shock symptoms, and dizziness that would be considered to be due to an increase in blood bradykinin level (Takahashi et al., Transfusion, No. 35, p.967 (1995)). Therefore, it has been considered necessary to prevent the activation of blood (coagulation system, complement system, leucocyte system, and platelet system) that would cause the above-described side effects. [0004]
  • That is, when blood components contact the surface of the material, nonspecific adsorption, denaturation and multi-layer adsorption of proteins in the plasma occur and sticking of platelets and activation of coagulation system, complement system and leucocyte system occur. For example, production of bradykinin, a typical example of activation of coagulation system, is known to be triggered by contact activation such as adsorption of coagulation XII factor, which is a plasma protein, on the surface of the filter, denaturation and the like. Therefore, if the damages of blood components at the time of filtration could be prevented, then side effects upon blood transfusion would be decreased. [0005]
  • To prevent such an activation of blood, there has been proposed a leucocyte removing filter that is surface-treated with a copolymer comprising as a main component 2-hydroxylethyl methacrylate (HEMA), which is considered to cause less activation of blood components at the time of filtration (Japanese Patent Application Laid-open No. Hei 5-194243). However, this filter is a blood filter that passes platelets and selectively captures leucocytes. Although reportedly it causes less activation, it cannot be said that the activation of complements is prevented sufficiently. [0006]
  • Furthermore, filters with a surface composed of a homopolymer of a quaternary amine only have high leucocyte removing ability. However, because of their high cation density, they show high degrees of nonspecific adsorption of erythrocyte and plasma proteins so that cells that adhered on the surface of the material show considerable activation (cf. Kataoka et al., Biomaterial, Corona, p. 152 (1999)). This causes problems such as a decrease in filtration rate and increased damage of blood components. [0007]
  • As described above, a blood filter that can remove platelets and leucocytes simultaneously and prevent the activation of blood has been desired. [0008]
  • SUMMARY OF THE INVENTION
  • Accordingly, an object of the present invention is to provide a novel blood filter unit having high leucocyte and platelet removing ability. [0009]
  • Another object of the present invention is to provide a surface treating agent for blood filters that have obviated problems of activation of blood components at the time of filtration, which is the disadvantage of the conventional blood filters. That is, the present invention provides a blood filter unit which is excellent in blood compatibility and has good wettability with blood, filtration time property or erythrocyte recovery ratio. The present invention provides a blood filter unit having substantially excellent storage stability of blood preparations after filtration. [0010]
  • As described in Japanese Patent Application Laid-open Nos. Hei 5-262656 and Hei 4-152952, generally polyalkoxyalkyl (meth)acrylate and its copolymers are known as materials for medical use having high biocompatibility and antithrombotic activity. That is, when blood is contacted with polyalkoxyalkyl (meth)acrylate and its copolymers, it has been considered that the activation of blood thereby is low and platelets are difficult to be adsorbed thereon. Therefore, no one has conceived of adsorbing platelets with polyalkoxyalkyl (meth)acrylates. [0011]
  • This time the inventors of the present invention have made extensive research with a view to developing blood filter materials that can simultaneously remove leucocytes and platelets while preventing activation of blood. As a result, they have found that the above-described objects can be achieved by use of a copolymer of alkoxyalkyl (meth)acrylate having excellent blood compatibility and an alkylamine ester of acrylic acid having a basic functional group showing low coagulation activity as the site compatible to platelets and leucocytes on the surface of the filter material or as a surface treating agent. [0012]
  • According to the present invention, there is provided a copolymer, comprising as constituents an alkoxyalkyl (meth)acrylate represented by the following formula A and at least one comonomer selected from the group consisting of copolymers represented by formulae B, C, D and E. [0013]
    Figure US20020000403A1-20020103-C00001
  • (wherein R[0014] 1 is an alkylene group having 1 to 4 carbon atoms, R2 is an alkyl group having 1 to 4 carbon atoms, and R3 independently represents hydrogen or a methyl group in each formula)
    Figure US20020000403A1-20020103-C00002
  • (wherein R[0015] 4 and R5 independently represent hydrogen or an alkyl group having 1 to 4 carbon atoms in each formula, n is an integer of 1 to 4 in each formula, and R3 is as defined above)
    Figure US20020000403A1-20020103-C00003
  • (wherein R[0016] 3, R4, R5 and n are as defined above)
    Figure US20020000403A1-20020103-C00004
  • (wherein R[0017] 3 and R4 are as defined above, R6 independently represents hydrogen or an alkyl group having 1 to 4 carbon atoms in each formula, n is as defined above, and Xindependently represents a halogen ion, sulfonic ion or hydrogen sulfate ion)
    Figure US20020000403A1-20020103-C00005
  • (R[0018] 3, R4, R5 and R6 are as defined above, n is as defined above, and Xis as defined above).
  • Here, the “alkyl group having 1 to 4 carbon atoms” refers to a methyl group, an ethyl group, a propyl group, an isopropyl group, a n-butyl group, an isobutyl group or t-butyl group, n is an integer of 1 to 4, preferably an integer of 1 to 3. [0019]
  • The copolymer of the present invention has the ability of adsorbing leucocytes and platelets and has the activity of preventing the activation of blood. The blood filter material surface-treated with the copolymer has high ability of removing leucocytes and high ability of removing platelets and can prevent the production of bradykinin.[0020]
  • BRIEF DESCRIPTION OF THE INVENTION
  • FIG. 1 is the cross sectional view of the filter unit of the present invention.[0021]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The surface of a filter material as used herein refers to the both surfaces of the filter material that contact blood to be treated and/or surface portions of pores in the filter material. [0022]
  • The copolymer of the present invention is a copolymer of one or more monomer of alkoxyalkyl (meth)acrylates represented by the following formula (A) and a comonomer having a basic functional group that is copolymerizable with the monomer. [0023]
  • The alkoxyalkyl (meth)acrylates include methoxymethyl (meth) acrylate, 2-methoxyethyl (meth)acrylate, 2-methoxypropyl (meth)acrylate, methoxybutyl (meth)acrylate, ethoxymethyl (meth)acrylate, ethoxyethyl (meth)acrylate, ethoxypropyl (meth)acrylate, ethoxybutyl (meth)acrylate, propoxymethyl (meth)acrylate, propoxyethyl (meth)acrylate, propoxypropyl (meth)acrylate, propoxybutyl (meth)acrylate, and the like. Here, “(meth)acrylate” stands for acrylate and methacrylate. Among the above monomers, methoxyalkyl (meth)acrylates are preferred from the viewpoints of economy and ease of manipulation. In particular, 2-methoxyethyl (meth)acrylate is preferred. [0024]
  • With regard to the comonomers having a basic functional group that can copolymerize with alkoxyalkyl (meth)acrylates, examples of the basic functional group include primary amino groups, secondary amino groups, tertiary amino groups, quaternary ammonium salts, a pyridyl group, an aziridine group, and an imidazolyl group. Specific comonomers (copolymerizable monomers) of the functional group include the following ones. [0025]
  • Formula B represents aminoalkyl (meth)acrylates. Specific examples thereof include, for example, (meth)acrylic acid esters such as aminomethyl (meth)acrylate, aminoethyl (meth)acrylate, aminoisopropyl (meth)acrylate, amino-n-butyl (meth)acrylate, N-methylaminoethyl (meth)acrylate, N-ethylaminoisobutyl (meth)acrylate, N-isopropylaminomethyl (meth)acrylate, N-isopropylaminoethyl (meth)acrylate, N-n-butylaminoethyl (meth)acrylate, N-t-butylaminoethyl (meth)acrylate, N,N-dimethylaminomethyl (meth)acrylate, N,N-dimethylaminoethyl (meth)acrylate, N,N-dimethylaminopropyl (meth)acrylate, N,N-dimethylaminobutyl (meth)acrylate, N-methyl-N-ethylaminoethyl (meth)acrylate, N-methyl-N-butylaminoethyl acrylate, N,N-diethylaminoethyl (meth)acrylate, N,N-diethylaminopropyl (meth)acrylate, N,N-dipropylaminoethyl (meth)acrylate, N,N-dipropylaminopropyl (meth)acrylate, and N,N-diaminobutylpropyl (meth)acrylate. [0026]
  • Formula C represents aminoalkyl (meth)acrylamide. Specific examples thereof include, for example, aminomethyl (meth)acrylamide, aminoethyl (meth)acrylamide, aminoisopropyl (meth)acrylamide, amino-n-butyl (meth)acrylamide, N-methylaminoethyl (meth)acrylamide, N-ethylaminoisobutyl (meth)acrylamide, N-isopropylaminomethyl (meth)acrylamide, N-isopropylaminoethyl (meth)acrylamide, N-n-butylaminoethyl (meth)acrylamide, N-t-butylaminoethyl (meth)acrylamide, N,N-dimethylaminomethyl (meth)acrylamide, N,N-dimethylaminoethyl (meth)acrylamide, N,N-dimethylaminopropyl (meth)acrylamide, N,N-dimethylaminobutyl (meth)acrylamide, N-methyl-N-ethylaminoethyl (meth)acrylamide, N-methyl-N-butylaminoethyl acrylamide, N,N-diethylaminoethyl (meth)acrylamide, N,N-diethylaminopropyl (meth)acrylamide, N,N-dipropylaminoethyl (meth)acrylamide, N,N-dipropylaminopropyl (meth)acrylamide, N,N-diaminobutylpropyl (meth)acrylamide and the like. [0027]
  • Formula D and formula E represent each derivatives and the like obtained by treating the compounds of formula B and formula C with an alkyl halide, an alkyl sulfate or the like to convert them into quaternary ammonium salts. [0028]
  • Particularly preferred comonomers among the compounds described above are N,N-dialkylaminopropyl (meth)acrylamides corresponding to formula C in which n is 3, which are easy to synthesize on an industrial scale at low costs, and more specifically N,N-dimethylaminopropyl methacrylamide or N,N-dimethylaminopropyl acrylamide. Also, mention may be made of N,N-dimethylaminoethyl (meth)acrylate, N,N-dimethylaminopropyl (meth)acrylate and N,N-diethylaminoethyl (meth)acrylate corresponding to formula B in which n is 3. However, the comonomer having a basic functional group that can be used in the present invention is not limited to the above-exemplified monomers. The monomer having a basic functional group may be used singly or two or more monomers may be used in combination. [0029]
  • These comonomers are used in proportions to alkoxyalkyl (meth)acrylates such that the compatibility of the polymer to be obtained to blood is not deteriorated. In the copolymer of the present invention, the alkoxyalkyl (meth)acrylate is contained in a proportion of 90 to 10% by mole, preferably 80 to 20% by mole, more preferably 60 to 40% by mole. If the proportion of the alkoxyalkyl (meth)acrylate contained exceeds 90% by mole, the capturing ratio of platelets is too low. On the other hand, if it is below 10% by mole, water solubility increases too much to cause problems in safety and damages to membranes of blood cells are aggravated and the possibility of hemolysis is accompanied so that such copolymers cannot be used as they are. [0030]
  • The copolymers of the present invention may have a molecular weight of several thousands to several hundreds thousands, preferably 5,000 to 500,000. They may be any of random copolymers, block copolymers and graft copolymers. Copolymerization reaction for producing the copolymers is in itself not particularly limited and known methods such as radical polymerization, ion polymerization, photo polymerization, and polymerization using macromers can be used. Various copolymers thus produced are insoluble in water and when in use as a surface treating agent for filters, any one of the copolymers of the present invention may be used singly or plural copolymers may be used in admixture. [0031]
  • The blood filter unit of the present invention is a filter unit used for removing leucocytes and platelets from fluid containing platelets and leucocytes and is used for whole blood, human erythrocyte concentrate (MAP), blood plasma and any other leucocytes-containing and/or platelets-containing suspensions the like in the preparation of blood preparations such as erythrocyte preparations and plasma preparations, or in the therapy using the same. The blood filter unit of the present invention can be applied to cell separation filters such as filters for collecting hematopoietic stem cell and filters for recovering platelets. [0032]
  • The blood filter unit of the present invention is a [0033] housing 2 which has at least an inlet tube 7 and an outlet tube 8 and within which a filter material surface-treated with any of the specific copolymers of the present invention as mentioned above is provided. The blood filter unit of the present invention is used to remove leucocytes and platelets from a suspension containing platelets and leucocytes.
  • In a preferred embodiment as shown in FIG. 1, the [0034] housing 2 comprises a base 22 and a cover 21, which are engaged with each other on their lateral sides thereof. The filter material surface-treated with the copolymer of the present invention is held within the housing 2. Between the housing 2 and the filter material are spaced apart a base support 4 and a cover support 41 in such a manner that the supports 4 and 41 in the housing can provide a suitable liquid flow. The filter material is preferably composed of a two-layered carrier including the main filter material 6 which is surface-treated with the copolymer of the present invention and is located on the downstream side, and a prefilter material 10 which is a coarse carrier located on the upstream side to remove impurities and the like.
  • Exemplary types of the filter material for use in the blood filter unit of the present invention include nonwoven fabric, woven fabric, porous material and beads, and the filter material may be formed into a membrane such as porous flat membrane or hollow fiber membrane, a sheet, a tube or other shapes. [0035]
  • The material used for the filter material is not particularly limited and includes natural polymers such as cotton and hemp celluloses and derivatives thereof, synthetic polymer materials such as nylon, polyolefin, halogenated polyolefin, polyethylene terephthalate, polybutylene terephthalate, polyvinylidene fluoride, polyamide, polyimide, polyurethane, polyester, polysulfone, polyethersulfone, poly(meth)acrylate, ethylene-polyvinyl alcohol copolymer, polyacrylonitrile and butadiene-acrylonitrile copolymer, and mixtures thereof. Polyurethane, polysulfone and polyethersulfone are preferably used for porous material and polyethylene terephthalate and polybutylene terephthalate are preferably used for nonwoven fabric. [0036]
  • In the case of nonwoven fabric, the filament used may be a monofilament or a multifilament, or a porous filament or a deformed filament. [0037]
  • In the case of porous material, the average pore size is in the range of from 1 μm (1×10[0038] 3 nm) to 20 μm (20×103 nm) If the average pore size is 1 μm or less, the filter tends to be clogged while if it is above 20 μm, the removal rate of leucocytes or platelets decreases to 50% or less.
  • When nonwoven fabric is used for the filter material, the nonwoven fabric has preferably an average fiber diameter of not more than 100 μm. If the fiber diameter exceeds this value, it is difficult for the base material to have a sufficient surface area for filtration. [0039]
  • When porous beads are used for the filter material, the porous beads have preferably an average particle size of 25 μm to 300 μm. If the average particle size is less than 25 μm, filtration pressure is increased, whereas if the average particle size exceeds 300 μm, sufficiently high filtration efficiency cannot be obtained due to decrease of the surface area per volume. [0040]
  • The amount of the surface treating agent carried on the filter material is preferably in the range of from 0.1 to 50 mg/g, preferably 0.3 to 30 mg/g. [0041]
  • The object of the present invention can be achieved by having the copolymer of the present invention carried on the surface of the blood filter described above. [0042]
  • Alternatively, the blood filter material of the present invention may be obtained by being carried on the copolymer which is obtained by the copolymerizing the alkoxyalkyl (meth)acrylate represented by formula A with at least one copolymer selected from the group consisting of aminostyrene, N,N-dimethylaminostyrene, N,N-diethylaminostyrene, vinylpyridine, N-methyl-N-vinylpyridine, N-ethyl-N-vinylpyridine, vinylquinoline, ethyleneimine, propyleneimine, N-aminoethylethyleneimine, vinylimidazole, vinylpyrazoline, and vinylpyrazine. Either the filter material of the present invention may be carried on the another copolymer obtained by reacting the resulting copolymer with an alkyl halide, an alkyl sulfate or the like to convert them into quaternary ammonium salts thereof. [0043]
  • The method for holding the copolymer on the surface of a filter material includes known methods such as a coating method, a graft copolymer using radioactive rays, electron beam and ultraviolet rays, and a method of introducing the copolymer using chemical reaction with functional groups in the base material. Of these, the coating method is practically preferable since the production step is easy to perform. The coating method includes an applying method, a spraying method, a dipping method and the like but is not particularly limited and any of them can be applied. [0044]
  • For example, the coating treatment by the method of applying the copolymer can be practiced by simple operations such as dipping a filter material in a coating solution having dissolved the copolymer in a suitable organic solvent such as alcohols, chloroform, acetone, tetrahydrofuran or dimethylformamide, removing excessive solution and then air drying. To more firmly fix the copolymer to the filter material, the filter material after the coating may be heated to further increase the adhesion between the filter material and the copolymer. [0045]
  • The blood filter material having the copolymer of the present invention fixed on the surface thereof exhibits high removal rates for leucocytes and platelets, respectively, but shows less activation of blood components such as an increase in blood bradykinin so that it does not deteriorate the quality of blood after the filtration. The copolymer of the invention can easily control the adsorbability of leucocytes and platelets by suitably changing the composition and ratio of comonomer having a basic functional group. The copolymer contains alkoxyalkyl (meth)acrylate having excellent compatibility with blood as a component of the copolymer so that it has excellent wettability with blood and can realize a high bleeding rate and filtration rate. Further, the filter unit of the invention has a high erythrocyte recovery rate and causes no hemolysis after the filtration so that it can exhibit excellent long term storage stability of blood. [0046]
  • The removal rate of leucocytes in human erythrocyte concentrated solution by use of the filter unit of the present invention is 99% or more, particularly 99.5% or more. The platelet removal rate is 99% or more. [0047]
  • Since the copolymer of the present invention in itself is a material excellent in compatibility with blood, it can be used not only as a blood filter but also as a surface modifier for various medical apparatuses and tools such as blood storage bag, blood circuit, indwelling needle, catheter, guide wire, stent, oxygenator, and dialyzer. [0048]
  • EXAMPLES
  • Hereinafter, the present invention will be described in detail by examples. However, the present invention is not limited thereto. Examples 1 to 11 relate to production of surface treating agents and Example 12 and Comparative Examples 1 and 2 relate to characteristic tests of blood filter units. [0049]
  • Example 1
  • To 20 g of 2-methoxyethyl acrylate (MEA) (Osaka Organic Chemistry) and 10.3 g of dimethylaminopropylacrylamide (Kojin) was added azobisisobutyronitrile (radical polymerization initiator) (Tokyo Kasei) in an amount of 0.2% by weight based on the total weight of monomers and the mixture was subjected to polymerization in 120 g of 1,4-dioxane (Kanto Chemical) at 80° C. for 8 hours. After completion of the polymerization, the reaction mixture was dripped into n-hexane (Kanto Chemical) to form precipitates and the product was isolated. The product was dissolved in acetone (Kanto Chemical) and the solution was dripped into n-hexane and thus purified twice. The purified product was dried under reduced pressure over a whole day. The amine composition (mol %) of the obtained polymer was obtained by [0050] 1H-NMR. This was named surface treating agent 1 (MEA:DMAPAAm=80:20).
  • Example 2
  • The same procedures were repeated as in Example 1 except that 15 g of 2-methoxyethyl acrylate (MEA) and 12 g of dimethylaminopropylacrylamide (DMAPAAm) were used as the starting materials to obtain surface treating agent 2 (MEA DMAPAAm=60:40). [0051]
  • Example 3
  • The same procedures were repeated as in Example 1 except that 20 g of 2-methoxyethyl acrylate (MEA) and 6.5 g of dimethylaminopropylacrylamide (DMAPMAAm) (Aldrich) were used as the starting materials to obtain surface treating agent 3 (MEA:DMAPMAAM=80:20). [0052]
  • Example 4
  • The same procedures were repeated as in Example 1 except that 15 g of 2-methoxyethyl acrylate (MEA) and 13.1 g of dimethylaminopropylacrylamide (DMAPMAAm) were used as the starting materials to obtain surface treating agent 2 (MEA:DMAPMAAM=60:40). [0053]
  • Example 5
  • To 20 g of 2-methoxyethyl acrylate (MEA) and 6 g of dimethylaminoethyl methacrylate (DMAEMA) (Tokyo Kasei) was added in an amount of 0.1% by weight based on the total weight of monomers and the mixture was subjected to polymerization in 120 g of (dimethylformamide) DMF (Kanto Chemical) at 75° C. for 8 hours. After completion of the polymerization, the reaction mixture was dripped into n-hexane (Kanto Chemical) to form precipitates and the product was isolated. The product was dissolved in tetrahydrofuran and the solution was dripped into n-hexane and thus purified twice. The purified product was dried under reduced pressure over a whole day. This was named surface treating agent 1 (MEA:DMAEMA=80:20). [0054]
  • Example 6
  • The same procedures were repeated as in Example 5 except that 17 g of 2-methoxyethyl acrylate (MEA) and 13.7 g of dimethylaminoethyl methacrylate (DMAEMA) were used as the starting materials to obtain surface treating agent 6 (MEA:DMAEMA=60:40). [0055]
  • Example 7
  • The same procedures were repeated as in Example 5 except that 3.3 g of 2-methoxyethyl acrylate (MEA) and 16.0 g of dimethylaminoethyl methacrylate (DMAEMA) were used as the starting materials to obtain surface treating agent 7 (MEA:DMAEMA=20:80). [0056]
  • Example 8
  • The same procedures were repeated as in Example 5 except that 20 g of 2-methoxyethyl acrylate (MEA) and 7.1 g of diethylaminoethyl methacrylate (DEAEMA) (Wako Pure Chemical Industry) were used as the starting materials to obtain surface treating agent 8 (MEA:DEAEMA=80:20). [0057]
  • Example 9
  • The same procedures were repeated as in Example 5 except that 15 g of 2-methoxyethyl acrylate (MEA) and 14.3 g of diethylaminoethyl methacrylate (DEAEMA) were used as the starting materials to obtain surface treating agent 9 (MEA:DEAEMA=60:40). [0058]
  • Example 10
  • The same procedures were repeated as in Example 5 except that 20 g of 2-methoxyethyl acrylate (MEA) and 5.5 g of dimethylaminoethyl acrylate (DMAEA) (Kojin) were used as the starting materials to obtain surface treating agent 10 (MEA:DMAEA=80:20). [0059]
  • Example 11
  • The same procedures were repeated as in Example 5 except that 17 g of 2-methoxyethyl acrylate (MEA) and 12.5 g of dimethylaminoethyl acrylate (DMAEA) (Kojin Co., Ltd.) were used as the starting materials to obtain surface treating agent 11 (MEA:DMAEA=60:40). [0060]
  • Example 12
  • The surface treating agents prepared in Examples 1 to 11 were each dissolved in methanol and each of the solutions was coated on a urethane porous material (Nippon Miractorane E394 POTA, maximum pore size: 10 μm, porosity: 85%) and then washed by showering with warm water at 60° C. After drying it, the resulting blood filter material was punched to pieces of a size of 0.6 mm in thickness and 55 mm in diameter. These were assembled in a blood circuit and MAP (human erythrocyte concentrate) was treated in the blood circuit. [0061]
  • Weights of blood before and after filtration, concentration of leucocytes, and concentration of platelets were calculated using automatic blood cell counter (Sysmex NE-6000, produced by Toa Medical Electronics) and then leucocyte removal ratio and platelet removal ratio were obtained. [0062]
  • Leucocyte removal ratio=(1−(number of leucocytes after filtration)/(number of leucocytes before filtration))×100 [0063]
  • Platelet removal ratio=(1−(number of platelets after filtration)/(number of platelets before filtration))×100 [0064]
  • The production amount of bradykinin was determined by sampling blood at the time of filtering the blood. Upon measurement, 5 [0065] mM 1,1-phenanthroline (Tokyo Kasei) as a bradykinin decomposition inhibitor was added. Table 1 shows relationships of leucocyte removal ratio, platelet removal ratio and bradykinin production amount.
  • When blood was filtered, the time in which the blood contacted the filter and bled through it was also measured. Table 2 shows the results. As for the blood bleeding rate, a conventional blood filter composed mainly of HEMA was also tested for comparison. [0066]
  • Comparative Example 1
  • Non-treated urethane made porous material without coating was attached to a blood circuit similar to that used in Example 11 and MAP was filtered therewith and leucocyte removal ratio, platelet recovery ratio and bradykinin production amount were obtained. Table 1 shows the results. [0067]
  • Comparative Example 2
  • Homopolymer consisting of poly(2-methoxyethyl acrylate) (PMEA) as a coating polymer was coated on a urethane made porous material in the same manner as in Example 12 to obtain a blood filter and MAP was filtered in a blood circuit therethrough and leucocyte removal ratio, platelet recovery ratio, and ratio of bradykinin production amount to that of non-treated film were obtained. Table 1 shows the results. [0068]
    TABLE 1
    Bradykinin
    Platelet production
    Leucocyte removal amount (vs.
    removal ratio non-treated
    Surface treating agent ratio (%) (%) one)
     1 (MEA:DMAPAAm = 80:20) 99.7 99.4 <1/10
     2 (MEA:DMAPAAm = 60:40) 99.8 99.9 <1/10
     3 (MEA:DMAPMAAm = 80:20) 99.8 99.7 <1/10
     4 (MEA:DMAPMAAm = 60:40) 99.9 99.9 <1/10
     5 (NEA:DMAENA = 80:20) 99.9 99.9 <1/10
     6 (MEA:DMAEMA = 60:40) 99.9 100   <1/10
     7 (MEA:DMAEMA = 20:80) 99.9 100   <1/10
     8 (MEA:DAEMA = 80:20) 99.8 99.9 — (No
    measured
    value)
     9 (MEA:DEAEMA = 80:20) 99.7 99.3 <1/10
    10 (MEA:DMAEA = 80:20) 99.8 99.9 <1/10
    Non-treated
    (Comparative Example 1) 87.2 18.1 1
    PEMA
    (Comparative Example 2) 93.6  3.7 1/3
  • As will be apparent from Table 1, all the surface treating agents in the above Examples exhibited excellent leucocyte and platelet removing abilities. As for the production amount of bradykinin at the time of filtration, the blood filter material of the invention had a value as low as about {fraction (1/10)} time or less that of the non-treated filter material of Comparative Example 1. In Comparative Example 2, the production amount of bradykinin at the time of filtration decreased to about {fraction (1/3)} time or less of that of Comparative Example 1 but the platelet removal ratio was as low as 3.7%. [0069]
    TABLE 2
    Time of bleeding of blood
    Surface treating agent Time (second)
    Example 1: (MEA:DMAPAAm = 80:20) 15
    Example 2: (MEA:DMAPAAm = 60:40) 17
    Example 3: (MEA:DMAPMAAm = 80:20) 14
    Example 4: (MEA:DMAPMAAm = 60:40) 19
    Example 5: (MEA:DMAEMA = 80:20) 20
    Example 6: (MEA:DMAEMA = 60:40) 22
    Example 7: (MEA:DMAEMA = 20:80) 25
    Example 8: (MEA:DEAEMA = 80:20) 19
    Example 9: (MEA:DEAEMA = 60:40) 22
    Example 10: (MEA:DMAEA = 80:20) 14
    Example 11: (MEA:DMAEA = 60:40) 20
    Comparative Example 1: Non-treated 32
    Comparative Example 2: PMEA 13
  • Use of a surface treating agent excellent in blood compatibility as a filter material for removing leucocytes enable one to efficiently remove leucocytes and platelets while suppressing the activation of blood components at the time of filtration to a low level so that effective means are provided in the field of safe and high quality blood preparations and leucocyte removal therapy against autoimmune diseases. The present invention provides a surface treating agent that is very easy to produce and can be applied to blood compatible materials for medical apparatuses. [0070]
  • As described above, introduction of the copolymer of the present invention in at least a surface portion of the filter material can impart the filter with the above-described blood compatibility to decrease the activation of blood components at the time of filtration. Further, excellent affinity for blood leads to an increase in the characteristic of bleeding of blood through the filter so that filtration time can be shortened. If blood is retained in the filter at the time of filtration, an increased amount of bradykinin is produced. Hence, shortened filtration time will be effective in decreasing the production of bradykinin. [0071]

Claims (11)

What is claimed is:
1. A copolymer comprising a monomer represented by formula A and at least one comonomer selected from the group consisting of copolymers represented by formulae B, C, D and E.
Figure US20020000403A1-20020103-C00006
(wherein R1 is an alkylene group having 1 to 4 carbon atoms, R2 is an alkyl group having 1 to 4 carbon atoms, and R3 independently represents hydrogen or a methyl group in each formula)
Figure US20020000403A1-20020103-C00007
(wherein R4 and R5 independently represent hydrogen or an alkyl group having 1 to 4 carbon atoms in each formula, n is an integer in each formula, and R3 is as defined above)
Figure US20020000403A1-20020103-C00008
(wherein R3, R4, R5 and n are as defined above)
Figure US20020000403A1-20020103-C00009
(wherein R3, R4 and R5 are as defined above, R6 independently represents hydrogen or an alkyl group having 1 to 4 carbon atoms in each formula, n is as defined above, and Xindependently represents a halogen ion, sulfonic ion or hydrogen sulfate ion)
Figure US20020000403A1-20020103-C00010
(R3, R4, R5, and R6 are as defined above, n is as defined above, and Xis as defined above).
2. A copolymer according to claim 1, comprising the monomer represented by the formula A in an amount of 10 to 90 mol %.
3. A copolymer according to claim 1, wherein the monomer represented by the formula A is 2-methoxyethyl (meth)acrylate.
4. A copolymer according to claim 1, wherein the monomer represented by the formula B is at least one selected from the group consisting of N,N-dimethylaminoethyl (meth)acrylate, N,N-dimethylaminopropyl (meth)acrylate, and N,N-diethylaminoethyl (meth)acrylate.
5. A copolymer according to claim 1, wherein the monomer represented by the formula C is at least one selected from dimethylaminopropylmethacrylamide and dimethylaminopropylacrylamide.
6. An adsorbent for leucocytes and platelets, comprising the copolymer according to claim 1.
7. A blood filter unit which comprises a housing having at least an inlet tube and an outlet tube, and a filter material surface-treated with the copolymer according to claim 1 and located within the housing, and which is used for removing leucocytes and platelets from a suspension containing platelets and leucocytes.
8. A blood filter unit according to claim 7, wherein the filter material comprises polyurethane or polyester as a main component.
9. A method of producing a blood filter comprising coating the copolymer according to claim 1 to a surface of a blood filter material and heat drying it.
10. A blood filter unit comprising a filter material having on the surface thereof a copolymer comprising a monomer represented by formula A
Figure US20020000403A1-20020103-C00011
(wherein R1 is an alkylene group having 1 to 4 carbon atoms, R2 is an alkyl group having 1 to 4 carbon atoms, and R3 independently represents hydrogen or a methyl group in each formula) and at least one comonomer selected from the group consisting of aminostyrene, N,N-dimethylaminostyrene, N,N-diethylaminostyrene, vinylpyridine, N-methyl-N-vinylpyridine, N-ethyl-N-vinylpyridine, vinylquinoline, ethyleneimine, propyleneimine, N-aminoethylethyleneimine, vinylimidazole, vinylpyrazoline, and vinylpyrazine.
11. A blood filter unit obtained by treating a copolymer comprising a monomer represented by formula A
Figure US20020000403A1-20020103-C00012
(wherein R1 is an alkylene group having 1 to 4 carbon atoms, R2 is an alkyl group having 1 to 4 carbon atoms, and R3 independently represents hydrogen or a methyl group in each formula) and at least one comonomer selected from the group consisting of aminostyrene, N,N-dimethylaminostyrene, N,N-diethylaminostyrene, vinylpyridine, N-methyl-N-vinylpyridine, N-ethyl-N-vinylpyridine, vinylquinoline, ethyleneimine, propyleneimine, N-aminoethylethyleneimine, vinylimidazole, vinylpyrazoline, and vinylpyrazine, with an alkyl halide or an alkyl sulfate to convert it to a quaternary ammonium salt and then coating a surface of a filter material with the salt.
US09/858,564 2000-05-17 2001-05-17 Copolymers and blood filter using the same Abandoned US20020000403A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/057,280 US20050148748A1 (en) 2000-05-17 2005-02-10 Copolymers and blood filter using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-145386 2000-05-17
JP2000145386A JP4404445B2 (en) 2000-05-17 2000-05-17 Blood filter and blood filter manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/057,280 Division US20050148748A1 (en) 2000-05-17 2005-02-10 Copolymers and blood filter using the same

Publications (1)

Publication Number Publication Date
US20020000403A1 true US20020000403A1 (en) 2002-01-03

Family

ID=18651902

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/858,564 Abandoned US20020000403A1 (en) 2000-05-17 2001-05-17 Copolymers and blood filter using the same
US11/057,280 Abandoned US20050148748A1 (en) 2000-05-17 2005-02-10 Copolymers and blood filter using the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/057,280 Abandoned US20050148748A1 (en) 2000-05-17 2005-02-10 Copolymers and blood filter using the same

Country Status (6)

Country Link
US (2) US20020000403A1 (en)
EP (1) EP1156067B8 (en)
JP (1) JP4404445B2 (en)
AT (1) ATE380207T1 (en)
DE (1) DE60131696T2 (en)
ES (1) ES2295083T3 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060169635A1 (en) * 2003-07-03 2006-08-03 Laura Zambianchi Filter for the removal of substances from blood products
WO2008027152A2 (en) * 2006-08-25 2008-03-06 Hemostasis, L.L.C. A Limited Liability Company Hemostatic fibrous media
US20080190843A1 (en) * 2004-08-13 2008-08-14 Hitoshi Mizomoto Polymers Useful as Medical Materials
US20100248216A1 (en) * 2007-11-20 2010-09-30 3M Innovative Properties Company Sample preparation container and method
US20100248215A1 (en) * 2007-11-20 2010-09-30 Halverson Kurt J Sample preparation container and method
US20100255484A1 (en) * 2007-11-20 2010-10-07 Halverson Kurt J Sample preparation container and method
US20100285520A1 (en) * 2007-11-20 2010-11-11 Halverson Kurt J Sample preparation for environmental sampling
US20120024779A1 (en) * 2009-03-30 2012-02-02 Terumo Kabushiki Kaisha Surface treating agent, filtering material for filter, and blood treatment filter
US20150018712A1 (en) * 2007-12-20 2015-01-15 C. R. Bard, Inc. Biopsy device
US8991239B2 (en) 2006-05-22 2015-03-31 3M Innovative Properties Company System and method for preparing samples
US20160074149A1 (en) * 2013-04-18 2016-03-17 National University Corporation Yamagata University Stent to be placed in bile duct and process for producing same
US9872672B2 (en) 2004-07-09 2018-01-23 Bard Peripheral Vascular, Inc. Length detection system for biopsy device
US9949726B2 (en) 2009-09-01 2018-04-24 Bard Peripheral Vscular, Inc. Biopsy driver assembly having a control circuit for conserving battery power
US10010307B2 (en) 2005-08-10 2018-07-03 C. R. Bard, Inc. Single-insertion, multiple sampling biopsy device with linear drive
US10058308B2 (en) 2005-01-31 2018-08-28 C. R. Bard, Inc. Method for operating a biopsy apparatus
US20180250636A1 (en) * 2015-11-05 2018-09-06 Eiken Kagaku Kabushiki Kaisha Discharge member with filter
US10149664B2 (en) 2006-10-24 2018-12-11 C. R. Bard, Inc. Large sample low aspect ratio biopsy needle
US10172594B2 (en) 2006-10-06 2019-01-08 Bard Peripheral Vascular, Inc. Tissue handling system with reduced operator exposure
US10271827B2 (en) 2002-03-19 2019-04-30 C. R. Bard, Inc. Disposable biopsy unit
US10285673B2 (en) 2013-03-20 2019-05-14 Bard Peripheral Vascular, Inc. Biopsy device
US10335128B2 (en) 2002-03-19 2019-07-02 C. R. Bard, Inc. Biopsy device and insertable biopsy needle module
US10368849B2 (en) 2005-08-10 2019-08-06 C. R. Bard, Inc. Single-insertion, multiple sampling biopsy device usable with various transport systems and integrated markers
US10456120B2 (en) 2013-11-05 2019-10-29 C. R. Bard, Inc. Biopsy device having integrated vacuum
US10463350B2 (en) 2015-05-01 2019-11-05 C. R. Bard, Inc. Biopsy device
US10575833B2 (en) 2009-08-12 2020-03-03 C. R. Bard, Inc. Biopsy apparatus having integrated thumbwheel mechanism for manual rotation of biopsy cannula
US10617399B2 (en) 2006-08-21 2020-04-14 C.R. Bard, Inc. Self-contained handheld biopsy needle
US10669445B2 (en) 2014-12-10 2020-06-02 Nissan Chemical Industries, Ltd. Ion complex material having function of inhibiting adhesion of biological substance and method for manufacturing the same
CN111359036A (en) * 2014-10-02 2020-07-03 旭化成医疗株式会社 Living body-derived liquid treatment filter and filter device
CN112351802A (en) * 2018-07-02 2021-02-09 旭化成医疗株式会社 Blood treatment bead
US11345827B2 (en) 2013-06-07 2022-05-31 Nissan Chemical Industries, Ltd. Ion complex material having function of inhibiting adhesion of biological substance and method for manufacturing the same

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10304365A1 (en) * 2003-02-04 2004-08-05 Ls-Medcap Gmbh Filter system for removing leukocytes from blood, plasma, blood components or protein solutions comprises fleece and one or more membranes of specified thickness and pore size
JP2005006704A (en) * 2003-06-16 2005-01-13 Chisso Corp Biocompatible material and medical article using it
US7338597B1 (en) 2004-06-25 2008-03-04 Northwestern University Apparatus for water treatment
JP2006038512A (en) * 2004-07-23 2006-02-09 Fuji Photo Film Co Ltd Blood filtering glass fiber filter, blood filtering implement and blood analyzing element
JP2006038525A (en) * 2004-07-23 2006-02-09 Fuji Photo Film Co Ltd Liquid filtering instrument and dry analyzing element
EP1655354B1 (en) 2004-11-09 2013-10-23 JSR Corporation A biological substance absorption preventing coating composition, an article coated therewith and a method of using the same
JP6474540B2 (en) * 2010-11-17 2019-02-27 国立大学法人山形大学 Cell separation method for separating cells from solution, hydrating composition for cell adsorption, and cell separation system
EP2495025A1 (en) * 2011-03-04 2012-09-05 Fresenius Medical Care Deutschland GmbH Filter for the removal of micro-vesicles from biological fluids, methods and devices using such a filter
JP5439551B2 (en) 2011-08-15 2014-03-12 一般財団法人川村理化学研究所 Block copolymer coating
US9968738B2 (en) 2014-03-24 2018-05-15 Fenwal, Inc. Biological fluid filters with molded frame and methods for making such filters
US9782707B2 (en) 2014-03-24 2017-10-10 Fenwal, Inc. Biological fluid filters having flexible walls and methods for making such filters
US10376627B2 (en) 2014-03-24 2019-08-13 Fenwal, Inc. Flexible biological fluid filters
US10159778B2 (en) 2014-03-24 2018-12-25 Fenwal, Inc. Biological fluid filters having flexible walls and methods for making such filters
US9796166B2 (en) 2014-03-24 2017-10-24 Fenwal, Inc. Flexible biological fluid filters
JP6278321B2 (en) * 2016-02-10 2018-02-14 国立大学法人山形大学 Cell separation method for separating cells from solution, and hydrating composition for cell sorting
FR3055557B1 (en) * 2016-09-08 2018-10-12 Maco Pharma Sa FILTRATION UNIT COMPRISING A CURVED PERIPHERAL EDGE
FR3055556B1 (en) * 2016-09-08 2018-10-12 Maco Pharma FILTRATION UNIT COMPRISING DOME PORTIONS
JP2022053191A (en) * 2020-09-24 2022-04-05 学校法人 工学院大学 Porous film and method for producing the same
US11224858B1 (en) 2020-10-01 2022-01-18 Immunicom, Inc. Reduced leaching of a ligand
KR20230074799A (en) 2020-10-01 2023-05-31 이뮤니컴 인코포레이티드 Reduced leaching of ligands
FR3117871B1 (en) 2020-12-22 2022-11-11 Maco Pharma Sa Leukocyte filtration unit with reduced platelet adhesion

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3808686A (en) * 1971-06-28 1974-05-07 Hydro Dent Corp Hydrophilic coating for dental prostheses
US4218554A (en) * 1978-10-11 1980-08-19 Foley William M Jr Process for preparing hydrogel contact lenses containing quaternary ammonium salts
US4936998A (en) * 1986-03-28 1990-06-26 Asahi Medical Co., Ltd. Filter medium for selectively removing leucocytes
US4981936A (en) * 1989-04-14 1991-01-01 Polypure, Inc. Terpolymer of oxyalkyene acrylates, acrylamides and quaternary monomers
US5254249A (en) * 1989-04-25 1993-10-19 Toray Industries, Inc. Anti-thrombogenic blood treating system
US5407581A (en) * 1992-03-17 1995-04-18 Asahi Medical Co., Ltd. Filter medium having a limited surface negative charge for treating a blood material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1198052A (en) * 1965-02-12 1970-07-08 Ici Ltd Polymer Dispersions
US4448850A (en) * 1982-07-23 1984-05-15 Eastman Kodak Company Vinyl acetate polymers and latex compositions containing same
JP2898665B2 (en) * 1989-09-28 1999-06-02 テルモ株式会社 Plasma separation membrane and plasma separator using the same
JP2806510B2 (en) 1990-10-18 1998-09-30 テルモ 株式会社 Artificial organ membrane or medical device
JP3459836B2 (en) 1992-03-18 2003-10-27 テルモ株式会社 Platelet purification filter
JPH0651060A (en) 1992-07-29 1994-02-25 Dengiyoushiya Kikai Seisakusho:Kk Underwater ground shape measuring device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3808686A (en) * 1971-06-28 1974-05-07 Hydro Dent Corp Hydrophilic coating for dental prostheses
US4218554A (en) * 1978-10-11 1980-08-19 Foley William M Jr Process for preparing hydrogel contact lenses containing quaternary ammonium salts
US4936998A (en) * 1986-03-28 1990-06-26 Asahi Medical Co., Ltd. Filter medium for selectively removing leucocytes
US4981936A (en) * 1989-04-14 1991-01-01 Polypure, Inc. Terpolymer of oxyalkyene acrylates, acrylamides and quaternary monomers
US5254249A (en) * 1989-04-25 1993-10-19 Toray Industries, Inc. Anti-thrombogenic blood treating system
US5407581A (en) * 1992-03-17 1995-04-18 Asahi Medical Co., Ltd. Filter medium having a limited surface negative charge for treating a blood material

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11382608B2 (en) 2002-03-19 2022-07-12 C. R. Bard, Inc. Disposable biopsy unit
US10271827B2 (en) 2002-03-19 2019-04-30 C. R. Bard, Inc. Disposable biopsy unit
US10335128B2 (en) 2002-03-19 2019-07-02 C. R. Bard, Inc. Biopsy device and insertable biopsy needle module
US7736516B2 (en) 2003-07-03 2010-06-15 Fresenius Hemocare Italia S.R.L. Filter for the removal of substances from blood products
US20060169635A1 (en) * 2003-07-03 2006-08-03 Laura Zambianchi Filter for the removal of substances from blood products
US9872672B2 (en) 2004-07-09 2018-01-23 Bard Peripheral Vascular, Inc. Length detection system for biopsy device
US10166011B2 (en) 2004-07-09 2019-01-01 Bard Peripheral Vascular, Inc. Transport system for biopsy device
US10499888B2 (en) 2004-07-09 2019-12-10 Bard Peripheral Vascular, Inc. Tissue sample flushing system for biopsy device
US8136676B2 (en) * 2004-08-13 2012-03-20 University Of Southampton Polymers useful as medical materials
US20080190843A1 (en) * 2004-08-13 2008-08-14 Hitoshi Mizomoto Polymers Useful as Medical Materials
US10058308B2 (en) 2005-01-31 2018-08-28 C. R. Bard, Inc. Method for operating a biopsy apparatus
US11219431B2 (en) 2005-08-10 2022-01-11 C.R. Bard, Inc. Single-insertion, multiple sampling biopsy device with linear drive
US10010307B2 (en) 2005-08-10 2018-07-03 C. R. Bard, Inc. Single-insertion, multiple sampling biopsy device with linear drive
US10368849B2 (en) 2005-08-10 2019-08-06 C. R. Bard, Inc. Single-insertion, multiple sampling biopsy device usable with various transport systems and integrated markers
US11849928B2 (en) 2005-08-10 2023-12-26 C. R. Bard, Inc. Single-insertion, multiple sampling biopsy device usable with various transport systems and integrated markers
US8991239B2 (en) 2006-05-22 2015-03-31 3M Innovative Properties Company System and method for preparing samples
US10617399B2 (en) 2006-08-21 2020-04-14 C.R. Bard, Inc. Self-contained handheld biopsy needle
WO2008027152A3 (en) * 2006-08-25 2008-07-10 Hemostasis L L C A Ltd Liabili Hemostatic fibrous media
WO2008027152A2 (en) * 2006-08-25 2008-03-06 Hemostasis, L.L.C. A Limited Liability Company Hemostatic fibrous media
US11559289B2 (en) 2006-10-06 2023-01-24 Bard Peripheral Vascular, Inc. Tissue handling system with reduced operator exposure
US10172594B2 (en) 2006-10-06 2019-01-08 Bard Peripheral Vascular, Inc. Tissue handling system with reduced operator exposure
US10149664B2 (en) 2006-10-24 2018-12-11 C. R. Bard, Inc. Large sample low aspect ratio biopsy needle
US11583261B2 (en) 2006-10-24 2023-02-21 C. R. Bard, Inc. Large sample low aspect ratio biopsy needle
US8647574B2 (en) * 2007-11-20 2014-02-11 3M Innovative Properties Company Sample preparation container and method
US20100285520A1 (en) * 2007-11-20 2010-11-11 Halverson Kurt J Sample preparation for environmental sampling
US20100255484A1 (en) * 2007-11-20 2010-10-07 Halverson Kurt J Sample preparation container and method
US20100248215A1 (en) * 2007-11-20 2010-09-30 Halverson Kurt J Sample preparation container and method
US8685746B2 (en) 2007-11-20 2014-04-01 3M Innovative Properties Company Sample preparation container and method
US20100248216A1 (en) * 2007-11-20 2010-09-30 3M Innovative Properties Company Sample preparation container and method
US8563264B2 (en) 2007-11-20 2013-10-22 3M Innovative Properties Company Sample preparation for environmental sampling
US8569072B2 (en) 2007-11-20 2013-10-29 3M Innovative Properties Company Sample preparation container and method
US9775588B2 (en) * 2007-12-20 2017-10-03 C. R. Bard, Inc. Biopsy device
US10687791B2 (en) 2007-12-20 2020-06-23 C. R. Bard, Inc. Biopsy device
US20150018712A1 (en) * 2007-12-20 2015-01-15 C. R. Bard, Inc. Biopsy device
US20120024779A1 (en) * 2009-03-30 2012-02-02 Terumo Kabushiki Kaisha Surface treating agent, filtering material for filter, and blood treatment filter
US9186441B2 (en) * 2009-03-30 2015-11-17 Terumo Kabushiki Kaisha Surface treating agent, filtering material for filter, and blood treatment filter
US10575833B2 (en) 2009-08-12 2020-03-03 C. R. Bard, Inc. Biopsy apparatus having integrated thumbwheel mechanism for manual rotation of biopsy cannula
US9949726B2 (en) 2009-09-01 2018-04-24 Bard Peripheral Vscular, Inc. Biopsy driver assembly having a control circuit for conserving battery power
US11779316B2 (en) 2013-03-20 2023-10-10 Bard Peripheral Vascular, Inc. Biopsy device
US10285673B2 (en) 2013-03-20 2019-05-14 Bard Peripheral Vascular, Inc. Biopsy device
US20160074149A1 (en) * 2013-04-18 2016-03-17 National University Corporation Yamagata University Stent to be placed in bile duct and process for producing same
US10080640B2 (en) * 2013-04-18 2018-09-25 National University Corporation Yamagata University Stent to be placed in bile duct
US11345827B2 (en) 2013-06-07 2022-05-31 Nissan Chemical Industries, Ltd. Ion complex material having function of inhibiting adhesion of biological substance and method for manufacturing the same
US11534148B2 (en) 2013-11-05 2022-12-27 C. R. Bard, Inc. Biopsy device having integrated vacuum
US10456120B2 (en) 2013-11-05 2019-10-29 C. R. Bard, Inc. Biopsy device having integrated vacuum
CN111359036A (en) * 2014-10-02 2020-07-03 旭化成医疗株式会社 Living body-derived liquid treatment filter and filter device
US10669445B2 (en) 2014-12-10 2020-06-02 Nissan Chemical Industries, Ltd. Ion complex material having function of inhibiting adhesion of biological substance and method for manufacturing the same
US11179142B2 (en) 2015-05-01 2021-11-23 C.R. Bard, Inc. Biopsy device
US10463350B2 (en) 2015-05-01 2019-11-05 C. R. Bard, Inc. Biopsy device
US20180250636A1 (en) * 2015-11-05 2018-09-06 Eiken Kagaku Kabushiki Kaisha Discharge member with filter
US10807044B2 (en) * 2015-11-05 2020-10-20 Eiken Kagaku Kabushiki Kaisha Discharge member with filter
CN112351802A (en) * 2018-07-02 2021-02-09 旭化成医疗株式会社 Blood treatment bead
US11850345B2 (en) 2018-07-02 2023-12-26 Asahi Kasei Medical Co., Ltd. Beads for blood processing
US11850346B2 (en) 2018-07-02 2023-12-26 Asahi Kasei Medical Co., Ltd. Beads for blood processing

Also Published As

Publication number Publication date
JP2001323030A (en) 2001-11-20
EP1156067B1 (en) 2007-12-05
EP1156067A2 (en) 2001-11-21
EP1156067B8 (en) 2008-10-15
DE60131696D1 (en) 2008-01-17
JP4404445B2 (en) 2010-01-27
ATE380207T1 (en) 2007-12-15
DE60131696T2 (en) 2008-11-20
EP1156067A3 (en) 2003-07-16
ES2295083T3 (en) 2008-04-16
US20050148748A1 (en) 2005-07-07

Similar Documents

Publication Publication Date Title
EP1156067B1 (en) Blood filter with (meth)acrylic copolymers comprising glycolether and aminoalkyl units
US6590054B2 (en) Antithrombotic surface treating agent and medical apparatus
JP6118831B2 (en) Surface treatment agent, filter medium, and blood treatment filter
JP4271265B2 (en) Leukocyte removal filter material
US7410066B2 (en) Filter for selectively eliminating leukocytes
JP3176752B2 (en) Blood filtration material
US20030146150A1 (en) Novel leukapheretic filter
JP2003190276A (en) Virus and white blood cell selective removal method, removal material and remover
JPH05262656A (en) Filter for purifying platelet
JP2000245833A (en) Selectively removing material for white corpuscle
JP4082894B2 (en) Leukocyte selective removal filter material
JP4082893B2 (en) Leukocyte selective removal filter material with excellent sterilization resistance
JP2001310917A (en) Filter material for removing thrombocyte and leukocyte, and polymer for the filter
KR20140108921A (en) Multi-layer Filter for Removing Leukocytes and Preparation Method thereof
JP2001137337A (en) Filter for selectively removing leukocyte
JP2003070905A (en) Coating material
JP2004159769A (en) White blood cell selective adsorbent and filter for white blood cell selective removal

Legal Events

Date Code Title Description
AS Assignment

Owner name: TERUMO KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TANAKA, MASARU;TOKUNAGA, NORIFUMI;REEL/FRAME:011811/0186

Effective date: 20010314

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION