JPH0651060A - Underwater ground shape measuring device - Google Patents

Underwater ground shape measuring device

Info

Publication number
JPH0651060A
JPH0651060A JP4221975A JP22197592A JPH0651060A JP H0651060 A JPH0651060 A JP H0651060A JP 4221975 A JP4221975 A JP 4221975A JP 22197592 A JP22197592 A JP 22197592A JP H0651060 A JPH0651060 A JP H0651060A
Authority
JP
Japan
Prior art keywords
plane position
water
ultrasonic
measuring means
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4221975A
Other languages
Japanese (ja)
Inventor
Tatsuto Hagiwara
達人 萩原
Yasutaka Kuboi
康隆 窪井
Masaru Totsuka
勝 戸塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENGIYOUSHIYA KIKAI SEISAKUSHO KK
Dengyosha Machine Works Ltd
Original Assignee
DENGIYOUSHIYA KIKAI SEISAKUSHO KK
Dengyosha Machine Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENGIYOUSHIYA KIKAI SEISAKUSHO KK, Dengyosha Machine Works Ltd filed Critical DENGIYOUSHIYA KIKAI SEISAKUSHO KK
Priority to JP4221975A priority Critical patent/JPH0651060A/en
Publication of JPH0651060A publication Critical patent/JPH0651060A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To measure the water bottom ground shape precisely and quickly. CONSTITUTION:A servo control mechanism 12 with the base controlled by an X-axis and Y-axis inclination sensor so as to be directed always in the Z-axis direction is installed at the bottom of a float 10 while facing the water bottom. An ultrasonic wave depth measuring means 32 is mounted on this float 10, and a transmitter/receiver 42 for the ultrasonic waves is installed with the Z-axis direction directed to the base. A plane position measuring means 34 is furnished to measure the plane position of the float 10. The ultrasonic measuring means 32 and plane position measuring means 34 are operated synchronously, and the water depth data obtained by the means 32 and the plane position data obtained by the means 34 are subjected to processing by one central calculating means 46. Thus the ground shape at the water bottom is measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水深と平面位置を正確
に測ることができ、これらの両データから水底地形を正
確にしかも迅速に求めることができるようにした水底地
形測量装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water bottom topography surveying device capable of accurately measuring a water depth and a plane position and accurately and quickly obtaining the water bottom topography from both of these data. is there.

【0002】[0002]

【従来の技術】従来の水底地形測量方法は、水面上に浮
かべた小形船舶に超音波測深機を搭載して水深を測定
し、またトランシット等の測量機械を用いてこの小形船
舶の平面位置を陸上から測定する。そして、水深データ
と平面位置データとを重ねて水底地形を求めていた。
2. Description of the Related Art A conventional method for measuring the topography of a water bottom is to mount an ultrasonic sounding machine on a small ship floating on the water surface to measure the water depth, and to measure the plane position of this small ship using a surveying machine such as a transit. Measure from land. Then, the water depth data and the plane position data were overlapped to obtain the water bottom topography.

【0003】[0003]

【発明が解決しようとする課題】水面上に浮かべた小形
船舶に搭載された超音波測深機にあっては、風や波の影
響により船舶が揺れるのに伴ない、水底に向けて超音波
を発射するとともに水底で反射された超音波を受信する
ための送受波器も揺れてZ軸方向からずれてしまい、必
らずしも水底までの鉛直距離を測定することができな
い。
In an ultrasonic sounding machine mounted on a small ship floating on the water surface, ultrasonic waves are directed toward the bottom of the water as the ship sways due to the influence of wind and waves. The transmitter / receiver for receiving the ultrasonic waves reflected by the bottom of the water as it is emitted also shakes and shifts from the Z-axis direction, and the vertical distance to the bottom of the water cannot necessarily be measured.

【0004】また、小形船舶の平面位置を測定するため
に、トランシット等を扱える専門技術員が必要であり、
しかも平面位置の測定にかなりの作業時間が必要であ
る。そこで、水深が測定された時点と平面位置が測定さ
れた時点とが必らずしも一致せず、水底地形を求めるた
めのデータの処理が複雑で処理時間を多く必要とし、し
かも正確に求めることができない。
Further, in order to measure the plane position of a small ship, a professional engineer who can handle transits is required,
Moreover, it takes a considerable amount of work time to measure the plane position. Therefore, the time when the water depth is measured does not always coincide with the time when the plane position is measured, and the processing of the data for determining the water bottom topography is complicated and requires a lot of processing time. I can't.

【0005】そこで、浚渫工事等のごとく、浚渫作業に
より刻々と変化する水底地形をリアルタイムで測量する
ことは上記の従来の技術では困難であった。
Therefore, it is difficult for the above-mentioned conventional techniques to measure in real time the water bottom topography that is constantly changing due to dredging work such as dredging work.

【0006】本発明は、かかる事情に鑑みてなされたも
ので、水底地形が正確かつ迅速に測量できるようにした
水底地形測量装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a water bottom topography surveying device capable of accurately and quickly measuring the water bottom topography.

【0007】[0007]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明の水底地形測量装置は、X軸傾斜センサお
よびY軸傾斜センサで傾きを検出して常に基台がZ軸方
向に向くよう制御されるサーボ制御機構を、水面上を移
動し得る浮体に水底を臨むように配設し、前記基台にZ
軸方向に向けて設けられた送受波器を含む超音波測深手
段を前記浮体に設け、また前記浮体の平面位置を測定す
るための平面位置測定手段を設け、前記超音波測深手段
から出力される水深データと前記平面位置測定手段から
出力される平面位置データを1つの中央演算手段で演算
処理して水底地形を求めるように構成されている。
In order to achieve the above object, in the water bottom topographic survey apparatus of the present invention, the X-axis tilt sensor and the Y-axis tilt sensor detect tilts and the base is always oriented in the Z-axis direction. The servo control mechanism controlled as described above is disposed so as to face the bottom of the water to a floating body that can move on the water surface, and Z is attached to the base.
Ultrasonic sounding means including a transducer arranged in the axial direction is provided on the floating body, and plane position measuring means for measuring the plane position of the floating body is provided, and the ultrasonic sounding means outputs the result. The water depth data and the plane position data output from the plane position measuring means are arithmetically processed by one central arithmetic means to obtain the water bottom topography.

【0008】[0008]

【作 用】超音波測深手段の送受波器が、サーボ制御機
構により常にZ軸方向に向いているので、測深のための
超音波を鉛直方向に水底に向けて発射することができ、
水深が正確に測定される。そして、超音波測深手段から
出力される水深データと平面位置測定手段から出力され
る平面位置データがともに伝送されて1つの中央演算手
段で処理されるので、両データから迅速に水底地形が求
められる。
[Operation] Since the transducer of the ultrasonic sounding means is always oriented in the Z-axis direction by the servo control mechanism, ultrasonic waves for sounding can be emitted vertically toward the water bottom,
The water depth is measured accurately. Since the water depth data output from the ultrasonic sounding means and the plane position data output from the plane position measuring means are both transmitted and processed by one central processing means, the water bottom topography can be quickly obtained from both data. .

【0009】[0009]

【実施例】以下、本発明の一実施例を、図1および図2
を参照して説明する。図1は、本発明の水底地形測量装
置の一実施例のブロック構成図であり、図2は、図1の
サーボ制御機構の一例の外観斜視図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIGS.
Will be described with reference to. FIG. 1 is a block configuration diagram of an embodiment of the water bottom topographic survey device of the present invention, and FIG. 2 is an external perspective view of an example of the servo control mechanism of FIG.

【0010】図1および図2において、水底地形を測量
しようとする水面上に、人が乗船して操作する小形船舶
または遠隔制御等により水面上を任意に移動させ得る無
人船舶等の浮体10が浮かべられる。この浮体10の底
部には水底を臨んでサーボ制御機構12が適宜な水密カ
バー(図示せず)等を被せられて配設される。このサー
ボ制御機構12の一例は、図2に示すごとく、浮体10
に固定される第1の枠体14にX軸回りに揺動し得る第
2の枠体16が設けられ、この第2の枠体16にY軸回
りに揺動し得る基台18が設けられる。この基台18に
は、X軸傾斜センサ20とY軸傾斜センサ22が設けら
れ、これらのセンサ出力により第2の枠体16が第1の
サーボモータ24によりX軸回りの姿勢が制御され、基
台18が第2のサーボモータによりY軸回りの姿勢が制
御され、もって基台18が常にZ軸方向に向いているよ
うに制御される。
In FIGS. 1 and 2, a floating body 10 such as a small ship operated by a person on board or operated by an unmanned ship or the like, which can be arbitrarily moved on the water surface by remote control etc. Can be floated. A servo control mechanism 12 is disposed on the bottom of the floating body 10 so as to face the water bottom and is covered with an appropriate watertight cover (not shown). An example of the servo control mechanism 12 is, as shown in FIG.
The first frame 14 fixed to the first frame 14 is provided with a second frame 16 that can swing about the X axis, and the second frame 16 is provided with a base 18 that can swing about the Y axis. To be An X-axis tilt sensor 20 and a Y-axis tilt sensor 22 are provided on the base 18, and the attitudes of the second frame body 16 around the X-axis are controlled by the first servomotor 24 by the outputs of these sensors. The attitude of the base 18 around the Y axis is controlled by the second servomotor, and thus the base 18 is controlled so as to always face in the Z axis direction.

【0011】さらに、基台18に鉛直筒体28がZ軸方
向に向けて設けられ、この鉛直筒体28内に超音波を水
底に向けて発射させるとともに水底で反射された超音波
を受信する送受波器30が設けられる。そして、この送
受波器30を含んで構成される超音波測深手段32が浮
体10に搭載される。この超音波測深手段32は、測定
された水深Dの水深データをアンテナ32から適宜に陸
上設備のアンテナ48に向けて無線送信する。
Further, a vertical cylinder 28 is provided on the base 18 in the Z-axis direction, and an ultrasonic wave is emitted toward the water bottom in the vertical cylinder 28 and the ultrasonic wave reflected by the water bottom is received. A transceiver 30 is provided. Then, the ultrasonic sounding device 32 including the transducer 30 is mounted on the floating body 10. The ultrasonic sounding means 32 wirelessly transmits the measured water depth data of the water depth D from the antenna 32 to the antenna 48 of the onshore facility.

【0012】また、浮体10には、平面位置測定手段3
4の信号発生部36が搭載されている。この信号発生部
36は、アンテナ38より陸上装置の平面位置測定手段
34のアンテナ40に向けてトリガ信号を、例えば1秒
周期で送信する。これと同時に、浮体10の底部に設け
られた超音波送波器42により、陸上装置の2つの超音
波受波器44,46に向けて超音波を発射する。2つの
超音波受波器44,46は、距離Lだけ離して水面下に
設置される。さらに、信号発生部36は、同時に超音波
測深手段32に起動パルスを与えて、測深動作を行なわ
しめる。
The floating body 10 has a plane position measuring means 3
4 signal generators 36 are mounted. The signal generating unit 36 transmits a trigger signal from the antenna 38 to the antenna 40 of the plane position measuring unit 34 of the land-based device, for example, in a cycle of 1 second. At the same time, the ultrasonic wave transmitter 42 provided at the bottom of the floating body 10 emits ultrasonic waves toward the two ultrasonic wave receivers 44 and 46 of the land apparatus. The two ultrasonic wave receivers 44 and 46 are installed below the water surface with a distance L. Further, the signal generator 36 simultaneously gives an activation pulse to the ultrasonic sounding means 32 to perform sounding operation.

【0013】平面位置測定手段34では、トリガ信号を
受信してから2つの超音波受波器44,46が超音波を
受信するまでの時間をそれぞれに測定する。無線送信さ
れるトリガ信号の伝送時間は、水中を伝送される超音波
の伝送時間に比較して無視できるほど小さい。そこで、
水中での超音波の伝送速度および2つの超音波受波器4
4,46の配置された平面位置が既知であるため、浮体
10の平面位置を演算算出し得る。この平面位置測定手
段34で演算された平面位置データが中央演算装置46
に与えられる。さらに、超音波測深手段32で超音波の
発射から水底で反射された反射波を受信するまでの伝送
時間から測定された水深データがアンテナ32からアン
テナ48に向けて無線送信されて中央演算装置46に与
えられる。そこで、中央演算手段46は、同時に測定さ
れた平面位置データと水深データとから適宜に水底地形
を求めてその図形をCRT等(図示せず)により表示
し、またメモリ等にデータを記憶させる。
The plane position measuring means 34 respectively measures the time from the reception of the trigger signal to the reception of ultrasonic waves by the two ultrasonic wave receivers 44 and 46. The transmission time of the trigger signal wirelessly transmitted is so small that it can be ignored as compared with the transmission time of ultrasonic waves transmitted in water. Therefore,
Ultrasonic transmission speed in water and two ultrasonic receivers 4
Since the positions of the planes 4, 4 are known, the plane position of the floating body 10 can be calculated. The plane position data calculated by the plane position measuring means 34 is stored in the central processing unit 46.
Given to. Further, water depth data measured from the transmission time from the emission of ultrasonic waves by the ultrasonic sounding means 32 to the reception of the reflected wave reflected on the bottom of the water is wirelessly transmitted from the antenna 32 to the antenna 48, and the central processing unit 46. Given to. Therefore, the central processing means 46 appropriately finds the water bottom topography from the plane position data and water depth data measured at the same time, displays the figure on a CRT or the like (not shown), and stores the data in the memory or the like.

【0014】かかる構成において、信号発生部36の動
作により周期的にアンテナ38からトリガ信号が送信さ
れると、平面位置測定手段34は浮体10の平面位置を
測定し、これと同時に、超音波測深手段32は水深Dを
測定し、この水深データをアンテナ32から無線送信す
る。この水深測定において、サーボ制御機構12により
鉛直筒体28は浮体10の姿勢にかかわらず常にZ軸方
向の向きに維持されており、正確な水深Dが測定され
る。そこで、中央演算装置46は、同一時点で測定され
た平面位置データと水深データとから、正確かつ迅速に
水底地形を測量することができる。
In such a structure, when the trigger signal is periodically transmitted from the antenna 38 by the operation of the signal generator 36, the plane position measuring means 34 measures the plane position of the floating body 10, and at the same time, the ultrasonic sounding is performed. The means 32 measures the water depth D and wirelessly transmits this water depth data from the antenna 32. In this water depth measurement, the vertical cylinder 28 is always maintained in the Z-axis direction by the servo control mechanism 12 regardless of the posture of the floating body 10, and the accurate water depth D is measured. Therefore, the central processing unit 46 can accurately and promptly measure the water bottom topography from the plane position data and the water depth data measured at the same time.

【0015】なお、上記実施例にあっては、平面位置測
定が、浮体10に配設された超音波送波器42と2つの
距離を離して設けられた超音波受波器44,46とによ
りなされるが、これに限られずGPS衛星からの電波を
受信して平面位置を演算するGPS受信器を用いても良
い。また、信号発生部36よりトリガ信号を陸上装置へ
送信するものを実施例で示したが、陸上装置からトリガ
信号を送信して、これに基づいて超音波送波器42から
超音波が発射されるものであっても良い。
In the above embodiment, the plane position measurement is performed by using the ultrasonic wave transmitter 42 arranged on the floating body 10 and the ultrasonic wave receivers 44 and 46 arranged at two distances. However, the present invention is not limited to this, and a GPS receiver that receives radio waves from GPS satellites and calculates the plane position may be used. Further, although the one in which the trigger signal is transmitted from the signal generation unit 36 to the land device is shown in the embodiment, the trigger signal is transmitted from the land device and the ultrasonic wave is emitted from the ultrasonic wave transmitter 42 based on this. It may be one.

【0016】そして、平面位置測定と水深測定は、同期
してなされれば良く、超音波測定手段32から出力され
る起動パルスを信号発生部36に与えて動作を起動させ
ても良い。また、陸上装置からのトリガ信号により信号
発生部36とともに超音波測深手段32が動作するよう
にしても良い。さらに、超音波測深手段32で得られた
水深データを無線送信に限られず、有線により送信して
も良いことは勿論である。
The plane position measurement and the water depth measurement may be performed in synchronism with each other, and the activation pulse output from the ultrasonic measurement means 32 may be applied to the signal generator 36 to activate the operation. Further, the ultrasonic sounding means 32 may be operated together with the signal generator 36 by a trigger signal from the land-based device. Furthermore, it goes without saying that the water depth data obtained by the ultrasonic sounding means 32 is not limited to wireless transmission but may be transmitted by wire.

【0017】[0017]

【発明の効果】以上説明したように、本発明の水底地形
測量装置は構成されているので、以下のごとき格別な効
果を奏する。
As described above, since the water bottom topographic survey apparatus of the present invention is constructed, the following special effects are obtained.

【0018】水面上を移動する浮体が波や風の影響によ
って揺れても、サーボ制御機構の動作によって、送受波
器からは常に鉛直方向で水底に向けて超音波を発射する
ことができ、正確に水深を測定できる。そして、このよ
うに正確に測定された水深データと平面位置データを1
つの中央演算手段で処理するので、迅速に水底地形が求
められる。そこで、作業に伴ない水底地形が刻々と変化
する浚渫作業等にあっても、現時点の水底地形が容易に
把握でき、作業を正確かつ効率的に行なうことができ、
実用上極めて有益である。
Even if the floating body moving on the surface of the water shakes due to the influence of waves or wind, the operation of the servo control mechanism allows the ultrasonic wave to be constantly emitted vertically from the transducer to the bottom of the water. The water depth can be measured. Then, the water depth data and plane position data accurately measured in this way are
Since it is processed by two central processing means, water bottom topography is required promptly. Therefore, even in the case of dredging work, etc. where the water bottom topography changes from moment to moment, the current water bottom topography can be easily grasped, and the work can be performed accurately and efficiently.
It is extremely useful in practice.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の水底地形測量装置の一実施例のブロッ
ク構成図である。
FIG. 1 is a block configuration diagram of an embodiment of a water bottom topographic survey device of the present invention.

【図2】図1のサーボ制御機構の一例の外観斜視図であ
る。
FIG. 2 is an external perspective view of an example of the servo control mechanism of FIG.

【符号の説明】[Explanation of symbols]

10 浮体 12 サーボ制御機構 18 基台 20 X軸傾斜センサ 22 Y軸傾斜センサ 30 送受波器 32 超音波測深手段 34 平面位置測定手段 46 中央演算手段 10 Floating Body 12 Servo Control Mechanism 18 Base 20 X-axis Inclination Sensor 22 Y-axis Inclination Sensor 30 Transducer 32 Ultrasonic Sounding Means 34 Planar Position Measuring Means 46 Central Computing Means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 X軸傾斜センサおよびY軸傾斜センサで
傾きを検出して常に基台がZ軸方向に向くよう制御され
るサーボ制御機構を、水面上を移動し得る浮体に水底を
臨むように配設し、前記基台にZ軸方向に向けて設けら
れた送受波器を含む超音波測深手段を前記浮体に設け、
また前記浮体の平面位置を測定するための平面位置測定
手段を設け、前記超音波測深手段から出力される水深デ
ータと前記平面位置測定手段から出力される平面位置デ
ータを1つの中央演算手段で演算処理して水底地形を求
めるように構成したことを特徴とする水底地形測量装
置。
1. A servo control mechanism in which tilt is detected by an X-axis tilt sensor and a Y-axis tilt sensor so that the base is always oriented in the Z-axis direction so that a floating body movable on the water surface faces the bottom of the water. And the ultrasonic probe is provided on the base in the Z-axis direction.
Further, plane position measuring means for measuring the plane position of the floating body is provided, and the water depth data output from the ultrasonic sounding means and the plane position data output from the plane position measuring means are calculated by one central processing means. A bottom terrain surveying device, characterized in that it is configured to process the bottom topography.
JP4221975A 1992-07-29 1992-07-29 Underwater ground shape measuring device Pending JPH0651060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4221975A JPH0651060A (en) 1992-07-29 1992-07-29 Underwater ground shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4221975A JPH0651060A (en) 1992-07-29 1992-07-29 Underwater ground shape measuring device

Publications (1)

Publication Number Publication Date
JPH0651060A true JPH0651060A (en) 1994-02-25

Family

ID=16775107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4221975A Pending JPH0651060A (en) 1992-07-29 1992-07-29 Underwater ground shape measuring device

Country Status (1)

Country Link
JP (1) JPH0651060A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1156067A2 (en) 2000-05-17 2001-11-21 Terumo Kabushiki Kaisha (Meth)Acrylic Copolymers comprising glycolether and aminoalkyl units and blood filter using the same
JP2006208300A (en) * 2005-01-31 2006-08-10 Hitachi Ltd System for measuring bed profile
JP2012150111A (en) * 2011-01-19 2012-08-09 Korea Inst Of Geoscience & Mineral Resources Boomer for sea elastic wave exploration
WO2022135618A1 (en) * 2021-03-25 2022-06-30 中国长江三峡集团有限公司 Method for constructing depth sounding reference field of large reservoir, and use thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59113177A (en) * 1982-12-10 1984-06-29 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Method of setting metal layer on substrate
JPS63286706A (en) * 1987-05-20 1988-11-24 Toa Harbor Works Co Ltd Method for measuring water bottom depth
JPH02310486A (en) * 1989-05-25 1990-12-26 Furuno Electric Co Ltd Ultrasonic wave transmitter/receiver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59113177A (en) * 1982-12-10 1984-06-29 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Method of setting metal layer on substrate
JPS63286706A (en) * 1987-05-20 1988-11-24 Toa Harbor Works Co Ltd Method for measuring water bottom depth
JPH02310486A (en) * 1989-05-25 1990-12-26 Furuno Electric Co Ltd Ultrasonic wave transmitter/receiver

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1156067A2 (en) 2000-05-17 2001-11-21 Terumo Kabushiki Kaisha (Meth)Acrylic Copolymers comprising glycolether and aminoalkyl units and blood filter using the same
JP2006208300A (en) * 2005-01-31 2006-08-10 Hitachi Ltd System for measuring bed profile
JP2012150111A (en) * 2011-01-19 2012-08-09 Korea Inst Of Geoscience & Mineral Resources Boomer for sea elastic wave exploration
WO2022135618A1 (en) * 2021-03-25 2022-06-30 中国长江三峡集团有限公司 Method for constructing depth sounding reference field of large reservoir, and use thereof
GB2611676A (en) * 2021-03-25 2023-04-12 China Three Gorges Corp Method for constructing depth sounding reference field of large reservoir, and use thereof

Similar Documents

Publication Publication Date Title
US20220252708A1 (en) Sonar transducer having a gyroscope
US7512036B2 (en) Underwater acoustic positioning system and method
NO307014B1 (en) Procedure for generating a 3D image
CN110294080A (en) A method of underwater accurate operation is realized using ultra-short baseline
JP3615737B2 (en) System and method for detecting position of moving object in water
USH1618H (en) Coherent arrays of drifting sonobuoys
JP2012108122A (en) Submarine audio/video system
CN108227744A (en) A kind of underwater robot location navigation system and positioning navigation method
JPH0651060A (en) Underwater ground shape measuring device
JP3358077B2 (en) Method and apparatus for installing and submerging underwater structures
KR20150122446A (en) Coastal seafloor topography surveying apparatus using the jet ski
JPS61262674A (en) Apparatus for measuring position in water
JP2000297998A (en) Apparatus and method for detecting mine
JPH1090017A (en) Multi-purpose pod floating at fixed point of sea level
JP2001074834A (en) Method for measuring underwater structure
KR102123232B1 (en) Apparatus for detecting depth of water using samll SONAR
CN108427113A (en) A kind of sea ice thickness detecting system of unmanned plane
JP3234889B2 (en) Bathymetry system using GPS kinematic positioning method
JPH01216288A (en) Method for surveying submarine terrain
JPH09184720A (en) Geodetic survey method and device therefor
JPH10332825A (en) Method and system for surveying topography of seabed
JP3135364B2 (en) Measuring device for posture and position of moving object
RU2786847C2 (en) Method for determination of spatial position of pipeline at underwater transition section
Schneider et al. DESIGNING A HYDROACOUSTIC RANGE SENSOR OF THE UNDERWATER ROBOT NAVIGATION COMPLEX
JP2885451B2 (en) Measuring device for block installation