TW201310317A - Touch sensitive device and portable electronic apparatus - Google Patents

Touch sensitive device and portable electronic apparatus Download PDF

Info

Publication number
TW201310317A
TW201310317A TW101125847A TW101125847A TW201310317A TW 201310317 A TW201310317 A TW 201310317A TW 101125847 A TW101125847 A TW 101125847A TW 101125847 A TW101125847 A TW 101125847A TW 201310317 A TW201310317 A TW 201310317A
Authority
TW
Taiwan
Prior art keywords
electrode
touch screen
detection value
self
screen control
Prior art date
Application number
TW101125847A
Other languages
Chinese (zh)
Other versions
TWI494833B (en
Inventor
zhen-gang Li
Chen Huang
Yun Yang
Original Assignee
Byd Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Byd Co Ltd filed Critical Byd Co Ltd
Publication of TW201310317A publication Critical patent/TW201310317A/en
Application granted granted Critical
Publication of TWI494833B publication Critical patent/TWI494833B/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Position Input By Displaying (AREA)
  • Electronic Switches (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

A touch sensitive device and a portable electronic apparatus are provided. The touch sensitive device comprises: a substrate; a plurality of induction units not intersected with each other and formed on the substrate; and a touch screen control chip. Each induction unit comprises a first electrode, and a second electrode disposed opposite to the first electrode. With the touch sensitive device, a signal-to-noise ratio of a circuit is effectively increased, a noise of the circuit is reduced, and a linearity of an induction is improved.

Description

觸控裝置和可攜式電子設備Touch devices and portable electronic devices

本發明涉及電子設備設計及製造技術領域,特別涉及一種可攜式電子設備以及一種觸控裝置。
The present invention relates to the field of electronic device design and manufacturing technology, and in particular, to a portable electronic device and a touch device.

目前觸摸螢幕的應用範圍從以往的銀行自動櫃員機,工控電腦等小眾商用市場,迅速擴展到手機,PDA(個人數位助理),GPS(全球定位系統),PMP(MP3,MP4等),甚至平板電腦等大眾消費電子領域。用於觸摸螢幕具有觸控操作簡單、便捷、人性化的優點,因此觸摸螢幕有望成為人機互動的最佳介面而迅速在可攜式設備中得到了廣泛應用。
電容觸摸螢幕通常被分為自電容和互電容兩類。如第1圖所示,為現有技術中常見的一種自電容觸摸螢幕的結構圖。該自電容觸摸螢幕主要有雙層的菱形結構感應單元100’和200’,其檢測原理是對X軸和Y軸分別掃描,如果檢測到某個交叉點的電容變化超出了預設範圍,則將該行和列的交叉點做為觸摸座標。雖然該自電容觸摸螢幕的線性度較好,但是經常有鬼點出現,難以實現多點觸摸。此外,由於採用雙層屏,也會導致結構及成本大幅增加,並且菱形結構在電容變化量很小的情況下會出現座標飄移,受外界干擾影響大。
如第2a圖所示,為現有技術中常見的另一種自電容觸摸螢幕的結構圖。該自電容觸摸螢幕採用三角形圖形屏結構。該自電容觸摸螢幕包括基板300’、設置在基板300’之上的多個三角形感應單元400’、和每個三角形感應單元400’相連的多個電極500’。如第2b圖所示,為三角形自電容觸摸螢幕的檢測原理。如圖所示,橢圓表示手指,S1、S2表示手指與兩個三角形感應單元的接觸面積。假設座標原點在左下角,則橫坐標X=S2/(S1+S2)*P,其中,P為解析度。當手指向右移動時,由於S2不是線性增大,所以X座標存在一個偏差。從上述原理可以看出,目前的三角形感應單元是單端檢測,即只從一個方向檢測,然後通過演算法算出兩個方向的座標。雖然該自電容觸摸螢幕結構更為簡單,但並沒有針對螢幕的電容感應進行優化,電容變化量小,從而導致信噪比不夠。此外,由於該感應單元為三角形,當手指橫向移動時面積不是線性增大,因此線性度較差,導致了座標計算發生偏移,線性度不夠好。
此外,該電容感應單元輸出電容變化量很小,達到飛法級,其電纜雜散電容的存在,對測量電路提出了更高的要求。而且,雜散電容會隨溫度、位置、內外電場分佈等諸多因素影響而變化,干擾甚至淹沒被測電容信號。此外,對於單層電容來說,由於Vcom電平信號的影響會對感應電容形成嚴重的干擾,其中,Vcom電平信號是為了防止LCD螢幕液晶老化而不停翻轉的電平信號。
At present, the application range of touch screens has been rapidly expanded from mobile phone ATMs such as bank ATMs and industrial computer computers to mobile phones, PDAs (personal digital assistants), GPS (Global Positioning System), PMP (MP3, MP4, etc.) and even tablets. Computer and other fields of mass consumer electronics. The touch screen has the advantages of simple, convenient and user-friendly touch operation, so the touch screen is expected to be the best interface for human-computer interaction and has been widely used in portable devices.
Capacitive touch screens are usually divided into two types: self-capacitance and mutual capacitance. As shown in FIG. 1, it is a structural diagram of a self-capacitive touch screen that is common in the prior art. The self-capacitive touch screen mainly has double-layered diamond-shaped structure sensing units 100' and 200'. The detection principle is to scan the X-axis and the Y-axis respectively. If the capacitance change of a certain intersection is detected beyond the preset range, then Use the intersection of the row and column as the touch coordinates. Although the self-capacitance touch screen has a good linearity, there are often ghost points that make it difficult to achieve multi-touch. In addition, due to the use of a double-layer screen, the structure and cost are greatly increased, and the rhombic structure may have coordinate shifts when the amount of capacitance change is small, which is greatly affected by external interference.
As shown in Fig. 2a, it is a structural diagram of another self-capacitive touch screen that is common in the prior art. The self-capacitive touch screen adopts a triangular graphic screen structure. The self-capacitive touch screen includes a substrate 300', a plurality of triangular sensing units 400' disposed above the substrate 300', and a plurality of electrodes 500' connected to each of the triangular sensing units 400'. As shown in Figure 2b, it is the detection principle of the triangular self-capacitance touch screen. As shown, the ellipse represents the finger, and S1, S2 represent the contact area of the finger with the two triangular sensing units. Assuming that the coordinate origin is in the lower left corner, the abscissa X = S2 / (S1 + S2) * P, where P is the resolution. When the finger moves to the right, there is a deviation in the X coordinate since S2 does not increase linearly. It can be seen from the above principle that the current triangular sensing unit is single-ended detection, that is, detecting only from one direction, and then calculating the coordinates in two directions by an algorithm. Although the self-capacitive touch screen structure is simpler, it is not optimized for the capacitive sensing of the screen, and the capacitance variation is small, resulting in insufficient signal-to-noise ratio. In addition, since the sensing unit is triangular, the area does not increase linearly when the finger moves laterally, so the linearity is poor, resulting in offset calculation of the coordinates, and the linearity is not good enough.
In addition, the capacitance sensing unit has a small amount of change in the output capacitance, reaching the flying level, and the presence of the stray capacitance of the cable puts higher requirements on the measuring circuit. Moreover, the stray capacitance will vary with temperature, position, internal and external electric field distribution and other factors, and even interfere with the measured capacitance signal. In addition, for a single-layer capacitor, the influence of the Vcom level signal may cause serious interference to the sensing capacitor, wherein the Vcom level signal is a level signal for preventing the LCD screen from aging and not flipping.

本發明的目的旨在至少解決上述技術缺陷之一,特別是解決或避免出現現有自電容觸摸螢幕中的上述缺點。
本發明第一方面提出了一種觸控裝置,包括觸摸螢幕檢測設備和觸摸螢幕控制晶片。所述觸摸螢幕檢測包括基板和形成在所述基板上的多個不相交的感應單元,其中,每個所述感應單元包括:第一部分;不相交的第二部分和第三部分,所述第二部分一端與所述第一部分的一端相連,所述第三部分的一端與所述第一部分的另一端相連,且所述第二部分的另一端具有第一電極,所述第三部分的另一端具有第二電極,其中,每個第一電極和第二電極均與觸摸螢幕控制晶片的對應管腳相連;所述觸摸螢幕控制晶片中的一部分管腳與所述多個感應單元的第一電極相連,所述觸摸螢幕控制晶片中的另一部分管腳與所述多個感應單元的第二電極相連,且所述觸摸螢幕控制晶片向所述多個感應單元的第一電極和/或第二電極施加電平信號,所述電平信號在感應單元被觸摸時向所述感應單元產生的自電容充電,且所述觸摸螢幕控制晶片在檢測到所述多個感應單元中一個或部分被觸摸時,計算被觸摸的感應單元中所述第一電極至所述自電容的第一電阻與所述第二電極至所述自電容的第二電阻之間的比例關係,以及根據所述比例關係及被觸摸的所述感應單元計算觸摸點座標。
本發明第二方面還提出了一種觸摸螢幕檢測設備,包括:基板;和形成在所述基板上的多個不相交的感應單元,其中,每個所述感應單元包括:第一部分;不相交的第二部分和第三部分,所述第二部分一端與所述第一部分的一端相連,所述第三部分的一端與所述第一部分的另一端相連,且所述第二部分的另一端具有第一電極,所述第三部分的另一端具有第二電極,其中,每個第一電極和第二電極均與觸摸螢幕控制晶片的對應管腳相連。
本發明第三方面還提出了一種可攜式電子設備,包括如上所述的觸控裝置或觸摸螢幕檢測設備。
本發明的觸摸螢幕檢測設備中的感應單元採用雙端檢測,即感應單元的兩端均具有電極,且每個電極均與觸摸螢幕控制晶片的對應管腳相連,在進行觸摸檢測時通過感應單元自身即可實現對觸摸點的定位。
此外,本發明的感應單元採用類似門形的結構,不僅結構簡單,便於製作,所有引線都在同一邊,設計方便,減少銀漿成本並且製作容易,對減少生產成本有很大幫助。
更為重要的是,本發明通過計算第一電阻和第二電阻之間比例實現觸摸位置的確定,因此相對於目前的菱形或三角形設計來說,由於在確定觸摸位置時,無需計算自電容的大小,且自電容的大小不會影響觸摸位置的精度,從而提高了測量精度,改善了線性度。此外,由於本發明實施例的第一部分、第二部分和第三部分中任意一個均可為形狀規則的矩形,因此相對於目前的菱形或三角形等不規則的形狀來說,也可以進一步地提高線性度。
本發明通過對感應單元兩端的電極施加電平信號,如果該感應單元被觸碰,手指或其他觸摸物則會和感應單元形成自電容,因此本發明通過施加的電平信號可對該自電容進行充電,並根據第一電阻和第二電阻之間的比例關係確定觸摸位置。例如在本發明的一個實施例中,第一電阻和第二電阻之間的比例關係根據在對所述自電容充電和/或放電時,從所述第一電極和/或第二電極進行檢測獲得的第一檢測值和第二檢測值之間的比例關係計算得到。因此從第一電極和/或第二電極檢測該自電容充電和/或放電時產生的第一檢測值和第二檢測值。這樣,通過第一檢測值和第二檢測值就能夠反應觸摸點位於該感應單元的位置,從而確定觸摸點在觸摸螢幕的位置。
本發明提出了一種新穎的自電容檢測方式,在感應單元被觸摸時,觸摸點就可將該感應單元分為兩個電阻,從而在進行自電容檢測的同時考慮這兩個電阻就可以確定觸摸點在該感應單元上的位置。本發明實施例的結構簡單,並且對於一個感應單元來說,可從其的第一電極和/或第二電極進行充電或放電,並在充電和/或放電時進行檢測,不僅能夠降低RC常數,節省時間提高效率,並且還能夠保證座標不會偏移。此外,本發明實施例還可以有效提高電路的性噪比,降低電路雜訊,提高感應線性度。並且,在檢測過程中由於對被觸摸的感應單元進行充電,因此其中會產生小電流,能夠很好地消除Vcom電平信號對觸摸螢幕中感應單元產生的自電容的影響,因此可以相應地消除螢幕遮罩層及相關工序,從而可以在增強了抗干擾能力的同時進一步降低成本。
本發明附加的方面和優點將在下面的描述中部分給出,部分將從下面的描述中變得明顯,或通過本發明的實踐瞭解到。
It is an object of the present invention to address at least one of the above-mentioned technical deficiencies, and in particular to solve or avoid the above-mentioned disadvantages of existing self-capacitive touch screens.
A first aspect of the present invention provides a touch device including a touch screen detecting device and a touch screen control chip. The touch screen detection includes a substrate and a plurality of disjoint sensing units formed on the substrate, wherein each of the sensing units includes: a first portion; a disjoint second portion and a third portion, the One end of the two parts is connected to one end of the first part, one end of the third part is connected to the other end of the first part, and the other end of the second part has a first electrode, and the other part of the third part One end has a second electrode, wherein each of the first electrode and the second electrode is connected to a corresponding pin of the touch screen control wafer; the touch screen controls a part of the pins in the wafer and the first of the plurality of sensing units An electrode is connected, another portion of the touch screen control wafer is connected to the second electrode of the plurality of sensing units, and the touch screen controls the wafer to the first electrode and/or the first plurality of sensing units The two electrodes apply a level signal that charges the self-capacitance generated by the sensing unit when the sensing unit is touched, and the touch screen control wafer detects the plurality of Calculating between the first electrode of the touched sensing unit to the first resistance of the self-capacitance and the second resistance of the second electrode to the second resistance of the self-capacitance when one or a portion of the sensing units are touched a proportional relationship, and calculating a touch point coordinate according to the proportional relationship and the touched sensing unit.
A second aspect of the present invention also provides a touch screen detecting apparatus comprising: a substrate; and a plurality of disjoint sensing units formed on the substrate, wherein each of the sensing units comprises: a first portion; disjoint a second portion and a third portion, one end of the second portion being connected to one end of the first portion, one end of the third portion being connected to the other end of the first portion, and the other end of the second portion having The first electrode has a second electrode at the other end, wherein each of the first electrode and the second electrode is connected to a corresponding pin of the touch screen control wafer.
A third aspect of the present invention also provides a portable electronic device comprising the touch device or the touch screen detecting device as described above.
The sensing unit in the touch screen detecting device of the present invention adopts double-end detection, that is, the sensing unit has electrodes at both ends, and each electrode is connected to a corresponding pin of the touch screen control chip, and passes through the sensing unit when performing touch detection. The positioning of the touch points can be achieved by itself.
In addition, the sensing unit of the present invention adopts a gate-like structure, which is not only simple in structure, but also easy to manufacture. All the leads are on the same side, the design is convenient, the cost of the silver paste is reduced, and the production is easy, which greatly helps to reduce the production cost.
More importantly, the present invention achieves the determination of the touch position by calculating the ratio between the first resistance and the second resistance, so that compared to the current diamond or triangle design, since the touch position is determined, there is no need to calculate the self-capacitance. The size and the size of the self-capacitance do not affect the accuracy of the touch position, thereby improving measurement accuracy and improving linearity. In addition, since any one of the first portion, the second portion, and the third portion of the embodiment of the present invention may be a rectangle having a regular shape, it may be further improved with respect to an irregular shape such as a current rhombus or a triangle. Linearity.
The present invention applies a level signal to the electrodes at both ends of the sensing unit. If the sensing unit is touched, a finger or other touch object forms a self-capacitance with the sensing unit. Therefore, the present invention can apply the self-capacitance by applying a level signal. Charging is performed, and the touch position is determined according to a proportional relationship between the first resistance and the second resistance. For example, in one embodiment of the invention, the proportional relationship between the first resistance and the second resistance is detected from the first electrode and/or the second electrode when charging and/or discharging the self-capacitance. The proportional relationship between the obtained first detected value and the second detected value is calculated. The first detected value and the second detected value generated when the self-capacitance is charged and/or discharged are thus detected from the first electrode and/or the second electrode. In this way, the position of the touch point at the sensing unit can be reflected by the first detection value and the second detection value, thereby determining the position of the touch point on the touch screen.
The invention provides a novel self-capacitance detection method. When the sensing unit is touched, the touch point can divide the sensing unit into two resistors, so that the two resistors can be determined while taking the self-capacitance detection. The position on the sensing unit. The structure of the embodiment of the invention is simple, and for a sensing unit, charging or discharging can be performed from the first electrode and/or the second electrode thereof, and detecting when charging and/or discharging, not only can the RC constant be lowered Save time and increase efficiency, and also ensure that coordinates are not offset. In addition, the embodiment of the invention can effectively improve the performance-to-noise ratio of the circuit, reduce circuit noise, and improve the linearity of the induction. Moreover, since the touched sensing unit is charged during the detection process, a small current is generated therein, which can well eliminate the influence of the Vcom level signal on the self-capacitance generated by the sensing unit in the touch screen, and thus can be eliminated accordingly. The screen mask layer and related processes can further reduce the cost while enhancing the anti-interference ability.
The additional aspects and advantages of the invention will be set forth in part in the description which follows.

下面詳細描述本發明的實施例,所述實施例的示例在附圖中示出,其中自始至終相同或類似的標號表示相同或類似的元件或具有相同或類似功能的元件。下面通過參考附圖描述的實施例是示例性的,僅用於解釋本發明,而不能解釋為對本發明的限制。
本發明實施例提出了一種新穎的自電容檢測方式,在感應單元被觸摸時,觸摸點可以將該感應單元分為兩個電阻,在進行自電容檢測的同時考慮這兩個電阻就可以確定觸摸點在該感應單元上的位置。如第3圖所示,為本發明實施例觸控裝置的檢測原理示意圖。當手指觸摸該感應單元時,相當於將該感應單元分割為兩個電阻,這兩個電阻的阻值與觸摸點的位置相關。例如,如圖所述,當觸摸點與第一電極210較近時,則電阻R1就較小,而電阻R2就較大;反之,當觸摸點與第二電極220較近時,則電阻R1就較大,而電阻R2就較小。
因此,本發明通過對電阻R1和R2的檢測就可以確定觸摸點在該感應單元上的位置。在本發明的實施例中,可通過多種方式檢測電阻R1和R2,例如可通過檢測第一電極和第二電極的電流檢測值、自電容檢測值、電平信號檢測值和電荷變化量中的一種或多種,從而根據這些檢測值獲得電阻R1和R2。另外,在本發明的實施例中,檢測可在充電時進行(即獲得第一充電檢測值和第二充電檢測值),也可在放電時進行(即獲得第一放電檢測值和第二放電檢測值)。
此外,在充電和放電時進行的檢測可以採用多種方式。但是需要說明的是,充電、放電或者檢測中至少有一個步驟是對第一電極和第二電極進行的,這樣才能夠獲得反應第一電阻和第二電阻之間差值的兩個檢測值,即第一檢測值和第二檢測值。也就是說,在充電、放電或檢測時需要有電流經過第一電阻和第二電阻,這樣檢測到的第一檢測值和第二檢測值才能夠反應第一電阻和第二電阻之間的差值。
在本發明的實施例中,通常需要充兩次電(包括同時對第一電極和第二電極充電的情況),以及兩次檢測。在一些實施例中,還可能會進行兩次放電。在以下的實施例中均是進行兩次充電及兩次檢測,在以下的實施例中不再贅述。在此需要說明的是,進行兩次充電及兩次檢測僅是本發明實施例的一種方案,演算法相對比較簡單。然而本領域技術人員也可根據上述思想增加充電及檢測的次數,例如可進行三次充電和檢測,之後根據第一次的充電檢測值和第二次的充電檢測值計算第一電阻,再根據第一次的充電檢測值和第三次的充電檢測值計算第二電阻。
具體地,本發明包括但不限於以下幾種測量方式進行檢測:
1、先向感應單元的第一電極和第二電極施加電平信號以對自電容充電(如果該感應單元被觸摸則就會產生自電容);接著從第一電極和/或第二電極進行充電檢測以獲得第一充電檢測值和第二充電檢測值。在該實施例中,由於充電是從第一電極和第二電極進行的,因此對於檢測來說既可以從第一電極進行檢測,也可以從第二電極進行檢測,或者也可從第一電極和第二電極分別進行檢測。
還需要說明的是,在該實施例中,對第一電極和第二電極的充電可同時進行,也可分別進行,例如在第一電極和第二電極同時施加相同的電平信號以對自電容進行充電,在其他實施例中,第一電極和第二電極施加的電平信號也可以不同;或者,也可以先在第一電極上施加一個電平信號,之後再在第二電極上施加同一個電平信號或另一個電平信號。同樣地,進行檢測時既可以同時進行,也可分別進行。在以下實施例中,充電、放電或檢測均可同時進行,或者分別進行,在此不再贅述。
2、向所述感應單元的第一電極或第二電極分別兩次施加電平信號以對所述自電容進行兩次充電;接著在每次充電之後從所述第一電極和/或第二電極進行充電檢測以獲得所述第一充電檢測值和第二充電檢測值。在該實施例中,由於充電是從第一電極或第二電極進行的,因此在檢測時需要從第一電極和第二電極分別進行檢測,其中,檢測可同時進行,也可分別進行。
此外,在本發明的實施例中,還可以在第一電極進行兩次充電,並從第一電極進行兩次檢測,或者,從第二電極進行兩次充電,在第二電極進行兩次檢測。只要是,在兩次充電時,分別將另一個電極接地或接高阻以改變另一個電極的狀態。例如當向感應單元的第一電極分別兩次施加電平信號以對自電容進行兩次充電時,其中,兩次充電中的一次將所述第二電極接地,另一次將所述第二電極接為高阻;當向感應單元的第二電極分別兩次施加電平信號以對自電容進行兩次充電時,兩次充電中的一次將所述第一電極接地,另一次將所述第一電極接為高阻。
這樣即使是在第一電極進行了兩次充電,由於第二電極狀態的改變,也能夠在第一電極進行兩次檢測,以獲得能夠反應第一電阻R1和第二電阻R2之間比例關係的第一檢測值和第二檢測值。
3、向感應單元的第一電極和第二電極施加電平信號以對自電容充電;接著控制第一電極和/或第二電極接地以對自電容放電;之後從第一電極和/或第二電極進行放電檢測以獲得所述第一放電檢測值和第二放電檢測值。在該實施例中,由於對自電容充電是從第一電極和第二電極進行的,因此放電或檢測就可從第一電極和/或第二電極進行。具體地,例如可同時向第一電極和第二電極施加電平信號以對自電容進行充電,或者也可不同時施加。在放電時兩次放電可均將第一電極接地,或者均將第二電極接地。
4、向感應單元的第一電極或第二電極施加電平信號以對自電容充電;接著分別控制第一電極和第二電極接地以對自電容放電;之後分別從第一電極和/或第二電極進行放電檢測以獲得第一放電檢測值和第二放電檢測值。在該實施例中,由於對自電容放電是從第一電極和第二電極進行的,因此充電或檢測就可從第一電極和/或第二電極進行。在該實施例中,兩次充電也可均用第一電極,而將第二電極分別接地或接為高阻。同樣地,兩次充電也可均用第二電極,而將第一電極分別接地或接為高阻。
5、向感應單元的第一電極或第二電極施加電平信號以對自電容充電;接著分別控制第一電極或第二電極接地以對自電容放電,之後分別從第一電極和第二電極進行放電檢測以獲得第一放電檢測值和第二放電檢測值。在該實施例中,由於對自電容檢測是從第一電極和第二電極進行的,因此充電或放電就可從第一電極和/或第二電極進行。在該實施例中,兩次充電也可均用第一電極,而將第二電極分別接地或接為高阻。同樣地,兩次充電也可均用第二電極,而將第一電極分別接地或接為高阻。
或者,在上述實施例的基礎之上,還可以在充電時進行一次檢測以獲得第一充電檢測值,在放電時進行第二次檢測以獲得第二放電檢測值,再根據第一充電檢測值和第二放電檢測值獲得第一電阻和第二電阻之間的比例關係。
需要說明的是,在本發明的實施例中,上述第一電極和第二電極的功能相同,且二者可以互換,因此在上述實施例中,既可以從第一電極檢測也可以從第二電極檢測,只要能滿足在充電、放電或檢測時需要有電流經過第一電阻和第二電阻這一要求即可。
從上述描述中可以看出,對於本發明的上述充電及檢測方式有很多種變化,但本發明的核心就是根據第一電阻和第二電阻之間的關係,例如比例關係或者其他關係來確定觸摸點的位置。進一步地,該第一電阻和第二電阻之間的關係需要通過自電容的充電和/或放電來檢測。如果感應單元沒有被觸摸,則就不會與手產生自電容,因此檢測到自電容的資料會很小,不滿足觸摸的判斷條件,對於此本發明實施例中會不斷掃描,等待手指觸摸到感應單元之後才開始計算,在此不再贅述。
在本發明的實施例中,可以以掃描的方式依次向多個感應單元施加相應的電壓,同時在檢測時也可以以掃描的方式依次進行檢測。
另外還需要說明的是,上述檢測方式僅為本發明的一些優選方式,本領域技術人員還可根據上述思想進行擴展或修改,這些均應包含在本發明的保護範圍之內。
如第4a圖所示,為本發明實施例觸摸螢幕檢測設備結構圖。該觸控裝置包括觸摸螢幕檢測設備和觸摸螢幕控制晶片,所述觸摸螢幕檢測設備包括基板100、形成在所述基板上的多個不相交的感應單元200。且多個感應單元200的每個均具有第一電極210和第二電極220。在本發明的實施例中,基板100為單層基板。在該實施例中,該感應單元200可為門形,且多個感應單元200中每個感應單元200的長度不同,多個感應單元200之間相互嵌套。其中,每個所述感應單元包括第一部分230、不相交的第二部分240和第三部分250,並且第二部分240一端與第一部分230的一端相連,第三部分250的一端與第一部分230的另一端相連,第二部分240的另一端具有第一電極210,且第三部分250的另一端具有第二電極220。優選地,第一部分230與基板100的第一邊110平行,第二部分240和第三部分250分別與基板100的第二邊120平行,且第二部分240一端與第一部分230的一端相連,第三部分250的一端與第一部分230的另一端相連。感應單元200的第二部分240的另一端具有第一電極210,第三部分250的另一端具有第二電極220,其中,每個第一電極210和第二電極220均與觸摸螢幕控制晶片的對應的管腳相連,即所述觸摸螢幕控制晶片中的一部分管腳與所述多個感應單元的第一電極210相連,所述觸摸螢幕控制晶片中的另一部分管腳與所述多個感應單元的第二電極220相連。
在本發明的實施例中,所謂相互嵌套是指外側的感應單元部分地包圍內側的感應單元,例如如第4a圖所示,這樣能夠在保證精度的同時達到較大的覆蓋率,並且降低運算的複雜度,提高觸摸螢幕的回應速度。當然本領域技術人員還可根據第4a圖的思想採用其他相互嵌套的方式排列感應單元。在本發明的一個實施例中,每個感應單元200的第一部分230與其他感應單元200的第一部分230平行,每個感應單元200的第二部分240與其他感應單元200的第二部分240平行,每個感應單元200的第三部分250與其他感應單元200的第三部分250平行。在本發明的一個實施例中,感應單元200的第一部分230、第二部分240和第三部分250中至少一個為矩形,優選地,第一部分230、第二部分240和第三部分250均為矩形。在該實施例中,由於矩形結構圖形規則,因此在手指橫向或縱向移動時線性度好,此外,兩個矩形結構之間的間距相同,便於計算。
本發明實施例的觸摸螢幕檢測設備中的感應單元採用雙端檢測,即感應單元的兩端均具有電極,且每個電極均與觸摸螢幕控制晶片的對應管腳相連,在進行觸摸檢測時通過感應單元自身即可實現對觸摸點的定位。此外,本發明實施例中的感應單元採用類似門形的結構,不僅結構簡單,便於製作,所有引線都在同一邊,設計方便,減少銀漿成本並且製作容易,對減少生產成本有很大幫助。
更為重要的是,本發明通過計算第一電阻和第二電阻之間比例實現觸摸位置的確定,因此相對於目前的菱形或三角形設計來說,由於在確定觸摸位置時,無需計算自電容的大小,且自電容的大小不會影響觸摸位置的精度,對自電容檢測精度的依賴降低,從而提高了測量精度,改善了線性度。此外,由於本發明實施例的第一部分、第二部分和第三部分中任意一個均可為形狀規則的矩形,因此相對於目前的菱形或三角形等不規則的形狀來說,也可以進一步地提高線性度。
在本發明的一個實施例中,每個感應單元200的第二部分240與第三部分250長度相等。
在本發明的一個實施例中,基板100為矩形,第一邊110和第二邊120之間相互垂直,且第二部分240和第一部分230之間相互垂直,第三部分250和第一部分230之間相互垂直。
在本發明的一個實施例中,相鄰兩個感應單元200的第一部分230之間的間距相等,相鄰兩個感應單元200的第二部分240之間的間距相等,相鄰兩個感應單元200的第三部分250之間的間距相等。這樣就可以通過多個感應單元200對觸摸螢幕的第一邊110和第二邊120均勻劃分,從而提高運算速度。當然在本發明的其他實施例中,相鄰兩個感應單元200的第一部分230之間的間距也可不相等,或者,相鄰兩個感應單元200的第二部分240之間的間距也可不相等,如第4b圖所示。例如,由於用戶往往觸摸觸摸螢幕的中心部位,因此可以將觸摸螢幕中心部位的感應單元之間的間距減小,從而提高中心部位的檢測精度。
在本發明的一個實施例中,多個感應單元200位於同一層,因此只需要一層ITO即可,從而在保證精度的同時,極大地降低製造成本。
在本發明的一個實施例中,多個感應單元200相對於基板100的中心軸Y對稱,如第4a圖所示,中心軸Y垂直於第一部分230,從而更有利於提高精度。
如第4a圖所示,在該實施例中,感應單元200的第一電極210和第二電極220均位於基板100的第一邊110上。在該實施例中,檢測到在感應單元上的觸摸位置之後,即可獲得在觸摸螢幕之上的觸摸位置。
需要說明的是,上述第4a圖為本發明較優的實施例,其能夠獲得較大的覆蓋率,但是本發明的其他實施例可對第4a圖進行一些等同的變化,例如第二部分240和第三部分250也可以是不平行的。
如第5圖所示,為本發明實施例的感應單元被觸摸時的示意圖。從第5圖可知,第一電極為210,第二電極為220,觸摸位置A接近於第二電極,假設感應單元的長度為10個單位長度,且將感應單元均勻地分為10份,其中,感應單元第一部分230的長度為4個單位長度,感應單元第二部分240和第三部分250的長度為3個單位長度。經過檢測,獲知第一電阻和第二電阻之比為4:1,即第一電極210至觸摸位置的長度(由第一電阻體現)為全部感應單元長度的80%。換句話說,觸摸點位於距離第一電極210處8個單位長度的位置,獲知,觸摸點位於距離第二電極220處2個單位長度的位置。
從第5圖的以上例子可以看出,本發明的計算方式非常簡單,因此能夠極大地提高觸摸螢幕檢測的反應速度。如第6圖所示,為本發明一個實施例的觸控裝置示意圖。該觸控裝置包括由基板100和多個不相交的感應單元200所構成的觸摸螢幕檢測設備300和觸摸螢幕控制晶片400。其中,觸摸螢幕控制晶片400中的一部分管腳與多個感應單元200的第一電極210相連,觸摸螢幕控制晶片400中的另一部分管腳與多個感應單元200的第二電極220相連。觸摸螢幕控制晶片400向多個感應單元200的第一電極210和/或第二電極220施加電平信號,該電平信號在感應單元200被觸摸時向感應單元200產生的自電容充電,且觸摸螢幕控制晶片400在檢測到多個感應單元中一個或部分被觸摸時,計算被觸摸的感應單元200中第一電極210至自電容的第一電阻與第二電極220至自電容的第二電阻之間的比例關係,以及根據所述比例關係及被觸摸的感應單元200計算觸摸點座標。同樣地,該充電、放電和檢測可同時進行也可分別進行,在此不再贅述。例如,參照第5圖所示,最外側的感應單元被觸摸,且觸摸螢幕控制晶片400獲得了最外側感應單元的第一電阻和第二電阻的比例關係,由於最外側感應單元的位置資訊已存儲在觸摸螢幕控制晶片400中,當然也可存儲在外接的記憶體中,因此觸摸螢幕控制晶片400就可以依據該比例關係查找最外側感應單元的位置資訊,從而確定觸摸點座標。
在本發明的實施例中,通常手指或其他物體會觸摸多個感應單元,此時觸摸螢幕控制晶片400可以先獲得在這被觸摸的多個感應單元中每個的觸摸位置,然後通過求平均的方式計算最終在觸摸螢幕上的觸摸位置。
另外,第一檢測值和第二檢測值可為電流檢測值、自電容檢測值、電平信號檢測值和電荷變化量中的一種或多種,只要能反應第一電阻和第二電阻之間的差值即可。在本發明的一個實施例中,觸摸螢幕控制晶片400之中包括兩個電容檢測模組CTS以同時從第一電極210和第二電極220對感應單元200進行檢測。由於這兩個電容檢測模組CTS可以共用一些裝置,因此也不會增加晶片的整體功耗。
在本發明的另一個實施例中,也可僅採用一個電容檢測模組CTS依次從第一電極210和第二電極220對感應單元200進行檢測。觸摸螢幕控制晶片400根據第一電阻和第二電阻之間的比例關係確定觸摸位置。
在本發明的一個實施例中,第一電阻和第二電阻之間的比例關係根據在對自電容充電和/或放電時,從第一電極和/或第二電極進行檢測獲得的第一檢測值和第二檢測值之間的比例關係計算得到。
在本發明的一個實施例中,第一檢測值和第二檢測值為電流檢測值、自電容檢測值、電平信號檢測值和電荷變化量中的一種或多種。
在本發明的一個實施例中,第一檢測值包括第一充電檢測值或第一放電檢測值,所述第二檢測值包括第二充電檢測值或第二放電檢測值。
在本發明的一個實施例中,觸摸螢幕控制晶片400向感應單元200的第一電極210和第二電極220施加電平信號以對自電容充電,觸摸螢幕控制晶片400從第一電極210和/或第二電極220進行充電檢測以獲得第一充電檢測值和第二充電檢測值。
在本發明的一個實施例中,觸摸螢幕控制晶片400向感應單元200的第一電極210或第二電極220分別兩次施加電平信號以對自電容進行兩次充電,在每次充電之後觸摸螢幕控制晶片400從第一電極210和/或第二電極220進行充電檢測以獲得第一充電檢測值和第二充電檢測值。
在本發明的一個實施例中,當觸摸螢幕控制晶片400向感應單元200的第一電極210分別兩次施加電平信號以對自電容進行兩次充電時,兩次充電中的一次將第二電極220接地,另一次將第二電極220接為高阻;或者,當觸摸螢幕控制晶片400向感應單元200的第二電極220分別兩次施加電平信號以對自電容進行兩次充電時,兩次充電中的一次將第一電極210接地,另一次將第一電極210接為高阻。
在本發明的一個實施例中,觸摸螢幕控制晶片400向感應單元200的第一電極210和第二電極220施加電平信號以對自電容充電,觸摸螢幕控制晶片400控制第一電極210和/或第二電極220接地以對自電容放電,觸摸螢幕控制晶片400從第一電極210和/或第二電極220進行放電檢測以獲得所述第一放電檢測值和第二放電檢測值。
在本發明的一個實施例中,觸摸螢幕控制晶片400向感應單元200的第一電極210或第二電極220施加電平信號以對自電容充電,觸摸螢幕控制晶片400分別控制第一電極210和第二電極220接地以對自電容放電,觸摸螢幕控制晶片400分別從第一電極210和/或第二電極220進行放電檢測以獲得第一放電檢測值和第二放電檢測值。
在本發明的一個實施例中,觸摸螢幕控制晶片400向感應單元200的第一電極210或第二電極220施加電平信號以對自電容充電,觸摸螢幕控制晶片400分別控制第一電極210或第二電極220接地以對自電容放電,觸摸螢幕控制晶片400分別從第一電極210和第二電極220進行放電檢測以獲得第一放電檢測值和第二放電檢測值。
在本發明的一個實施例中,觸摸螢幕控制晶片400包括一個或兩個CTS(電容檢測模組)。
本發明實施例通過對感應單元兩端的電極施加電平信號,如果該感應單元被觸碰,手指或其他觸摸物則會和感應單元形成自電容,因此本發明通過施加的電平信號可對該自電容進行充電,並根據第一電阻和第二電阻之間的比例關係確定觸摸位置。例如在本發明的一個實施例中,第一電阻和第二電阻之間的比例關係根據在對所述自電容充電和/或放電時,從所述第一電極和/或第二電極進行檢測獲得的第一檢測值和第二檢測值之間的比例關係計算得到。因此從第一電極和/或第二電極檢測該自電容充電和/或放電時產生的第一檢測值和第二檢測值。這樣,通過第一檢測值和第二檢測值就能夠反應觸摸點位於該感應單元的位置,從而確定觸摸點在觸摸螢幕的位置。
本發明實施例提出了一種新穎的自電容檢測方式,在感應單元被觸摸時,觸摸點就可將該感應單元分為兩個電阻,從而在進行自電容檢測的同時考慮這兩個電阻就可以確定觸摸點在該感應單元上的位置。本發明實施例的結構簡單,並且對於一個感應單元來說,可從其的第一電極和/或第二電極進行充電或放電,並在充電和/或放電時進行檢測,不僅能夠降低RC常數,節省時間提高效率,並且還能夠保證座標不會偏移。此外,本發明實施例還可以有效提高電路的性噪比,降低電路雜訊,提高感應線性度。並且,在檢測過程中由於對被觸摸的感應單元進行充電,因此其中會產生小電流,能夠很好地消除Vcom電平信號對觸摸螢幕中感應單元產生的自電容的影響,因此可以相應地消除螢幕遮罩層及相關工序,從而可以在增強了抗干擾能力的同時進一步降低成本。
在本說明書的描述中,參考術語“一個實施例”、“一些實施例”、“示例”、“具體示例”、或“一些示例”等的描述意指結合該實施例或示例描述的具體特徵、結構、材料或者特點包含于本發明的至少一個實施例或示例中。在本說明書中,對上述術語的示意性表述不一定指的是相同的實施例或示例。而且,描述的具體特徵、結構、材料或者特點可以在任何的一個或多個實施例或示例中以合適的方式結合。
儘管已經示出和描述了本發明的實施例,對於本領域的普通技術人員而言,可以理解在不脫離本發明的原理和精神的情況下可以對這些實施例進行多種變化、修改、替換和變型,本發明的範圍由所附申請專利範圍及其等同限定。
The embodiments of the present invention are described in detail below, and the examples of the embodiments are illustrated in the drawings, wherein the same or similar reference numerals are used to refer to the same or similar elements or elements having the same or similar functions. The embodiments described below with reference to the drawings are intended to be illustrative of the invention and are not to be construed as limiting.
The embodiment of the invention provides a novel self-capacitance detection method. When the sensing unit is touched, the touch point can divide the sensing unit into two resistors, and the two resistors can be used to determine the touch while performing self-capacitance detection. The position on the sensing unit. FIG. 3 is a schematic diagram of a detection principle of a touch device according to an embodiment of the present invention. When the finger touches the sensing unit, it is equivalent to dividing the sensing unit into two resistors, and the resistance values of the two resistors are related to the position of the touch point. For example, as shown in the figure, when the touch point is closer to the first electrode 210, the resistor R1 is smaller and the resistor R2 is larger; conversely, when the touch point is closer to the second electrode 220, the resistor R1 is It is larger and the resistance R2 is smaller.
Therefore, the present invention can determine the position of the touch point on the sensing unit by detecting the resistors R1 and R2. In an embodiment of the present invention, the resistors R1 and R2 can be detected in various ways, for example, by detecting a current detection value, a self-capacitance detection value, a level signal detection value, and a charge variation amount of the first electrode and the second electrode. One or more, thereby obtaining the resistors R1 and R2 based on these detected values. In addition, in an embodiment of the present invention, the detecting may be performed at the time of charging (ie, obtaining the first charging detection value and the second charging detection value), or may be performed at the time of discharging (ie, obtaining the first discharging detection value and the second discharging) Detection value).
In addition, the detection performed during charging and discharging can be performed in various ways. However, it should be noted that at least one step in charging, discharging or detecting is performed on the first electrode and the second electrode, so that two detection values of the difference between the first resistance and the second resistance can be obtained. That is, the first detected value and the second detected value. That is to say, when charging, discharging or detecting, a current needs to pass through the first resistor and the second resistor, so that the detected first detection value and second detection value can reflect the difference between the first resistance and the second resistance. value.
In an embodiment of the invention, charging is typically required twice (including the simultaneous charging of the first and second electrodes), as well as two measurements. In some embodiments, it is also possible to perform two discharges. In the following embodiments, charging and two detections are performed twice, which will not be described in the following examples. It should be noted that performing two charging and two detecting is only one solution of the embodiment of the present invention, and the algorithm is relatively simple. However, those skilled in the art can also increase the number of times of charging and detecting according to the above idea, for example, three times of charging and detecting can be performed, and then the first resistance is calculated according to the first charging detection value and the second charging detection value, and then according to the first The second resistance is calculated by the primary charge detection value and the third charge detection value.
Specifically, the present invention includes, but is not limited to, the following measurement methods for detecting:
1. First applying a level signal to the first electrode and the second electrode of the sensing unit to charge the self-capacitor (if the sensing unit is touched, a self-capacitance is generated); then proceeding from the first electrode and/or the second electrode The charge detection obtains a first charge detection value and a second charge detection value. In this embodiment, since the charging is performed from the first electrode and the second electrode, it is possible to detect from the first electrode or the second electrode for the detection, or also from the first electrode. And detecting the second electrode separately.
It should be noted that, in this embodiment, the charging of the first electrode and the second electrode may be performed simultaneously, or separately, for example, the same level signal is simultaneously applied to the first electrode and the second electrode to The capacitor is charged. In other embodiments, the level signals applied by the first electrode and the second electrode may be different. Alternatively, a level signal may be applied to the first electrode and then applied to the second electrode. The same level signal or another level signal. Similarly, the detection may be performed simultaneously or separately. In the following embodiments, charging, discharging, or detecting may be performed simultaneously, or separately, and will not be described herein.
2. applying a level signal to the first electrode or the second electrode of the sensing unit twice to charge the self-capacitor twice; then from the first electrode and/or second after each charging The electrode performs charging detection to obtain the first charging detection value and the second charging detection value. In this embodiment, since the charging is performed from the first electrode or the second electrode, it is necessary to perform detection from the first electrode and the second electrode at the time of detection, wherein the detection may be performed simultaneously or separately.
In addition, in the embodiment of the present invention, it is also possible to perform charging twice on the first electrode and two times from the first electrode, or two times from the second electrode, and two times on the second electrode. . As long as it is, at the time of two charges, the other electrode is grounded or connected to a high resistance to change the state of the other electrode. For example, when a level signal is applied twice to the first electrode of the sensing unit to charge the self-capacitor twice, wherein one of the two charges grounds the second electrode, and the other time the second electrode Connected to high resistance; when a level signal is applied to the second electrode of the sensing unit twice to charge the self-capacitor twice, one of the two charges grounds the first electrode, and the other time One electrode is connected to a high resistance.
Thus, even if the first electrode is charged twice, the second electrode can be detected twice at the first electrode to obtain a proportional relationship between the first resistor R1 and the second resistor R2. The first detected value and the second detected value.
3. applying a level signal to the first electrode and the second electrode of the sensing unit to charge the self-capacitor; then controlling the first electrode and/or the second electrode to be grounded to discharge the self-capacitance; thereafter from the first electrode and/or the first The two electrodes perform discharge detection to obtain the first discharge detection value and the second discharge detection value. In this embodiment, since the self-capacitance is charged from the first electrode and the second electrode, discharge or detection can be performed from the first electrode and/or the second electrode. Specifically, for example, a level signal may be applied to the first electrode and the second electrode simultaneously to charge the self-capacitance, or may not be applied at the same time. The two electrodes may be grounded at the time of discharge, or the second electrode may be grounded.
4. Applying a level signal to the first electrode or the second electrode of the sensing unit to charge the self-capacitor; then controlling the first electrode and the second electrode to ground respectively to discharge the self-capacitance; thereafter, respectively from the first electrode and/or the first electrode The two electrodes perform discharge detection to obtain a first discharge detection value and a second discharge detection value. In this embodiment, since the self-capacitance discharge is performed from the first electrode and the second electrode, charging or detecting can be performed from the first electrode and/or the second electrode. In this embodiment, the first electrode may be used for both charging, and the second electrode may be grounded or connected to a high resistance. Similarly, the second electrode can also be used for both charging, and the first electrode is grounded or connected to a high resistance.
5. Applying a level signal to the first electrode or the second electrode of the sensing unit to charge the self-capacitor; then respectively controlling the first electrode or the second electrode to ground to discharge the self-capacitance, and then respectively from the first electrode and the second electrode The discharge detection is performed to obtain a first discharge detection value and a second discharge detection value. In this embodiment, since the self-capacitance detection is performed from the first electrode and the second electrode, charging or discharging can be performed from the first electrode and/or the second electrode. In this embodiment, the first electrode may be used for both charging, and the second electrode may be grounded or connected to a high resistance. Similarly, the second electrode can also be used for both charging, and the first electrode is grounded or connected to a high resistance.
Alternatively, on the basis of the above embodiment, one detection may be performed at the time of charging to obtain a first charging detection value, and a second detection is performed at the time of discharging to obtain a second discharging detection value, and then according to the first charging detection value. And a second discharge detection value obtains a proportional relationship between the first resistance and the second resistance.
It should be noted that, in the embodiment of the present invention, the functions of the first electrode and the second electrode are the same, and the two are interchangeable. Therefore, in the above embodiment, the first electrode may be detected from the first electrode or the second The electrode detection can be performed as long as it satisfies the requirement that a current needs to pass through the first resistor and the second resistor during charging, discharging or detecting.
As can be seen from the above description, there are many variations on the above charging and detecting methods of the present invention, but the core of the present invention is to determine the touch according to the relationship between the first resistance and the second resistance, such as a proportional relationship or other relationship. The location of the point. Further, the relationship between the first resistor and the second resistor needs to be detected by charging and/or discharging of the self-capacitance. If the sensing unit is not touched, the self-capacitance is not generated with the hand. Therefore, the data of the self-capacitance is detected to be small, and the judgment condition of the touch is not satisfied. For the embodiment of the present invention, the scanning is continuously performed, waiting for the finger to touch. The calculation is started after the sensing unit, and will not be described here.
In the embodiment of the present invention, the corresponding voltages may be sequentially applied to the plurality of sensing units in a scanning manner, and may also be sequentially detected in a scanning manner during the detection.
It should be noted that the above detection manners are only some preferred modes of the present invention, and those skilled in the art may also expand or modify according to the above ideas, and these should be included in the protection scope of the present invention.
As shown in FIG. 4a, it is a structural diagram of a touch screen detecting device according to an embodiment of the present invention. The touch device includes a touch screen detecting device and a touch screen control device, and the touch screen detecting device includes a substrate 100, and a plurality of disjoint sensing units 200 formed on the substrate. And each of the plurality of sensing units 200 has a first electrode 210 and a second electrode 220. In an embodiment of the invention, the substrate 100 is a single layer substrate. In this embodiment, the sensing unit 200 can be gate-shaped, and each of the plurality of sensing units 200 has a different length, and the plurality of sensing units 200 are nested with each other. Each of the sensing units includes a first portion 230, a non-intersecting second portion 240, and a third portion 250, and one end of the second portion 240 is coupled to one end of the first portion 230, and one end of the third portion 250 is coupled to the first portion 230. The other end of the second portion 240 has a first electrode 210, and the other end of the third portion 250 has a second electrode 220. Preferably, the first portion 230 is parallel to the first side 110 of the substrate 100, the second portion 240 and the third portion 250 are respectively parallel to the second side 120 of the substrate 100, and one end of the second portion 240 is connected to one end of the first portion 230, One end of the third portion 250 is connected to the other end of the first portion 230. The other end of the second portion 240 of the sensing unit 200 has a first electrode 210, and the other end of the third portion 250 has a second electrode 220, wherein each of the first electrode 210 and the second electrode 220 is associated with a touch screen control wafer Corresponding pins are connected, that is, a part of the pins in the touch screen control wafer are connected to the first electrodes 210 of the plurality of sensing units, and the touch screen controls another part of the pins in the wafer and the plurality of sensing The second electrodes 220 of the unit are connected.
In the embodiment of the present invention, the mutual nesting means that the outer sensing unit partially surrounds the inner sensing unit, for example, as shown in FIG. 4a, which can achieve a large coverage while ensuring accuracy, and is reduced. The complexity of the operation increases the response speed of the touch screen. Of course, those skilled in the art can also arrange the sensing units in other mutually nested manners according to the idea of FIG. 4a. In one embodiment of the invention, the first portion 230 of each sensing unit 200 is parallel to the first portion 230 of the other sensing unit 200, and the second portion 240 of each sensing unit 200 is parallel to the second portion 240 of the other sensing unit 200. The third portion 250 of each sensing unit 200 is parallel to the third portion 250 of the other sensing unit 200. In one embodiment of the invention, at least one of the first portion 230, the second portion 240, and the third portion 250 of the sensing unit 200 is rectangular, preferably, the first portion 230, the second portion 240, and the third portion 250 are rectangle. In this embodiment, since the rectangular structure pattern is regular, the linearity is good when the finger is moved laterally or longitudinally, and further, the spacing between the two rectangular structures is the same, which is convenient for calculation.
The sensing unit in the touch screen detecting device of the embodiment of the invention adopts double-end detection, that is, both ends of the sensing unit have electrodes, and each electrode is connected to a corresponding pin of the touch screen control chip, and passes through the touch detection. The sensing unit itself can realize the positioning of the touch point. In addition, the sensing unit in the embodiment of the present invention adopts a gate-like structure, which is not only simple in structure, but also easy to manufacture. All the leads are on the same side, the design is convenient, the cost of the silver paste is reduced, and the production is easy, which greatly helps to reduce the production cost. .
More importantly, the present invention achieves the determination of the touch position by calculating the ratio between the first resistance and the second resistance, so that compared to the current diamond or triangle design, since the touch position is determined, there is no need to calculate the self-capacitance. The size and the size of the self-capacitance do not affect the accuracy of the touch position, and the dependence on the accuracy of the self-capacitance detection is reduced, thereby improving the measurement accuracy and improving the linearity. In addition, since any one of the first portion, the second portion, and the third portion of the embodiment of the present invention may be a rectangle having a regular shape, it may be further improved with respect to an irregular shape such as a current rhombus or a triangle. Linearity.
In one embodiment of the invention, the second portion 240 of each sensing unit 200 is equal in length to the third portion 250.
In one embodiment of the present invention, the substrate 100 is rectangular, the first side 110 and the second side 120 are perpendicular to each other, and the second portion 240 and the first portion 230 are perpendicular to each other, and the third portion 250 and the first portion 230 are perpendicular to each other. They are perpendicular to each other.
In one embodiment of the present invention, the spacing between the first portions 230 of the adjacent two sensing units 200 is equal, the spacing between the second portions 240 of the adjacent two sensing units 200 is equal, and the adjacent two sensing units are adjacent. The spacing between the third portions 250 of 200 is equal. In this way, the first side 110 and the second side 120 of the touch screen can be evenly divided by the plurality of sensing units 200, thereby increasing the operation speed. Of course, in other embodiments of the present invention, the spacing between the first portions 230 of the adjacent two sensing units 200 may not be equal, or the spacing between the second portions 240 of the adjacent two sensing units 200 may not be equal. As shown in Figure 4b. For example, since the user often touches the center of the touch screen, the spacing between the sensing units at the center of the touch screen can be reduced, thereby improving the detection accuracy of the center portion.
In one embodiment of the present invention, the plurality of sensing units 200 are located in the same layer, so that only one layer of ITO is required, thereby greatly reducing the manufacturing cost while ensuring accuracy.
In one embodiment of the present invention, the plurality of sensing units 200 are symmetrical with respect to the central axis Y of the substrate 100. As shown in FIG. 4a, the central axis Y is perpendicular to the first portion 230, thereby being more advantageous for improving accuracy.
As shown in FIG. 4a, in this embodiment, the first electrode 210 and the second electrode 220 of the sensing unit 200 are both located on the first side 110 of the substrate 100. In this embodiment, after detecting the touch location on the sensing unit, a touch location above the touch screen is obtained.
It should be noted that the above-mentioned 4a is a preferred embodiment of the present invention, which can obtain a large coverage, but other embodiments of the present invention can perform some equivalent changes to the 4a, for example, the second portion 240. And the third portion 250 can also be non-parallel.
As shown in FIG. 5, it is a schematic diagram when the sensing unit of the embodiment of the present invention is touched. As can be seen from FIG. 5, the first electrode is 210, the second electrode is 220, the touch position A is close to the second electrode, and the length of the sensing unit is 10 unit lengths, and the sensing unit is evenly divided into 10 parts, wherein The length of the first portion 230 of the sensing unit is 4 unit lengths, and the length of the second portion 240 and the third portion 250 of the sensing unit is 3 unit lengths. After detecting, it is learned that the ratio of the first resistance to the second resistance is 4:1, that is, the length of the first electrode 210 to the touch position (reflected by the first resistance) is 80% of the length of all the sensing units. In other words, the touch point is located at a position of 8 unit lengths from the first electrode 210, and it is known that the touch point is located 2 units long from the second electrode 220.
As can be seen from the above example of Fig. 5, the calculation method of the present invention is very simple, so that the reaction speed of touch screen detection can be greatly improved. FIG. 6 is a schematic diagram of a touch device according to an embodiment of the present invention. The touch device includes a touch screen detecting device 300 and a touch screen control chip 400 composed of a substrate 100 and a plurality of disjoint sensing units 200. The part of the touch screen control wafer 400 is connected to the first electrode 210 of the plurality of sensing units 200, and the other part of the touch screen control wafer 400 is connected to the second electrode 220 of the plurality of sensing units 200. The touch screen control wafer 400 applies a level signal to the first electrode 210 and/or the second electrode 220 of the plurality of sensing units 200, and the level signal charges the self-capacitance generated by the sensing unit 200 when the sensing unit 200 is touched, and The touch screen control wafer 400 calculates the first resistor 210 of the touched sensing unit 200 to the first resistor and the second electrode 220 of the self-capacitance to the second of the self-capacitance when detecting that one or a portion of the plurality of sensing units are touched The proportional relationship between the resistors, and the touch point coordinates are calculated according to the proportional relationship and the touched sensing unit 200. Similarly, the charging, discharging, and detecting can be performed simultaneously or separately, and will not be described herein. For example, referring to FIG. 5, the outermost sensing unit is touched, and the touch screen control wafer 400 obtains the proportional relationship between the first resistance and the second resistance of the outermost sensing unit, since the position information of the outermost sensing unit has been It is stored in the touch screen control chip 400, and can of course be stored in the external memory. Therefore, the touch screen control chip 400 can find the position information of the outermost sensing unit according to the proportional relationship, thereby determining the touch point coordinates.
In an embodiment of the present invention, usually a finger or other object touches a plurality of sensing units, and at this time, the touch screen control wafer 400 may first obtain a touch position of each of the plurality of touched sensing units, and then average The way to calculate the final touch position on the touch screen.
In addition, the first detection value and the second detection value may be one or more of a current detection value, a self-capacitance detection value, a level signal detection value, and a charge variation amount, as long as it can reflect between the first resistance and the second resistance The difference can be. In one embodiment of the present invention, the touch screen control wafer 400 includes two capacitance detecting modules CTS to simultaneously detect the sensing unit 200 from the first electrode 210 and the second electrode 220. Since the two capacitance detecting modules CTS can share some devices, the overall power consumption of the chip is not increased.
In another embodiment of the present invention, the sensing unit 200 may be sequentially detected from the first electrode 210 and the second electrode 220 by using only one capacitance detecting module CTS. The touch screen control wafer 400 determines the touch position based on the proportional relationship between the first resistance and the second resistance.
In one embodiment of the invention, the proportional relationship between the first resistance and the second resistance is based on a first detection obtained by detecting from the first electrode and/or the second electrode when charging and/or discharging the self-capacitance The proportional relationship between the value and the second detected value is calculated.
In one embodiment of the invention, the first detected value and the second detected value are one or more of a current detected value, a self-capacitance detected value, a level signal detected value, and a charge change amount.
In an embodiment of the invention, the first detection value includes a first charge detection value or a first discharge detection value, and the second detection value includes a second charge detection value or a second discharge detection value.
In one embodiment of the invention, the touch screen control wafer 400 applies a level signal to the first electrode 210 and the second electrode 220 of the sensing unit 200 to charge the self capacitance, and the touch screen controls the wafer 400 from the first electrode 210 and / Or the second electrode 220 performs charging detection to obtain a first charging detection value and a second charging detection value.
In one embodiment of the present invention, the touch screen control wafer 400 applies a level signal to the first electrode 210 or the second electrode 220 of the sensing unit 200 twice to charge the self-capacitor twice, and touches after each charging. The screen control wafer 400 performs charging detection from the first electrode 210 and/or the second electrode 220 to obtain a first charge detection value and a second charge detection value.
In one embodiment of the present invention, when the touch screen control wafer 400 applies a level signal to the first electrode 210 of the sensing unit 200 twice to charge the self capacitor twice, one of the two charges will be the second. The electrode 220 is grounded, and the second electrode 220 is connected to a high resistance. Alternatively, when the touch screen control wafer 400 applies a level signal to the second electrode 220 of the sensing unit 200 twice to charge the self capacitor twice. One of the two charges connects the first electrode 210 to the ground, and the other time connects the first electrode 210 to a high resistance.
In one embodiment of the present invention, the touch screen control wafer 400 applies a level signal to the first electrode 210 and the second electrode 220 of the sensing unit 200 to charge the self capacitance, and the touch screen control wafer 400 controls the first electrode 210 and / Or the second electrode 220 is grounded to discharge the self-capacitance, and the touch screen control wafer 400 performs discharge detection from the first electrode 210 and/or the second electrode 220 to obtain the first discharge detection value and the second discharge detection value.
In one embodiment of the present invention, the touch screen control wafer 400 applies a level signal to the first electrode 210 or the second electrode 220 of the sensing unit 200 to charge the self capacitance, and the touch screen control wafer 400 controls the first electrode 210 and The second electrode 220 is grounded to discharge the self-capacitance, and the touch screen control wafer 400 performs discharge detection from the first electrode 210 and/or the second electrode 220, respectively, to obtain a first discharge detection value and a second discharge detection value.
In one embodiment of the present invention, the touch screen control wafer 400 applies a level signal to the first electrode 210 or the second electrode 220 of the sensing unit 200 to charge the self capacitance, and the touch screen control wafer 400 controls the first electrode 210 or The second electrode 220 is grounded to discharge the self-capacitance, and the touch screen control wafer 400 performs discharge detection from the first electrode 210 and the second electrode 220, respectively, to obtain a first discharge detection value and a second discharge detection value.
In one embodiment of the invention, touch screen control wafer 400 includes one or two CTSs (capacitance detection modules).
In the embodiment of the present invention, a level signal is applied to the electrodes at both ends of the sensing unit. If the sensing unit is touched, the finger or other touch object forms a self-capacitance with the sensing unit. Therefore, the present invention can apply the level signal by applying the level signal. The self-capacitance is charged, and the touch position is determined according to a proportional relationship between the first resistance and the second resistance. For example, in one embodiment of the invention, the proportional relationship between the first resistance and the second resistance is detected from the first electrode and/or the second electrode when charging and/or discharging the self-capacitance. The proportional relationship between the obtained first detected value and the second detected value is calculated. The first detected value and the second detected value generated when the self-capacitance is charged and/or discharged are thus detected from the first electrode and/or the second electrode. In this way, the position of the touch point at the sensing unit can be reflected by the first detection value and the second detection value, thereby determining the position of the touch point on the touch screen.
The embodiment of the invention provides a novel self-capacitance detection method. When the sensing unit is touched, the touch point can divide the sensing unit into two resistors, so that the two resistors can be considered while performing self-capacitance detection. Determine the location of the touch point on the sensing unit. The structure of the embodiment of the invention is simple, and for a sensing unit, charging or discharging can be performed from the first electrode and/or the second electrode thereof, and detecting when charging and/or discharging, not only can the RC constant be lowered Save time and increase efficiency, and also ensure that coordinates are not offset. In addition, the embodiment of the invention can effectively improve the performance-to-noise ratio of the circuit, reduce circuit noise, and improve the linearity of the induction. Moreover, since the touched sensing unit is charged during the detection process, a small current is generated therein, which can well eliminate the influence of the Vcom level signal on the self-capacitance generated by the sensing unit in the touch screen, and thus can be eliminated accordingly. The screen mask layer and related processes can further reduce the cost while enhancing the anti-interference ability.
In the description of the present specification, the description with reference to the terms "one embodiment", "some embodiments", "example", "specific example", or "some examples" and the like means a specific feature described in connection with the embodiment or example. A structure, material or feature is included in at least one embodiment or example of the invention. In the present specification, the schematic representation of the above terms does not necessarily mean the same embodiment or example. Furthermore, the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.
While the embodiments of the present invention have been shown and described, it will be understood by those skilled in the art Variations, the scope of the invention is defined by the scope of the appended claims and their equivalents.

100、300’...基板100, 300’. . . Substrate

110...第一邊110. . . First side

120...第二邊120. . . Second side

200...感應單元200. . . Sensing unit

210...第一電極210. . . First electrode

220...第二電極220. . . Second electrode

230...第一部分230. . . first part

240...第二部分240. . . the second part

250...第三部分250. . . the third part

300...觸摸螢幕檢測設備300. . . Touch screen detection device

400...觸摸螢幕控制晶片400. . . Touch screen control chip

100’、200’...菱形結構感應單100’, 200’. . . Diamond structure induction

400’...三角形感應單元400’. . . Triangle sensing unit

500’...電極500’. . . electrode

600’...手指600’. . . finger

A...觸摸位置A. . . Touch location

C1...自電容C1. . . Self capacitance

GND...接地GND. . . Ground

R1、R2...電阻R1, R2. . . resistance

S1、S2...接觸面積S1, S2. . . Contact area

Y...中心軸Y. . . The central axis

本發明上述的和/或附加的方面和優點從下面結合附圖對實施例的描述中將變得明顯和容易理解,其中:
第1圖為現有技術中常見的一種自電容觸摸螢幕的結構圖;
第2a圖為現有技術中常見的另一種自電容觸摸螢幕的結構圖;
第2b圖為現有技術中常見的另一種自電容觸摸螢幕的檢測原理圖;
第3圖為本發明實施例觸控裝置的檢測原理示意圖;
第4a圖為本發明實施例觸摸螢幕檢測設備結構圖;
第4b圖為本發明另一個實施例觸摸螢幕檢測設備結構圖;
第5圖為本發明實施例的感應單元被觸摸時的示意圖;和
第6圖為本發明一個實施例的觸控裝置示意圖。
The above and/or additional aspects and advantages of the present invention will become apparent and readily understood from
FIG. 1 is a structural diagram of a self-capacitance touch screen commonly seen in the prior art;
Figure 2a is a structural diagram of another self-capacitive touch screen commonly seen in the prior art;
Figure 2b is a schematic diagram of detection of another self-capacitive touch screen that is common in the prior art;
FIG. 3 is a schematic diagram of a detection principle of a touch device according to an embodiment of the present invention; FIG.
4A is a structural diagram of a touch screen detecting device according to an embodiment of the present invention;
4b is a structural diagram of a touch screen detecting device according to another embodiment of the present invention;
FIG. 5 is a schematic diagram of a sensing unit when the sensing unit is touched according to an embodiment of the present invention; and FIG. 6 is a schematic diagram of a touch device according to an embodiment of the invention.

100...基板100. . . Substrate

110...第一邊110. . . First side

120...第二邊120. . . Second side

200...感應單元200. . . Sensing unit

210...第一電極210. . . First electrode

220...第二電極220. . . Second electrode

230...第一部分230. . . first part

240...第二部分240. . . the second part

250...第三部分250. . . the third part

Y...中心軸Y. . . The central axis

Claims (21)

一種觸控裝置,其特徵在於,包括:
觸摸螢幕檢測設備,所述觸摸螢幕檢測設備包括:
基板;和
形成在所述基板上的多個感應單元,所述多個感應單元彼此不相交,其中,每個感應單元包括:
第一部分;
不相交的第二部分和第三部分,所述第二部分一端與所述第一部分的一端相連,所述第三部分的一端與所述第一部分的另一端相連,所述第二部分的另一端具有第一電極,且所述第三部分的另一端具有第二電極;以及
觸摸螢幕控制晶片,所述觸摸螢幕控制晶片中的一部分管腳與所述多個感應單元的第一電極相連,所述觸摸螢幕控制晶片中的另一部分管腳與所述多個感應單元的第二電極相連,且所述觸摸螢幕控制晶片向所述多個感應單元的第一電極和/或第二電極施加電平信號,所述電平信號在所述多個感應單元中一個或部分被觸摸時產生的自電容充電,且所述觸摸螢幕控制晶片在檢測到所述多個感應單元中一個或部分被觸摸時,計算被觸摸的一個或部分感應單元中所述第一電極至所述自電容的第一電阻與所述第二電極至所述自電容的第二電阻之間的比例關係,以及根據所述比例關係及被觸摸的一個或部分感應單元計算觸摸點座標。
A touch device, comprising:
Touching a screen detecting device, the touch screen detecting device includes:
a substrate; and a plurality of sensing units formed on the substrate, the plurality of sensing units not intersecting each other, wherein each sensing unit comprises:
first part;
a second portion and a third portion that are not intersected, one end of the second portion is connected to one end of the first portion, one end of the third portion is connected to the other end of the first portion, and the other end of the second portion a first electrode at one end and a second electrode at the other end of the third portion; and a touch screen control wafer, a portion of the pins of the touch screen control wafer being connected to the first electrodes of the plurality of sensing units Another portion of the touch screen control wafer is connected to the second electrode of the plurality of sensing units, and the touch screen control wafer is applied to the first electrode and/or the second electrode of the plurality of sensing units a level signal that is charged by a self-capacitance generated when one or a portion of the plurality of sensing units are touched, and the touch screen control wafer detects that one or a portion of the plurality of sensing units are When touched, calculating between the first electrode of the touched one or part of the sensing unit to the first resistance of the self-capacitance and the second resistance of the second electrode to the self-capacitance A proportional relationship, and calculating a touch point coordinate according to the proportional relationship and the touched one or part of the sensing unit.
如申請專利範圍第1項所述的觸控裝置,其特徵在於,所述多個感應單元的長度彼此不同,且所述多個感應單元之間相互嵌套。The touch device of claim 1, wherein the plurality of sensing units are different in length from each other, and the plurality of sensing units are nested with each other. 如申請專利範圍第1項所述的觸控裝置,其特徵在於,所述多個感應單元的第一部分彼此平行,所述多個感應單元的第二部分彼此平行且所述多個感應單元的第三部分彼此平行。The touch device of claim 1, wherein the first portions of the plurality of sensing units are parallel to each other, the second portions of the plurality of sensing units are parallel to each other, and the plurality of sensing units are The third part is parallel to each other. 如申請專利範圍第3項所述的觸控裝置,其特徵在於,所述第一部分與所述基板的第一邊平行,所述第二部分和所述第三部分與所述基板的第二邊平行。The touch device of claim 3, wherein the first portion is parallel to a first side of the substrate, the second portion and the third portion are second to the substrate The sides are parallel. 如申請專利範圍第4項所述的觸控裝置,其特徵在於,所述多個感應單元的第二部分與第三部分長度相等。The touch device of claim 4, wherein the second portion of the plurality of sensing units are equal in length to the third portion. 如申請專利範圍第4項所述的觸控裝置,其特徵在於,所述基板為矩形,所述第一邊和所述第二邊之間相互垂直,所述多個感應單元的第二部分和所述第一部分之間相互垂直,且所述第三部分和所述第一部分之間相互垂直。The touch device of claim 4, wherein the substrate is rectangular, the first side and the second side are perpendicular to each other, and the second part of the plurality of sensing units And the first portion are perpendicular to each other, and the third portion and the first portion are perpendicular to each other. 如申請專利範圍第4項所述的觸控裝置,其特徵在於,相鄰兩個感應單元的第一部分之間的間距相等,相鄰兩個感應單元的第二部分之間的間距相等,相鄰兩個感應單元的第三部分之間的間距相等。The touch device of claim 4, wherein the spacing between the first portions of the adjacent two sensing units is equal, and the spacing between the second portions of the adjacent two sensing units is equal. The spacing between the third portions of the adjacent two sensing units is equal. 如申請專利範圍第4項所述的觸控裝置,其特徵在於,所述多個感應單元位於同一層。The touch device of claim 4, wherein the plurality of sensing units are located in the same layer. 如申請專利範圍第4項所述的觸控裝置,其特徵在於,所述多個感應單元相對於所述基板的中心軸對稱,所述中心軸垂直於所述第一部分。The touch device of claim 4, wherein the plurality of sensing units are symmetrical with respect to a central axis of the substrate, the central axis being perpendicular to the first portion. 如申請專利範圍第1項所述的觸控裝置,其特徵在於,所述第一部分、所述第二部分和所述第三部分中至少一個為矩形。The touch device of claim 1, wherein at least one of the first portion, the second portion, and the third portion is rectangular. 如申請專利範圍第1項所述的觸控裝置,其特徵在於,所述第一電阻和所述第二電阻之間的比例關係根據在對所述自電容充電和/或放電時,從所述第一電極和/或第二電極進行檢測獲得的第一檢測值和第二檢測值之間的比例關係計算得到。The touch device of claim 1, wherein the proportional relationship between the first resistor and the second resistor is based on when charging and/or discharging the self-capacitor. The proportional relationship between the first detected value and the second detected value obtained by detecting the first electrode and/or the second electrode is calculated. 如申請專利範圍第11項所述的觸控裝置,其特徵在於,所述第一檢測值和所述第二檢測值為電流檢測值、自電容檢測值、電平信號檢測值和電荷變化量中的一種或多種。The touch device of claim 11, wherein the first detection value and the second detection value are a current detection value, a self-capacitance detection value, a level signal detection value, and a charge change amount. One or more of them. 如申請專利範圍第11項所述的觸控裝置,其特徵在於,所述第一檢測值包括第一充電檢測值或第一放電檢測值,所述第二檢測值包括第二充電檢測值或第二放電檢測值。The touch device of claim 11, wherein the first detection value comprises a first charging detection value or a first discharging detection value, and the second detection value comprises a second charging detection value or The second discharge detection value. 如申請專利範圍第13項所述的觸控裝置,其特徵在於,所述觸摸螢幕控制晶片向所述感應單元的第一電極和第二電極施加電平信號以對所述自電容充電,所述觸摸螢幕控制晶片從所述第一電極和/或第二電極進行充電檢測以獲得所述第一充電檢測值和第二充電檢測值。The touch device of claim 13, wherein the touch screen control wafer applies a level signal to the first electrode and the second electrode of the sensing unit to charge the self-capacitor. The touch screen control wafer performs charging detection from the first electrode and/or the second electrode to obtain the first charging detection value and the second charging detection value. 如申請專利範圍第13項所述的觸控裝置,其特徵在於,所述觸摸螢幕控制晶片向所述感應單元的第一電極或第二電極分別兩次施加電平信號以對所述自電容進行兩次充電,在每次充電之後所述觸摸螢幕控制晶片從所述第一電極和/或第二電極進行充電檢測以獲得所述第一充電檢測值和第二充電檢測值。The touch device of claim 13, wherein the touch screen control wafer applies a level signal to the first electrode or the second electrode of the sensing unit twice to respectively apply the self-capacitance The charging is performed twice, and the touch screen control wafer performs charging detection from the first electrode and/or the second electrode after each charging to obtain the first charging detection value and the second charging detection value. 如申請專利範圍第13項所述的觸控裝置,其特徵在於,當所述觸摸螢幕控制晶片向所述感應單元的第一電極分別兩次施加電平信號以對所述自電容進行兩次充電時,所述兩次充電中的一次將所述第二電極接地,另一次將所述第二電極接為高阻;以及
當所述觸摸螢幕控制晶片向所述感應單元的第二電極分別兩次施加電平信號以對所述自電容進行兩次充電時,所述兩次充電中的一次將所述第一電極接地,另一次將所述第一電極接為高阻。
The touch device of claim 13, wherein the touch screen control wafer applies a level signal to the first electrode of the sensing unit twice to perform the self-capacitance twice. When charging, one of the two charges grounds the second electrode, another time connects the second electrode to a high resistance; and when the touch screen control wafer is respectively directed to the second electrode of the sensing unit When the level signal is applied twice to charge the self-capacitor twice, the first electrode is grounded once and the first electrode is connected to a high resistance.
如申請專利範圍第13項所述的觸控裝置,其特徵在於,所述觸摸螢幕控制晶片向所述感應單元的第一電極和第二電極施加電平信號以對所述自電容充電,所述觸摸螢幕控制晶片控制所述第一電極和/或所述第二電極接地以對所述自電容放電,所述觸摸螢幕控制晶片從所述第一電極和/或第二電極進行放電檢測以獲得所述第一放電檢測值和第二放電檢測值。The touch device of claim 13, wherein the touch screen control wafer applies a level signal to the first electrode and the second electrode of the sensing unit to charge the self-capacitor. The touch screen control wafer controls the first electrode and/or the second electrode to be grounded to discharge the self capacitance, and the touch screen control wafer performs discharge detection from the first electrode and/or the second electrode to The first discharge detection value and the second discharge detection value are obtained. 如申請專利範圍第13項所述的觸控裝置,其特徵在於,所述觸摸螢幕控制晶片向所述感應單元的第一電極或第二電極施加電平信號以對所述自電容充電,所述觸摸螢幕控制晶片分別控制所述第一電極和所述第二電極接地以對所述自電容放電,所述觸摸螢幕控制晶片分別從所述第一電極和/或第二電極進行放電檢測以獲得所述第一放電檢測值和第二放電檢測值。The touch device of claim 13, wherein the touch screen control wafer applies a level signal to the first electrode or the second electrode of the sensing unit to charge the self-capacitor. The touch screen control wafer respectively controls the first electrode and the second electrode to be grounded to discharge the self-capacitance, and the touch screen control wafer respectively performs discharge detection from the first electrode and/or the second electrode to The first discharge detection value and the second discharge detection value are obtained. 如申請專利範圍第13項所述的觸控裝置,其特徵在於,所述觸摸螢幕控制晶片向所述感應單元的第一電極或第二電極施加電平信號以對所述自電容充電,所述觸摸螢幕控制晶片分別控制所述第一電極或所述第二電極接地以對所述自電容放電,所述觸摸螢幕控制晶片分別從所述第一電極和第二電極進行放電檢測以獲得所述第一放電檢測值和第二放電檢測值。The touch device of claim 13, wherein the touch screen control wafer applies a level signal to the first electrode or the second electrode of the sensing unit to charge the self-capacitor. The touch screen control wafer respectively controls the first electrode or the second electrode to be grounded to discharge the self capacitance, and the touch screen control wafer respectively performs discharge detection from the first electrode and the second electrode to obtain a The first discharge detection value and the second discharge detection value are described. 如申請專利範圍第11項所述的觸控裝置,其特徵在於,所述觸摸螢幕控制晶片包括一個或兩個電容檢測模組CTS。The touch device of claim 11, wherein the touch screen control chip comprises one or two capacitance detecting modules CTS. 一種可攜式電子設備,其特徵在於,包括如申請專利範圍第1-20項任一項所述的觸控裝置。A portable electronic device, comprising the touch device according to any one of claims 1 to 20.
TW101125847A 2011-07-26 2012-07-18 Touch sensitive device and portable electronic apparatus TWI494833B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201110210959 2011-07-26
CN201110211018 2011-07-26
CN201110459449.0A CN102902436B (en) 2011-07-26 2011-12-31 Touch-screen testing equipment and contactor control device

Publications (2)

Publication Number Publication Date
TW201310317A true TW201310317A (en) 2013-03-01
TWI494833B TWI494833B (en) 2015-08-01

Family

ID=47169405

Family Applications (14)

Application Number Title Priority Date Filing Date
TW101213750U TWM449305U (en) 2011-07-26 2012-07-17 Touch screen detecting apparatus, touch sensitive device, and portable electronic apparatus
TW101125694A TWI475437B (en) 2011-07-26 2012-07-17 Touch screen detecting apparatus, touch sensitive device, and portable electronic apparatus
TW101125832A TWI483164B (en) 2011-07-26 2012-07-18 Touch detecting method, touch sensitive device, and portable electronic apparatus
TW101213834U TWM464745U (en) 2011-07-26 2012-07-18 Touch sensitive device and portable electronic apparatus
TW101213838U TWM457238U (en) 2011-07-26 2012-07-18 Touch sensitive device and portable electronic apparatus
TW101125838A TWI479399B (en) 2011-07-26 2012-07-18 Touch detecting method, touch sensitive device, and portable electronic apparatus
TW101125847A TWI494833B (en) 2011-07-26 2012-07-18 Touch sensitive device and portable electronic apparatus
TW101213854U TWM450007U (en) 2011-07-26 2012-07-18 Touch sensitive device and portable electronic apparatus
TW101214182U TWM451595U (en) 2011-07-26 2012-07-23 Touch detecting assembly, touch sensitive device and portable electronic apparatus
TW101126427A TWI486848B (en) 2011-07-26 2012-07-23 Touch detecting assembly, touch sensitive device and portable electronic apparatus
TW101214479U TWM453897U (en) 2011-07-26 2012-07-26 Touch detecting assembly and touch sensitive device
TW101126935A TWI485604B (en) 2011-07-26 2012-07-26 Touch detecting assembly, touch sensitive device and portable electronic apparatus
TW101214478U TWM470979U (en) 2011-07-26 2012-07-26 Touch detecting assembly, touch sensitive device and portable electronic apparatus
TW101126936A TWI482074B (en) 2011-07-26 2012-07-26 Portable electronic apparatus, touch detecting assembly and touch sensitive device

Family Applications Before (6)

Application Number Title Priority Date Filing Date
TW101213750U TWM449305U (en) 2011-07-26 2012-07-17 Touch screen detecting apparatus, touch sensitive device, and portable electronic apparatus
TW101125694A TWI475437B (en) 2011-07-26 2012-07-17 Touch screen detecting apparatus, touch sensitive device, and portable electronic apparatus
TW101125832A TWI483164B (en) 2011-07-26 2012-07-18 Touch detecting method, touch sensitive device, and portable electronic apparatus
TW101213834U TWM464745U (en) 2011-07-26 2012-07-18 Touch sensitive device and portable electronic apparatus
TW101213838U TWM457238U (en) 2011-07-26 2012-07-18 Touch sensitive device and portable electronic apparatus
TW101125838A TWI479399B (en) 2011-07-26 2012-07-18 Touch detecting method, touch sensitive device, and portable electronic apparatus

Family Applications After (7)

Application Number Title Priority Date Filing Date
TW101213854U TWM450007U (en) 2011-07-26 2012-07-18 Touch sensitive device and portable electronic apparatus
TW101214182U TWM451595U (en) 2011-07-26 2012-07-23 Touch detecting assembly, touch sensitive device and portable electronic apparatus
TW101126427A TWI486848B (en) 2011-07-26 2012-07-23 Touch detecting assembly, touch sensitive device and portable electronic apparatus
TW101214479U TWM453897U (en) 2011-07-26 2012-07-26 Touch detecting assembly and touch sensitive device
TW101126935A TWI485604B (en) 2011-07-26 2012-07-26 Touch detecting assembly, touch sensitive device and portable electronic apparatus
TW101214478U TWM470979U (en) 2011-07-26 2012-07-26 Touch detecting assembly, touch sensitive device and portable electronic apparatus
TW101126936A TWI482074B (en) 2011-07-26 2012-07-26 Portable electronic apparatus, touch detecting assembly and touch sensitive device

Country Status (3)

Country Link
CN (40) CN202795310U (en)
TW (14) TWM449305U (en)
WO (7) WO2013013624A1 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202795310U (en) * 2011-07-26 2013-03-13 比亚迪股份有限公司 Touch control device and portable electronic device
CN103105988B (en) * 2013-01-22 2016-01-06 北京京东方光电科技有限公司 Capacitive touch screen, the manufacture method of touch control display apparatus and capacitive touch screen
CN103294319A (en) * 2013-06-06 2013-09-11 敦泰科技有限公司 Capacitive touch screen
US9552089B2 (en) 2013-08-07 2017-01-24 Synaptics Incorporated Capacitive sensing using a matrix electrode pattern
TWI502460B (en) * 2013-08-07 2015-10-01 Focaltech Electronics Ltd A self-capacitive touch screen and a touch control apparatus
CN103455228B (en) * 2013-08-30 2016-10-19 珠海中慧微电子有限公司 Automatically induction point and the method for capacitance touch screen driving voltage load time are calculated
CN103699278B (en) * 2013-10-22 2017-01-11 敦泰电子有限公司 Self-capacitance change detection method and self-capacitance sensing device for touch screen
WO2015058350A1 (en) * 2013-10-22 2015-04-30 敦泰科技有限公司 Self-capacitance change detection method and self-capacitance sensing device for touch screen
TWI515634B (en) * 2013-11-08 2016-01-01 義隆電子股份有限公司 Touch device and sensing method for of the touch device
JP6216252B2 (en) * 2014-01-09 2017-10-18 アルプス電気株式会社 Input device
CN104808870A (en) * 2014-01-23 2015-07-29 天津富纳源创科技有限公司 Detection method of touch point of single-layer capacitive touch screen
CN104850283B (en) * 2014-02-14 2018-02-02 晨星半导体股份有限公司 Self-capacitance touch panel electrode using zigzag line segment to increase resistance value
TWI610203B (en) * 2014-02-14 2018-01-01 晨星半導體股份有限公司 Electrode of self-capacitive touch panel utilizing serpentine trace to increase resistance and self-capacitive touch panel
US9703431B2 (en) 2014-06-03 2017-07-11 Synaptics Incorporated Noise detection and mitigation for capacitive sensing devices
US9753587B2 (en) 2014-06-05 2017-09-05 Synaptics Incorporated Driving sensor electrodes for absolute capacitive sensing
US9703430B2 (en) 2014-06-30 2017-07-11 Synaptics Incorporated Driving sensor electrodes for proximity sensing
US9746975B2 (en) 2015-03-27 2017-08-29 Synaptics Incorporated Capacitive measurement processing for mode changes
US10729194B2 (en) 2015-05-13 2020-08-04 Lukla Inc. Garment with strategically positioned polymide aerogel panels
CN106325578B (en) * 2015-07-10 2023-07-25 宸鸿科技(厦门)有限公司 Pressure sensing touch panel
CN107294521B (en) * 2016-03-31 2020-08-21 日本电气株式会社 Induction detection method and device
CN106527451B (en) * 2016-12-27 2023-07-11 许筠 On-screen interactive robot
CN107328555A (en) * 2017-06-20 2017-11-07 合肥市惠科精密模具有限公司 A kind of display screen foreign matter detecting method
CN108108055B (en) * 2018-01-02 2021-11-16 联想(北京)有限公司 Touch device, touch method and electronic equipment
CN109375839B (en) * 2018-12-03 2020-06-30 武汉华星光电半导体显示技术有限公司 Touch screen and display device
TWI724790B (en) * 2020-02-14 2021-04-11 李尚禮 Resistive touch device and resistive touch-sensing method
TWI727662B (en) * 2020-02-14 2021-05-11 李尚禮 Resistive touch device and resistive touch-sensing method
CN111762023B (en) * 2020-05-29 2022-04-12 法雷奥舒适驾驶辅助系统(广州)有限公司 Touch device and method thereof and auxiliary switch of automobile steering wheel
CN111766978B (en) * 2020-06-12 2021-09-24 深圳市华星光电半导体显示技术有限公司 Touch control assembly and touch control display device
CN111813277A (en) * 2020-07-10 2020-10-23 温州长江汽车电子有限公司 Double-layer pressure touch signal acquisition method of capacitive touch switch

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1091350A (en) * 1996-09-10 1998-04-10 Tokyo Cosmos Electric Co Ltd Touch panel
JP3220405B2 (en) * 1997-02-20 2001-10-22 アルプス電気株式会社 Coordinate input device
US6057903A (en) * 1998-08-18 2000-05-02 International Business Machines Corporation Liquid crystal display device employing a guard plane between a layer for measuring touch position and common electrode layer
US6297811B1 (en) * 1999-06-02 2001-10-02 Elo Touchsystems, Inc. Projective capacitive touchscreen
WO2004040240A1 (en) * 2002-10-31 2004-05-13 Harald Philipp Charge transfer capacitive position sensor
TWI258708B (en) * 2005-01-27 2006-07-21 Apex Material Technology Corp Resistive touch panel, and it manufacturing method
WO2007091579A1 (en) * 2006-02-10 2007-08-16 Sharp Kabushiki Kaisha Touch panel coordinate position detection device
GB2439614B (en) * 2006-05-31 2008-12-24 Harald Philipp Two-dimensional position sensor
TW200844827A (en) * 2007-05-11 2008-11-16 Sense Pad Tech Co Ltd Transparent touch panel device
KR101530189B1 (en) * 2007-07-19 2015-06-22 (주)멜파스 Touchscreen apparatus having multiple bar-type transparent electrodes
JP5094376B2 (en) * 2007-12-28 2012-12-12 株式会社ワコム Position detection device
TW200935290A (en) * 2008-01-15 2009-08-16 Ad Semiconductor Co Ltd Resistive touch screen which can identify multi-touch
CN201174111Y (en) * 2008-03-12 2008-12-31 洋华光电股份有限公司 Signal conducting construction of touching control panel
TW201005613A (en) * 2008-04-10 2010-02-01 Atmel Corp Capacitive position sensor
US8487898B2 (en) * 2008-04-25 2013-07-16 Apple Inc. Ground guard for capacitive sensing
CN101655754B (en) * 2008-08-21 2014-03-26 株式会社和冠 Extended touchscreen pattern
CN101661356B (en) * 2008-08-25 2011-07-06 盛群半导体股份有限公司 Capacitance charge compensation method for touch induction device
CN101751172A (en) * 2008-12-08 2010-06-23 上海天马微电子有限公司 Touch position detecting method and touch screen
JP5113773B2 (en) * 2009-01-20 2013-01-09 株式会社ジャパンディスプレイイースト Display device
CN101847066A (en) * 2009-03-25 2010-09-29 友达光电股份有限公司 Mutual capacitance type touch control display device
JP5193942B2 (en) * 2009-05-14 2013-05-08 京セラディスプレイ株式会社 Capacitive touch panel device
TWI543048B (en) * 2009-05-15 2016-07-21 晨星半導體股份有限公司 A sensor structure of a capacitive touch panel and the sensing method thereof
TWI528250B (en) * 2009-06-25 2016-04-01 Elan Microelectronics Corp Object Detector and Method for Capacitive Touchpad
TW201102895A (en) * 2009-07-10 2011-01-16 Focaltech Systems Ltd Ultra-thin mutual capacitance touch panel and assembly-type ultra-thin touch panel
CN101996014B (en) * 2009-08-21 2013-08-14 宏达国际电子股份有限公司 Pressure detection method of touch sensing element and electronic device using same
US9632628B2 (en) * 2009-10-23 2017-04-25 Atmel Corporation Interdigitated touchscreen electrodes
TWI489356B (en) * 2009-12-15 2015-06-21 Au Optronics Corp Touch display device and touch sensing device
TWI417777B (en) * 2009-12-24 2013-12-01 Orise Technology Co Ltd Capacitive touch panel with high touching sensitivity
KR20110076188A (en) * 2009-12-29 2011-07-06 삼성전자주식회사 Mutual capacitance sensing device and method for manufacturing the same
CN101840293B (en) * 2010-01-21 2012-03-21 宸鸿科技(厦门)有限公司 Scanning method for projected capacitive touch panels
CN101923419A (en) * 2010-04-20 2010-12-22 敦泰科技有限公司 Self-capacitance touch screen with one-dimensional electrodes and coordinate data processing method thereof
TWI426435B (en) * 2010-09-14 2014-02-11 Sentelic Corp Capacitive touch panel and its manufacturing method
CN101984391B (en) * 2010-10-13 2012-12-26 友达光电股份有限公司 Touch panel and repair method thereof
TWI426437B (en) * 2010-10-28 2014-02-11 Young Lighting Technology Inc Capacitive touch panel
TWI421756B (en) * 2010-12-23 2014-01-01 Au Optronics Corp Touch display panel and touch sensing panel
CN202422046U (en) * 2011-07-26 2012-09-05 比亚迪股份有限公司 Induction unit, touch screen detection device and touch control device
CN202267944U (en) * 2011-07-26 2012-06-06 比亚迪股份有限公司 Touch screen detecting device and touch control device
CN202795310U (en) * 2011-07-26 2013-03-13 比亚迪股份有限公司 Touch control device and portable electronic device

Also Published As

Publication number Publication date
WO2013013637A1 (en) 2013-01-31
CN102902427B (en) 2015-09-02
CN102902434A (en) 2013-01-30
TWM449305U (en) 2013-03-21
CN102902433A (en) 2013-01-30
CN102902437B (en) 2016-04-27
CN102902398A (en) 2013-01-30
CN202615359U (en) 2012-12-19
CN202795312U (en) 2013-03-13
CN102902442A (en) 2013-01-30
TWM451595U (en) 2013-04-21
CN202548804U (en) 2012-11-21
TWM457238U (en) 2013-07-11
CN202795311U (en) 2013-03-13
WO2013013625A1 (en) 2013-01-31
CN202795310U (en) 2013-03-13
CN102902436A (en) 2013-01-30
CN102902399A (en) 2013-01-30
TWI486848B (en) 2015-06-01
CN102902441B (en) 2016-06-22
CN202795309U (en) 2013-03-13
TW201319903A (en) 2013-05-16
CN102902431B (en) 2016-09-07
CN102902443A (en) 2013-01-30
CN202870787U (en) 2013-04-10
TW201319904A (en) 2013-05-16
CN102902433B (en) 2017-01-25
CN202548805U (en) 2012-11-21
WO2013013627A1 (en) 2013-01-31
TWM470979U (en) 2014-01-21
CN102902398B (en) 2016-03-02
CN202649983U (en) 2013-01-02
CN102902438B (en) 2016-06-01
CN102902440B (en) 2016-03-30
TWI494833B (en) 2015-08-01
CN102902435B (en) 2015-12-02
CN102902432B (en) 2016-03-02
CN202600661U (en) 2012-12-12
CN102902438A (en) 2013-01-30
CN102902428A (en) 2013-01-30
WO2013013635A1 (en) 2013-01-31
WO2013013636A1 (en) 2013-01-31
TWI482074B (en) 2015-04-21
WO2013013624A1 (en) 2013-01-31
CN202649961U (en) 2013-01-02
CN102902427A (en) 2013-01-30
CN202795313U (en) 2013-03-13
CN102902442B (en) 2016-04-27
TWM453897U (en) 2013-05-21
TWI479399B (en) 2015-04-01
CN102902443B (en) 2016-01-13
CN202600660U (en) 2012-12-12
CN102902436B (en) 2015-12-02
CN102902437A (en) 2013-01-30
WO2013013634A1 (en) 2013-01-31
CN102902435A (en) 2013-01-30
CN102902429B (en) 2016-05-04
TWM450007U (en) 2013-04-01
CN202795315U (en) 2013-03-13
TWI475437B (en) 2015-03-01
CN202795314U (en) 2013-03-13
TWM464745U (en) 2013-11-01
CN202548806U (en) 2012-11-21
CN102902430B (en) 2016-03-30
CN102902431A (en) 2013-01-30
CN102902429A (en) 2013-01-30
CN102902430A (en) 2013-01-30
CN102902444B (en) 2016-08-17
TW201324296A (en) 2013-06-16
TW201305892A (en) 2013-02-01
CN102902439B (en) 2016-11-09
CN202649960U (en) 2013-01-02
CN202548807U (en) 2012-11-21
CN202795285U (en) 2013-03-13
CN102902432A (en) 2013-01-30
TW201308156A (en) 2013-02-16
CN102902444A (en) 2013-01-30
CN102902439A (en) 2013-01-30
CN202649984U (en) 2013-01-02
CN102902441A (en) 2013-01-30
TW201308180A (en) 2013-02-16
CN102902434B (en) 2015-09-30
CN102902440A (en) 2013-01-30
TWI485604B (en) 2015-05-21
TWI483164B (en) 2015-05-01
CN102902428B (en) 2016-09-07
CN102902399B (en) 2015-12-09

Similar Documents

Publication Publication Date Title
TWI494833B (en) Touch sensitive device and portable electronic apparatus
TWI475455B (en) Induction unit, touch screen detecting device, and touch sensitive device
JP2010033133A (en) Input device and display equipped with the same
US20120182252A1 (en) Differential Capacitive Touchscreen or Touch Panel
JP2009258888A (en) Input device and display equipped with the same
TW201248475A (en) Capacitance sensing devices and control methods
TWI505163B (en) Touch detecting method, touch screen detecting device, touch sensitive device, and portable electronic apparatus
US8970796B2 (en) Field-line repeater (FLR) structure of a sense array
TW201537418A (en) Detection method and related touch panel

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees