TW201305892A - Touch detecting method, touch sensitive device, and portable electronic apparatus - Google Patents

Touch detecting method, touch sensitive device, and portable electronic apparatus Download PDF

Info

Publication number
TW201305892A
TW201305892A TW101125838A TW101125838A TW201305892A TW 201305892 A TW201305892 A TW 201305892A TW 101125838 A TW101125838 A TW 101125838A TW 101125838 A TW101125838 A TW 101125838A TW 201305892 A TW201305892 A TW 201305892A
Authority
TW
Taiwan
Prior art keywords
electrode
touch
sensing unit
detection
self
Prior art date
Application number
TW101125838A
Other languages
Chinese (zh)
Other versions
TWI479399B (en
Inventor
zhen-gang Li
Chen Huang
Yun Yang
Original Assignee
Byd Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Byd Co Ltd filed Critical Byd Co Ltd
Publication of TW201305892A publication Critical patent/TW201305892A/en
Application granted granted Critical
Publication of TWI479399B publication Critical patent/TWI479399B/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Position Input By Displaying (AREA)
  • Electronic Switches (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

A touch detecting method, a touch sensitive device and a portable electronic apparatus are provided. The touch detecting method comprises: applying a high level signal to one of a first electrode and a second electrode of one of a plurality of induction units, and grounding the other of the first electrode and the second electrode to charge a self capacitor for a first time; applying a high level signal to the first electrode and the second electrode to charge the self capacitor for a second time; grounding the first electrode and the second electrode of the one induction unit, or grounding one of the first electrode and the second electrode and breaking the other to discharge the self capacitor for a first time; detecting at the corresponding first electrode or the corresponding second electrode to obtain a second detecting variation between the second time charging and the first time discharging; and calculating a touch position according to a first detecting variation and the second detecting variation.

Description

觸摸檢測方法、觸控裝置和可攜式電子設備Touch detection method, touch device and portable electronic device

本發明涉及電子設備設計及製造技術領域,特別涉及一種觸摸螢幕的觸摸檢測方法、觸控裝置以及可攜式電子設備。The present invention relates to the field of electronic device design and manufacturing technology, and in particular, to a touch detection method for a touch screen, a touch device, and a portable electronic device.

目前觸摸螢幕的應用範圍從以往的銀行自動櫃員機,工控電腦等小眾商用市場,迅速擴展到手機,PDA(個人數位助理),GPS(全球定位系統),PMP(MP3,MP4等),甚至平板電腦等大眾消費電子領域。用於觸摸螢幕具有觸控操作簡單、便捷、人性化的優點,因此觸摸螢幕有望成為人機互動的最佳介面而迅速在可攜式設備中得到了廣泛應用。
電容觸摸螢幕通常被分為自電容和互電容兩類。如第1圖所示,為現有技術中常見的一種自電容觸摸螢幕的結構圖。該自電容觸摸螢幕主要有雙層的菱形結構感應單元100’和200’,其檢測原理是對X軸和Y軸分別掃描,如果檢測到某個交叉點的電容變化超出了預設範圍,則將該行和列的交叉點做為觸摸座標。雖然該自電容觸摸螢幕的線性度較好,但是經常有鬼點出現,難以實現多點觸摸。此外,由於採用雙層屏,也會導致結構及成本大幅增加,並且菱形結構在電容變化量很小的情況下會出現座標飄移,受外界干擾影響大。
如第2a圖所示,為現有技術中常見的另一種自電容觸摸螢幕的結構圖。該自電容觸摸螢幕採用三角形圖形屏結構。該自電容觸摸螢幕包括基板300’、設置在基板300’之上的多個三角形感應單元400’、和每個三角形感應單元400’相連的多個電極500’。如第2b圖所示,為三角形自電容觸摸螢幕的檢測原理。如圖所示,橢圓表示手指,S1、S2表示手指與兩個三角形感應單元的接觸面積。假設座標原點在左下角,則橫坐標X=S2/(S1+S2)*P,其中,P為解析度。當手指向右移動時,由於S2不是線性增大,所以X座標存在一個偏差。從上述原理可以看出,目前的三角形感應單元是單端檢測,即只從一個方向檢測,然後通過演算法算出兩個方向的座標。雖然該自電容觸摸螢幕結構更為簡單,但並沒有針對螢幕的電容感應進行優化,電容變化量小,從而導致信噪比不夠。此外,由於該感應單元為三角形,當手指橫向移動時面積不是線性增大,因此線性度較差,導致了座標計算發生偏移,線性度不夠好。
此外,該電容感應單元輸出電容變化量很小,達到飛法級,其電纜雜散電容的存在,對測量電路提出了更高的要求。而且,雜散電容會隨溫度、位置、內外電場分佈等諸多因素影響而變化,干擾甚至淹沒被測電容信號。此外,對於單層電容來說,由於Vcom電平信號的影響會對感應電容形成嚴重的干擾,其中,Vcom電平信號是為了防止LCD螢幕液晶老化而不停翻轉的電平信號。
At present, the application range of touch screens has been rapidly expanded from mobile phone ATMs such as bank ATMs and industrial computer computers to mobile phones, PDAs (personal digital assistants), GPS (Global Positioning System), PMP (MP3, MP4, etc.) and even tablets. Computer and other fields of mass consumer electronics. The touch screen has the advantages of simple, convenient and user-friendly touch operation, so the touch screen is expected to be the best interface for human-computer interaction and has been widely used in portable devices.
Capacitive touch screens are usually divided into two types: self-capacitance and mutual capacitance. As shown in FIG. 1, it is a structural diagram of a self-capacitive touch screen that is common in the prior art. The self-capacitive touch screen mainly has double-layered diamond-shaped structure sensing units 100' and 200'. The detection principle is to scan the X-axis and the Y-axis respectively. If the capacitance change of a certain intersection is detected beyond the preset range, then Use the intersection of the row and column as the touch coordinates. Although the self-capacitance touch screen has a good linearity, there are often ghost points that make it difficult to achieve multi-touch. In addition, due to the use of a double-layer screen, the structure and cost are greatly increased, and the rhombic structure may have coordinate shifts when the amount of capacitance change is small, which is greatly affected by external interference.
As shown in Fig. 2a, it is a structural diagram of another self-capacitive touch screen that is common in the prior art. The self-capacitive touch screen adopts a triangular graphic screen structure. The self-capacitive touch screen includes a substrate 300', a plurality of triangular sensing units 400' disposed above the substrate 300', and a plurality of electrodes 500' connected to each of the triangular sensing units 400'. As shown in Figure 2b, it is the detection principle of the triangular self-capacitance touch screen. As shown, the ellipse represents the finger, and S1, S2 represent the contact area of the finger with the two triangular sensing units. Assuming that the coordinate origin is in the lower left corner, the abscissa X = S2 / (S1 + S2) * P, where P is the resolution. When the finger moves to the right, there is a deviation in the X coordinate since S2 does not increase linearly. It can be seen from the above principle that the current triangular sensing unit is single-ended detection, that is, detecting only from one direction, and then calculating the coordinates in two directions by an algorithm. Although the self-capacitive touch screen structure is simpler, it is not optimized for the capacitive sensing of the screen, and the capacitance variation is small, resulting in insufficient signal-to-noise ratio. In addition, since the sensing unit is triangular, the area does not increase linearly when the finger moves laterally, so the linearity is poor, resulting in offset calculation of the coordinates, and the linearity is not good enough.
In addition, the capacitance sensing unit has a small amount of change in the output capacitance, reaching the flying level, and the presence of the stray capacitance of the cable puts higher requirements on the measuring circuit. Moreover, the stray capacitance will vary with temperature, position, internal and external electric field distribution and other factors, and even interfere with the measured capacitance signal. In addition, for a single-layer capacitor, the influence of the Vcom level signal may cause serious interference to the sensing capacitor, wherein the Vcom level signal is a level signal for preventing the LCD screen from aging and not flipping.

本發明的目的旨在至少解決上述技術缺陷之一,特別是解決或避免出現現有自電容觸摸螢幕中的上述缺點。
本發明第一方面提出了一種觸摸螢幕的觸摸檢測方法,所述觸摸螢幕包括多個不相交的感應單元,每個感應單元的兩端分別具有第一電極和第二電極,所述方法包括以下步驟:向所述多個感應單元中一個感應單元的第一電極和第二電極中的一個施加高電平信號,並將所述第一電極和第二電極中的另一個接地,以在所述一個感應單元被觸摸時對所述一個感應單元產生的自電容進行第一次充電;向所述多個感應單元中的一個感應單元的第一電極和第二電極施加高電平信號,或者,向所述第一電極和所述第二電極中的一個施加高電平信號並將所述第一電極和所述第二電極中的另一個斷開,以對所述自電容進行第二次充電;從對應的所述第一電極或第二電極進行檢測以獲得所述第一次充電和所述第二次充電之間的第一檢測變化值;將所述一個感應單元的第一電極和第二電極接地,或者,將所述第一電極和所述第二電極中的一個接地並將所述第一電極和所述第二電極中的另一個斷開,以對所述自電容進行第一次放電;從對應的所述第一電極或第二電極進行檢測以獲得所述第二次充電和所述第一次放電之間的第二檢測變化值;根據所述第一檢測變化值和第二檢測變化值計算所述自電容至所述第一電極之間的第一電阻和所述自電容至所述第二電極之間的第二電阻的比例關係;以及根據所述第一電阻和所述第二電阻之間的比例關係確定觸摸位置。
本發明第二方面還提出了一種觸控裝置,包括:基板;多個不相交的感應單元,所述多個感應單元形成在所述基板之上,且每個感應單元的兩端分別具有第一電極和第二電極;觸摸螢幕控制晶片,所述觸摸螢幕控制晶片包括充電模組、放電模組和檢測模組,其中,所述充電模組,用於在第一次充電過程中,向所述多個感應單元中一個感應單元的第一電極和第二電極中的一個施加高電平信號,並將所述第一電極和第二電極中的另一個接地,以在所述一個感應單元被觸摸時對所述一個感應單元產生的自電容進行第一次充電;在第二次充電過程中,向所述多個感應單元中的一個感應單元的第一電極和第二電極施加高電平信號,或者,向所述第一電極和第二電極中的一個施加高電平信號並將所述第一電極和第二電極中的另一個斷開,以對所述自電容進行第二次充電;所述放電模組,用於在所述充電模組對所述自電容第二次充電之後,將所述一個感應單元的第一電極和第二電極接地,或者,將所述第一電極和所述第二電極中的一個接地並將所述第一電極和所述第二電極中的另一個斷開以對所述自電容進行第一次放電,和所述檢測模組,用於從對應的所述第一電極或第二電極進行檢測以獲得所述第一次充電和所述第二次充電之間的第一檢測變化值,及從對應的所述第一電極或第二電極進行檢測以獲得所述第二次充電和所述第一次放電之間的第二檢測變化值,和控制及計算模組,用於對所述充電模組、放電模組、檢測模組進行控制,並根據第一檢測變化值和第二檢測變化值計算所述自電容至所述第一電極之間的第一電阻和所述自電容至所述第二電極之間的第二電阻之間的比例關係,並根據所述第一電阻和所述第二電阻之間的比例關係確定觸摸位置。
本發明第三方面還提出了一種可攜式電子設備,包括如上所述的觸控裝置。
本發明的觸控裝置中的感應單元採用雙端檢測,即感應單元的兩端均具有電極,且每個電極均與觸摸螢幕控制晶片的對應管腳相連,在進行觸摸檢測時通過感應單元自身即可實現對觸摸點的定位。
更為重要的是,本發明通過計算第一電阻和第二電阻之間比例實現觸摸位置的確定,因此相對於目前的菱形或三角形設計來說,由於在確定觸摸位置時,無需計算自電容的大小,且自電容的大小不會影響觸摸位置的精度,從而提高了測量精度,改善了線性度。
本發明通過對感應單元兩端的電極施加電平信號,如果該感應單元被觸碰,觸摸物體(例如手指)則會與該感應單元形成自電容,因此本發明通過施加的電平信號可對該自電容進行充電,並根據第一電阻和第二電阻之間的比例關係確定觸摸螢幕上的觸摸位置。且通過本發明實施例的對自電容進行兩次充電的檢測方式,以抵消某些不可測量的物理參數或者減少物理量的測量,從而在保證檢測速度的前提下,有效地提高檢測精度。
本發明提出了一種新穎的自電容檢測方式,在感應單元被觸摸時,觸摸點就可將該感應單元分為兩個電阻,從而在進行自電容檢測的同時考慮這兩個電阻就可以確定觸摸點在該感應單元上的位置。本發明實施例的結構簡單,並且對於一個感應單元來說,在充電或放電時進行檢測,不僅能夠降低RC常數,節省時間提高效率,並且還能夠保證座標不會偏移。此外,本發明實施例還可以有效提高電路的性噪比,降低電路雜訊,提高感應線性度。另外,在檢測過程中由於對被觸摸的感應單元進行充電,因此其中會產生小電流,能夠很好地消除Vcom電平信號對觸摸螢幕中感應單元產生的自電容的影響,因此可以相應地消除螢幕遮罩層及相關工序,從而可以在增強了抗干擾能力的同時進一步降低成本。
本發明附加的方面和優點將在下面的描述中部分給出,部分將從下面的描述中變得明顯,或通過本發明的實踐瞭解到。
It is an object of the present invention to address at least one of the above-mentioned technical deficiencies, and in particular to solve or avoid the above-mentioned disadvantages of existing self-capacitive touch screens.
A first aspect of the present invention provides a touch detection method for a touch screen, the touch screen including a plurality of disjoint sensing units, each of which has a first electrode and a second electrode, respectively, the method comprising the following Step: applying a high level signal to one of the first electrode and the second electrode of one of the plurality of sensing units, and grounding the other of the first electrode and the second electrode to The first self-capacitance generated by the one sensing unit is first charged when a sensing unit is touched; the high level signal is applied to the first electrode and the second electrode of one of the plurality of sensing units, or Applying a high level signal to one of the first electrode and the second electrode and disconnecting the other of the first electrode and the second electrode to perform a second on the self capacitance Sub-charging; detecting from the corresponding first electrode or second electrode to obtain a first detected change value between the first charging and the second charging; The electrode and the second electrode are grounded, or one of the first electrode and the second electrode is grounded and the other of the first electrode and the second electrode is disconnected to Capacitor performing a first discharge; detecting from the corresponding first electrode or second electrode to obtain a second detected change value between the second charge and the first discharge; according to the first Detecting a change value and a second detected change value calculating a proportional relationship between the first resistance between the self-capacitance to the first electrode and the second resistance between the self-capacitance and the second electrode; A proportional relationship between the first resistance and the second resistance determines a touch position.
According to a second aspect of the present invention, a touch device includes: a substrate; a plurality of disjoint sensing units, wherein the plurality of sensing units are formed on the substrate, and each of the sensing units has a first end An electrode and a second electrode; a touch screen control chip, the touch screen control chip includes a charging module, a discharging module and a detecting module, wherein the charging module is used for the first charging process Applying a high level signal to one of the first electrode and the second electrode of one of the plurality of sensing units, and grounding the other of the first electrode and the second electrode to be in the one sensing Capturing a self-capacitance generated by the one sensing unit for a first time when the unit is touched; applying a high voltage to the first electrode and the second electrode of one of the plurality of sensing units during the second charging process Level signal, or applying a high level signal to one of the first electrode and the second electrode and disconnecting the other of the first electrode and the second electrode to perform the The charging module is configured to ground the first electrode and the second electrode of the one sensing unit after the charging module performs the second charging of the self-capacitor, or One of the electrodes and the second electrode is grounded and the other of the first electrode and the second electrode is disconnected to perform a first discharge of the self-capacitor, and the detection module, Detecting from the corresponding first or second electrode to obtain a first detected change value between the first charge and the second charge, and from the corresponding first electrode or The second electrode performs detection to obtain a second detection change value between the second charge and the first discharge, and a control and calculation module for the charging module, the discharge module, and the detection Controlling, and calculating, according to the first detection change value and the second detection change value, the first resistance between the self-capacitance to the first electrode and the self-capacitance to the second electrode a proportional relationship between the two resistors, and according to the first resistor The ratio between the second resistor to determine the touch location.
A third aspect of the present invention also provides a portable electronic device comprising the touch device as described above.
The sensing unit in the touch device of the present invention adopts double-end detection, that is, both ends of the sensing unit have electrodes, and each electrode is connected to a corresponding pin of the touch screen control chip, and passes through the sensing unit itself when performing touch detection. The positioning of the touch points can be achieved.
More importantly, the present invention achieves the determination of the touch position by calculating the ratio between the first resistance and the second resistance, so that compared to the current diamond or triangle design, since the touch position is determined, there is no need to calculate the self-capacitance. The size and the size of the self-capacitance do not affect the accuracy of the touch position, thereby improving measurement accuracy and improving linearity.
The present invention applies a level signal to the electrodes at both ends of the sensing unit. If the sensing unit is touched, touching an object (such as a finger) will form a self-capacitance with the sensing unit, so the present invention can apply the level signal by applying the level signal. The self-capacitance is charged, and the touch position on the touch screen is determined according to a proportional relationship between the first resistance and the second resistance. And the detection method of charging the self-capacitance twice by the embodiment of the invention to cancel some unmeasurable physical parameters or reduce the measurement of the physical quantity, thereby effectively improving the detection precision under the premise of ensuring the detection speed.
The invention provides a novel self-capacitance detection method. When the sensing unit is touched, the touch point can divide the sensing unit into two resistors, so that the two resistors can be determined while taking the self-capacitance detection. The position on the sensing unit. The structure of the embodiment of the invention is simple, and for a sensing unit, detecting when charging or discharging can not only reduce the RC constant, save time and improve efficiency, but also ensure that the coordinates are not offset. In addition, the embodiment of the invention can effectively improve the performance-to-noise ratio of the circuit, reduce circuit noise, and improve the linearity of the induction. In addition, since the touched sensing unit is charged during the detection process, a small current is generated therein, which can well eliminate the influence of the Vcom level signal on the self-capacitance generated by the sensing unit in the touch screen, and thus can be eliminated accordingly. The screen mask layer and related processes can further reduce the cost while enhancing the anti-interference ability.
The additional aspects and advantages of the invention will be set forth in part in the description which follows.

下面詳細描述本發明的實施例,所述實施例的示例在附圖中示出,其中自始至終相同或類似的標號表示相同或類似的元件或具有相同或類似功能的元件。下面通過參考附圖描述的實施例是示例性的,僅用於解釋本發明,而不能解釋為對本發明的限制。
本發明實施例提出了一種新穎的自電容檢測方式,在感應單元被觸摸時,觸摸點可以將該感應單元分為兩個電阻,在進行自電容檢測的同時考慮這兩個電阻就可以確定觸摸點在該感應單元上的位置。如第3圖所示,為本發明實施例觸控裝置的檢測原理示意圖。當手指觸摸該感應單元時,將相當於將該感應單元分割為兩個電阻,這兩個電阻的阻值與觸摸點的位置相關。例如,如圖所述,當觸摸點與第一電極210較近時,則電阻R1就較小,而電阻R2就較大;反之,當觸摸點與第二電極220較近時,則電阻R1就較大,而電阻R2就較小。因此,本發明通過對電阻R1和R2的檢測就可以確定觸摸點在該感應單元上的位置。在本發明的實施例中,通過多種方式檢測電阻R1和R2,例如可通過檢測第一電極和第二電極的電流檢測變化值、自電容檢測變化值、電平信號檢測變化值和電荷變化量中的一種或多種,從而根據這些檢測變化值獲得電阻R1和R2。並且本發明通過對由觸摸點形成的自電容進行兩次充電以抵消某些不可測量的物理參數或者減少物理量的測量,提高測量精度。
需要說明的是,在本發明的實施例中,上述第一電極和第二電極的功能相同,且二者可以互換,因此在上述實施例中,既可以從第一電極檢測也可以從第二電極檢測,只要能滿足在充電、放電或檢測時需要有電流經過第一電阻和第二電阻這一要求即可。
在本發明的實施例中,可以以掃描的方式依次向多個感應單元施加相應的電壓,同時在檢測時也可以以掃描的方式依次進行檢測。
如第4圖所示,為本發明實施例的觸摸檢測方法流程圖,該流程圖結合第3圖所示的原理圖一同進行說明。該方法包括以下步驟:
步驟S401,向所述多個感應單元中一個感應單元的第一電極和第二電極中的一個施加高電平信號,並將所述第一電極和第二電極中的另一個接地,以在感應單元被觸摸時對感應單元產生的自電容進行第一次充電。在該實施例中,向第一電極和第二電極中的一個施加高電平信號Vcc。
如果此時該感應單元被手指或其他物體觸摸,則該感應單元將會產生自電容C1(參照第3圖),因此通過施加的高電平信號Vcc就可對自電容進行充電。此時,在本發明的一個實施例中,如果向第一電極施加高電平信號,則施加在自電容上的電壓為V2=VccR2/(R1+R2)。在本發明的一個實施例中,如果向第二電極施加高電平信號,則施加在自電容上的電壓為V1=VccR1/(R1+R2)。
此外,在本發明的實施例中,通過對自電容的充電,還可以提高自電容的檢測精度。
在本發明的一個實施例中,如果該感應單元沒有被觸摸,則後續將無法檢測到自電容的存在,因此可判斷其未被觸摸。
步驟S402,向一個感應單元的第一電極和第二電極施加高電平信號,或者,向第一電極和第二電極中的一個施加高電平信號並將第一電極和第二電極中的另一個斷開,以對自電容進行第二次充電。
在本發明實施例中,可向第一電極和第二電極均施加高電平信號;或者,向第一電極施加高電平信號,而將第二電極斷開;或者,向第二電極施加高電平信號,而將第一電極斷開。另外需指出的是,由於施加的高電平信號為已知量,故兩次所施加的高電平信號可以相同或者不相同,均不影響推導過程。在該實施例中,向第一電極和/或第二電極施加與步驟S401中相同的高電平信號Vcc。此時施加在自電容上的電壓為Vcc。
步驟S403,從對應的第一電極或第二電極進行檢測以獲得第一次充電和第二次充電之間的第一檢測變化值。在本發明的實施例中,所述的對應是指以下情況,例如,當一個感應單元的第一電極和第二電極均接高電平信號進行充電時,從第一電極和第二電極均可進行檢測;如當第一電極接高電平信號,第二電極斷開時,則只能從第一電極檢測;反之,當第二電極接高電平信號,第一電極斷開時,則只能從第二電極檢測。
在本發明的實施例中,只要第二次充電的方式與第一次充電的方式不同,就可引起自電容中電荷量的變化。此外,在檢測完後需對自電容進行放電以便進行下一次充放電過程。
在本實施例中,假設第一檢測變化值為Q1。以下以第一檢測變化值和第二檢測變化值為電荷變化量為例進行描述,但是能夠反應電阻R1和R2之間關係的其他檢測變化值,例如電平信號、電流等也均可採用。
其中,如果在步驟401中,向第一電極施加高電平信號,則Q1 =V1C1= VccC1R1/(R1+R2)(1a),其中,V1=VccR1/(R1+R2)。此時第一次充電時自電容的電壓為V2,該自電容電壓可在第一次充電時檢測或計算得到。
其中,如果在步驟401中,向第二電極施加高電平信號,則Q1 =V2C1= VccC1R2/(R1+R2)(1b),其中,V2=VccR2/(R1+R2)。此時第一次充電時自電容的電壓為V1,該自電容電壓可在第一次充電時檢測或計算得到。
步驟S404,將一個感應單元的第一電極和第二電極接地,或者,將第一電極和第二電極中的一個接地並將第一電極和第二電極中的另一個斷開,以對自電容進行第一次放電。
具體地,可將一個感應單元的第一電極和第二電極均接地,或者,將第一電極接地,而第二電極斷開,或者,將第二電極接地,而將第一電極斷開,以對自電容進行第一次放電。
步驟S405,從對應的第一電極或第二電極進行檢測以獲得第二次充電和第一次放電之間的第二檢測變化值。
在本實施例中,假設第二檢測變化值為Q2。第二檢測變化值需採用與步驟S403中的第一檢測變化值相同的檢測變化值,即在本發明實施例中均為電荷變化量。同樣地,在此所述“對應的”也是相對的概念,例如在第一次放電時,如果第二電極斷開,則只能從第一電極進行檢測。
其中,Q2= VccC1 (2)
步驟S406,根據第一檢測變化值和第二檢測變化值計算自電容至第一電極之間的第一電阻和自電容至第二電極之間的第二電阻的比例關係,並根據第一電阻和第二電阻的比例關係確定觸摸位置。在本發明的一個實施例中,通過式(1a)(或1b)和(2)所表示的自電容電荷變化量可以計算出R1與R2的比例關係,由於圖形的規則線性關係,則可以計算出觸摸點所在的橫坐標的位置,及自電容C1所在的位置。
在本發明的實施例中,如果在步驟401中,向第一電極施加高電平信號,則R1/R2=Q1 / (Q2-Q1),因此通過本發明實施例就可獲得R1和R2之間的比例關係。
在本發明的實施例中,如果在步驟401中,向第二電極施加高電平信號,則R1/R2=(Q2-Q1)/Q1,因此通過本發明實施例就可獲得R1和R2之間的比例關係。

在本發明的實施例中,如果感應單元為門形感應單元或L形感應單元,則通過第一電阻和第二電阻之間的比值就可確定在觸摸螢幕上的觸摸位置,以下將結合具體的例子進行詳述。但在本發明的其他實施例中,如果感應單元為矩形感應單元或蛇形(但整體上看相當於矩形)感應單元,則步驟S406只能計算出在觸摸螢幕第一方向上的觸摸位置,該第一方向可以是感應單元的長度方向(例如觸摸螢幕的水準方向)。
如果感應單元為矩形感應單元或蛇形(但整體上看相當於矩形)感應單元,則還需要根據感應單元的位置確定在第二方向上的觸摸位置。在本發明的一個實施例中,第一方向為感應單元的長度方向,第二方向為垂直於感應單元的方向,感應單元水準設置或垂直設置。
在本發明的實施例中,自電容檢測模組可為目前已知的自電容檢測模組,因此在此不再贅述。
在本發明的一個實施例中,如果採用兩個自電容檢測模組的話,則由於兩個自電容檢測模組可共用多個器件,因此不會增大晶片的整體功耗。
在本發明的一個實施例中,感應單元可採用不同的形狀。優選地,多個不相交的感應單元位於同一層,從而在保證檢測精度的情況下,能夠極大地節省成本。
在本發明的上述實施例中,雖然以第一次充電、第二次充電和第一次放電為例進行描述,但是本發明中只要有三個不同的狀態即可,通過測量任意兩個不同狀態之間的狀態差(即檢測變化值)就可獲得R1和R2之間的比例關係。在該實施例中,三個不同的狀態為第一次充電後的狀態,第二次充電後的狀態和放電後的狀態。

如第5圖所示,為本發明實施例的矩形感應單元被觸摸的示意圖。該感應單元為矩形,且多個感應單元與所述觸摸螢幕的第一方向相互平行,因此觸摸位置為在第一方向上的觸摸位置。
如第6a圖所示,為本發明一個實施例的感應單元結構圖。該感應單元200包括多個第一部分230和多個平行第二部分240,其中,相鄰的第一部分230之間通過第二部分240相連,以形成多個交替排列的第一凹槽1000和第二凹槽2000,其中,多個第一凹槽1000和多個第二凹槽2000的開口方向相反。優選地,第二部分240沿第一方向排列。在本發明的一個實施例中,多個第一部分230可以相互平行,也可以不平行。優選地,第二部分240為矩形。在本發明的其他實施例中,第一部分230也可為矩形,但第一部分230還可為其他多種形狀。在該實施例中,通過第一部分230增加電阻的阻抗,從而增大感應單元200的阻抗,使得第一電阻和第二電阻更易檢測,進一步地提高檢測精度。且在該實施例中,優選地,第二部分240之間的間隔相等,從而能夠從感應單元的阻抗進行均勻地提高,以改善檢測精度。在本發明的一個實施例中,第一方向為感應單元200的長度方向,第二方向為垂直於感應單元200的方向,具體地,感應單元200可水準設置或垂直設置。
在本發明的實施例中,感應單元200長度方向的尺寸與基板的尺寸基本一致,因此觸控裝置結構簡單,容易製造,且製造成本低。
在本發明的一個實施例中,第一電極210和第二電極220分別與多個第一部分230中的兩個第一部分相連。但是在本發明的另一個實施例中,第一電極210和第二電極220分別與多個第二部分240中的兩個第二部分相連,如第6b圖所示。
並且,在本發明的實施例中,第二部分240和第一部分230之間相互垂直,二者之間的角度優選為90度,當然也可選擇其他角度。如第6a圖所示,該感應單元200通過多個第二部分240將多個第一部分230首尾相連,感應單元200的第一電極210和第二電極220分別與兩端的第一部分230相連。從整體結構上看,該感應單元200為具有較大長寬比的矩形。該需要說明的是,雖然在第6a圖中將感應單元200沿X軸設置,但是本領域技術人員應該理解的是,該感應單元200也可沿Y軸設置。通過該感應單元的結構可以有效地減少雜訊,提高感應的線性度。
如第7a圖所示,為本發明另一個實施例的感應單元結構圖。在該實施例中,該感應單元200可為門形,且多個感應單元200中每個感應單元200的長度不同,多個感應單元200之間相互嵌套。其中,每個所述感應單元包括第三部分250、不相交的第四部分260和第五部分270。優選地,第三部分250與基板100的第一邊110平行,第四部分260和第五部分270分別與基板100的第二邊120平行,且第四部分260一端與第三部分250的一端相連,第五部分270的一端與第三部分250的另一端相連。感應單元200的第四部分260的另一端具有第一電極210,第五部分270的另一端具有第二電極220,其中,每個第一電極210和第二電極220均與觸摸螢幕控制晶片的對應的管腳相連。
在本發明的實施例中,所謂相互嵌套是指外側的感應單元部分地包圍內側的感應單元,例如如第7a圖所示,這樣能夠在保證精度的同時達到較大的覆蓋率,並且降低運算的複雜度,提高觸摸螢幕的回應速度。當然本領域技術人員還可根據第7a圖的思想採用其他相互嵌套的方式排列感應單元。在本發明的一個實施例中,每個感應單元200的第三部分250與其他感應單元200的第三部分250平行,每個感應單元200的第四部分260與其他感應單元200的第四部分260平行,每個感應單元200的第五部分270與其他感應單元200的第五部分270平行。在本發明的一個實施例中,感應單元200的第三部分250、第四部分260和第五部分270中至少一個為矩形,優選地,第三部分250、第四部分260和第五部分270均為矩形。在該實施例中,由於矩形結構圖形規則,因此在手指橫向或縱向移動時線性度好,此外,兩個矩形結構之間的間距相同,便於計算,從而提高計算速度。
在本發明的一個實施例中,每個感應單元200的第四部分260與第五部分270長度相等。
在本發明的一個實施例中,基板100為矩形,第一邊110和第二邊120之間相互垂直,且第四部分260和第三部分250之間相互垂直,第五部分270和第三部分250之間相互垂直。
在本發明的一個實施例中,相鄰兩個感應單元200的第三部分250之間的間距相等,相鄰兩個感應單元200的第四部分260之間的間距相等,相鄰兩個感應單元200的第五部分270之間的間距相等。這樣就可以通過多個感應單元200對觸摸螢幕的第一邊110和第二邊120均勻劃分,從而提高運算速度。當然在本發明的其他實施例中,相鄰兩個感應單元200的第三部分250之間的間距也可不相等,或者,相鄰兩個感應單元200的第四部分260之間的間距也可不相等,如第7b圖所示。例如,由於用戶往往觸摸在觸摸螢幕的中心部位,因此可以將觸摸螢幕中心部位的感應單元之間的間距減小,從而提高中心部位的檢測精度。
在本發明的一個實施例中,多個感應單元200相對於基板100的中心軸Y對稱,如第7a圖所示,中心軸Y垂直於第三部分250,從而更有利於提高精度。
如第7a圖所示,在該實施例中,感應單元200的第一電極210和第二電極220均位於基板100的第一邊110上。在該實施例中,檢測到在感應單元上的觸摸位置之後,即可獲得在觸摸螢幕之上的觸摸位置。
需要說明的是,上述第7a圖為本發明較優的實施例,其能夠獲得較大的覆蓋率,但是本發明的其他實施例可對第7a圖進行一些等同的變化,例如第四部分260和第五部分270可以是不平行的。
本發明實施例中的感應單元採用類似門形的結構,不僅結構簡單,便於製作,所有引線都在同一邊,設計方便,減少銀漿成本並且製作容易,對減少生產成本有很大幫助。
如第8圖所示,為本發明實施例的感應單元被觸摸時的示意圖。從第8圖可知,第一電極為210,第二電極為220,觸摸位置A接近於第二電極,假設感應單元的長度為10個單位長度,且將感應單元均勻地分為10份,其中,感應單元第三部分250的長度為4個單位長度,感應單元第四部分260和第五部分270的長度為3個單位長度。經過檢測,獲知第一電阻和第二電阻之比為4:1,即第一電極210至觸摸位置的長度(由第一電阻體現)為全部感應單元長度的80%。換句話說,觸摸點位於距離第一電極210處8個單位長度的位置,獲知,觸摸點位於距離第二電極220處2個單位長度的位置。當手指移動時,觸摸位置會相應移動,因此通過觸摸位置的變換就可判斷手指相應的移動軌跡,從而判斷用戶的輸入指令。
從第8圖的以上例子可以看出,本發明的計算方式非常簡單,因此能夠極大地提高觸摸螢幕檢測的反應速度。在本發明的實施例中,通常手指或其他物體會觸摸多個感應單元,此時可以先獲得在這被觸摸的多個感應單元中每個的觸摸位置,然後通過求平均的方式計算最終在觸摸螢幕上的觸摸位置。

如第9a圖所示,為本發明再一個實施例觸摸螢幕檢測設備結構圖。在本發明的一個實施例中,多個感應單元的長度逐漸增加,且每個所述感應單元包括第六部分280和第七部分290。第六部分280的一端具有第一電極210,第七部分290的一端與第六部分280的另一端相連,且第七部分290的另一端具有第二電極220。
具體地,第六部分280與基板100的第一邊110平行,第七部分290與基板100的第二邊120平行,且第一邊110和第二邊120相鄰。且每個第一電極210和第二電極220均與觸摸螢幕控制晶片的對應管腳相連。
在本發明的優選實施例中,每個感應單元200的第六部分280與其他感應單元200的第六部分280平行,每個感應單元200的第七部分290與其他感應單元200的第七部分290平行。通過這樣的設置能夠有效地提高感應單元對觸摸螢幕的覆蓋率。在本發明的一個實施例中,感應單元200的第六部分280、第七部分290中至少一個為矩形,優選地,第六部分280、第七部分290均為矩形。在該實施例中,由於矩形結構圖形規則,因此在手指橫向或縱向移動時線性度好,此外,兩個矩形結構之間的間距相同,便於計算。
本發明實施例的觸摸螢幕檢測裝置中的感應單元採用雙端檢測,即感應單元的兩端均具有電極,且每個電極均與觸摸螢幕控制晶片的對應管腳相連,在進行觸摸檢測時通過感應單元自身即可實現對觸摸點的定位。
更為重要的是,本發明通過計算第一電阻和第二電阻之間比例實現觸摸位置的確定,因此相對於目前的菱形或三角形設計來說,由於在確定觸摸位置時,無需計算自電容的大小,且自電容的大小不會影響觸摸位置的精度,對自電容檢測精度的依賴降低,從而提高了測量精度,改善了線性度。此外,由於本發明實施例的第六部分280和第七部分290中任意一個均可為形狀規則的矩形,因此相對於目前的菱形或三角形等不規則的形狀來說,也可以進一步地提高線性度。
在本發明的一個實施例中,每個感應單元的第六部分280與第七部分290長度相等,從而能夠提高運算速度。優選地,基板100為矩形,第一邊110和第二邊120之間相互垂直。第一邊110和第二邊120相互垂直,不僅使得感應單元設計更加規則,例如使得感應單元的第六部分280和第七部分290之間也相互垂直,從而提高對觸摸螢幕的覆蓋率,而且第六部分280和第七部分290之間相互垂直也可以提高檢測的線性度。
在本發明的一個實施例中,相鄰兩個感應單元200之間的間距相等。這樣就可以通過多個感應單元200對觸摸螢幕的第一邊110和第二邊120均勻劃分,從而提高運算速度。
當然在本發明的另一個實施例中,相鄰兩個感應單元200之間的間距也可以不等,如第9b圖所示,例如由於用戶往往觸摸在觸摸螢幕的中心部位,因此可以將觸摸螢幕中心部位的感應單元之間的間距減小,從而提高中心部位的檢測精度。
如第9a圖所示,在該實施例中,感應單元200的第一電極210位於基板100的第一邊110上,第二電極220位於基板100的第二邊120上,且第一邊110和第二邊120相互垂直。在該實施例中,檢測到在感應單元上的觸摸位置之後,即可獲得在觸摸螢幕之上的觸摸位置。
如第10圖所示,為本發明實施例的感應單元被觸摸時的示意圖。從第10圖可知,第一電極為210,第二電極為220,觸摸位置A接近於第二電極220,假設感應單元的長度為10個單位長度,且將感應單元均勻地分為10份,其中,感應單元的第六部分280的長度為5個單位長度,感應單元的第七部分290的長度為5個單位長度。經過檢測,獲知第一電阻和第二電阻之比為9:1,即第一電極210至觸摸位置的長度(由第一電阻體現)為全部感應單元長度的90%。換句話說,觸摸點位於距離第一電極210處9個單位長度的位置,獲知,觸摸點位於距離第二電極220處1個單位長度的位置。
從第10圖的以上例子可以看出,本發明的計算方式非常簡單,因此能夠極大地提高觸摸螢幕檢測的反應速度。
在本發明的一個實施例中,多個感應單元200位於同一層,因此只需要一層ITO即可,從而在保證精度的同時,極大地降低製造成本。
綜上所述,本發明實施例通過對感應單元兩端的電極施加電平信號,如果該感應單元被觸碰,則會該感應單元會形成自電容,因此本發明通過施加的電平信號可對該自電容進行充電,並根據第一電阻和第二電阻之間的比例關係確定在第一方向上的觸摸位置。例如在本發明的一個實施例中,第一電阻和第二電阻之間的比例關係根據在對所述自電容充電/放電時,從所述第一電極和/或第二電極進行檢測獲得的第一檢測值和第二檢測值之間的比例關係計算得到。因此從第一電極和/或第二電極檢測該自電容充電/放電時產生的第一檢測值和第二檢測值。這樣,通過第一檢測值和第二檢測值就能夠反應觸摸點位於該感應單元的位置,從而進一步確定觸摸點在觸摸螢幕的位置。
對於第5圖和第6圖的感應單元來說,在確定了第一方向上的觸摸位置之後,還需要進一步根據被觸摸的感應單元的位置確定在第二方向上的觸摸位置。在本發明的實施例中,可參照第5圖和第6圖所示,如果檢測到某個感應單元的第一檢測值或第二檢測值大於預設閾值,則說明該感應單元被觸摸。假設第二個感應單元(其縱坐標為M)被觸摸,則在第二方向上的觸摸位置就為第二個感應單元的座標M。之後,再根據第一方向上的觸摸位置和第二方向上的觸摸位置確定觸摸點在觸摸螢幕上的位置。
具體地,可採用質心算法計算觸摸點在第二方向上的觸摸位置,以下對質心算法進行簡單介紹。
在滑條和觸摸板應用中,經常有必要在具體感應單元的本質間距以上確定出手指(或其他電容性物體)的位置。手指在滑條或觸摸板上的接觸面板通常大於任何個感應單元。為了採用一個中心來計算觸摸後的位置,對這個陣列進行掃描以驗證所給定的感測器位置是有效的,對於一定數量的相鄰感應單元信號的要求是要大於預設觸摸閾值。在找到最為強烈的信號後,此信號和那些大於觸摸閾值的臨近信號均用於計算中心:

其中,Ncent為中心處感應單元的標號,n為檢測到被觸摸的感應單元的個數,i為被觸摸感應單元的序號,其中i大於等於2。
例如,當手指觸摸在第一條通道,其電容變化量為y1,第二條通道上的電容變化量為y2和第三條通道上的電容變化量為y3時。其中第二通道y2電容變化量最大。Y座標就可以算是:

如第11圖所示,為本發明一個實施例的觸控裝置示意圖。該觸控裝置包括由基板100和多個不相交的感應單元200所構成的觸摸螢幕檢測裝置、觸摸螢幕控制晶片300。其中,多個感應單元200形成在基板100之上,且多個感應單元200的每個均具有第一電極210和第二電極220。觸摸螢幕控制晶片300中的一部分管腳與多個感應單元200的第一電極210相連,觸摸螢幕控制晶片300中的另一部分管腳與多個感應單元200的第二電極220相連,且觸摸螢幕控制晶片300向多個感應單元200的第一電極210和/或第二電極220施加電平信號,該電平信號在感應單元200被觸摸時向感應單元200產生的自電容充電。
如第12圖所示,為本發明實施例觸摸螢幕控制晶片的結構圖。觸摸螢幕控制晶片300包括充電模組310、放電模組320、檢測模組330和控制及計算模組340。充電模組310在第一次充電過程中,向多個感應單元中的一個感應單元200的第一電極210和第二電極220中的一個施加高電平信號,並將第一電極210和第二電極220中的另一個接地,以在一個感應單元200被觸摸時對一個感應單元200產生的自電容進行第一次充電;在第二次充電過程中,向多個感應單元中的一個感應單元200的第一電極210和第二電極220施加高電平信號,或者,向第一電極210和第二電極220中的一個施加高電平信號並將第一電極210和第二電極220中的另一個斷開,以對自電容進行第二次充電。放電模組320用於在充電模組310對自電容第二次充電之後,將一個感應單元200的第一電極210和第二電極220接地,或者,將第一電極210和第二電極220中的一個接地並將第一電極210和所述第二電極220中的另一個斷開以對自電容進行第一次放電。檢測模組330用於在每次充放電時,從對應的第一電極210或第二電極220進行檢測以獲得第一次充電和第二次充電之間的第一檢測變化值,及從對應的第一電極210或第二電極進行檢測以獲得第二次充電和第一次放電之間的第二檢測變化值。控制及計算模組340用於對充電模組310、放電模組320、檢測模組330進行控制,並根據第一檢測變化值和第二檢測變化值計算自電容至第一電極之間的第一電阻和自電容至所述第二電極之間的第二電阻的比例關係,並根據第一電阻和第二電阻的比例關係確定觸摸位置。在本發明的實施例中,控制及計算模組340可以以掃描的方式控制充電模組310依次向多個感應單元施加相應的電壓,同時在檢測時也可以以掃描的方式依次進行檢測,或者,也可以掃描的方式控制放電模組320依次對多個感應單元中被觸摸的感應單元所產生的自電容進行放電。
在本發明的上述實施例中,雖然以第一次充電、第二次充電和第一次放電為例進行描述,但是本發明中只要有三個不同的狀態即可,通過測量任意兩個不同狀態之間的狀態差(即檢測變化值)就可獲得R1和R2之間的比例關係。在該實施例中,三個不同的狀態為第一次充電後的狀態,第二次充電後的狀態和放電後的狀態。
在本發明的一個實施例中,第一檢測變化值、第二檢測變化值可為電流檢測變化值、自電容檢測變化值、電平信號檢測變化值和電荷變化量中的一種或多種。
在本發明的一個實施例中,檢測模組330為CTS(電容檢測模組)。
在本發明的一個實施例中,控制及計算模組340還用於根據被觸摸的感應單元200的位置確定在第二方向上的觸摸位置,並根據第一方向上的觸摸位置和第二方向上的觸摸位置確定所述觸摸點在觸摸螢幕上的位置。具體地,控制及計算模組340通過質心算法確定所述第二方向上的觸摸位置。
在本發明的一個實施例中,第一方向為感應單元200的長度方向,第二方向為垂直於感應單元200長度方向的方向,感應單元水準平行設置或垂直平行設置。
在本發明的一個優選實施例中,多個不相交的感應單元位於同一層,從而在保證檢測精度的前提下,有效地降低製造成本。
本發明還提出了一種可攜式電子設備,包括如上所述的觸控裝置。
本發明實施例通過對感應單元兩端的電極施加電平信號,如果該感應單元被觸碰,則會該感應單元會形成自電容,因此本發明通過施加的電平信號可對該自電容進行充電,並根據第一電阻和第二電阻之間的比例關係確定觸摸螢幕上的觸摸位置。且通過本發明實施例的對自電容進行兩次充電的檢測方式,以抵消某些不可測量的物理參數或者減少物理量的測量,從而在保證檢測速度的前提下,有效地提高檢測精度。
本發明實施例提出了一種新穎的自電容檢測方式,在感應單元被觸摸時,觸摸點就可將該感應單元分為兩個電阻,從而在進行自電容檢測的同時考慮這兩個電阻就可以確定觸摸點在該感應單元上的位置。本發明實施例的結構簡單,並且對於一個感應單元來說,可從其的第一電極和/或第二電極進行充電或放電,並在充電或放電時進行檢測,不僅能夠降低RC常數,節省時間提高效率,並且還能夠保證座標不會偏移。此外,本發明實施例還可以有效提高電路的性噪比,降低電路雜訊,提高感應線性度。另外,在檢測過程中由於對被觸摸的感應單元進行充電,因此其中會產生小電流,能夠很好地消除Vcom電平信號對觸摸螢幕中感應單元產生的自電容的影響,因此可以相應地消除螢幕遮罩層及相關工序,從而可以在增強了抗干擾能力的同時進一步降低成本。
在本說明書的描述中,參考術語“一個實施例”、“一些實施例”、“示例”、“具體示例”、或“一些示例”等的描述意指結合該實施例或示例描述的具體特徵、結構、材料或者特點包含于本發明的至少一個實施例或示例中。在本說明書中,對上述術語的示意性表述不一定指的是相同的實施例或示例。而且,描述的具體特徵、結構、材料或者特點可以在任何的一個或多個實施例或示例中以合適的方式結合。
儘管已經示出和描述了本發明的實施例,對於本領域的普通技術人員而言,可以理解在不脫離本發明的原理和精神的情況下可以對這些實施例進行多種變化、修改、替換和變型,本發明的範圍由所附申請專利範圍及其等同限定。


The embodiments of the present invention are described in detail below, and the examples of the embodiments are illustrated in the drawings, wherein the same or similar reference numerals are used to refer to the same or similar elements or elements having the same or similar functions. The embodiments described below with reference to the drawings are intended to be illustrative of the invention and are not to be construed as limiting.
The embodiment of the invention provides a novel self-capacitance detection method. When the sensing unit is touched, the touch point can divide the sensing unit into two resistors, and the two resistors can be used to determine the touch while performing self-capacitance detection. The position on the sensing unit. FIG. 3 is a schematic diagram of a detection principle of a touch device according to an embodiment of the present invention. When the finger touches the sensing unit, it will be equivalent to splitting the sensing unit into two resistors, and the resistance values of the two resistors are related to the position of the touch point. For example, as shown in the figure, when the touch point is closer to the first electrode 210, the resistor R1 is smaller and the resistor R2 is larger; conversely, when the touch point is closer to the second electrode 220, the resistor R1 is It is larger and the resistance R2 is smaller. Therefore, the present invention can determine the position of the touch point on the sensing unit by detecting the resistors R1 and R2. In an embodiment of the present invention, the resistors R1 and R2 are detected in various ways, for example, by detecting a current detection change value of the first electrode and the second electrode, a self-capacitance detection change value, a level signal detection change value, and a charge change amount. One or more of them, thereby obtaining resistors R1 and R2 based on these detected change values. And the present invention improves the measurement accuracy by charging the self-capacitance formed by the touch point twice to offset some unmeasurable physical parameters or to reduce the measurement of the physical quantity.
It should be noted that, in the embodiment of the present invention, the functions of the first electrode and the second electrode are the same, and the two are interchangeable. Therefore, in the above embodiment, the first electrode may be detected from the first electrode or the second The electrode detection can be performed as long as it satisfies the requirement that a current needs to pass through the first resistor and the second resistor during charging, discharging or detecting.
In the embodiment of the present invention, the corresponding voltages may be sequentially applied to the plurality of sensing units in a scanning manner, and may also be sequentially detected in a scanning manner during the detection.
As shown in FIG. 4, it is a flowchart of a touch detection method according to an embodiment of the present invention, which is described together with the schematic diagram shown in FIG. The method includes the following steps:
Step S401, applying a high level signal to one of the first electrode and the second electrode of one of the plurality of sensing units, and grounding the other of the first electrode and the second electrode to When the sensing unit is touched, the self-capacitance generated by the sensing unit is charged for the first time. In this embodiment, a high level signal Vcc is applied to one of the first electrode and the second electrode.
If the sensing unit is touched by a finger or other object at this time, the sensing unit will generate a self-capacitance C1 (refer to FIG. 3), so the self-capacitance can be charged by the applied high-level signal Vcc. At this time, in one embodiment of the present invention, if a high level signal is applied to the first electrode, the voltage applied to the self capacitance is V2 = VccR2 / (R1 + R2). In one embodiment of the invention, if a high level signal is applied to the second electrode, the voltage applied to the self capacitance is V1 = VccR1/(R1 + R2).
Further, in the embodiment of the present invention, by charging the self-capacitance, the detection accuracy of the self-capacitance can also be improved.
In one embodiment of the present invention, if the sensing unit is not touched, the presence of self-capacitance will not be detected subsequently, so it can be judged that it is not touched.
Step S402, applying a high level signal to the first electrode and the second electrode of one sensing unit, or applying a high level signal to one of the first electrode and the second electrode and in the first electrode and the second electrode The other is disconnected to charge the self capacitor a second time.
In the embodiment of the present invention, a high level signal may be applied to both the first electrode and the second electrode; or, a high level signal may be applied to the first electrode to disconnect the second electrode; or, to the second electrode A high level signal turns off the first electrode. It should also be noted that since the applied high level signal is a known amount, the two high level signals applied may be the same or different, and the derivation process is not affected. In this embodiment, the same high level signal Vcc as that in step S401 is applied to the first electrode and/or the second electrode. The voltage applied to the self-capacitance at this time is Vcc.
Step S403, detecting from the corresponding first electrode or the second electrode to obtain a first detection change value between the first charge and the second charge. In the embodiment of the present invention, the correspondence refers to a case where, for example, when both the first electrode and the second electrode of one sensing unit are connected to a high level signal for charging, both the first electrode and the second electrode are The detection can be performed; for example, when the first electrode is connected to the high level signal and the second electrode is disconnected, it can only be detected from the first electrode; conversely, when the second electrode is connected to the high level signal and the first electrode is disconnected, It can only be detected from the second electrode.
In the embodiment of the present invention, as long as the second charging is performed in a different manner from the first charging, a change in the amount of charge in the self-capacitance may be caused. In addition, the self-capacitance is discharged after the detection to perform the next charge and discharge process.
In this embodiment, it is assumed that the first detection change value is Q1. Hereinafter, the first detection change value and the second detection change value are described as an example of the charge change amount, but other detection change values such as a level signal, a current, and the like which can react the relationship between the resistances R1 and R2 can also be employed.
Wherein, if a high level signal is applied to the first electrode in step 401, then Q1 = V1C1 = VccC1R1/(R1 + R2) (1a), where V1 = VccR1/(R1 + R2). At this time, the voltage of the self-capacitance at the time of the first charge is V2, and the self-capacitance voltage can be detected or calculated at the time of the first charge.
Wherein, if a high level signal is applied to the second electrode in step 401, then Q1 = V2C1 = VccC1R2 / (R1 + R2) (1b), where V2 = VccR2 / (R1 + R2). At this time, the voltage of the self-capacitance at the time of the first charge is V1, and the self-capacitance voltage can be detected or calculated at the time of the first charge.
Step S404, grounding the first electrode and the second electrode of one sensing unit, or grounding one of the first electrode and the second electrode and disconnecting the other of the first electrode and the second electrode to The capacitor is discharged for the first time.
Specifically, the first electrode and the second electrode of one sensing unit may be grounded, or the first electrode may be grounded, and the second electrode may be grounded, or the second electrode may be grounded, and the first electrode may be disconnected. The first discharge is performed on the self-capacitance.
Step S405, detecting from the corresponding first electrode or the second electrode to obtain a second detection change value between the second charge and the first discharge.
In this embodiment, it is assumed that the second detection change value is Q2. The second detected change value needs to adopt the same detected change value as the first detected change value in step S403, that is, the charge change amount in the embodiment of the present invention. Likewise, the term "corresponding" as used herein is also a relative concept, for example, in the first discharge, if the second electrode is broken, detection can only be performed from the first electrode.
among them, Q2= VccC1 (2)
Step S406, calculating a proportional relationship between the first resistance between the self-capacitance to the first electrode and the second resistance between the self-capacitance and the second electrode according to the first detection change value and the second detection change value, and according to the first resistance The proportional relationship with the second resistance determines the touch position. In one embodiment of the present invention, the ratio of R1 to R2 can be calculated by the amount of change in self-capacitance charge expressed by equations (1a) (or 1b) and (2), which can be calculated due to the regular linear relationship of the graph. The position of the abscissa where the touch point is located, and the position where the self-capacitance C1 is located.
In an embodiment of the invention, if a high level signal is applied to the first electrode in step 401, then R1/R2= Q1 / ( Q2- Q1), therefore, the proportional relationship between R1 and R2 can be obtained by the embodiment of the present invention.
In an embodiment of the invention, if a high level signal is applied to the second electrode in step 401, then R1/R2 = ( Q2- Q1)/ Q1, therefore, the proportional relationship between R1 and R2 can be obtained by the embodiment of the present invention.

In the embodiment of the present invention, if the sensing unit is a gate sensing unit or an L-shaped sensing unit, the touch position on the touch screen can be determined by the ratio between the first resistor and the second resistor, and the following will be combined The examples are detailed. However, in other embodiments of the present invention, if the sensing unit is a rectangular sensing unit or a serpentine (but generally rectangular) sensing unit, step S406 can only calculate the touch position in the first direction of the touch screen. The first direction may be the length direction of the sensing unit (eg, the level of the touch screen).
If the sensing unit is a rectangular sensing unit or a serpentine (but overall equivalent to a rectangular) sensing unit, it is also necessary to determine the touch position in the second direction according to the position of the sensing unit. In an embodiment of the invention, the first direction is a length direction of the sensing unit, the second direction is a direction perpendicular to the sensing unit, and the sensing unit is horizontally or vertically disposed.
In the embodiment of the present invention, the self-capacitance detecting module can be a self-capacitance detecting module that is currently known, and thus will not be described herein.
In one embodiment of the present invention, if two self-capacitance detection modules are used, since the two self-capacitance detection modules can share a plurality of devices, the overall power consumption of the wafer is not increased.
In one embodiment of the invention, the sensing unit can take a different shape. Preferably, the plurality of disjoint sensing units are located in the same layer, so that in the case of ensuring the detection accuracy, the cost can be greatly saved.
In the above embodiment of the present invention, although the first charging, the second charging, and the first discharging are taken as an example, in the present invention, as long as there are three different states, by measuring any two different states. The proportional relationship between R1 and R2 can be obtained by the difference in state (i.e., the detected change value). In this embodiment, the three different states are the state after the first charge, the state after the second charge, and the state after the discharge.

As shown in FIG. 5, it is a schematic diagram of a rectangular sensing unit being touched according to an embodiment of the present invention. The sensing unit is rectangular, and the plurality of sensing units are parallel to the first direction of the touch screen, and thus the touch position is a touch position in the first direction.
As shown in Fig. 6a, it is a structural diagram of an induction unit according to an embodiment of the present invention. The sensing unit 200 includes a plurality of first portions 230 and a plurality of parallel second portions 240, wherein adjacent first portions 230 are connected by a second portion 240 to form a plurality of alternately arranged first grooves 1000 and Two grooves 2000, wherein the openings of the plurality of first grooves 1000 and the plurality of second grooves 2000 are opposite in direction. Preferably, the second portions 240 are aligned in a first direction. In one embodiment of the invention, the plurality of first portions 230 may or may not be parallel to one another. Preferably, the second portion 240 is rectangular. In other embodiments of the invention, the first portion 230 can also be rectangular, but the first portion 230 can also have a variety of other shapes. In this embodiment, the impedance of the resistor is increased by the first portion 230, thereby increasing the impedance of the sensing unit 200, making the first resistor and the second resistor easier to detect, further improving the detection accuracy. And in this embodiment, preferably, the intervals between the second portions 240 are equal, so that the impedance of the sensing unit can be uniformly increased to improve the detection accuracy. In one embodiment of the present invention, the first direction is the length direction of the sensing unit 200, and the second direction is the direction perpendicular to the sensing unit 200. Specifically, the sensing unit 200 is horizontally or vertically.
In the embodiment of the present invention, the size of the sensing unit 200 in the longitudinal direction is substantially the same as the size of the substrate. Therefore, the touch device has a simple structure, is easy to manufacture, and has low manufacturing cost.
In one embodiment of the invention, the first electrode 210 and the second electrode 220 are respectively connected to two of the plurality of first portions 230. However, in another embodiment of the invention, the first electrode 210 and the second electrode 220 are respectively coupled to two of the plurality of second portions 240, as shown in Figure 6b.
Moreover, in the embodiment of the present invention, the second portion 240 and the first portion 230 are perpendicular to each other, and the angle between them is preferably 90 degrees, and of course other angles may be selected. As shown in FIG. 6a, the sensing unit 200 connects the plurality of first portions 230 end to end through a plurality of second portions 240. The first electrode 210 and the second electrode 220 of the sensing unit 200 are respectively connected to the first portions 230 at both ends. The sensing unit 200 is a rectangle having a large aspect ratio as a whole. It should be noted that although the sensing unit 200 is disposed along the X axis in FIG. 6a, it should be understood by those skilled in the art that the sensing unit 200 can also be disposed along the Y axis. The structure of the sensing unit can effectively reduce noise and improve linearity of sensing.
As shown in Fig. 7a, there is shown a structural diagram of a sensing unit according to another embodiment of the present invention. In this embodiment, the sensing unit 200 can be gate-shaped, and each of the plurality of sensing units 200 has a different length, and the plurality of sensing units 200 are nested with each other. Wherein each of the sensing units includes a third portion 250, a non-intersecting fourth portion 260, and a fifth portion 270. Preferably, the third portion 250 is parallel to the first side 110 of the substrate 100, the fourth portion 260 and the fifth portion 270 are respectively parallel to the second side 120 of the substrate 100, and one end of the fourth portion 260 and one end of the third portion 250 Connected, one end of the fifth portion 270 is connected to the other end of the third portion 250. The other end of the fourth portion 260 of the sensing unit 200 has a first electrode 210, and the other end of the fifth portion 270 has a second electrode 220, wherein each of the first electrode 210 and the second electrode 220 is associated with a touch screen control wafer The corresponding pins are connected.
In the embodiment of the present invention, the mutual nesting means that the outer sensing unit partially surrounds the inner sensing unit, for example, as shown in FIG. 7a, which can achieve a large coverage while ensuring accuracy, and is reduced. The complexity of the operation increases the response speed of the touch screen. Of course, those skilled in the art can also arrange the sensing units in other nested manners according to the idea of FIG. 7a. In one embodiment of the invention, the third portion 250 of each sensing unit 200 is parallel to the third portion 250 of the other sensing unit 200, and the fourth portion 260 of each sensing unit 200 and the fourth portion of the other sensing unit 200 The second portion 270 of each sensing unit 200 is parallel to the fifth portion 270 of the other sensing unit 200. In one embodiment of the invention, at least one of the third portion 250, the fourth portion 260, and the fifth portion 270 of the sensing unit 200 is rectangular, preferably, the third portion 250, the fourth portion 260, and the fifth portion 270 Both are rectangular. In this embodiment, since the rectangular structure pattern is regular, the linearity is good when the finger is moved laterally or longitudinally. In addition, the spacing between the two rectangular structures is the same, which is convenient for calculation, thereby increasing the calculation speed.
In one embodiment of the invention, the fourth portion 260 of each sensing unit 200 is equal in length to the fifth portion 270.
In one embodiment of the invention, the substrate 100 is rectangular, the first side 110 and the second side 120 are perpendicular to each other, and the fourth portion 260 and the third portion 250 are perpendicular to each other, and the fifth portion 270 and the third portion The portions 250 are perpendicular to each other.
In one embodiment of the present invention, the spacing between the third portions 250 of the adjacent two sensing units 200 is equal, the spacing between the fourth portions 260 of the adjacent two sensing units 200 is equal, and the adjacent two sensing The spacing between the fifth portions 270 of unit 200 is equal. In this way, the first side 110 and the second side 120 of the touch screen can be evenly divided by the plurality of sensing units 200, thereby increasing the operation speed. Of course, in other embodiments of the present invention, the spacing between the third portions 250 of the adjacent two sensing units 200 may not be equal, or the spacing between the fourth portions 260 of the adjacent two sensing units 200 may not be Equal, as shown in Figure 7b. For example, since the user often touches the center of the touch screen, the spacing between the sensing units at the center of the touch screen can be reduced, thereby improving the detection accuracy of the center portion.
In one embodiment of the present invention, the plurality of sensing units 200 are symmetrical with respect to the central axis Y of the substrate 100. As shown in FIG. 7a, the central axis Y is perpendicular to the third portion 250, thereby being more advantageous for improving accuracy.
As shown in FIG. 7a, in this embodiment, the first electrode 210 and the second electrode 220 of the sensing unit 200 are both located on the first side 110 of the substrate 100. In this embodiment, after detecting the touch location on the sensing unit, a touch location above the touch screen is obtained.
It should be noted that the above-mentioned FIG. 7a is a preferred embodiment of the present invention, which can obtain a large coverage, but other embodiments of the present invention can perform some equivalent changes to the 7a figure, for example, the fourth portion 260. And the fifth portion 270 can be non-parallel.
The sensing unit in the embodiment of the invention adopts a gate-like structure, which is not only simple in structure, but also easy to manufacture. All the leads are on the same side, the design is convenient, the cost of the silver paste is reduced, and the production is easy, which greatly helps to reduce the production cost.
As shown in FIG. 8, it is a schematic diagram when the sensing unit of the embodiment of the present invention is touched. As can be seen from FIG. 8, the first electrode is 210, the second electrode is 220, the touch position A is close to the second electrode, and the length of the sensing unit is 10 unit lengths, and the sensing unit is evenly divided into 10 parts, wherein The length of the third portion 250 of the sensing unit is 4 unit lengths, and the lengths of the fourth portion 260 and the fifth portion 270 of the sensing unit are 3 unit lengths. After detecting, it is learned that the ratio of the first resistance to the second resistance is 4:1, that is, the length of the first electrode 210 to the touch position (reflected by the first resistance) is 80% of the length of all the sensing units. In other words, the touch point is located at a position of 8 unit lengths from the first electrode 210, and it is known that the touch point is located 2 units long from the second electrode 220. When the finger moves, the touch position moves accordingly, so the change of the touch position can determine the corresponding movement trajectory of the finger, thereby judging the user's input instruction.
As can be seen from the above example of Fig. 8, the calculation method of the present invention is very simple, so that the reaction speed of the touch screen detection can be greatly improved. In the embodiment of the present invention, usually a finger or other object touches a plurality of sensing units, and at this time, the touch position of each of the plurality of sensing units touched may be obtained first, and then calculated by averaging. Touch the touch location on the screen.

As shown in FIG. 9a, it is a structural diagram of a touch screen detecting device according to still another embodiment of the present invention. In one embodiment of the invention, the lengths of the plurality of sensing units are gradually increased, and each of the sensing units includes a sixth portion 280 and a seventh portion 290. The sixth portion 280 has a first electrode 210 at one end, one end of the seventh portion 290 is connected to the other end of the sixth portion 280, and the other end of the seventh portion 290 has a second electrode 220.
Specifically, the sixth portion 280 is parallel to the first side 110 of the substrate 100, the seventh portion 290 is parallel to the second side 120 of the substrate 100, and the first side 110 and the second side 120 are adjacent. And each of the first electrode 210 and the second electrode 220 is connected to a corresponding pin of the touch screen control wafer.
In a preferred embodiment of the invention, the sixth portion 280 of each sensing unit 200 is parallel to the sixth portion 280 of the other sensing unit 200, and the seventh portion 290 of each sensing unit 200 and the seventh portion of the other sensing unit 200 290 parallel. With such an arrangement, the coverage of the touch screen by the sensing unit can be effectively improved. In one embodiment of the present invention, at least one of the sixth portion 280 and the seventh portion 290 of the sensing unit 200 is rectangular. Preferably, the sixth portion 280 and the seventh portion 290 are both rectangular. In this embodiment, since the rectangular structure pattern is regular, the linearity is good when the finger is moved laterally or longitudinally, and further, the spacing between the two rectangular structures is the same, which is convenient for calculation.
The sensing unit in the touch screen detecting device of the embodiment of the invention adopts double-end detection, that is, both ends of the sensing unit have electrodes, and each electrode is connected to a corresponding pin of the touch screen control chip, and passes through the touch detection. The sensing unit itself can realize the positioning of the touch point.
More importantly, the present invention achieves the determination of the touch position by calculating the ratio between the first resistance and the second resistance, so that compared to the current diamond or triangle design, since the touch position is determined, there is no need to calculate the self-capacitance. The size and the size of the self-capacitance do not affect the accuracy of the touch position, and the dependence on the accuracy of the self-capacitance detection is reduced, thereby improving the measurement accuracy and improving the linearity. In addition, since any one of the sixth portion 280 and the seventh portion 290 of the embodiment of the present invention may be a rectangular shape, the linearity may be further improved with respect to an irregular shape such as a current rhombus or a triangle. degree.
In one embodiment of the invention, the sixth portion 280 and the seventh portion 290 of each sensing unit are of equal length so that the speed of operation can be increased. Preferably, the substrate 100 is rectangular, and the first side 110 and the second side 120 are perpendicular to each other. The first side 110 and the second side 120 are perpendicular to each other, not only making the sensing unit design more regular, for example, the sixth portion 280 and the seventh portion 290 of the sensing unit are also perpendicular to each other, thereby improving the coverage of the touch screen, and The fact that the sixth portion 280 and the seventh portion 290 are perpendicular to each other also improves the linearity of the detection.
In one embodiment of the invention, the spacing between adjacent two sensing units 200 is equal. In this way, the first side 110 and the second side 120 of the touch screen can be evenly divided by the plurality of sensing units 200, thereby increasing the operation speed.
Of course, in another embodiment of the present invention, the spacing between adjacent two sensing units 200 may also be unequal, as shown in FIG. 9b, for example, since the user often touches the center of the touch screen, the touch can be touched. The spacing between the sensing units in the center of the screen is reduced, thereby improving the detection accuracy of the center portion.
As shown in FIG. 9a, in this embodiment, the first electrode 210 of the sensing unit 200 is located on the first side 110 of the substrate 100, the second electrode 220 is located on the second side 120 of the substrate 100, and the first side 110 The second side 120 is perpendicular to each other. In this embodiment, after detecting the touch location on the sensing unit, a touch location above the touch screen is obtained.
As shown in FIG. 10, it is a schematic diagram when the sensing unit of the embodiment of the present invention is touched. As can be seen from FIG. 10, the first electrode is 210, the second electrode is 220, and the touch position A is close to the second electrode 220. It is assumed that the length of the sensing unit is 10 unit lengths, and the sensing unit is evenly divided into 10 parts. The length of the sixth portion 280 of the sensing unit is 5 unit lengths, and the length of the seventh portion 290 of the sensing unit is 5 unit lengths. After detecting, it is known that the ratio of the first resistance to the second resistance is 9:1, that is, the length of the first electrode 210 to the touch position (reflected by the first resistance) is 90% of the length of all the sensing units. In other words, the touch point is located 9 units long from the first electrode 210, and it is known that the touch point is located 1 unit long from the second electrode 220.
As can be seen from the above example of Fig. 10, the calculation method of the present invention is very simple, so that the reaction speed of the touch screen detection can be greatly improved.
In one embodiment of the present invention, the plurality of sensing units 200 are located in the same layer, so that only one layer of ITO is required, thereby greatly reducing the manufacturing cost while ensuring accuracy.
In summary, the embodiment of the present invention applies a level signal to the electrodes at both ends of the sensing unit. If the sensing unit is touched, the sensing unit forms a self-capacitance. Therefore, the present invention can be applied by applying a level signal. The self capacitance is charged, and the touch position in the first direction is determined according to a proportional relationship between the first resistance and the second resistance. For example, in an embodiment of the present invention, the proportional relationship between the first resistance and the second resistance is obtained according to the detection of the first electrode and/or the second electrode when charging/discharging the self-capacitance. The proportional relationship between the first detected value and the second detected value is calculated. Therefore, the first detection value and the second detection value generated when the self-capacitance is charged/discharged are detected from the first electrode and/or the second electrode. In this way, the position of the touch point at the sensing unit can be reflected by the first detection value and the second detection value, thereby further determining the position of the touch point on the touch screen.
For the sensing unit of FIGS. 5 and 6, after determining the touch position in the first direction, it is further necessary to further determine the touch position in the second direction according to the position of the touched sensing unit. In the embodiment of the present invention, as shown in FIG. 5 and FIG. 6 , if it is detected that the first detection value or the second detection value of a certain sensing unit is greater than a preset threshold, the sensing unit is touched. Assuming that the second sensing unit (its ordinate is M) is touched, the touch position in the second direction is the coordinate M of the second sensing unit. Then, the position of the touch point on the touch screen is determined according to the touch position in the first direction and the touch position in the second direction.
Specifically, the centroid algorithm can be used to calculate the touch position of the touch point in the second direction. The following describes the centroid algorithm briefly.
In slider and touchpad applications, it is often necessary to determine the position of a finger (or other capacitive object) above the essential spacing of a particular sensing unit. The touch panel of the finger on the slider or touchpad is typically larger than any of the sensing units. In order to use a center to calculate the position after the touch, the array is scanned to verify that the given sensor position is valid, and the requirement for a certain number of adjacent sensing unit signals is greater than the preset touch threshold. After finding the strongest signal, this signal and those adjacent to the touch threshold are used in the calculation center:

Ncent is the label of the sensing unit at the center, n is the number of sensing units that are touched, and i is the serial number of the touched sensing unit, where i is greater than or equal to 2.
For example, when the finger touches the first channel, the capacitance change amount is y1, the capacitance change amount on the second channel is y2, and the capacitance change amount on the third channel is y3. The second channel y2 capacitance changes the most. The Y coordinate can be regarded as:

FIG. 11 is a schematic diagram of a touch device according to an embodiment of the present invention. The touch device includes a touch screen detecting device composed of a substrate 100 and a plurality of disjoint sensing units 200, and a touch screen control wafer 300. Wherein, the plurality of sensing units 200 are formed on the substrate 100, and each of the plurality of sensing units 200 has a first electrode 210 and a second electrode 220. A part of the touch screen control chip 300 is connected to the first electrode 210 of the plurality of sensing units 200, and another part of the touch screen control wafer 300 is connected to the second electrode 220 of the plurality of sensing units 200, and touches the screen. The control wafer 300 applies a level signal to the first electrode 210 and/or the second electrode 220 of the plurality of sensing units 200, which level signal charges the self-capacitance generated by the sensing unit 200 when the sensing unit 200 is touched.
As shown in FIG. 12, it is a structural diagram of a touch screen control wafer according to an embodiment of the present invention. The touch screen control chip 300 includes a charging module 310, a discharging module 320, a detecting module 330, and a control and computing module 340. The charging module 310 applies a high level signal to one of the first electrode 210 and the second electrode 220 of one of the plurality of sensing units during the first charging, and the first electrode 210 and the first electrode The other of the two electrodes 220 is grounded to first charge the self-capacitance generated by one sensing unit 200 when one sensing unit 200 is touched; to sense one of the plurality of sensing units during the second charging process The first electrode 210 and the second electrode 220 of the unit 200 apply a high level signal, or a high level signal is applied to one of the first electrode 210 and the second electrode 220 and the first electrode 210 and the second electrode 220 are The other is disconnected to charge the self capacitor for a second time. The discharge module 320 is configured to ground the first electrode 210 and the second electrode 220 of one sensing unit 200 after the second charging of the self-capacitance by the charging module 310, or to connect the first electrode 210 and the second electrode 220 One of the grounds and the other of the first electrode 210 and the second electrode 220 are disconnected to perform the first discharge of the self-capacitance. The detecting module 330 is configured to detect from the corresponding first electrode 210 or the second electrode 220 each time charging and discharging to obtain a first detection change value between the first charging and the second charging, and correspondingly The first electrode 210 or the second electrode is detected to obtain a second detected change value between the second charge and the first discharge. The control and calculation module 340 is configured to control the charging module 310, the discharging module 320, and the detecting module 330, and calculate the self-capacitance to the first electrode according to the first detection change value and the second detection change value. a ratio of a resistance and a self-capacitance to a second resistance between the second electrodes, and determining a touch position according to a proportional relationship between the first resistance and the second resistance. In the embodiment of the present invention, the control and calculation module 340 can control the charging module 310 to sequentially apply corresponding voltages to the plurality of sensing units in a scanning manner, and can also sequentially perform detection in a scanning manner during detection, or The discharge module 320 can also be controlled to discharge the self-capacitance generated by the touched sensing unit among the plurality of sensing units in sequence.
In the above embodiment of the present invention, although the first charging, the second charging, and the first discharging are taken as an example, in the present invention, as long as there are three different states, by measuring any two different states. The proportional relationship between R1 and R2 can be obtained by the difference in state (i.e., the detected change value). In this embodiment, the three different states are the state after the first charge, the state after the second charge, and the state after the discharge.
In one embodiment of the present invention, the first detected change value and the second detected change value may be one or more of a current detection change value, a self-capacitance detection change value, a level signal detection change value, and a charge change amount.
In one embodiment of the invention, the detection module 330 is a CTS (capacitance detection module).
In an embodiment of the present invention, the control and calculation module 340 is further configured to determine a touch position in the second direction according to the position of the touched sensing unit 200, and according to the touch position and the second direction in the first direction. The upper touch location determines the location of the touch point on the touch screen. Specifically, the control and calculation module 340 determines the touch location in the second direction by a centroid algorithm.
In one embodiment of the present invention, the first direction is the length direction of the sensing unit 200, and the second direction is a direction perpendicular to the length direction of the sensing unit 200, and the sensing units are horizontally arranged in parallel or vertically.
In a preferred embodiment of the invention, a plurality of disjoint sensing units are located in the same layer, thereby effectively reducing manufacturing costs while ensuring detection accuracy.
The invention also proposes a portable electronic device comprising the touch device as described above.
In the embodiment of the present invention, a level signal is applied to the electrodes at both ends of the sensing unit. If the sensing unit is touched, the sensing unit forms a self-capacitance. Therefore, the present invention can charge the self-capacitor by applying a level signal. And determining a touch position on the touch screen according to a proportional relationship between the first resistance and the second resistance. And the detection method of charging the self-capacitance twice by the embodiment of the invention to cancel some unmeasurable physical parameters or reduce the measurement of the physical quantity, thereby effectively improving the detection precision under the premise of ensuring the detection speed.
The embodiment of the invention provides a novel self-capacitance detection method. When the sensing unit is touched, the touch point can divide the sensing unit into two resistors, so that the two resistors can be considered while performing self-capacitance detection. Determine the location of the touch point on the sensing unit. The structure of the embodiment of the invention is simple, and for a sensing unit, charging or discharging can be performed from the first electrode and/or the second electrode thereof, and detecting when charging or discharging, not only can the RC constant be reduced, and the saving can be achieved. Time increases efficiency and also ensures that coordinates are not offset. In addition, the embodiment of the invention can effectively improve the performance-to-noise ratio of the circuit, reduce circuit noise, and improve the linearity of the induction. In addition, since the touched sensing unit is charged during the detection process, a small current is generated therein, which can well eliminate the influence of the Vcom level signal on the self-capacitance generated by the sensing unit in the touch screen, and thus can be eliminated accordingly. The screen mask layer and related processes can further reduce the cost while enhancing the anti-interference ability.
In the description of the present specification, the description with reference to the terms "one embodiment", "some embodiments", "example", "specific example", or "some examples" and the like means a specific feature described in connection with the embodiment or example. A structure, material or feature is included in at least one embodiment or example of the invention. In the present specification, the schematic representation of the above terms does not necessarily mean the same embodiment or example. Furthermore, the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.
While the embodiments of the present invention have been shown and described, it will be understood by those skilled in the art Variations, the scope of the invention is defined by the scope of the appended claims and their equivalents.


100、300’...基板100, 300’. . . Substrate

110...第一邊110. . . First side

120...第二邊120. . . Second side

200...感應單元200. . . Sensing unit

210...第一電極210. . . First electrode

220...第二電極220. . . Second electrode

230...第一部分230. . . first part

240...第二部分240. . . the second part

250...第三部分250. . . the third part

260...第四部分260. . . fourth part

270...第五部分270. . . the fifth part

280...第六部分280. . . the sixth part

290...第七部分290. . . Part VII

300...觸摸螢幕控制蕊片300. . . Touch screen control chip

310...充電模組310. . . Charging module

320...放電模組320. . . Discharge module

330...檢測模組330. . . Detection module

340...控制及計算模組340. . . Control and calculation module

1000...第一凹槽1000. . . First groove

2000...第二凹槽2000. . . Second groove

100’、200’...菱形結構感應單元100’, 200’. . . Diamond structure sensing unit

400’...三角形感應單元400’. . . Triangle sensing unit

500’...電極500’. . . electrode

600’...手指600’. . . finger

A...觸摸位置A. . . Touch location

C1...自電容C1. . . Self capacitance

GND...接地GND. . . Ground

R1、R2...電阻R1, R2. . . resistance

S1、S2...接觸面積S1, S2. . . Contact area

本發明上述的和/或附加的方面和優點從下面結合附圖對實施例的描述中將變得明顯和容易理解,其中:
第1圖為現有技術中常見的一種自電容觸摸螢幕的結構圖;
第2a圖為現有技術中常見的另一種自電容觸摸螢幕的結構圖;
第2b圖為現有技術中常見的另一種自電容觸摸螢幕的檢測原理圖;
第3圖為本發明實施例觸控裝置的檢測原理示意圖;
第4圖為本發明一個實施例的觸摸檢測方法流程圖;
第5圖為本發明實施例的矩形感應單元被觸摸的示意圖;
第6a圖為本發明一個實施例的感應單元結構圖;
第6b圖為本發明一個實施例的感應單元結構圖;
第7a圖為本發明另一個實施例觸摸螢幕檢測設備結構圖;
第7b圖為本發明另一個實施例觸摸螢幕檢測裝置結構圖;
第8圖為本發明實施例的感應單元被觸摸時的示意圖;
第9a圖為本發明再一個實施例觸摸螢幕檢測設備結構圖;
第9b圖為本發明再一個實施例觸摸螢幕檢測裝置結構圖;
第10圖為本發明實施例的感應單元被觸摸時的示意圖;
第11圖為本發明一個實施例的觸控裝置示意圖;和
第12圖為本發明實施例觸摸螢幕控制晶片的結構圖。
The above and/or additional aspects and advantages of the present invention will become apparent and readily understood from
FIG. 1 is a structural diagram of a self-capacitance touch screen commonly seen in the prior art;
Figure 2a is a structural diagram of another self-capacitive touch screen commonly seen in the prior art;
Figure 2b is a schematic diagram of detection of another self-capacitive touch screen that is common in the prior art;
FIG. 3 is a schematic diagram of a detection principle of a touch device according to an embodiment of the present invention; FIG.
4 is a flow chart of a touch detection method according to an embodiment of the present invention;
FIG. 5 is a schematic diagram of a rectangular sensing unit touched according to an embodiment of the present invention; FIG.
6a is a structural diagram of a sensing unit according to an embodiment of the present invention;
Figure 6b is a structural diagram of an induction unit according to an embodiment of the present invention;
FIG. 7a is a structural diagram of a touch screen detecting device according to another embodiment of the present invention;
FIG. 7b is a structural diagram of a touch screen detecting device according to another embodiment of the present invention;
FIG. 8 is a schematic diagram of the sensing unit when it is touched according to an embodiment of the present invention; FIG.
FIG. 9a is a structural diagram of a touch screen detecting device according to still another embodiment of the present invention;
FIG. 9b is a structural diagram of a touch screen detecting device according to still another embodiment of the present invention;
FIG. 10 is a schematic diagram of the sensing unit when it is touched according to an embodiment of the present invention; FIG.
11 is a schematic diagram of a touch device according to an embodiment of the present invention; and FIG. 12 is a structural diagram of a touch screen control wafer according to an embodiment of the present invention.

 

Claims (21)

一種觸摸螢幕的觸摸檢測方法,其特徵在於,所述觸摸螢幕包括多個不相交的感應單元,每個感應單元的兩端分別具有第一電極和第二電極,所述方法包括以下步驟:
向所述多個感應單元中一個感應單元的第一電極和第二電極中的一個施加高電平信號,並將所述第一電極和第二電極中的另一個接地,以在所述一個感應單元被觸摸時對所述一個感應單元產生的自電容進行第一次充電;
向所述多個感應單元中的一個感應單元的第一電極和第二電極施加高電平信號,或者,向所述第一電極和所述第二電極中的一個施加高電平信號並將所述第一電極和所述第二電極中的另一個斷開,以對所述自電容進行第二次充電;
從對應的所述第一電極或第二電極進行檢測以獲得所述第一次充電和所述第二次充電之間的第一檢測變化值;
將所述一個感應單元的第一電極和第二電極接地,或者,將所述第一電極和所述第二電極中的一個接地並將所述第一電極和所述第二電極中的另一個斷開,以對所述自電容進行第一次放電;
從對應的所述第一電極或第二電極進行檢測以獲得所述第二次充電和所述第一次放電之間的第二檢測變化值;
根據所述第一檢測變化值和第二檢測變化值計算所述自電容至所述第一電極之間的第一電阻和所述自電容至所述第二電極之間的第二電阻的比例關係;以及
根據所述第一電阻和所述第二電阻之間的比例關係確定觸摸位置。
A touch detection method for a touch screen, wherein the touch screen comprises a plurality of disjoint sensing units, each of which has a first electrode and a second electrode respectively, the method comprising the steps of:
Applying a high level signal to one of the first electrode and the second electrode of one of the plurality of sensing units, and grounding the other of the first electrode and the second electrode to be in the one The self-capacitance generated by the one sensing unit is first charged when the sensing unit is touched;
Applying a high level signal to the first electrode and the second electrode of one of the plurality of sensing units, or applying a high level signal to one of the first electrode and the second electrode and The other of the first electrode and the second electrode is disconnected to perform a second charging of the self-capacitor;
Detecting from the corresponding first electrode or second electrode to obtain a first detected change value between the first charge and the second charge;
Grounding the first electrode and the second electrode of the one sensing unit, or grounding one of the first electrode and the second electrode and another one of the first electrode and the second electrode One disconnected to discharge the self-capacitor for the first time;
Detecting from the corresponding first or second electrode to obtain a second detected change value between the second charge and the first discharge;
Calculating a ratio of the first resistance between the self-capacitance to the first electrode and the second resistance between the self-capacitance and the second electrode according to the first detection change value and the second detection change value a relationship; and determining a touch position based on a proportional relationship between the first resistance and the second resistance.
如申請專利範圍第1項所述的觸摸螢幕的觸摸檢測方法,其特徵在於,所述第一檢測變化值和第二檢測變化值為電流檢測變化值、自電容檢測變化值、電平信號檢測變化值和電荷變化量中的一種或多種。The touch detection method of the touch screen according to claim 1, wherein the first detection change value and the second detection change value are a current detection change value, a self-capacitance detection change value, and a level signal detection. One or more of a change value and a charge change amount. 如申請專利範圍第1項所述的觸摸螢幕的觸摸檢測方法,其特徵在於,所述感應單元為矩形,且所述多個感應單元與所述觸摸螢幕的第一方向相互平行,所述觸摸位置為觸摸物體在所述第一方向上的觸摸位置。The touch detection method of the touch screen of claim 1, wherein the sensing unit is rectangular, and the plurality of sensing units are parallel to a first direction of the touch screen, the touch The location is a touch location of the touch object in the first direction. 如申請專利範圍第1項所述的觸摸螢幕的觸摸檢測方法,其特徵在於,所述感應單元包括:
多個第一部分和多個平行的第二部分,其中,相鄰的所述第一部分之間通過所述第二部分相連,以形成多個交替排列的第一凹槽和第二凹槽,其中,所述多個第一凹槽和所述多個第二凹槽的開口方向相反。
The touch detection method of the touch screen of claim 1, wherein the sensing unit comprises:
a plurality of first portions and a plurality of parallel second portions, wherein adjacent ones of the first portions are connected by the second portion to form a plurality of alternately arranged first and second grooves, wherein The openings of the plurality of first grooves and the plurality of second grooves are opposite in direction.
如申請專利範圍第3項或第4項所述的觸摸螢幕的觸摸檢測方法,其特徵在於,還包括:
根據所述被觸摸的感應單元的位置確定在第二方向上的觸摸位置;以及
根據所述第一方向上的觸摸位置和第二方向上的觸摸位置確定觸摸點在觸摸螢幕上的位置。
The touch detection method of the touch screen of claim 3 or 4, further comprising:
Determining a touch position in the second direction according to the position of the touched sensing unit; and determining a position of the touch point on the touch screen according to the touch position in the first direction and the touch position in the second direction.
如申請專利範圍第5項所述的觸摸螢幕的觸摸檢測方法,其特徵在於,所述第二方向上的觸摸位置通過質心算法確定。The touch detection method of the touch screen of claim 5, wherein the touch position in the second direction is determined by a centroid algorithm. 如申請專利範圍第3-6項任一項所述的觸摸檢測方法,其特徵在於,所述第一方向為所述感應單元的長度方向,所述第二方向為垂直於所述感應單元的方向,所述感應單元水準平行設置或垂直平行設置。The touch detection method according to any one of claims 3-6, wherein the first direction is a length direction of the sensing unit, and the second direction is perpendicular to the sensing unit. In the direction, the sensing unit levels are arranged in parallel or vertically. 如申請專利範圍第1項所述的觸摸螢幕的觸摸檢測方法,其特徵在於,所述感應單元包括:
第三部分;
不相交的第四部分和第五部分,所述第四部分一端與所述第三部分的一端相連,所述第五部分的一端與所述第三部分的另一端相連,所述第四部分的另一端具有所述第一電極,且所述第五部分的另一端具有所述第二電極。
The touch detection method of the touch screen of claim 1, wherein the sensing unit comprises:
the third part;
a fourth portion and a fifth portion that are not intersected, one end of the fourth portion is connected to one end of the third portion, and one end of the fifth portion is connected to the other end of the third portion, the fourth portion The other end has the first electrode, and the other end of the fifth portion has the second electrode.
如申請專利範圍第1項所述的觸摸螢幕的觸摸檢測方法,其特徵在於,所述感應單元包括:
第六部分,所述第六部分的一端具有所述第一電極;
第七部分,所述第七部分的一端與所述第六部分的另一端相連,所述第七部分的另一端具有所述第二電極。
The touch detection method of the touch screen of claim 1, wherein the sensing unit comprises:
a sixth part, the first part of the sixth part has the first electrode;
In a seventh portion, one end of the seventh portion is connected to the other end of the sixth portion, and the other end of the seventh portion has the second electrode.
一種觸控裝置,其特徵在於,包括:
基板;
多個不相交的感應單元,所述多個感應單元形成在所述基板之上,且每個感應單元的兩端分別具有第一電極和第二電極;
觸摸螢幕控制晶片,所述觸摸螢幕控制晶片包括充電模組、放電模組、檢測模組和控制及計算模組,其中,
所述充電模組,用於在第一次充電過程中,向所述多個感應單元中一個感應單元的第一電極和第二電極中的一個施加高電平信號,並將所述第一電極和第二電極中的另一個接地,以在所述一個感應單元被觸摸時對所述一個感應單元產生的自電容進行第一次充電;在第二次充電過程中,向所述多個感應單元中的一個感應單元的第一電極和第二電極施加高電平信號,或者,向所述第一電極和第二電極中的一個施加高電平信號並將所述第一電極和第二電極中的另一個斷開,以對所述自電容進行第二次充電,
所述放電模組,用於在所述充電模組對所述自電容第二次充電之後將所述一個感應單元的第一電極和第二電極接地,或者,將所述第一電極和所述第二電極中的一個接地並將所述第一電極和所述第二電極中的另一個斷開以對所述自電容進行第一次放電,
所述檢測模組,用於從對應的所述第一電極或第二電極進行檢測以獲得所述第一次充電和所述第二次充電之間的第一檢測變化值,及從對應的所述第一電極或第二電極進行檢測以獲得所述第二次充電和所述第一次放電之間的第二檢測變化值;和
控制及計算模組,用於對所述充電模組、放電模組、檢測模組進行控制,並根據第一檢測變化值和第二檢測變化值計算所述自電容至所述第一電極之間的第一電阻和所述自電容至所述第二電極之間的第二電阻之間的比例關係,並根據所述第一電阻和所述第二電阻之間的比例關係確定觸摸位置。
A touch device, comprising:
Substrate
a plurality of dissimilar sensing units formed on the substrate, and each of the sensing units has a first electrode and a second electrode respectively;
Touching a screen control chip, the touch screen control chip includes a charging module, a discharging module, a detecting module, and a control and computing module, wherein
The charging module is configured to apply a high level signal to one of the first electrode and the second electrode of one of the plurality of sensing units during the first charging, and the first The other of the electrode and the second electrode is grounded to first charge the self-capacitance generated by the one sensing unit when the one sensing unit is touched; to the plurality of Applying a high level signal to the first electrode and the second electrode of one of the sensing units, or applying a high level signal to one of the first electrode and the second electrode and applying the first electrode and the first electrode The other of the two electrodes is turned off to charge the self-capacitor a second time,
The discharge module is configured to ground the first electrode and the second electrode of the one sensing unit after the charging module performs the second charging of the self-capacitor, or the first electrode and the One of the second electrodes is grounded and the other of the first electrode and the second electrode is disconnected to perform the first discharge of the self-capacitor,
The detecting module is configured to detect from the corresponding first electrode or the second electrode to obtain a first detection change value between the first charging and the second charging, and from the corresponding The first electrode or the second electrode performs detection to obtain a second detection change value between the second charge and the first discharge; and a control and calculation module for the charging module And the discharge module and the detection module perform control, and calculate the first resistance and the self-capacitance between the self-capacitance and the first electrode according to the first detection change value and the second detection change value to the first a proportional relationship between the second resistors between the two electrodes, and determining a touch position according to a proportional relationship between the first resistor and the second resistor.
如申請專利範圍第10項所述的觸控裝置,其特徵在於,所述第一檢測變化值和第二檢測變化值為電流檢測變化值、自電容檢測變化值、電平信號檢測變化值和電荷變化量中的一種或多種。The touch device of claim 10, wherein the first detection change value and the second detection change value are a current detection change value, a self-capacitance detection change value, a level signal detection change value, and One or more of the amount of charge change. 如申請專利範圍第11項所述的觸控裝置,其特徵在於,所述檢測模組為電容檢測模組CTS。The touch device of claim 11, wherein the detection module is a capacitance detection module CTS. 如申請專利範圍第10項所述的觸控裝置,其特徵在於,所述感應單元為矩形,且所述多個感應單元與所述觸摸螢幕的第一方向相互平行,所述觸摸位置為在所述第一方向上的觸摸位置。The touch device of claim 10, wherein the sensing unit is rectangular, and the plurality of sensing units are parallel to a first direction of the touch screen, and the touch position is The touch position in the first direction. 如申請專利範圍第10項所述的觸控裝置,其特徵在於,所述感應單元包括:
多個第一部分和多個平行的第二部分,其中,相鄰的所述第一部分之間通過所述第二部分相連,以形成多個交替排列的第一凹槽和第二凹槽,其中,所述多個第一凹槽和所述多個第二凹槽的開口方向相反。
The touch device of claim 10, wherein the sensing unit comprises:
a plurality of first portions and a plurality of parallel second portions, wherein adjacent ones of the first portions are connected by the second portion to form a plurality of alternately arranged first and second grooves, wherein The openings of the plurality of first grooves and the plurality of second grooves are opposite in direction.
如申請專利範圍第13或14項所述的觸控裝置,其特徵在於,
所述控制及計算模組,還用於根據所述被觸摸的感應單元的位置確定在第二方向上的觸摸位置,並根據所述第一方向上的觸摸位置和第二方向上的觸摸位置確定觸摸點在觸摸螢幕上的位置。
The touch device of claim 13 or 14, wherein
The control and calculation module is further configured to determine a touch position in the second direction according to the position of the touched sensing unit, and according to the touch position in the first direction and the touch position in the second direction Determine where the touch point is on the touch screen.
如申請專利範圍第15項所述的觸控裝置,其特徵在於,所述控制及計算模組通過質心算法確定所述第二方向上的觸摸位置。The touch device of claim 15, wherein the control and calculation module determines the touch position in the second direction by a centroid algorithm. 如申請專利範圍第15項所述的觸控裝置,其特徵在於,所述第一方向為所述感應單元的長度方向,所述第二方向為垂直於所述感應單元的方向,所述感應單元水準平行設置或垂直平行設置。The touch device of claim 15, wherein the first direction is a length direction of the sensing unit, and the second direction is a direction perpendicular to the sensing unit, the sensing The unit levels are set in parallel or vertically. 如申請專利範圍第10項所述的觸控裝置,其特徵在於,所述多個不相交的感應單元位於同一層。The touch device of claim 10, wherein the plurality of disjoint sensing units are located in the same layer. 如申請專利範圍第10項所述的觸控裝置,其特徵在於,所述感應單元包括:
第三部分;
不相交的第四部分和第五部分,所述第四部分一端與所述第三部分的一端相連,所述第五部分的一端與所述第三部分的另一端相連,所述第四部分的另一端具有所述第一電極,且所述第五部分的另一端具有所述第二電極。
The touch device of claim 10, wherein the sensing unit comprises:
the third part;
a fourth portion and a fifth portion that are not intersected, one end of the fourth portion is connected to one end of the third portion, and one end of the fifth portion is connected to the other end of the third portion, the fourth portion The other end has the first electrode, and the other end of the fifth portion has the second electrode.
如申請專利範圍第10項所述的觸控裝置,其特徵在於,所述感應單元包括:
第六部分,所述第六部分的一端具有所述第一電極;
第七部分,所述第七部分的一端與所述第六部分的另一端相連,所述第七部分的另一端具有所述第二電極。
The touch device of claim 10, wherein the sensing unit comprises:
a sixth part, the first part of the sixth part has the first electrode;
In a seventh portion, one end of the seventh portion is connected to the other end of the sixth portion, and the other end of the seventh portion has the second electrode.
一種可攜式電子設備,其特徵在於,包括如申請專利範圍第10-20項任一項所述的觸控裝置。




A portable electronic device, comprising the touch device according to any one of claims 10-20.




TW101125838A 2011-07-26 2012-07-18 Touch detecting method, touch sensitive device, and portable electronic apparatus TWI479399B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201110210959 2011-07-26
CN201110211018 2011-07-26
CN201110459486.1A CN102902440B (en) 2011-07-26 2011-12-31 Touch detecting method and contactor control device

Publications (2)

Publication Number Publication Date
TW201305892A true TW201305892A (en) 2013-02-01
TWI479399B TWI479399B (en) 2015-04-01

Family

ID=47169405

Family Applications (14)

Application Number Title Priority Date Filing Date
TW101213750U TWM449305U (en) 2011-07-26 2012-07-17 Touch screen detecting apparatus, touch sensitive device, and portable electronic apparatus
TW101125694A TWI475437B (en) 2011-07-26 2012-07-17 Touch screen detecting apparatus, touch sensitive device, and portable electronic apparatus
TW101125832A TWI483164B (en) 2011-07-26 2012-07-18 Touch detecting method, touch sensitive device, and portable electronic apparatus
TW101213834U TWM464745U (en) 2011-07-26 2012-07-18 Touch sensitive device and portable electronic apparatus
TW101213838U TWM457238U (en) 2011-07-26 2012-07-18 Touch sensitive device and portable electronic apparatus
TW101125838A TWI479399B (en) 2011-07-26 2012-07-18 Touch detecting method, touch sensitive device, and portable electronic apparatus
TW101125847A TWI494833B (en) 2011-07-26 2012-07-18 Touch sensitive device and portable electronic apparatus
TW101213854U TWM450007U (en) 2011-07-26 2012-07-18 Touch sensitive device and portable electronic apparatus
TW101214182U TWM451595U (en) 2011-07-26 2012-07-23 Touch detecting assembly, touch sensitive device and portable electronic apparatus
TW101126427A TWI486848B (en) 2011-07-26 2012-07-23 Touch detecting assembly, touch sensitive device and portable electronic apparatus
TW101214479U TWM453897U (en) 2011-07-26 2012-07-26 Touch detecting assembly and touch sensitive device
TW101126935A TWI485604B (en) 2011-07-26 2012-07-26 Touch detecting assembly, touch sensitive device and portable electronic apparatus
TW101214478U TWM470979U (en) 2011-07-26 2012-07-26 Touch detecting assembly, touch sensitive device and portable electronic apparatus
TW101126936A TWI482074B (en) 2011-07-26 2012-07-26 Portable electronic apparatus, touch detecting assembly and touch sensitive device

Family Applications Before (5)

Application Number Title Priority Date Filing Date
TW101213750U TWM449305U (en) 2011-07-26 2012-07-17 Touch screen detecting apparatus, touch sensitive device, and portable electronic apparatus
TW101125694A TWI475437B (en) 2011-07-26 2012-07-17 Touch screen detecting apparatus, touch sensitive device, and portable electronic apparatus
TW101125832A TWI483164B (en) 2011-07-26 2012-07-18 Touch detecting method, touch sensitive device, and portable electronic apparatus
TW101213834U TWM464745U (en) 2011-07-26 2012-07-18 Touch sensitive device and portable electronic apparatus
TW101213838U TWM457238U (en) 2011-07-26 2012-07-18 Touch sensitive device and portable electronic apparatus

Family Applications After (8)

Application Number Title Priority Date Filing Date
TW101125847A TWI494833B (en) 2011-07-26 2012-07-18 Touch sensitive device and portable electronic apparatus
TW101213854U TWM450007U (en) 2011-07-26 2012-07-18 Touch sensitive device and portable electronic apparatus
TW101214182U TWM451595U (en) 2011-07-26 2012-07-23 Touch detecting assembly, touch sensitive device and portable electronic apparatus
TW101126427A TWI486848B (en) 2011-07-26 2012-07-23 Touch detecting assembly, touch sensitive device and portable electronic apparatus
TW101214479U TWM453897U (en) 2011-07-26 2012-07-26 Touch detecting assembly and touch sensitive device
TW101126935A TWI485604B (en) 2011-07-26 2012-07-26 Touch detecting assembly, touch sensitive device and portable electronic apparatus
TW101214478U TWM470979U (en) 2011-07-26 2012-07-26 Touch detecting assembly, touch sensitive device and portable electronic apparatus
TW101126936A TWI482074B (en) 2011-07-26 2012-07-26 Portable electronic apparatus, touch detecting assembly and touch sensitive device

Country Status (3)

Country Link
CN (40) CN202795310U (en)
TW (14) TWM449305U (en)
WO (7) WO2013013624A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI724790B (en) * 2020-02-14 2021-04-11 李尚禮 Resistive touch device and resistive touch-sensing method

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202795310U (en) * 2011-07-26 2013-03-13 比亚迪股份有限公司 Touch control device and portable electronic device
CN103105988B (en) * 2013-01-22 2016-01-06 北京京东方光电科技有限公司 Capacitive touch screen, the manufacture method of touch control display apparatus and capacitive touch screen
CN103294319A (en) * 2013-06-06 2013-09-11 敦泰科技有限公司 Capacitive touch screen
US9552089B2 (en) 2013-08-07 2017-01-24 Synaptics Incorporated Capacitive sensing using a matrix electrode pattern
TWI502460B (en) * 2013-08-07 2015-10-01 Focaltech Electronics Ltd A self-capacitive touch screen and a touch control apparatus
CN103455228B (en) * 2013-08-30 2016-10-19 珠海中慧微电子有限公司 Automatically induction point and the method for capacitance touch screen driving voltage load time are calculated
CN103699278B (en) * 2013-10-22 2017-01-11 敦泰电子有限公司 Self-capacitance change detection method and self-capacitance sensing device for touch screen
WO2015058350A1 (en) * 2013-10-22 2015-04-30 敦泰科技有限公司 Self-capacitance change detection method and self-capacitance sensing device for touch screen
TWI515634B (en) * 2013-11-08 2016-01-01 義隆電子股份有限公司 Touch device and sensing method for of the touch device
JP6216252B2 (en) * 2014-01-09 2017-10-18 アルプス電気株式会社 Input device
CN104808870A (en) * 2014-01-23 2015-07-29 天津富纳源创科技有限公司 Detection method of touch point of single-layer capacitive touch screen
CN104850283B (en) * 2014-02-14 2018-02-02 晨星半导体股份有限公司 Self-capacitance touch panel electrode using zigzag line segment to increase resistance value
TWI610203B (en) * 2014-02-14 2018-01-01 晨星半導體股份有限公司 Electrode of self-capacitive touch panel utilizing serpentine trace to increase resistance and self-capacitive touch panel
US9703431B2 (en) 2014-06-03 2017-07-11 Synaptics Incorporated Noise detection and mitigation for capacitive sensing devices
US9753587B2 (en) 2014-06-05 2017-09-05 Synaptics Incorporated Driving sensor electrodes for absolute capacitive sensing
US9703430B2 (en) 2014-06-30 2017-07-11 Synaptics Incorporated Driving sensor electrodes for proximity sensing
US9746975B2 (en) 2015-03-27 2017-08-29 Synaptics Incorporated Capacitive measurement processing for mode changes
US10729194B2 (en) 2015-05-13 2020-08-04 Lukla Inc. Garment with strategically positioned polymide aerogel panels
CN106325578B (en) * 2015-07-10 2023-07-25 宸鸿科技(厦门)有限公司 Pressure sensing touch panel
CN107294521B (en) * 2016-03-31 2020-08-21 日本电气株式会社 Induction detection method and device
CN106527451B (en) * 2016-12-27 2023-07-11 许筠 On-screen interactive robot
CN107328555A (en) * 2017-06-20 2017-11-07 合肥市惠科精密模具有限公司 A kind of display screen foreign matter detecting method
CN108108055B (en) * 2018-01-02 2021-11-16 联想(北京)有限公司 Touch device, touch method and electronic equipment
CN109375839B (en) * 2018-12-03 2020-06-30 武汉华星光电半导体显示技术有限公司 Touch screen and display device
TWI727662B (en) * 2020-02-14 2021-05-11 李尚禮 Resistive touch device and resistive touch-sensing method
CN111762023B (en) * 2020-05-29 2022-04-12 法雷奥舒适驾驶辅助系统(广州)有限公司 Touch device and method thereof and auxiliary switch of automobile steering wheel
CN111766978B (en) * 2020-06-12 2021-09-24 深圳市华星光电半导体显示技术有限公司 Touch control assembly and touch control display device
CN111813277A (en) * 2020-07-10 2020-10-23 温州长江汽车电子有限公司 Double-layer pressure touch signal acquisition method of capacitive touch switch

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1091350A (en) * 1996-09-10 1998-04-10 Tokyo Cosmos Electric Co Ltd Touch panel
JP3220405B2 (en) * 1997-02-20 2001-10-22 アルプス電気株式会社 Coordinate input device
US6057903A (en) * 1998-08-18 2000-05-02 International Business Machines Corporation Liquid crystal display device employing a guard plane between a layer for measuring touch position and common electrode layer
US6297811B1 (en) * 1999-06-02 2001-10-02 Elo Touchsystems, Inc. Projective capacitive touchscreen
WO2004040240A1 (en) * 2002-10-31 2004-05-13 Harald Philipp Charge transfer capacitive position sensor
TWI258708B (en) * 2005-01-27 2006-07-21 Apex Material Technology Corp Resistive touch panel, and it manufacturing method
WO2007091579A1 (en) * 2006-02-10 2007-08-16 Sharp Kabushiki Kaisha Touch panel coordinate position detection device
GB2439614B (en) * 2006-05-31 2008-12-24 Harald Philipp Two-dimensional position sensor
TW200844827A (en) * 2007-05-11 2008-11-16 Sense Pad Tech Co Ltd Transparent touch panel device
KR101530189B1 (en) * 2007-07-19 2015-06-22 (주)멜파스 Touchscreen apparatus having multiple bar-type transparent electrodes
JP5094376B2 (en) * 2007-12-28 2012-12-12 株式会社ワコム Position detection device
TW200935290A (en) * 2008-01-15 2009-08-16 Ad Semiconductor Co Ltd Resistive touch screen which can identify multi-touch
CN201174111Y (en) * 2008-03-12 2008-12-31 洋华光电股份有限公司 Signal conducting construction of touching control panel
TW201005613A (en) * 2008-04-10 2010-02-01 Atmel Corp Capacitive position sensor
US8487898B2 (en) * 2008-04-25 2013-07-16 Apple Inc. Ground guard for capacitive sensing
CN101655754B (en) * 2008-08-21 2014-03-26 株式会社和冠 Extended touchscreen pattern
CN101661356B (en) * 2008-08-25 2011-07-06 盛群半导体股份有限公司 Capacitance charge compensation method for touch induction device
CN101751172A (en) * 2008-12-08 2010-06-23 上海天马微电子有限公司 Touch position detecting method and touch screen
JP5113773B2 (en) * 2009-01-20 2013-01-09 株式会社ジャパンディスプレイイースト Display device
CN101847066A (en) * 2009-03-25 2010-09-29 友达光电股份有限公司 Mutual capacitance type touch control display device
JP5193942B2 (en) * 2009-05-14 2013-05-08 京セラディスプレイ株式会社 Capacitive touch panel device
TWI543048B (en) * 2009-05-15 2016-07-21 晨星半導體股份有限公司 A sensor structure of a capacitive touch panel and the sensing method thereof
TWI528250B (en) * 2009-06-25 2016-04-01 Elan Microelectronics Corp Object Detector and Method for Capacitive Touchpad
TW201102895A (en) * 2009-07-10 2011-01-16 Focaltech Systems Ltd Ultra-thin mutual capacitance touch panel and assembly-type ultra-thin touch panel
CN101996014B (en) * 2009-08-21 2013-08-14 宏达国际电子股份有限公司 Pressure detection method of touch sensing element and electronic device using same
US9632628B2 (en) * 2009-10-23 2017-04-25 Atmel Corporation Interdigitated touchscreen electrodes
TWI489356B (en) * 2009-12-15 2015-06-21 Au Optronics Corp Touch display device and touch sensing device
TWI417777B (en) * 2009-12-24 2013-12-01 Orise Technology Co Ltd Capacitive touch panel with high touching sensitivity
KR20110076188A (en) * 2009-12-29 2011-07-06 삼성전자주식회사 Mutual capacitance sensing device and method for manufacturing the same
CN101840293B (en) * 2010-01-21 2012-03-21 宸鸿科技(厦门)有限公司 Scanning method for projected capacitive touch panels
CN101923419A (en) * 2010-04-20 2010-12-22 敦泰科技有限公司 Self-capacitance touch screen with one-dimensional electrodes and coordinate data processing method thereof
TWI426435B (en) * 2010-09-14 2014-02-11 Sentelic Corp Capacitive touch panel and its manufacturing method
CN101984391B (en) * 2010-10-13 2012-12-26 友达光电股份有限公司 Touch panel and repair method thereof
TWI426437B (en) * 2010-10-28 2014-02-11 Young Lighting Technology Inc Capacitive touch panel
TWI421756B (en) * 2010-12-23 2014-01-01 Au Optronics Corp Touch display panel and touch sensing panel
CN202422046U (en) * 2011-07-26 2012-09-05 比亚迪股份有限公司 Induction unit, touch screen detection device and touch control device
CN202267944U (en) * 2011-07-26 2012-06-06 比亚迪股份有限公司 Touch screen detecting device and touch control device
CN202795310U (en) * 2011-07-26 2013-03-13 比亚迪股份有限公司 Touch control device and portable electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI724790B (en) * 2020-02-14 2021-04-11 李尚禮 Resistive touch device and resistive touch-sensing method

Also Published As

Publication number Publication date
WO2013013637A1 (en) 2013-01-31
CN102902427B (en) 2015-09-02
CN102902434A (en) 2013-01-30
TWM449305U (en) 2013-03-21
CN102902433A (en) 2013-01-30
CN102902437B (en) 2016-04-27
CN102902398A (en) 2013-01-30
CN202615359U (en) 2012-12-19
CN202795312U (en) 2013-03-13
CN102902442A (en) 2013-01-30
TWM451595U (en) 2013-04-21
CN202548804U (en) 2012-11-21
TWM457238U (en) 2013-07-11
CN202795311U (en) 2013-03-13
WO2013013625A1 (en) 2013-01-31
CN202795310U (en) 2013-03-13
CN102902436A (en) 2013-01-30
CN102902399A (en) 2013-01-30
TWI486848B (en) 2015-06-01
CN102902441B (en) 2016-06-22
CN202795309U (en) 2013-03-13
TW201319903A (en) 2013-05-16
CN102902431B (en) 2016-09-07
CN102902443A (en) 2013-01-30
CN202870787U (en) 2013-04-10
TW201319904A (en) 2013-05-16
CN102902433B (en) 2017-01-25
CN202548805U (en) 2012-11-21
WO2013013627A1 (en) 2013-01-31
TWM470979U (en) 2014-01-21
CN102902398B (en) 2016-03-02
CN202649983U (en) 2013-01-02
CN102902438B (en) 2016-06-01
CN102902440B (en) 2016-03-30
TWI494833B (en) 2015-08-01
CN102902435B (en) 2015-12-02
CN102902432B (en) 2016-03-02
CN202600661U (en) 2012-12-12
CN102902438A (en) 2013-01-30
CN102902428A (en) 2013-01-30
WO2013013635A1 (en) 2013-01-31
WO2013013636A1 (en) 2013-01-31
TWI482074B (en) 2015-04-21
WO2013013624A1 (en) 2013-01-31
CN202649961U (en) 2013-01-02
CN102902427A (en) 2013-01-30
CN202795313U (en) 2013-03-13
CN102902442B (en) 2016-04-27
TWM453897U (en) 2013-05-21
TWI479399B (en) 2015-04-01
CN102902443B (en) 2016-01-13
CN202600660U (en) 2012-12-12
CN102902436B (en) 2015-12-02
CN102902437A (en) 2013-01-30
WO2013013634A1 (en) 2013-01-31
CN102902435A (en) 2013-01-30
CN102902429B (en) 2016-05-04
TWM450007U (en) 2013-04-01
CN202795315U (en) 2013-03-13
TWI475437B (en) 2015-03-01
CN202795314U (en) 2013-03-13
TWM464745U (en) 2013-11-01
CN202548806U (en) 2012-11-21
CN102902430B (en) 2016-03-30
CN102902431A (en) 2013-01-30
TW201310317A (en) 2013-03-01
CN102902429A (en) 2013-01-30
CN102902430A (en) 2013-01-30
CN102902444B (en) 2016-08-17
TW201324296A (en) 2013-06-16
CN102902439B (en) 2016-11-09
CN202649960U (en) 2013-01-02
CN202548807U (en) 2012-11-21
CN202795285U (en) 2013-03-13
CN102902432A (en) 2013-01-30
TW201308156A (en) 2013-02-16
CN102902444A (en) 2013-01-30
CN102902439A (en) 2013-01-30
CN202649984U (en) 2013-01-02
CN102902441A (en) 2013-01-30
TW201308180A (en) 2013-02-16
CN102902434B (en) 2015-09-30
CN102902440A (en) 2013-01-30
TWI485604B (en) 2015-05-21
TWI483164B (en) 2015-05-01
CN102902428B (en) 2016-09-07
CN102902399B (en) 2015-12-09

Similar Documents

Publication Publication Date Title
TWI479399B (en) Touch detecting method, touch sensitive device, and portable electronic apparatus
TWI475455B (en) Induction unit, touch screen detecting device, and touch sensitive device
TWI505163B (en) Touch detecting method, touch screen detecting device, touch sensitive device, and portable electronic apparatus

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees