TW201109407A - Film-like adhesive agent for sealing semiconductor, semiconductor device, and process for manufacturing the semiconductor device - Google Patents

Film-like adhesive agent for sealing semiconductor, semiconductor device, and process for manufacturing the semiconductor device Download PDF

Info

Publication number
TW201109407A
TW201109407A TW099110749A TW99110749A TW201109407A TW 201109407 A TW201109407 A TW 201109407A TW 099110749 A TW099110749 A TW 099110749A TW 99110749 A TW99110749 A TW 99110749A TW 201109407 A TW201109407 A TW 201109407A
Authority
TW
Taiwan
Prior art keywords
film
adhesive
semiconductor
resin
semiconductor device
Prior art date
Application number
TW099110749A
Other languages
Chinese (zh)
Other versions
TWI493010B (en
Inventor
Kazutaka Honda
Tetsuya Enomoto
Yuuki Nakamura
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of TW201109407A publication Critical patent/TW201109407A/en
Application granted granted Critical
Publication of TWI493010B publication Critical patent/TWI493010B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2463/00Presence of epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Engineering & Computer Science (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Wire Bonding (AREA)

Abstract

A film-like adhesive agent for sealing a semiconductor, which comprises (a) an epoxy resin and (b) a catalyst-type curing agent and does not contain any curing agent that can be converted into an active species by the action of the catalyst-type curing agent or can react with the catalyst-type curing agent.

Description

201109407 六、發明說明: 【發明所屬之技術領域】 本發明係有關半導體封閉用薄膜狀黏著劑,半 置及其製造方法。 【先前技術】 先前連接半導體晶片與基板時係廣泛使用,使用t胃 絲等金屬細線之金屬絲黏著(W i r e b ο n d i n g )方法。但近 來要求半導體裝置小型化、薄型化及高機能化。爲了對應 該要求,半導體裝置之製造過程係採用,在半導體晶片形 成所謂凸塊之導電性突起物直接連接半導體晶片與基板之 電極的覆晶(flip-chip)連接方法。 已知的藉由覆晶連接方法之凸塊與電極的連接方法。 如,使用焊錫、錫、金或銅之金屬接合方法;施加超音波 震動之金屬接合方法;經由樹脂之收縮力保持機械式接觸 的方法等。此等連接方法中,就連接部具有優良信賴性而 言’係以使用焊錫、錫、金或銅之金屬接合方法爲主流。 近來推廣小型化、高機能化之液晶顯示組件係使用, 採用上述覆晶連接方法之所謂COF( Chip On Film)的半 導體裝置。該半導體裝置中,係將形成金凸塊之液晶驅動 用半導體晶片搭載於形成鍍錫電路之聚醯亞胺基板上,以 金一錫共晶之金屬接合連接金凸塊及鍍錫電路》 該C OF連接中,爲了形成金一錫共晶需將連接部加熱 至共晶溫度27 8 °C以上。又,就提升生產性觀點,要求連 201109407 接時間,例如可以5秒內之短時間連接。因此爲了能於短 時間內加熱至共晶溫度(27 8 °C )以上,製造裝置之設定 溫度需爲300至400°C高溫。 但C OF中,一般半導體晶片與基板之間的空隙部塡 有封閉樹脂,自外部環境保護連接部,以防止外部應力集 中於連接部,及確保狹窄節距電路間之絕緣信賴性(例如 參考專利文獻1 )。 [先前技術文獻] [專利文獻] 專利文獻1 :特開2006- 1 8 8573號公報 【發明內容】 [發明所欲解決之課題] 目前封閉樹脂之塡充方法一般爲,連接半導體晶片及 基板後,經由毛細管現象注入液狀樹脂再硬化樹脂之方法 。但伴隨著COF的狹窄節距連接化,會縮小片一基板間之 空隙部,因此使用上述方法時需長時間注入液狀樹脂,而 有降低生產性之問題。故需求既使片一基板間空隙部較小 時,也可得充分優良生產性之封閉樹脂的形成方法。 該類封閉樹脂之形成方法如,將黏著劑供給晶片或基 板後,連接晶片及基板之方法。但該方法如上述般會因 COF需加熱至300°C以上之高溫進行連接,而恐使黏著劑 所含的揮發成份等發泡或藉由回彈等而發生空隙(氣泡) 。該類空隙會成爲降低狹窄節距電線間之連接信賴性。 -6- 201109407 連接覆晶時起因於回彈的空隙會使藉由高溫連接之基 板或金屬(電路、凸塊)變形,主要易發生於電路與凸塊 之連接部。爲了減少該類空隙較佳爲,不產生回彈之程度 內使半導體封閉用薄膜狀黏著劑增黏同時硬化。又就覆晶 提升生產性之觀點,需以短時間連接。因此爲了以較短連 接時間減少空隙,需以更短時間硬化黏著劑。 有鑑於上述事情’本發明之目的爲,提供短時間內具 有充分優良之連接性,可充分抑制伴隨高溫加熱而發生空 隙’且可製造具有充分優良連接信賴性之半導體裝置的半 導體封閉用薄膜狀黏著劑及半導體裝置之製造方法。又目 的爲’提供可充分減少封閉樹脂中空隙量,具有充分優良 之連接信賴性之半導體裝置。 [解決課題之方法] 爲了達成上述目的,本發明係提供含有(a)環氧樹 脂與(b )觸媒型硬化劑,且不含有任一種經由觸媒型硬 化劑形成活性種之硬化劑或可與觸媒型硬化劑反應之硬化 劑的半導體封閉用薄膜狀黏著劑。 先前之半導體封閉用薄膜狀黏著劑爲,含有環氧樹脂 及酚類、酸酐類或胺類等硬化劑,及觸媒型硬化劑。該類 半導體封閉用薄膜狀黏著劑中,因觸媒型硬化劑具有硬化 促進劑作用,故易藉由硬化劑進行環氧樹脂之硬化反應。 推斷其因爲,觸媒型硬化劑具有鹼之功用,可使硬化劑成 爲活性種促成環氧基之開環反應等而促進環氧樹脂與硬化 [ 201109407 劑反應。即,上述硬化劑爲,經由觸媒型硬化劑可形成活 性種之硬化劑或可與觸媒型硬化劑反應之硬化劑。 相對於此,藉由觸媒型硬化劑的環氧樹脂之硬化反應 推斷爲,直接以觸媒型硬化劑所具有的電子對侵蝕環氧基 而發生氧陰離子後,該氧陰離子再與環氧基反應進行單獨 的陰離子聚合,因此可以極短時間進行硬化。但半導體封 閉用薄膜狀黏著劑含有環氧樹脂、硬化劑及觸媒型硬化劑 時,伴隨著環氧樹脂與硬化劑反應會減少環氧樹脂之反應 點,而難藉由觸媒型硬化劑進行環氧樹脂單獨的陰離子聚 合。故使用先前的半導體封閉用薄膜狀黏著劑時,縮短的 硬化時間將受限。 由此本發明者們發現,半導體封閉用薄膜狀黏著劑備 有不含一般使用的硬化劑之組成時,可更有效藉由觸媒型 硬化劑進行環氧樹脂之反應,充分抑制發生空隙且可短時 間硬化,而完成本發明。 形成半導體封閉用薄膜狀黏著劑時就提升薄膜形成性 之觀點,上述半導體封閉用薄膜狀黏著劑更佳爲含有(C )重量平均分子量1 0000以上之高分子成份。 又,(C)重量平均分子量10000以上之高分子成份 更佳爲含有(d)聚醯亞胺樹脂。如此於形成半導體封閉 用薄膜狀黏著劑時可得更優良之薄膜形成性。 上述(d)聚醯亞胺樹脂較佳爲,具有30〇0〇以上之 重量平均分子量,且具有l〇〇°C以下之玻璃化溫度。如此 除了可於形成半導體封閉用薄膜狀黏著劑時得到更優良之 -8 - 201109407 薄膜形成性外’另可提升封閉時之塡埋性。 本發明之半導體封閉用薄膜狀黏著劑中,(b)觸媒 型硬化劑較佳爲含有咪唑類。 因環氧樹脂與咪唑類反應時係直接以氮持有的電子對 優蝕環氧基而發生氧陰離子後,該氧陰離子再與環氧基反 應進行單獨的陰離子聚合,故硬化反應非常快。又覆晶般 的金屬間連接需以高溫連接,但爲了減少高溫下之揮發成 份(3 00 °C以上無樹脂發泡),更適合使用環氧樹脂及咪 唑之反應。 本發明又提供,製造備有具有凸塊之半導體晶片及.具 有金屬電路之基板的半導體裝置之方法中,具有半導體晶 片與基板介於上述半導體封閉用薄膜狀黏著劑使凸塊與金 屬電路以相互對向之方式配置,將半導體晶片與基板以對 向之方向加壓的同時進行加熱,使半導體封閉用薄膜狀黏 著劑硬化,而使凸塊與金屬電路形成電氣性連接之連接步 驟的半導體裝置之製造方法。 該製造方法中,因使用具有上述特徵之半導體封閉用 薄膜狀黏著劑連接半導體晶片與基板,故製造半導體裝置 時可得充分優良之作業性。又可充分抑制空隙發生,因此 可製造具有充分優良之連接信賴性的半導體裝置。 本發明之半導體裝置的製造方法中連接步驟較佳爲, 半導體晶片與基板以對向之方向加壓的同時加熱至3 00 °C 以上’使含有金之凸塊與具有鍍錫層的金屬電路之間形成 金一錫共晶,而使凸塊與金屬電路形成電氣性連接。如此 Γ -9 - 201109407 可製造具有更優良之連接信賴性的半導體裝置。 [發明之效果] 本發明可提供短時間內具有充分優良之連接性、既使 加熱至3 00 °C以上高溫也可充分抑制空隙發生,可製造具 有充分優良之連接信賴性的半導體裝置之半導體封閉用薄 膜狀黏著劑及半導體裝置之製造方法。又可提供充分減少 封閉樹脂中之空隙量,具有充分優良之連接信賴性的半導 體裝置。 [實施發明之形態] 下面依情形將參考圖面說明本發明之較佳實施形態。 又各圖面中相同或同等之要素係賦予相同符號,故省略重 覆說明。 本發明之半導體封閉用薄膜狀黏著劑爲,含有(a) 環氧樹脂及(b)觸媒型硬化劑,且不含有經由觸媒型硬 化劑形成活性種之硬化劑或可與觸媒型硬化劑反應之硬化 劑中任一種之物。 其中經由觸媒型硬化劑形成活性種之硬化劑或可與觸 媒型硬化劑反應之硬化劑(以下方便上稱爲「其他硬化劑 」)如,酚系硬化劑及酸酐系硬化劑。酚系硬化劑爲,分 子內具有2個以上酚性羥基之物,具體例如,苯酚酚醛清 漆樹脂、甲酚酚醛清漆樹脂、苯酚芳烷酯樹脂、甲酚萘酚 甲醛聚縮合物、三苯基甲烷型多官能酚、各種多官能酚樹 -10- 201109407 脂。酸酐系硬化劑如,甲基環己烷四羧酸二酐、偏苯三酸 酐、均苯四酸酐、二苯甲酮四羧酸二酐、乙二醇雙脫水偏 苯三酸酯。 本發明之半導體封閉用薄膜狀黏著劑因備有不含上述 其他硬化劑之組成,故可以比先前更短之時間硬化,適用 於連接覆晶。下面將詳細說明本實施形態之薄膜狀黏著劑 所含的各成份。 (a )環氧樹脂 (a)環氧樹脂可爲分子內具有2個以上環氧基之物 無特別限制。可使用的環氧樹脂如,雙酚A型 '雙酚F型 、萘型、苯酚酚醛清漆型、甲酚酚醛清漆型、苯酚芳烷酯 型、聯苯型、三苯基甲烷型、二環己二烯型及各種多官能 環氧樹脂。此等環氧樹脂可單獨使用1種或2種以上組合 使用。 雙酚A型及雙酚F型之液狀環氧樹脂的1%熱重量減 少溫度爲250 °C以下,因此高溫加熱時恐分解而發生揮發 成份。故較佳爲使用室溫(1氣壓、25°C)下固體之環氧 樹脂。 (b )觸媒型硬化劑 (b )觸媒型硬化劑爲,相對於環氧樹脂之反應機構 爲不同於上述其他硬化劑之成份。(b )觸媒型硬化劑如 ,咪唑類' 膦類等。其中就可以更短時間連接的觀點較佳 [ -11 - 201109407 爲咪唑類。 咪唑類如,2 -苯基咪唑、2 -苯基-4-甲基咪唑、1-苄 基-2-甲基咪唑、1-苄基-2-苯基咪唑、1-氰基乙基-2-十一 烷基咪唑、1-氰基-2-苯基咪唑、卜氰基乙基-2-十一烷基 咪唑偏苯三酸酯、1-氰基乙基-2-苯基咪唑鑰偏苯三酸酯、 2.4- 二胺基-6-[2’-甲基咪唑基-(1,)]-乙基-s-三嗪、2,4-二胺基-6-[2’-十一烷基咪唑基-(1,)]-乙基-s-三嗪' 2,4-二胺基-6-[2’-乙基-4’-甲基咪唑基-(1’)]-乙基-s-三嗪、 2.4- 二胺基-6-[2’-甲基咪唑基-(1’)]-乙基-3-三嗪三聚異 氰酸加成物、2-苯基咪唑三聚異氰酸加成物、2-苯基-4,5-二羥基甲基咪唑、2-苯基-4 -甲基-5-羥基甲基咪唑及環氧 樹脂與咪唑類之加成物。 其中就硬化性、保存安定性及連接信賴性之觀點較佳 爲1-氰基乙基-2-十一烷基咪唑、1-氰基乙基-2-十一烷基 咪唑偏苯三酸酯、1-氰基乙基-2-苯基咪唑鑰偏苯三酸酯、 2.4- 二胺基-6-[2’-甲基咪唑基-(1’)]-乙基-s-三嗪、2,4-二 胺基-6-[2’-乙基-4’-甲基咪唑基-(1,)]-乙基-s-三嗪、2,4-二胺基-6-[2’-甲基咪唑基-(1’)]-乙基-s-三嗪三聚異氰酸加 成物、2-苯基咪唑三聚異氰酸加成物、2-苯基-4,5-二羥基 甲基咪唑、2-苯基-4-甲基-5-羥基甲基咪唑。又可使用此 等微膠囊化以提高潛在性之物。此等可單獨使用1種或2 種以上組合使用。 膦類如,三苯基膦 '四苯基鱗四苯基硼酸鹽、四苯基 鱗四(4_甲基苯基)硼酸鹽、四苯基辚(4-氟苯基)硼酸 -12- 201109407 鹽。又可使用此等微膠囊化以提高潛在化之物。此等可單 獨使用1種或2種以上組合使用。其中更佳爲具有苯基之 四苯基鐵四苯硼酸鹽。 (b )觸媒型硬化劑之添加量相對於(a )環氧樹脂 100質量份較佳爲0.1至50質量份,更佳爲0.1至35質 量份。觸媒型硬化劑之添加量未達〇. 1質量份時傾向損害 硬化性,超過50質量份時,藉由金一錫共晶形成連接部 之前,傾向難充分抑制因薄膜狀黏著劑硬化而發生連接不 良。 (c)重量平均分子量10000以上之高分子成份 薄膜狀黏著劑較佳爲含有(c)重量平均分子量1 0000 以上之高分子成份(以下方便上稱爲「(c)高分子成份 」)。(c)高分子成份爲不同於(a)環氧樹脂之樹脂。 (c)高分子成份如,不同於(a)環氧樹脂之環氧樹脂、 苯氧樹脂、聚醯亞胺樹脂、聚醯胺樹脂、聚碳化二亞胺樹 脂、氰酸酯酯樹脂、丙烯酸樹脂、聚酯樹脂、聚乙烯樹脂 、聚醚楓樹脂、聚醚醯亞胺樹脂、聚乙烯縮醛樹脂、胺基 甲酸乙酯樹脂、丙烯酸橡膠。其中就得到具有優良耐熱性 及薄膜形成性之薄膜狀黏著劑觀點較佳爲,不同於(a ) 環氧樹脂之環氧樹脂、苯氧樹脂、聚醯亞胺樹脂、氰酸酯 酯樹脂、聚碳化二亞胺樹脂,更佳爲環氧樹脂、苯氧樹脂 、聚醯亞胺樹脂β此等高分子成份可單獨使用1種或2種 以上組合使用,或使用2種以上之共聚物。(c)高分子 -13- 201109407 成份之重量平均分子量較佳爲10000至1000000,更佳爲 20000 至 900000,特佳爲 30000 至 800000。(c)高分子 成份之重量平均分子量未達1 0000時,傾向難控制黏度而 降低薄膜形成性,超過1000000時,傾向降低連接信賴性 及塡埋性。 (d )聚醯亞胺樹脂 本發明之薄膜狀黏著劑中,(c )高分子成份較佳爲 含有(d )聚醯亞胺樹脂。(d )聚醯亞胺樹脂例如可以已 知之方法,使四羧酸二酐與二胺縮合反應而得。更具體爲 ,於有機溶劑中以等莫耳之比率或幾乎等莫耳之比率添加 (各成份之添加順序隨意)四羧酸二酐與二胺,8 0 °C以下 ,較佳爲0至60°C下進行加成反應》隨著反應進行會緩緩 提升反應液之黏度,而生成聚醯亞胺之先驅物的聚醯胺酸 。又爲了抑制薄膜狀黏著劑之諸特性降低,上述四羧酸二 酐較佳爲經乙酸酐實施再結晶精製處理。 所生成的聚醯胺酸可經由,以5 0至8 0 °C之溫度加熱 解聚合,而調整其分子量。聚醯亞胺樹脂可由上述反應物 (聚醯胺酸)脫水閉環而得。脫水閉環可以加熱處理之熱 閉環法,及使用脫水劑之化閉環法進行。 聚醯亞胺樹脂之原料用的四羧酸二酐無特別限制,例 如,均苯四酸二酐、3,3’,4,4’-聯苯四竣酸二酐、 2,2’,3,3’-聯苯四羧酸二酐、2,2-雙(3,4-二羧基苯基)丙 烷二酐、2,2-雙(2,3-二羧基苯基)丙烷二酐、:^-雙( -14· 201109407 2,3-二羧基苯基)乙烷二酐、1,1-雙(3,4-二羧基苯基)乙 烷二酐、雙(2,3-二羧基苯基)甲烷二酐、雙(3,4-二羧 基苯基)甲烷二酐、雙(3,4_二羧基苯基)颯二酐、 3,4,9,10-茈四羧酸二酐、雙(3,4-二羧基苯基)醚二酐、 苯-1,2,3,4-四羧酸二酐、3,4,3’,4’-二苯甲酮四羧酸二酐、 2,3,2’,3’-二苯甲酮四羧酸二酐、3,3,3,’4,’_二苯甲酮四羧 酸二酐、1,2,5,6-萘四羧酸二酐、1,4,5,8-萘四羧酸二酐' 2,3,6,7 -萘四羧酸二酐、1,2,4,5 -萘四羧酸二酐、2,6 -二氯 萘-1,4,5,8-四羧酸二酐、2,7-二氯萘-1,4,5,8-四羧酸二酐、 2,3,6,7-四氯萘-1,4,5,8-四羧酸二酐、菲-1,8,9,10-四羧酸 二酐、吡嗪-2,3,5,6-四羧酸二酐、噻吩-2,3,5,6-四羧酸二 酐、2,3,3’,4’-聯苯四羧酸二酐、3,4,3’,4’-聯苯四.羧酸二 酐、2,3,2’,3’-聯苯四羧酸二酐、雙(3,4-二羧基苯基)二 甲基矽烷二酐、雙(3,4-二羧基苯基)甲基苯基矽烷二酐 、雙(3,4-二羧基苯基)二苯基矽烷二酐、1,4-雙(3,4-二 羧基苯基二甲基矽烷基)苯二酐、1,3-雙(3,4-二羧基苯 基)-1,1,3,3-四甲基二環己烷二酐、p-伸苯基雙(偏苯三 酸酯酐)、伸乙基四羧酸二酐、1,2,3,4-丁烷四羧酸二酐 、十氫萘-1,4,5,8-四羧酸二酐、4,8-二甲基-1,2,3,5,6,7-六 氫萘-1,2,5,6-四羧酸二酐、環戊烷-1,2,3,4-四羧酸二酐、 吡啶烷-2,3,4,5-四羧酸二酐、1,2,3,4-環丁烷四羧酸二酐、 雙(外-二環[2,2,1]庚烷-2,3-二羧酸二酐、二環[2,2,2]-辛-7-烯- 2,3,5,6-四羧酸二酐、2,2-雙(3,4-二羧基苯基)丙烷 二酐、2,2-雙[4-(3,4-二羧基苯基)苯基]丙烷二酐、2,2' Γ -15- 201109407 雙(3,4-二羧基苯基)六氟丙烷二酐、2,2-雙[4-(3,4-二 羧基苯基)苯基]六氟丙烷二酐、4,4’-雙(3,4-二羧基苯氧 基)二苯基硫化物二酐、1,4-雙(2-羥基六氟異丙基)苯 雙(偏苯三酸酐)、1,3-雙(2-羥基六氟異丙基)苯雙( 偏苯三酸酐)、5- (2,5-二羰基四氫呋喃基)-3-甲基-3-環 己烯-1,2-二羧酸二酐、四氫呋喃-2,3,4,5-四羧酸二酐。 又,可使用下述一般式(I)及(II)所表示的四羧酸 [化1]201109407 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a film-like adhesive for semiconductor encapsulation, a half-piece, and a method for producing the same. [Prior Art] When a semiconductor wafer and a substrate are previously connected, it is widely used, and a wire bonding method of a metal thin wire such as t-gas wire is used (W i r e b ο n d i n g ). Recently, however, semiconductor devices have been required to be miniaturized, thinned, and highly functional. In order to cope with this requirement, a semiconductor device is manufactured by a flip-chip connection method in which a conductive bump of a so-called bump is directly formed on a semiconductor wafer to directly connect an electrode of the semiconductor wafer and the substrate. A known method of connecting bumps and electrodes by a flip chip connection method. For example, a metal joining method using solder, tin, gold or copper; a metal joining method of applying ultrasonic vibration; a method of maintaining mechanical contact by a contraction force of a resin, and the like. Among these connection methods, the connection portion has excellent reliability, and the metal bonding method using solder, tin, gold or copper is the mainstream. Recently, a liquid crystal display device which is miniaturized and highly functional has been used, and a so-called COF (Chip On Film) semiconductor device using the above-described flip chip bonding method has been used. In the semiconductor device, a liquid crystal driving semiconductor wafer in which gold bumps are formed is mounted on a polyimide substrate on which a tin plating circuit is formed, and a gold bump and a tin plating circuit are bonded by a metal-gold eutectic metal bond. In the C OF connection, in order to form the gold-tin eutectic, the connection portion needs to be heated to a eutectic temperature of 27 8 ° C or higher. In addition, in order to enhance the productive point of view, it is required to connect to 201109407, for example, it can be connected within a short time of 5 seconds. Therefore, in order to be able to be heated to a eutectic temperature (27 8 ° C) or more in a short period of time, the set temperature of the manufacturing apparatus needs to be 300 to 400 ° C. However, in the COF, the gap between the semiconductor wafer and the substrate is generally closed with a resin, and the external environmental protection connection portion prevents external stress from being concentrated on the connection portion, and ensures insulation reliability between the narrow pitch circuits (for example, reference) Patent Document 1). [Prior Art] [Patent Document] Patent Document 1: JP-A-2006-8 8 573 SUMMARY OF THE INVENTION [Problems to be Solved by the Invention] At present, a method of charging a sealing resin is generally a method of connecting a semiconductor wafer and a substrate. A method of injecting a liquid resin through a capillary phenomenon and then hardening the resin. However, with the narrow pitch connection of the COF, the gap between the sheets and the substrate is reduced. Therefore, when the above method is used, it is necessary to inject the liquid resin for a long time, and the productivity is lowered. Therefore, it is required to form a method of forming a sealing resin which is sufficiently excellent in productivity even when the gap between the sheets and the substrate is small. A method of forming such a sealing resin is a method of joining a wafer and a substrate after supplying an adhesive to a wafer or a substrate. However, as described above, the method requires the COF to be heated to a temperature higher than 300 ° C to be connected, and the volatilization component contained in the adhesive may be foamed or voided (bubbles) may occur by rebound or the like. This type of void can be used to reduce the connection reliability between narrow pitch wires. -6- 201109407 When the flip chip is connected, the gap caused by the rebound causes deformation of the substrate or metal (circuit, bump) which is connected by high temperature, and is mainly likely to occur at the connection portion between the circuit and the bump. In order to reduce such voids, it is preferred that the film-like adhesive for semiconductor encapsulation is viscous and hardened without causing rebound. In view of the fact that flip chip is used to improve productivity, it needs to be connected in a short time. Therefore, in order to reduce voids with a short connection time, it is necessary to harden the adhesive in a shorter time. In view of the above, the object of the present invention is to provide a semiconductor sealing film having a sufficiently excellent connection property in a short period of time, and it is possible to sufficiently suppress the occurrence of voids accompanying high-temperature heating and to manufacture a semiconductor device having sufficiently excellent connection reliability. Adhesive and manufacturing method of semiconductor device. Further, it is intended to provide a semiconductor device which can sufficiently reduce the amount of voids in the sealing resin and has sufficiently excellent connection reliability. [Means for Solving the Problem] In order to achieve the above object, the present invention provides a hardener containing (a) an epoxy resin and (b) a catalyst type hardener, and does not contain any active species formed via a catalyst type hardener or A film-like adhesive for semiconductor sealing which is a curing agent which can react with a catalyst type hardener. The conventional film-like adhesive for semiconductor sealing contains an epoxy resin, a hardener such as a phenol, an acid anhydride or an amine, and a catalyst-type hardener. In the film-like adhesive for semiconductor sealing, since the catalyst-type curing agent has a curing accelerator action, the curing reaction of the epoxy resin is easily performed by the curing agent. It is presumed that since the catalyst-type hardener has a function as a base, the hardener can be made into an active species to promote ring-opening reaction of an epoxy group, etc., and the epoxy resin and the hardening reaction can be promoted. That is, the curing agent is a curing agent capable of forming an active species or a curing agent reactive with a catalytic curing agent via a catalyst-type curing agent. On the other hand, in the hardening reaction of the epoxy resin of the catalyst-type hardener, it is estimated that the oxygen anion is generated by directly attacking the epoxy group by the electron pair of the catalyst-type hardener, and the oxygen anion is further reacted with the epoxy. The radical reaction proceeds as a separate anionic polymerization, so that hardening can be carried out in a very short time. However, when the film-like adhesive for semiconductor sealing contains an epoxy resin, a hardener, and a catalyst-type hardener, the reaction between the epoxy resin and the hardener reduces the reaction point of the epoxy resin, and it is difficult to use the catalyst-type hardener. Anionic polymerization of the epoxy resin alone is carried out. Therefore, when the conventional film-like adhesive for semiconductor sealing is used, the shortened hardening time will be limited. As a result, the present inventors have found that when a film-like adhesive for semiconductor encapsulation is provided with a composition which does not contain a hardener which is generally used, it is more effective to carry out an epoxy resin reaction by a catalyst-type hardener, thereby sufficiently suppressing occurrence of voids. The present invention can be completed by hardening in a short time. In the case of forming a film-like adhesive for semiconductor encapsulation, the film-forming adhesive for semiconductor encapsulation preferably contains (C) a polymer component having a weight average molecular weight of 10,000 or more. Further, (C) a polymer component having a weight average molecular weight of 10,000 or more is more preferably a (d) polyimine resin. When the film-like adhesive for semiconductor encapsulation is formed in this manner, more excellent film formability can be obtained. The (d) polyimine resin preferably has a weight average molecular weight of 30 Å or more and a glass transition temperature of 10 ° C or less. In this way, in addition to being able to form a film-like adhesive for semiconductor encapsulation, it is more excellent in the formation of the film -8 - 201109407, and the burying property at the time of sealing can be improved. In the film-like adhesive for semiconductor encapsulation of the present invention, (b) the catalyst-type curing agent preferably contains an imidazole. When the epoxy resin reacts with the imidazole, the electrons held by the nitrogen directly oxidize the epoxy group to form an oxyanion, and the oxyanion reacts with the epoxy group to carry out an anionic polymerization alone, so the hardening reaction is very fast. The flip-chip metal connection is required to be connected at a high temperature, but in order to reduce the volatile component at a high temperature (no resin foaming above 300 °C), it is more suitable to use an epoxy resin and a reaction of imidazole. The present invention further provides a method of manufacturing a semiconductor device including a semiconductor wafer having bumps and a substrate having a metal circuit, wherein the semiconductor wafer and the substrate are interposed between the semiconductor film-sealing adhesive for bumps and metal circuits A semiconductor in which the semiconductor wafer and the substrate are heated in the opposite direction, and the thin film adhesive for semiconductor sealing is cured, and the bump and the metal circuit are electrically connected to each other. The manufacturing method of the device. In this manufacturing method, since the semiconductor wafer and the substrate are connected by using the film-like adhesive for semiconductor sealing having the above characteristics, it is possible to obtain sufficiently excellent workability in manufacturing a semiconductor device. Further, the occurrence of voids can be sufficiently suppressed, so that a semiconductor device having sufficiently excellent connection reliability can be manufactured. In the method of fabricating the semiconductor device of the present invention, the connecting step is preferably such that the semiconductor wafer and the substrate are heated to a temperature of 300 sec or more while being pressed in the opposite direction to make the gold-containing bump and the metal circuit having the tin-plated layer. A gold-tin eutectic is formed between them to form an electrical connection between the bump and the metal circuit. Thus Γ -9 - 201109407 can manufacture semiconductor devices with better connection reliability. [Effects of the Invention] The present invention can provide a semiconductor device having a sufficiently excellent connection property in a short period of time, and can sufficiently suppress the occurrence of voids even when heated to a high temperature of 300 ° C or higher, and can manufacture a semiconductor device having sufficiently excellent connection reliability. A film-like adhesive for sealing and a method for producing a semiconductor device. Further, it is possible to provide a semiconductor device which sufficiently reduces the amount of voids in the sealing resin and has sufficiently excellent connection reliability. [Embodiment of the Invention] Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. The same or equivalent elements in the respective drawings are denoted by the same reference numerals, and the description thereof will not be repeated. The film-like adhesive for semiconductor encapsulation of the present invention contains (a) an epoxy resin and (b) a catalyst-type hardener, and does not contain a hardener or a catalyst type which forms an active species via a catalyst-type hardener. Any of the hardeners of the hardener reaction. Among them, a curing agent for forming an active species or a curing agent capable of reacting with a catalytic curing agent (hereinafter referred to as "another curing agent"), such as a phenolic curing agent and an acid anhydride curing agent, may be formed via a catalyst-type curing agent. The phenolic curing agent is one having two or more phenolic hydroxyl groups in the molecule, and specifically, for example, a phenol novolak resin, a cresol novolak resin, a phenol aralkyl ester resin, a cresol naphthol formaldehyde polycondensate, and a triphenyl group. Methane type polyfunctional phenol, various polyfunctional phenolic tree-10-201109407 lipid. The acid anhydride-based curing agent is, for example, methylcyclohexanetetracarboxylic dianhydride, trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic dianhydride or ethylene glycol bis-dehydrated trimellitate. Since the film-like adhesive for semiconductor encapsulation of the present invention has a composition which does not contain the above-mentioned other curing agent, it can be hardened in a shorter time than before, and is suitable for connection flip chip. The components contained in the film-like adhesive of the present embodiment will be described in detail below. (a) Epoxy resin (a) The epoxy resin may be one having two or more epoxy groups in the molecule, and is not particularly limited. Epoxy resins that can be used, such as bisphenol A type bisphenol F type, naphthalene type, phenol novolac type, cresol novolak type, phenol aralkyl ester type, biphenyl type, triphenylmethane type, two rings Hexadiene type and various multifunctional epoxy resins. These epoxy resins may be used alone or in combination of two or more. The 1% thermal weight reduction temperature of the bisphenol A type and the bisphenol F type liquid epoxy resin is 250 ° C or less, so that the volatile component is decomposed and decomposed during heating at a high temperature. Therefore, it is preferred to use a solid epoxy resin at room temperature (1 atm, 25 ° C). (b) Catalyst-type hardener (b) The catalyst-type hardener is a reaction mechanism different from the above-mentioned other hardeners. (b) a catalyst type hardener such as an imidazole 'phosphine. Among them, the viewpoint of being able to connect in a shorter time is better [ -11 - 201109407 is an imidazole class. Imidazoles such as 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl- 2-undecylimidazole, 1-cyano-2-phenylimidazole, cyanoethyl-2-undecylimidazole trimellitate, 1-cyanoethyl-2-phenylimidazole Key trimellitate, 2.4-diamino-6-[2'-methylimidazolyl-(1,)]-ethyl-s-triazine, 2,4-diamino-6-[2 '-undecyl imidazolyl-(1,)]-ethyl-s-triazine' 2,4-diamino-6-[2'-ethyl-4'-methylimidazolyl-(1 ')]-Ethyl-s-triazine, 2.4-diamino-6-[2'-methylimidazolyl-(1')]-ethyl-3-triazine trimeric isocyanate adduct , 2-phenylimidazole trimeric isocyanate adduct, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole and epoxy resin An adduct with an imidazole. Among them, from the viewpoints of hardenability, storage stability, and connection reliability, 1-cyanoethyl-2-undecylimidazole and 1-cyanoethyl-2-undecylimidazole trimellitic acid are preferred. Ester, 1-cyanoethyl-2-phenylimidazole carboxylic acid ester, 2.4-diamino-6-[2'-methylimidazolyl-(1')]-ethyl-s-three Oxazine, 2,4-diamino-6-[2'-ethyl-4'-methylimidazolyl-(1,)]-ethyl-s-triazine, 2,4-diamino-6 -[2'-Methylimidazolyl-(1')]-ethyl-s-triazine trimeric isocyanate adduct, 2-phenylimidazole trimer isocyanate adduct, 2-phenyl -4,5-Dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole. These microencapsulations can also be used to increase the potential. These may be used alone or in combination of two or more. Phosphines such as triphenylphosphine 'tetraphenyl quaternary tetraphenyl borate, tetraphenyl quaternary tetrakis(4-methylphenyl) borate, tetraphenylphosphonium (4-fluorophenyl) borate-12- 201109407 Salt. These microencapsulations can also be used to enhance the potential. These may be used alone or in combination of two or more. More preferably, it is a tetraphenyl iron tetraphenyl borate having a phenyl group. The amount of the (b) catalyst-type hardener added is preferably from 0.1 to 50 parts by mass, more preferably from 0.1 to 35 parts by mass, per 100 parts by mass of the (a) epoxy resin. When the amount of the catalyst-type hardener is less than 〇. 1 part by mass tends to impair the curability, and when it exceeds 50 parts by mass, it is difficult to sufficiently suppress the curing of the film-like adhesive before forming the joint portion by the gold-tin eutectic. A bad connection has occurred. (c) Polymer component having a weight average molecular weight of 10,000 or more The film-like adhesive preferably contains (c) a polymer component having a weight average molecular weight of 1,000,000 or more (hereinafter referred to as "(c) polymer component"). (c) The polymer component is a resin different from (a) an epoxy resin. (c) a polymer component such as an epoxy resin, a phenoxy resin, a polyimide resin, a polyamide resin, a polycarbodiimide resin, a cyanate ester resin, or an acrylic acid different from (a) an epoxy resin Resin, polyester resin, polyethylene resin, polyether maple resin, polyether phthalimide resin, polyvinyl acetal resin, urethane resin, acrylic rubber. Among them, a film-like adhesive having excellent heat resistance and film formability is preferred, and is different from (a) an epoxy resin epoxy resin, a phenoxy resin, a polyimide resin, a cyanate ester resin, The polycarbodiimide resin, more preferably an epoxy resin, a phenoxy resin, or a polyimine resin, may be used singly or in combination of two or more kinds, or two or more kinds of copolymers. (c) Polymer -13- 201109407 The weight average molecular weight of the component is preferably from 10,000 to 1,000,000, more preferably from 20,000 to 9000, and particularly preferably from 30,000 to 800,000. (c) When the weight average molecular weight of the polymer component is less than 10,000, the viscosity tends to be difficult to control and the film formability is lowered. When the weight average molecular weight exceeds 1,000,000, the connection reliability and the burying property tend to be lowered. (d) Polyimine resin In the film-like adhesive of the present invention, (c) the polymer component preferably contains (d) a polyimide resin. (d) The polyimine resin can be obtained, for example, by a condensation reaction of a tetracarboxylic dianhydride with a diamine by a known method. More specifically, it is added in an organic solvent at a ratio of equimolar or almost molar (the order of addition of the components is optional) tetracarboxylic dianhydride and diamine, 80 ° C or less, preferably 0 to The addition reaction is carried out at 60 ° C. As the reaction progresses, the viscosity of the reaction liquid is gradually increased to form a poly-proline which is a precursor of polyimine. Further, in order to suppress the deterioration of the properties of the film-like adhesive, the tetracarboxylic dianhydride is preferably subjected to recrystallization purification treatment with acetic anhydride. The resulting polyamic acid can be polymerized by heating at a temperature of from 50 to 80 ° C to adjust its molecular weight. The polyimine resin can be obtained by dehydration ring closure of the above reactant (polyglycolic acid). The dehydration closed loop can be heat-treated by a closed-loop method and a closed-loop method using a dehydrating agent. The tetracarboxylic dianhydride used for the raw material of the polyimide resin is not particularly limited, and, for example, pyromellitic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,2', 3,3'-biphenyltetracarboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(2,3-dicarboxyphenyl)propane dianhydride ,:--double (-14· 201109407 2,3-dicarboxyphenyl)ethane dianhydride, 1,1-bis(3,4-dicarboxyphenyl)ethane dianhydride, bis (2,3- Dicarboxyphenyl)methane dianhydride, bis(3,4-dicarboxyphenyl)methane dianhydride, bis(3,4-dicarboxyphenyl)ruthenic anhydride, 3,4,9,10-decanetetracarboxylic acid Acid dianhydride, bis(3,4-dicarboxyphenyl)ether dianhydride, benzene-1,2,3,4-tetracarboxylic dianhydride, 3,4,3',4'-benzophenone Carboxylic dianhydride, 2,3,2',3'-benzophenone tetracarboxylic dianhydride, 3,3,3,'4,'-benzophenone tetracarboxylic dianhydride, 1,2, 5,6-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,2,4,5-naphthalene Tetracarboxylic dianhydride, 2,6-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2,7-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2,3,6,7-tetrachloronaphthalene-1,4,5,8-tetracarboxylic acid Anhydride, phenanthrene-1,8,9,10-tetracarboxylic dianhydride, pyrazine-2,3,5,6-tetracarboxylic dianhydride, thiophene-2,3,5,6-tetracarboxylic dianhydride , 2,3,3',4'-biphenyltetracarboxylic dianhydride, 3,4,3',4'-biphenyltetracarboxylic dianhydride, 2,3,2',3'-biphenyl Tetracarboxylic dianhydride, bis(3,4-dicarboxyphenyl)dimethyl phthalane dianhydride, bis(3,4-dicarboxyphenyl)methylphenyl decane dianhydride, bis(3,4-di Carboxyphenyl)diphenylnonane dianhydride, 1,4-bis(3,4-dicarboxyphenyldimethyldimethylalkyl)phthalic anhydride, 1,3-bis(3,4-dicarboxyphenyl) -1,1,3,3-tetramethyldicyclohexane dianhydride, p-phenylene bis(trimellitic anhydride), ethyltetracarboxylic dianhydride, 1,2,3,4 -butane tetracarboxylic dianhydride, decalin-1,4,5,8-tetracarboxylic dianhydride, 4,8-dimethyl-1,2,3,5,6,7-hexahydronaphthalene -1,2,5,6-tetracarboxylic dianhydride, cyclopentane-1,2,3,4-tetracarboxylic dianhydride, pyridin-2,3,4,5-tetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, bis(exo-bicyclo[2,2,1]heptane-2,3-dicarboxylic dianhydride, bicyclo[2,2, 2]-oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis[4-(3,4-dicarboxyphenyl)phenyl]propane dianhydride, 2,2' Γ -15- 201109407 bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride , 2,2-bis[4-(3,4-dicarboxyphenyl)phenyl]hexafluoropropane dianhydride, 4,4'-bis(3,4-dicarboxyphenoxy)diphenyl sulfide Dihydride, 1,4-bis(2-hydroxyhexafluoroisopropyl)benzene bis(trimellitic anhydride), 1,3-bis(2-hydroxyhexafluoroisopropyl)benzene bis(trimellitic anhydride), 5-(2, 5-Dicarbonyltetrahydrofuranyl-3-methyl-3-cyclohexene-1,2-dicarboxylic dianhydride, tetrahydrofuran-2,3,4,5-tetracarboxylic dianhydride. Further, tetracarboxylic acids represented by the following general formulas (I) and (II) can be used.

式(I)中,r爲2至20之整數。 [化2]In the formula (I), r is an integer of 2 to 20. [Chemical 2]

上述一般式(I)所表示的四羧酸二酐例如可自偏苯 三酸一氯化物酐及對應之二醇合成。具體例如,1,2-(伸 乙基)雙(偏苯三酸酯酐)、1,3-(三伸甲基)雙(偏苯 三酸酯酐)、1,4-(四伸甲基)雙(偏苯三酸酯酐)、 1,5-(五伸甲基)雙(偏苯三酸酯酐)、1,6-(六伸甲基 -16- 201109407 )雙(偏苯三酸酯酐)、1,7-(七伸甲基)雙(偏苯三酸 酯酐)、1,8-(八伸甲基)雙(偏苯三酸酯酐)、1,9-( 九伸甲基)雙(偏苯三酸酯酐)、1,10-(十伸甲基)雙( 偏苯三酸酯酐)、1,丨2_(十二伸甲基)雙(偏苯三酸酯酐 )、1,16-(十六伸甲基)雙(偏苯三酸醋酐)、1,18_( 十八伸甲基)雙(偏苯三酸酯酐)等。 其中就可將優良耐濕信賴性賦予薄膜狀黏著劑之觀點 ,較佳爲上述一般式(II)所表示的四羧酸二酐。此等四 羧酸二酐可單獨使用1種或2種以上組合使用。 上述式(II)所表示的四羧酸二酐之添加量,相對於 四羧酸二酐全體較佳爲40莫耳%以上,更佳爲50莫耳% 以上,特佳爲70莫耳%以上。該添加量未達40莫耳%時 ,傾向難充分得到使用上述式(II )所表示之四钱酸二酐 而得耐濕信賴性的效果。 聚醯亞胺樹脂之原料用的二胺無特別限制,例如可使 用0-伸苯基二胺、m-伸苯基二胺、p-伸苯基二胺、3,3,_二 胺基二苯基醚、3,4’-二胺基二苯基醚、4,4、二胺基二苯基 醚、3,3’-二胺基二苯基甲烷、3,4’-二胺基二苯基甲院、 4,4’-二胺基二苯基醚甲烷、雙(4_胺基-3,5-二甲基苯基) 甲烷、雙(4-胺基-3,5-二異丙基苯基)甲烷、3,3,_二胺基 二苯基二氟甲烷、3,4,-二胺基二苯基二氯甲烷、4,4,_二胺 基二苯基二氯甲烷、3,3’-二胺基二苯基碾、3,4,-二胺基二 苯基颯、4,4’-二胺基二苯基颯、3,3’-二胺基二苯基硫化物 、3,4’-二胺基二苯基硫化物、4,4’-二胺基二苯基硫化物、 -17- 201109407 3,3’-二胺基二苯基酮、3,4’-二胺基二苯基酮、4,4’-二胺 基二苯基酮、2,2-雙(3-胺基苯基)丙烷、2,2’-(3,4’-二 胺基二苯基)丙烷、2,2-雙(4-胺基苯基)丙烷、2,2-雙 (3-胺基苯基)六氟丙烷、2,2-(3,4’-二胺基二苯基)六 氟丙烷、2,2-雙(4_胺基苯基)六氟丙烷、1,3-雙(3-胺基 苯氧基)苯、I,4-雙(3_胺基苯氧基)苯、I,4-雙(4-胺基 苯氧基)苯、3,3’-(1,4-伸苯基雙(1-甲基亞乙基))雙 苯胺、3,4’-(1,4-伸苯基雙(1-甲基亞乙基))雙苯胺、 4,4’- ( I,4-伸苯基雙(1-乙基亞乙基))雙苯胺、2,2-雙 (4-(3-胺基苯氧基)苯基)丙烷、2,2-雙(4-(3-胺基苯 氧基)苯基)六氟丙烷、2,2_雙(4-(4-胺基苯氧基)苯 基)六氟丙烷、雙(4- ( 3-胺基苯氧基)苯基)硫化物、 雙(4- ( 3-胺基苯氧基)苯基)颯、雙(4- ( 4-胺基苯氧 基)苯基)硒、3,5-二胺基苯甲酸等芳香族二胺、1,3-雙 (胺基甲基)環己烷、2,2-雙(4-胺基苯氧基苯基)丙烷 〇 又,二胺可使用下述一般式(III)所表示的脂肪族醚 二胺,下述一般式(IV)所表示的脂肪族二胺或下述一般 式(V)所表示的矽氧烷二胺。 [化3] H2N—Q1-(-0—Q2-)-〇-Q3-NH2 (III) s 上述一般式(III)中,Q1、Q2及Q3各自獨立爲碳數 1至10之伸烷基,s爲2至80之整數。 -18- 201109407 [化4] H2N-f-CH2^-NH2 (IV) 上述一般式(IV)中,k爲5至20之整數。 [化5] h2nThe tetracarboxylic dianhydride represented by the above general formula (I) can be synthesized, for example, from trimellitic acid monochloride anhydride and the corresponding diol. Specifically, for example, 1,2-(extended ethyl) bis(trimellitic anhydride), 1,3-(trimethyl)di(trimellitic anhydride), 1,4-(four-extension) Bis(trimellitic anhydride), 1,5-(pentamethyl)bis(trimellitic anhydride), 1,6-(hexamethyl--16-201109407) bis(phenylene) Triester anhydride), 1,7-(heptamethyl)bis(trimellitic anhydride), 1,8-(octamethyl)bis(trimellitic anhydride), 1,9- (Nine-extension methyl) bis(trimellitic anhydride), 1,10-(decamethyl)bis(trimellitic anhydride), 1, 丨2_(dodecylmethyl) double (bias) Triphenyl ester anhydride), 1,16-(hexadecylmethyl)bis (trimellitic anhydride), 1,18-(octamethylmethyl) bis(trimellitic anhydride), and the like. Among them, the excellent moisture-resistant reliability can be imparted to the film-like adhesive, and the tetracarboxylic dianhydride represented by the above general formula (II) is preferred. These tetracarboxylic dianhydrides may be used alone or in combination of two or more. The amount of the tetracarboxylic dianhydride to be added in the above formula (II) is preferably 40% by mole or more, more preferably 50% by mole or more, and particularly preferably 70% by mole based on the total amount of the tetracarboxylic dianhydride. the above. When the amount added is less than 40 mol%, it is difficult to sufficiently obtain the effect of using the tetrakisonic acid dianhydride represented by the above formula (II) to obtain moisture resistance. The diamine used for the raw material of the polyimide resin is not particularly limited, and for example, 0-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 3,3,-diamino group can be used. Diphenyl ether, 3,4'-diaminodiphenyl ether, 4,4, diaminodiphenyl ether, 3,3'-diaminodiphenylmethane, 3,4'-diamine Diphenylene, 4,4'-diaminodiphenyl ether methane, bis(4-amino-3,5-dimethylphenyl)methane, bis(4-amino-3,5 -diisopropylphenyl)methane, 3,3,-diaminodiphenyldifluoromethane, 3,4,-diaminodiphenylmethylene chloride, 4,4,-diaminodiphenyl Methylene chloride, 3,3'-diaminodiphenyl milling, 3,4,-diaminodiphenylanthracene, 4,4'-diaminodiphenylanthracene, 3,3'-di Aminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, -17- 201109407 3,3'-diaminodiphenyl Ketone, 3,4'-diaminodiphenyl ketone, 4,4'-diaminodiphenyl ketone, 2,2-bis(3-aminophenyl)propane, 2,2'-( 3,4'-Diaminodiphenyl)propane, 2,2-bis(4-aminophenyl)propane, 2 , 2-bis(3-aminophenyl)hexafluoropropane, 2,2-(3,4'-diaminodiphenyl)hexafluoropropane, 2,2-bis(4-aminophenyl) Hexafluoropropane, 1,3-bis(3-aminophenoxy)benzene, I,4-bis(3-aminophenoxy)benzene, I,4-bis(4-aminophenoxy) Benzene, 3,3'-(1,4-phenylenebis(1-methylethylidene))diphenylamine, 3,4'-(1,4-phenylene bis(1-methylethylidene) Base)) bisaniline, 4,4'-(I,4-phenylphenylbis(1-ethylethylidene))diphenylamine, 2,2-bis(4-(3-aminophenoxy) Phenyl)propane, 2,2-bis(4-(3-aminophenoxy)phenyl)hexafluoropropane, 2,2-bis(4-(4-aminophenoxy)phenyl)hexa Fluoropropane, bis(4-(3-aminophenoxy)phenyl) sulfide, bis(4-(3-aminophenoxy)phenyl)anthracene, bis(4-(4-aminobenzene) Aromatic diamines such as oxy)phenyl)selenium, 3,5-diaminobenzoic acid, 1,3-bis(aminomethyl)cyclohexane, 2,2-bis(4-aminophenoxyl) Further, the diamine may be an aliphatic ether diamine represented by the following general formula (III), and the aliphatic formula represented by the following general formula (IV) The following silicon or siloxane diamine represented by the general formula (V). H2N—Q1-(-0—Q2-)-〇-Q3-NH2 (III) s In the above general formula (III), Q1, Q2 and Q3 are each independently an alkylene group having 1 to 10 carbon atoms. , s is an integer from 2 to 80. -18- 201109407 H2N-f-CH2^-NH2 (IV) In the above general formula (IV), k is an integer of 5 to 20. [5] h2n

(V) 上述一般式(V)中,Q4及Q9各自獨立爲碳數1至5 之伸烷基或可具有取代基之伸苯基,Q5、Q6、Q7及Q8各 自獨立爲碳數1至5之烷基、苯基或苯氧基,p爲1至5 之整數。 上述二胺中,就可得具有優良低應力性、層壓性、低 溫黏著性之薄膜狀黏著劑的觀點,較佳爲上述一般式(III )或(IV )所表示的二胺。又就可得具有良好低吸水性、 低吸濕性之薄膜狀黏著劑的觀點,較佳爲上述一般式(V )所表示的二胺。此等二胺可單獨使用1種或2種以上組 合使用。此時上述一般式(III)所表示的脂肪族醚二胺較 佳爲二胺全體的1至5〇莫耳%,上述—般式所表示 的脂肪族二胺較佳爲二胺全體的2〇至8〇莫耳%,或上述 一般式(v)所表示的矽氧烷二胺較佳爲二胺全體的2〇至 8〇莫耳%。上述各二胺爲上述莫耳%之數値範圍外時傾 -19- 201109407 向難得到良好的低溫層壓性、低吸水性。 又,上述一般式(III)所表示的脂肪族醚二胺之具體 例如,式(ΠΙ-1)至(III-5)之脂肪族醚二胺。又一般式 (III-4)及(III-5)中,η爲1以上之整數。 [化6] H2N~(CH2 大 0-(cH2 士 Ο 十CH2j^NH2 (III-1) H2N-fCH2-)-〇-(cH2-^〇-(-CH2)-fCH2^-NH2 (III-2) H2N*(CH2大。~(CH2大。十CH2^(*CH20CH2^~NH2 (ΠΙ-3) H2N~(CH2t&quot;[〇&quot;(CH2 七十η〇 十 CH 吹 ΝΗ2 (ΙΙΙ-4) η2ν—ch—ch2- -ο—ch-ch2 ch3 ch3 -ο—ch2—ch-nh2 1 CH, 上述一般式(ΙΠ-4)所表示的脂肪族醚二胺之重量平 均分子量較佳如350、750、1100或2100。又,上述一般 式(III-5 )所表示的脂肪族醚二胺之重量平均分子量較佳 如 230、 400 或 2000 ° 上述脂肪族醚二胺中,就可確保低溫層壓性及相對於 附有機光相之基板具有良好黏著性的觀點,更佳爲下述一 般式(VI)所表示的脂肪族醚二胺。 [化7] ch3 ch3 ch3 I I I f 、 h2n—chch2--o-chch2--o-chch2—nh2 (VI) m -20- 201109407 上述一般式(VI)中,m爲2至80之整數。 上述一般式(VI)所表示的脂肪族醚二胺之具體例如 ,以鐵諾股份公司製傑發密D-230、D-400、D-2000、D-4000、ED-600、ED-900、ED-2001 及 EDR-148 (以上爲商 品名)、及BASF製聚醚胺D-230、D-400及D-2000C以 上爲商品名)等聚氧化烯烴二胺等脂肪族二胺。 又,上述一般式(IV)所表示的脂肪族二胺如,1,2-二胺基乙烷、1,3-二胺基丙烷、1,4-二胺基丁烷、1,5-二胺 基戊烷、1,6-二胺基己烷、1,7-二胺基庚烷、1,8-二胺基辛 烷、1,9-二胺基壬烷、1,1〇-二胺基癸烷、1,1 1-二胺基十— 烷、1,12-二胺基十二烷、1,2-二胺基環己烷。其中較佳爲 1,9-二胺基壬烷、1,10-二胺基癸烷、1,1 1-二胺基十一烷、 1,12-二胺基十二烷。 上述一般式(V)所表示的矽氧烷二胺例如一般式( V)中&lt;?爲1時&gt;的1,1,3,3-四甲基-1,3-雙(4-胺基苯基) 二矽氧烷、1,1,3,3-四苯氧基-1,3-雙(4-胺基乙基)二较 氧烷、1,1,3,3-四苯基-1,3-雙(2-胺基乙基)二矽氧烷、 1,1,3,3-四苯基-1,3-雙(3-胺基丙基)二矽氧烷、1,1,3,3_ 四甲基-1,3-雙(2-胺基乙基)二矽氧烷、1,1,3,3-四甲基-1,3-雙(3-胺基丙基)二矽氧烷、1,1,3,3-四甲基-1,3-雙( 3-胺基丁基)二矽氧烷、1,3-二甲基-1,3-二甲氧基-1,3-雙 (4-胺基丁基)二矽氧烷。 又如&lt;?爲2時&gt;的1,1,3,3,5,5-六甲基-1,5-雙(4-胺基 苯基)三矽氧烷、1,1,5,5-四苯基- 3,3-二甲基-1,5-雙(3- -21 - 201109407 胺基丙基)三矽氧烷、l,i,5,5·四苯基-3,3 -二甲氧基-1,5-雙(4-胺基丁基)三矽氧烷、1,1,5,5-四苯基-3,3-二甲氧 基-1,5-雙(5-胺基戊基)三矽氧烷、1,1,5,5-四甲基-3,3-二甲氧基-1,5-雙(2 -胺基丙基)三矽氧烷、1,1,5,5 -四甲 基-3,3 -二甲氧基-1,5 -雙(4 -胺基丁基)三矽氧烷、 1,1,5,5-四甲基-3,3 -二甲氧基-1,5 -雙(5 -胺基戊基)三矽 氧院、1,1,3,3,5,5-六甲基-1,5-雙(3-胺基丙基)三砂氧院 、1,1,3,3,5,5 -六乙基-1,5 -雙(3·胺基丙基)三矽氧烷、 1,1,3,3,5,5-六丙基-1,5-雙(3_胺基丙基)三矽氧烷。 上述聚醯亞胺樹脂可單獨使用1種或必要時組合使用 2種以上。 就可得對基板及半導體晶片具有更優良貼附性之薄膜 狀黏著劑的觀點,(d )聚醯亞胺樹脂之玻璃化溫度(Tg )較佳爲l〇〇°C以下,更佳爲75°C以下。就處理性之觀點 ,聚醯亞胺樹脂之Tg的下限値爲20 °C。該玻璃化溫度超 過1 00 °C時,傾向難使薄膜狀黏著劑充分塡埋形成於半導 體晶片之凸塊、形成於基板之電極及電路圖型等凹凸。因 此形成的連接部會殘存氣泡,而成爲發生空隙之原因。 上述玻璃化溫度爲,使用DSC (差示掃描熱分析,巴 金耶公司製,商品名·· DSC-7型),以樣品量:l〇mg、升 溫速度:5 °C /分、測定環境:空氣之條件測定之値。 爲了成爲具有良好薄膜形成性之物,(d )聚醯亞胺 樹脂之重量平均分子量較佳爲,聚苯乙烯換算下3 0 000以 上,更佳爲40000以上,特佳爲50000以上。該重量平均 -22- 201109407 分子量未達3〇〇〇〇時’形成薄膜狀黏著劑時傾向會損害良 好的薄膜形成性。又就處理性之觀點,聚醯亞胺樹脂之重 量平均分子量的上限爲100000。上述的重量平均分子量爲 ’使用高速液體色譜儀(島津製作所股份公司製,商品名 :C-R4A),以聚苯乙烯換算測定之値。 (d )聚醯亞胺樹脂之含量無特別限制。但就提升薄 膜形狀之保持性的觀點,添加方式較佳爲相對於(d )聚 醯亞胺樹脂之(a)環氧樹脂的質量比率爲o.oi至5,更 佳爲0.05至3 ’特佳爲0.1至2。該質量比率未達〇·(π時 ,會降低薄膜狀黏著劑之硬化性,而傾向損害優良的黏著 力,超過5時傾向降低薄膜狀黏著劑形成時之薄膜形成性 〇 爲了控制黏度及硬化物之物性,本實施形態之薄膜狀 黏著劑可含有塡充物。可使用之塡充物如,絕緣性無機塡 充物、晶鬚、樹脂塡充物。絕緣性無機塡充物如,玻璃、 二氧化矽、氧化鋁、氧化鈦、碳黑、雲母、氮化硼。其中 較佳爲二氧化矽、氧化鋁、氧化鈦、氮化硼,更佳爲二氧 化砂、氧化銘、氮化硼。 晶鬚如’硼酸鋁、鈦酸鋁、氧化鋅 '矽酸鈣、硫酸鎂 、氮化硼。可使用之樹脂塡充物如,聚胺基甲酸乙酯、聚 醯亞胺等。此等塡充料及晶鬚可單獨使用1種或2種以上 組合使用。塡充物之形狀、粒徑及添加量無特別限制。 本實施形態之薄膜狀黏著劑可另添加矽烷偶合劑、鈦 偶合劑、塗平劑、防氧化劑、電子陷阱劑。此等可單獨使 -23- 201109407 用1種或2種以上組合使用。添加量係調整爲可發現各添 加劑之效果的量。 下面將說明本實施形態之半導體封閉用薄膜狀黏著劑 的製造方法。首先將環氧樹脂、觸媒型硬化劑及必要時使 用之重量平均分子量10000以上的高分子成份、聚醯亞胺 樹脂及/或添加劑(塡充物等)加入有機溶劑中,藉由攪 拌混合、混練等使其溶解或分散後,調製樹脂漆。使用刀 塗機、輥塗機或敷料機將調製而得之樹脂漆塗佈於實施離 模處理後之基材薄膜上,藉由加熱去除有機溶劑後,於基 材薄膜上形成薄膜狀黏著劑。又添加聚醯亞胺樹脂時,合 成聚醯亞胺樹脂後無需單離,可直接以含有聚醯亞胺樹脂 之漆狀態使用,又可將各成份加入該漆中調製樹脂漆。 調製樹脂漆用之有機溶劑較佳爲,具有可均勻溶解或 分散各成份之特性之物。該類有機溶劑如,二甲基甲醯胺 、二甲基乙醯胺、N-甲基-2-吡咯烷酮、二甲基亞颯、二 乙二醇二甲基醚、甲苯、苯、二甲苯、甲基乙基酮、四氫 呋喃、乙基溶纖劑、乙基溶纖劑乙酸酯、丁基溶纖劑、二 噁烷、環己酮、乙酸乙酯。此等有機溶劑可單獨使用1種 或2種以上組合使用。調製樹脂漆時可使用攪拌機、萊卡 機、3座輥、球磨機、均化機等進行混練等。 所使用的基材薄膜可爲,具有能忍耐揮發有機溶劑時 之加熱條件的耐熱性之物。該類基材薄膜如,聚酯薄膜、 聚丙烯薄膜、聚對苯二甲酸乙二醇酯薄膜、聚醯亞胺薄膜 、聚醚醯亞胺薄膜、聚醚苯二甲酸酯薄膜、甲基戊烯薄膜 -24- 201109407 。基材薄膜非限於自此等薄膜材料1種形成之單層薄膜’ 又可爲層合2種以上之薄膜材料而得之多層薄膜。 自塗佈於基材薄膜上之樹脂漆揮發有機溶劑的條件較 佳爲,能充分揮發有機溶劑之條件,具體上較佳以50至 200 °C之溫度加熱〇.1至90分鐘。此時之加熱溫度較佳爲 ,不會進行硬化反應之程度的溫度。 其次將說明使用半導體封閉用薄膜狀黏著劑之半導體 裝置的製造方法之較佳實施形態。 本實施形態之半導體裝置的製造方法具有,半導體晶 片與基板之間介於上述半導體封閉用薄膜狀黏著劑,使半 導體晶片上之凸塊與基板上之金屬電路以相互對向之方式 配置進行假連接之第1步驟,及將半導體晶片與基板以凸 塊與金屬電路對向之方向加壓之同時進行加熱使半導體封 閉用薄膜狀黏著劑硬化,而使凸塊與金屬電路形成電氣性 連接之第2步驟。下面將詳細說明各步驟。 (第1步驟) 圖1爲’本發明之較佳實施形態的半導體裝置之製造 方法之第1步驟的模式步驟剖面圖。第〗步驟中,首先於 半導體晶片14與基板1 6之間,介於半導體封閉用薄膜狀 黏著劑1 2。 使半導體晶片14之單面上形成凸塊15。形成於半導 體晶片14之凸塊〗5的材質無特別限制,例如含有金、低 溶點焊錫、高熔點焊錫、鎳、錫等之物。其中C〇F時較 -25- 201109407 佳爲含有金。 使基板16之單面上形構成金屬電路18。基板16 質無特別限制,可使用陶瓷等無機基板或環氧樹脂、 來醯亞胺三嗪樹脂 '聚醯亞胺樹脂等有機基板。其中 時較佳爲聚醯亞胺樹脂。 金屬電路18之材質如,銅、鋁、錫、金、鎳等 路可經由蝕刻或電鍍圖型而形成.。金屬電路1 8可經 、鎳、錫等之電鍍處理,而使表面具有電鏟層。COF 用經由鍍錫處理而使表面具有鍍錫層之銅電路。 將半導體封閉用薄膜狀黏著劑12切成一定大小 可貼附於基板1 6,又貼附於添加量1 4之凸塊1 5形成 ,經由切粒而個片化,製作貼附半導體封閉用薄膜狀 劑1 2之半導體晶片1 4。半導體封閉用薄膜狀黏著劑 面積及厚度可經由半導體晶片14之尺寸及凸塊15之 等適當設定。 第1步驟中,核對基板16之金屬電路18與半導 片14之凸塊15的位置後’以金屬電路18與凸塊15 之方向(箭頭A、B方向)’使用加壓罩30與台32 半導體晶片14與基板16。如此可將凸塊15壓入半導 閉用薄膜狀黏著劑12內。 (第2步驟) 圖2爲,本發明之較佳實施形態的半導體裝置之 方法的第2步驟之模式步驟剖面圖。第2步驟中,經 之材 雙馬 COF 。電 由金 時適 後’ 面後 黏著 L2之 高度 體晶 對向 加壓 體封 製造 由加 -26- 201109407 罩30及台32將凸塊15及金屬電路18以對向之方向(箭 頭A、B方向)加壓的同時,以3 00至45 0 °C之連接溫度 加熱0.5至5秒。如此可使凸塊15與金屬電路18直接接 觸而電氣性通導的同時,將半導體封閉用薄膜狀黏著劑1 2 硬化而形成硬化樹脂22。又加壓壓力(繼續荷重)可於考 量凸塊數、凸塊高度及其偏差、凸塊變形量等後適當調整 〇 如上述般,係各自將半導體,晶片1 4與金屬電路1 8加 熱3 00至45 0°C,因此半導體晶片14含有金,且金屬電路 18之表面爲鍍錫層時,會使金與錫反應而於凸塊15與金 屬電路18之接觸部分形成金一錫共晶。如此可進一步強 固凸塊15與金屬電路18的接合,而進一步提升連接信賴 性。 既使以300至450 °C之高溫加熱半導體封閉用薄膜狀 黏著劑1 2,也會因構成材料不易發生空隙,而充分維持絕 緣信賴性。上述實施形態之製造方法所得的半導體裝置之 空隙發生率較佳爲5%以下,更佳爲3%以下,特佳爲1% 以下。空隙發生率大於5 %時,狹窄節距電路間會殘存空 隙,而傾向降低絕緣信賴性。 以上係說明本發明之較佳實施形態,但本發明非限於 上述實施形態。例如半導體裝置之製造方法中,以上述第 2步驟電氣性連接凸塊15與金屬電路18後,可另將半導 體裝置全體置於烤箱中等加熱進行加熱處理步驟。 -27- 201109407 【實施方式】 實施例 下面將舉實施例說明本發明,但本發明非限於該實施 例。 (合成例1 ) 將1,12 -二胺基十二院2.1〇g(〇.〇35莫耳)、聚醚二 胺(BASF公司製、商品名:ED2000,分子量:1923) 17.31g(0_03莫耳)、1,3 -雙(3 -胺基丙基)四甲基二矽 氧烷(信越化學工業公司製,商品名:LP-7100) 2_61g( 0.035莫耳)及N-甲基-2-吡咯烷酮(關東化學公司製) 15〇g放入備有溫度計、攪拌機及氯化鈣管之300mL燒瓶 中進行攪拌,調製二胺溶液。其後於冰浴中冷卻燒瓶,同 時少量分批添加以乙酸酐再結晶精製而得之4,4,- ( 4,4’-異亞丙基二苯氧基)雙(酞酸二酐)(ALDRICH公司製 ’商品名:BPADA) 15.62g(0.10 莫耳)。室溫(25。(:) 下反應8小時後加入二甲苯1〇〇 g,再吹入氮氣同時加熱至 1 8〇°C,以共沸去除水與二甲苯,合成聚醯亞胺溶液。所 得的聚醯亞胺樹脂之Tg爲22°C,重量平均分子量(Mw) 爲47000 ’ SP値(溶解度參數)爲10.2。 &lt;準備原材料&gt; 準備薄膜狀黏著劑製造用之原材料用的下述化合 物。 -28- 201109407 (a )環氧樹脂 含有三苯酚甲烷骨架之多官能環氧樹脂(E 脂公司製,商品名:EP 1 03 2 ) (b )觸媒型硬化劑 2,4-二胺基-6-[2’-甲基咪唑基-(1’)]-乙基 聚氰酸加成物(四國化成工業公司製,商品名 P W ) 1-氰基乙基-2-苯基咪唑鍚偏苯三酸酯(四國 公司製,商品名:2PZ-CNS) 2_苯基-4,5-二羥基甲基咪唑(四國化成工業 商品名:2PHZ-PW) 四苯基鱗四苯基硼酸鹽(東京化成工業股份 商品名:T P P K ) (b ’)其他硬化劑 含有三苯酚甲烷骨架之多官能苯酚(明和化 商品名:MEH7500 ) (d )聚醯亞胺樹脂 上述合成例1所合成的聚醯亞胺樹脂(以下 成聚醯亞胺」) 本環氧樹 -s-三嗪三 :2MAOK- 丨化成工業 公司製, 公司製, 成公司, 稱爲「合 -29- 201109407 &lt;半導體封閉用薄膜狀黏著劑之製造方法&gt; (實施例1 ) 將合成聚醯亞胺100質量份(固體成份換算)、環氧 樹脂(商品名:EP 1 032 ) 30質量份、觸媒型硬化劑(商 品名:2MAOK-PW) 5質量份及N-甲基-2-吡咯烷酮(關東 化學公司製)以全體固體成份爲40 %之方式(約200質量 份)放入20mL之玻璃製螺旋管中,再以攪拌、脫泡裝置 「AR-250」(新吉公司製,商品名)進行攪拌、脫泡而得 樹脂漆。 使用塗佈機「PI1210FILMCOATER」(鐵斯達產業公 司製,商品名),將所得的樹脂漆塗佈於基材薄膜(帝人 都彭薄膜公司製,商品名:布雷庫A53 )後,使用無菌烤 箱(耶斯佩公司製)乾燥(以80°C乾燥30分鐘及以120 °C乾燥20至30分鐘),製作半導體封閉用薄膜狀黏著劑 (實施例2至3及比較例1至4) 除了依表1所示變更所使用的原材料組成外,同上述 半導體封閉用薄膜狀黏著劑之製作方法’製作半導體封閉 用薄膜狀黏著劑。 所得的薄膜狀黏著劑之評估試驗係以下述方式進行。 &lt;評估樹脂發泡&gt; 將製作之薄膜狀黏著劑切成—定尺寸(10mmxl0mmx -30- 201109407 厚0.03mm)後’貼附於厚0.12至0.17mm之玻璃蓋片( 尺寸:18mmxl8mm)上’再載置於300〇C2熱板上,以目 視觀察薄膜狀黏著劑外觀以調查薄膜狀黏著劑有無樹脂發 泡。 &lt;測定空隙發生率&gt; 圖3爲,說明空隙發生率測定用之試料a的製作方法 之說明圖。首先將製作之薄膜狀黏著劑12切成一定尺寸 (直徑6mm、厚約〇. 1mm )後貼附於厚〇.7mm之玻璃晶 片11(尺寸:15mmxl5mm)上。其後如圖3所示,覆蓋 厚 0.12 至 0.17mm 玻璃盍片 13(尺寸:I8mmxi8mni), 製作依序層合玻璃晶片1 1、薄膜狀黏著劑1 2及玻璃蓋片 1 3之試料A。 其次使用覆晶結合機(松下電器產業股份公司製,商 品名:FCB3),以加熱溫度3 50°C、加壓壓力IMPa、加 熱加壓時間〇.5秒或1秒之條件壓合試料A,製作壓合體 〇 以下述式算出相對於壓合後全體之薄膜狀黏著劑面積 全體的壓合體之空隙發生率,得發生空隙之面積比率。又 藉由掃描器攝取之畫像測定面積。將空隙發生率未達5 % 評估爲「A」、5至20%評估爲「B」、21至40%評估爲「 C」、超過4 0 %評估爲「D」。結果如表1所示。 空隙發生率(%) =空隙發生面積/壓合後之薄膜狀黏著 劑面積x 1 〇 0 -31 - 201109407 &lt;評估連接電阻(初期通導)&gt; 圖4(A)爲由上方拍攝評估連接電阻用之半導體裝 置而得的照片,圖4(B)爲拍攝評估連接電阻用之半導 體裝置剖面而的照片。評估連接電阻用之半導體裝置係以 下述方法製作。 將製作之薄膜狀黏著劑切成一定尺寸(2.5 mm X 15.5 mm X厚〇.〇3mm)後,貼附於聚醯亞胺基板16 (曰立 超LSI系統股份公司製,商品名:JKIT COF TEG_30-B, 聚醯亞胺基材之厚度:38μιη,銅電路之厚度:8μιη,電路 鍍錫之厚度:〇.2μιη上。 使用上述覆晶結合機,將形成金凸塊15之晶片14( 曰立超LSI系統股份公司製,商品名:JTEG PHASE6_30 ,晶片尺寸:1 Jmmxl 5.1 mmx厚0.4mm,凸塊尺寸:2 0 μηι χΙΟΟμιηχ高15μιη,凸塊數726 )壓合組裝於聚醯亞胺基板 上貼附薄膜狀黏著劑之該聚醯亞胺基板相反側的表面上。 壓合條件爲壓罩溫度:3 5 0°C、台溫度:100°C、壓合時間 :1秒、壓合壓力:50至100N。如此可得圖4(A)及( B)所示雙鏈連接聚醯亞胺基板16與附金凸塊之晶片14 而得的半導體裝置。 使用多路計器測定所得半導體裝置之雙鏈連接的連接 電阻値。不使用薄膜狀黏著劑製作之半導體裝置的雙鏈連 接的連接電阻値爲160Ω前後,因此連接電阻値爲120至 190Ω時評估爲「A」,未達1.20Ω或超過190Ω時評估爲 -32- 201109407(V) In the above general formula (V), Q4 and Q9 are each independently an alkylene group having 1 to 5 carbon atoms or a stretching phenyl group having a substituent, and Q5, Q6, Q7 and Q8 are each independently a carbon number of 1 to 5 alkyl, phenyl or phenoxy, p is an integer from 1 to 5. Among the above diamines, a film-like adhesive having excellent low stress, laminability, and low temperature adhesion can be obtained, and the diamine represented by the above general formula (III) or (IV) is preferred. Further, from the viewpoint of obtaining a film-like adhesive having good low water absorbability and low hygroscopicity, the diamine represented by the above general formula (V) is preferred. These diamines may be used alone or in combination of two or more. In this case, the aliphatic ether diamine represented by the above formula (III) is preferably from 1 to 5 mol% of the entire diamine, and the aliphatic diamine represented by the above formula is preferably a diamine. The oxime to 8 〇 mol%, or the oxirane diamine represented by the above general formula (v) is preferably 2 〇 to 8 〇 mol% of the entire diamine. When each of the above diamines is outside the range of the above-mentioned mole %, it is difficult to obtain good low-temperature lamination property and low water absorption. Further, specific examples of the aliphatic ether diamine represented by the above general formula (III) are, for example, aliphatic ether diamines of the formulae (ΠΙ-1) to (III-5). Further, in the general formulae (III-4) and (III-5), η is an integer of 1 or more. H2N~(CH2 large 0-(cH2 士Ο十CH2j^NH2 (III-1) H2N-fCH2-)-〇-(cH2-^〇-(-CH2)-fCH2^-NH2 (III- 2) H2N* (CH2 is large. ~(CH2 is large. Ten CH2^(*CH20CH2^~NH2(ΠΙ-3) H2N~(CH2t&quot;[〇&quot;(CH2 seventy η〇 ten CH ΝΗ 2 (ΙΙΙ-4 Η2ν—ch—ch2--ο—ch-ch2 ch3 ch3 −ο—ch2—ch-nh2 1 CH, the weight average molecular weight of the aliphatic ether diamine represented by the above general formula (ΙΠ-4) is preferably, for example, 350 750, 1100 or 2100. Further, the weight average molecular weight of the aliphatic ether diamine represented by the above general formula (III-5) is preferably 230, 400 or 2000 ° to ensure low temperature in the above aliphatic ether diamine. The laminating property and the viewpoint of having good adhesion to a substrate having an organic optical phase are more preferably an aliphatic ether diamine represented by the following general formula (VI). [Chemical 7] ch3 ch3 ch3 III f , h2n — Chch2--o-chch2--o-chch2-nh2 (VI) m -20- 201109407 In the above general formula (VI), m is an integer of 2 to 80. The aliphatic ether represented by the above general formula (VI) The specificity of the amine is, for example, a product of Tiefa D-230, D-400, D-2000, D-4000, ED- Fats such as polyoxyalkylene diamine such as 600, ED-900, ED-2001, EDR-148 (the above are trade names), and polyetheramines D-230, D-400 and D-2000C manufactured by BASF) Further, the aliphatic diamine represented by the above general formula (IV), for example, 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminodecane, 1,1〇-diaminodecane, 1,1 1-diaminodecane, 1,12-diaminododecane, 1,2-diaminocyclohexane. Among them, 1 is preferred. , 9-diaminodecane, 1,10-diaminodecane, 1,1 1-diaminoundecane, 1,12-diaminododecane. The above general formula (V) The oxirane diamine is, for example, a 1,1,3,3-tetramethyl-1,3-bis(4-aminophenyl)dioxine in the general formula (V) &lt;? at 1 hour&gt; Alkane, 1,1,3,3-tetraphenoxy-1,3-bis(4-aminoethyl)dioxane, 1,1,3,3-tetraphenyl-1,3-double (2-Aminoethyl)dioxane, 1,1,3,3-tetraphenyl-1,3-bis(3-aminopropyl)dioxane 1,1,3,3_tetramethyl-1,3-bis(2-aminoethyl)dioxane, 1,1,3,3-tetramethyl-1,3-bis(3-amine Propyl)dioxane, 1,1,3,3-tetramethyl-1,3-bis(3-aminobutyl)dioxane, 1,3-dimethyl-1,3 - Dimethoxy-1,3-bis(4-aminobutyl)dioxane. Another example is 1,1,3,3,5,5-hexamethyl-1,5-bis(4-aminophenyl)trioxane, 1,1,5 when &lt;? is 2 hours&gt; ,5-tetraphenyl- 3,3-dimethyl-1,5-bis(3--21-201109407 aminopropyl)trioxane, 1,i,5,5·tetraphenyl-3 ,3-dimethoxy-1,5-bis(4-aminobutyl)trioxane, 1,1,5,5-tetraphenyl-3,3-dimethoxy-1,5 - bis(5-aminopentyl)trioxane, 1,1,5,5-tetramethyl-3,3-dimethoxy-1,5-bis(2-aminopropyl)tri Oxane, 1,1,5,5-tetramethyl-3,3-dimethoxy-1,5-bis(4-aminobutyl)trioxane, 1,1,5,5 -tetramethyl-3,3-dimethoxy-1,5-bis(5-aminopentyl) trioxane, 1,1,3,3,5,5-hexamethyl-1, 5-bis(3-aminopropyl) trisole, 1,1,3,3,5,5-hexaethyl-1,5-bis(3·aminopropyl)trioxane, 1 1,1,3,3,5,5-hexapropyl-1,5-bis(3-aminopropyl)trioxane. The above-mentioned polyimine resin may be used singly or in combination of two or more kinds as necessary. From the viewpoint of obtaining a film-like adhesive having better adhesion to a substrate and a semiconductor wafer, (d) the glass transition temperature (Tg) of the polyimide resin is preferably 10 ° C or less, more preferably Below 75 °C. From the viewpoint of handleability, the lower limit T of the Tg of the polyimide resin is 20 °C. When the glass transition temperature exceeds 100 °C, it tends to be difficult to sufficiently bury the film-like adhesive on the bumps of the semiconductor wafer, the electrodes formed on the substrate, and the electric patterns and the like. Therefore, bubbles are formed in the connection portion formed, which is a cause of occurrence of voids. The glass transition temperature was measured by DSC (differential scanning calorimetry, manufactured by Bajinye Co., Ltd., trade name: DSC-7 type), sample amount: l〇mg, temperature increase rate: 5 °C / min, and measurement environment: The condition of the air is determined. In order to obtain a film having good film formability, the weight average molecular weight of the (d) polyimine resin is preferably 30,000 or more in terms of polystyrene, more preferably 40,000 or more, and particularly preferably 50,000 or more. The weight average -22-201109407 When the molecular weight is less than 3 Å, the formation of a film-like adhesive tends to impair good film formability. Further, from the viewpoint of handleability, the upper limit of the weight average molecular weight of the polyimide resin is 100,000. The above-mentioned weight average molecular weight is measured by polystyrene conversion using a high-speed liquid chromatograph (manufactured by Shimadzu Corporation, trade name: C-R4A). (d) The content of the polyimine resin is not particularly limited. However, from the viewpoint of enhancing the retention of the shape of the film, the mass ratio of the (a) epoxy resin to the (d) polyimine resin is preferably from o.oi to 5, more preferably from 0.05 to 3'. Very good is 0.1 to 2. When the mass ratio is less than 〇· (when π, the hardenability of the film-like adhesive is lowered, and the adhesion tends to be impaired, and when it exceeds 5, the film formation property at the time of formation of the film-like adhesive tends to decrease, and the viscosity and hardening are controlled. The film-like adhesive of the present embodiment may contain an entangled material, such as an insulating inorganic entangled material, a whisker or a resin entangled material, and an insulating inorganic chelating material such as glass. , cerium oxide, aluminum oxide, titanium oxide, carbon black, mica, boron nitride, preferably cerium oxide, aluminum oxide, titanium oxide, boron nitride, more preferably sulphur dioxide, oxidized, nitrided Boron. Whiskers such as 'aluminum borate, aluminum titanate, zinc oxide' calcium citrate, magnesium sulfate, boron nitride. Resin fillings such as polyethyl urethane, polyimine, etc. The ruthenium charge and the whisker may be used singly or in combination of two or more kinds. The shape, particle diameter, and addition amount of the ruthenium are not particularly limited. The film-like adhesive of the present embodiment may further contain a decane coupling agent or a titanium couple. Mixture, leveling agent, antioxidant, electronics The trapping agent can be used in combination of one or more of -23 to 201109407. The amount of addition is adjusted to an amount at which the effect of each additive can be found. The film-like adhesive for semiconductor encapsulation of the present embodiment will be described below. First, an epoxy resin, a catalyst-type curing agent, and a polymer component having a weight average molecular weight of 10,000 or more, a polyimide resin, and/or an additive (an additive), which are used as necessary, are added to an organic solvent. The resin varnish is prepared by dissolving or dispersing by mixing, kneading, etc., and the prepared resin varnish is applied onto the substrate film subjected to the mold release treatment using a knife coater, a roll coater or a dresser. After removing the organic solvent by heating, a film-like adhesive is formed on the substrate film. When the polyimine resin is added, the polyimine resin is synthesized without the need to separate, and the paint containing the polyimide resin can be directly used. In the state of use, the components may be added to the lacquer to prepare a resin varnish. The organic solvent for modulating the varnish is preferably one having the property of uniformly dissolving or dispersing the components. Machine solvent such as dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl hydrazine, diethylene glycol dimethyl ether, toluene, benzene, xylene, A Base ethyl ketone, tetrahydrofuran, ethyl cellosolve, ethyl cellosolve acetate, butyl cellosolve, dioxane, cyclohexanone, ethyl acetate. These organic solvents can be used alone or in combination. When the resin paint is prepared, it can be kneaded using a blender, a Leica machine, a 3-seat roll, a ball mill, a homogenizer, etc. The substrate film used can be heat-resistant with a heating condition capable of withstanding a volatile organic solvent. Substrate film such as polyester film, polypropylene film, polyethylene terephthalate film, polyimine film, polyether quinone film, polyether phthalate Film, methylpentene film-24-201109407. The base film is not limited to a single-layer film formed of one type of film material, and may be a multilayer film obtained by laminating two or more kinds of film materials. The resin paint applied to the base film is preferably a volatile organic solvent, and is capable of sufficiently volatilizing the organic solvent, and is specifically heated at a temperature of 50 to 200 ° C for 1 to 90 minutes. The heating temperature at this time is preferably a temperature at which the hardening reaction does not proceed. Next, a preferred embodiment of a method of manufacturing a semiconductor device using a film-like adhesive for semiconductor encapsulation will be described. In the method for fabricating a semiconductor device of the present embodiment, the semiconductor wafer and the substrate are interposed between the semiconductor film-sealing adhesive, and the bumps on the semiconductor wafer and the metal circuits on the substrate are arranged to face each other. In the first step of the connection, the semiconductor wafer and the substrate are heated while being pressed in the direction in which the bumps and the metal circuits are opposed to each other, and the film-like adhesive for semiconductor encapsulation is cured to electrically connect the bumps to the metal circuit. Step 2. Each step will be described in detail below. (First Step) Fig. 1 is a schematic cross-sectional view showing a first step of a method of manufacturing a semiconductor device according to a preferred embodiment of the present invention. In the first step, first, a film-like adhesive 12 for semiconductor encapsulation is interposed between the semiconductor wafer 14 and the substrate 16. A bump 15 is formed on one surface of the semiconductor wafer 14. The material of the bumps 5 formed on the semiconductor wafer 14 is not particularly limited, and includes, for example, gold, low-solction solder, high-melting solder, nickel, tin, or the like. Among them, C〇F is better than -25- 201109407. The metal circuit 18 is formed on one surface of the substrate 16. The quality of the substrate 16 is not particularly limited, and an inorganic substrate such as ceramic or an organic substrate such as an epoxy resin or a quinone imine triazine resin can be used. Among them, a polyimide resin is preferred. The material of the metal circuit 18, such as copper, aluminum, tin, gold, nickel, etc., can be formed by etching or plating patterns. The metal circuit 18 can be plated with nickel, tin, etc., so that the surface has an electric shovel layer. The COF is a copper circuit having a tin plating layer on the surface by tin plating treatment. The film-like adhesive 12 for semiconductor encapsulation is cut into a predetermined size and can be attached to the substrate 16 and attached to the bumps 15 of the added amount of 14 to form a sheet, which is diced by dicing to form a semiconductor for sealing. A semiconductor wafer 14 of a film-like agent 12. The area and thickness of the film-like adhesive for semiconductor encapsulation can be appropriately set via the size of the semiconductor wafer 14 and the bumps 15. In the first step, after the position of the metal circuit 18 of the substrate 16 and the bump 15 of the semi-conductive sheet 14 is checked, the pressurizing cover 30 and the stage are used in the direction of the metal circuit 18 and the bump 15 (arrows A and B directions). 32 semiconductor wafer 14 and substrate 16. Thus, the bump 15 can be pressed into the film-like adhesive 12 for semi-conductive use. (Second Step) Fig. 2 is a schematic cross-sectional view showing a second step of the method of the semiconductor device according to the preferred embodiment of the present invention. In the second step, the material is double horse COF. The electric body is made of gold and the latter. The height of the body is adhered to the L2. The height of the body is opposite to the pressure body. The cover 26 and the metal circuit 18 are opposed to each other by the -26-201109407 cover 30 and the table 32 (arrow A, In the B direction), the pressure is heated for 0.5 to 5 seconds at a connection temperature of 300 to 45 °C. In this manner, the bump 15 can be electrically contacted with the metal circuit 18, and the film-like adhesive 1 2 for semiconductor encapsulation can be cured to form the cured resin 22. Further, the pressing pressure (continuous load) can be appropriately adjusted after considering the number of bumps, the height of the bumps and the deviation thereof, the amount of deformation of the bumps, and the like, and the semiconductor, the wafer 14 and the metal circuit 18 are each heated as described above. 00 to 45 0 ° C, so the semiconductor wafer 14 contains gold, and the surface of the metal circuit 18 is a tin-plated layer, which causes gold to react with tin to form a gold-tin eutectic at the contact portion of the bump 15 and the metal circuit 18. . This further strengthens the engagement of the bumps 15 with the metal circuit 18, further enhancing the connection reliability. Even when the film-like adhesive 1 2 for semiconductor encapsulation is heated at a high temperature of 300 to 450 ° C, voids are unlikely to occur due to the constituent materials, and the insulating reliability is sufficiently maintained. The semiconductor device obtained by the above-described production method has a void ratio of preferably 5% or less, more preferably 3% or less, and particularly preferably 1% or less. When the void generation rate is more than 5%, voids remain between the narrow pitch circuits, and the insulation reliability tends to be lowered. The preferred embodiments of the present invention have been described above, but the present invention is not limited to the above embodiments. For example, in the method of manufacturing a semiconductor device, after the bump 15 and the metal circuit 18 are electrically connected in the second step, the entire semiconductor device can be placed in an oven and heated to perform a heat treatment step. -27-201109407 EXAMPLES Hereinafter, the invention will be described by way of examples, but the invention is not limited to the examples. (Synthesis Example 1) 1,12-diamino 12th house: 2.1〇g (〇.〇35mol), polyether diamine (manufactured by BASF Corporation, trade name: ED2000, molecular weight: 1923) 17.31g (0_03) Mohr), 1,3 -bis(3-aminopropyl)tetramethyldioxane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: LP-7100) 2_61g (0.035 mol) and N-methyl- 2-Pyrrolidone (manufactured by Kanto Chemical Co., Ltd.) 15 〇 g was placed in a 300 mL flask equipped with a thermometer, a stirrer, and a calcium chloride tube, and stirred to prepare a diamine solution. Thereafter, the flask was cooled in an ice bath, and 4,4,-(4,4'-isopropylidenediphenoxy)bis(phthalic acid dianhydride) was obtained by recrystallization from acetic anhydride in small portions. (Product name: BPADA manufactured by ALDRICH Co., Ltd.) 15.62 g (0.10 mol). After reacting at room temperature (25 ° (:) for 8 hours, 1 g of xylene was added, and nitrogen gas was blown while heating to 18 ° C to azeotropically remove water and xylene to synthesize a polyimine solution. The obtained polyimine resin had a Tg of 22 ° C and a weight average molecular weight (Mw) of 47,000 'SP値 (solubility parameter) of 10.2. <Preparation of raw materials> Preparation of raw materials for film adhesive production -28- 201109407 (a) Epoxy resin containing polyphenol epoxy resin of trisphenol methane skeleton (manufactured by E Grease Co., Ltd., trade name: EP 1 03 2 ) (b) Catalyst hardener 2,4- Diamino-6-[2'-methylimidazolyl-(1')]-ethyl polycyanate adduct (trade name PW, manufactured by Shikoku Chemical Industry Co., Ltd.) 1-cyanoethyl-2- Phenyl imidazolium trimellitate (manufactured by Shikoku Co., Ltd., trade name: 2PZ-CNS) 2_Phenyl-4,5-dihydroxymethylimidazole (Shikoku Chemical Industrial Trade Name: 2PHZ-PW) Tetraphenyl Baseline tetraphenylborate (Tokyo Chemical Industry Co., Ltd. trade name: TPPK) (b ') Other hardeners contain polyphenols of trisphenol methane skeleton (Minghe Chemical brand name) MEH7500) (d) Polyimine resin The polyimine resin synthesized in the above Synthesis Example 1 (hereinafter referred to as polyimine) This epoxy tree-s-triazine three: 2MAOK- 丨Chemical Industrial Co., Ltd. Manufactured by the company, the company is called "Hyoko-29-201109407 &lt;Production Method of Film-Type Adhesive for Semiconductor Encapsulation&gt; (Example 1) 100 parts by mass of synthetic polyimine (converted in solid content), epoxy Resin (trade name: EP 1 032 ) 30 parts by mass, catalyst type hardener (trade name: 2MAOK-PW) 5 parts by mass and N-methyl-2-pyrrolidone (manufactured by Kanto Chemical Co., Ltd.) with a total solid content of 40 The % method (about 200 parts by mass) was placed in a 20 mL glass spiral tube, and stirred and defoamed by a stirring and defoaming device "AR-250" (manufactured by Shinji Co., Ltd.) to obtain a resin paint. The coating machine "PI1210FILMCOATER" (trade name, manufactured by Tenstar Co., Ltd.), and the obtained resin varnish was applied to a base film (manufactured by Teijin DuPont Film Co., Ltd., trade name: Brayku A53), and a sterile oven was used. Dry by JESPE (drying at 80 ° C for 30 minutes) And drying at 120 ° C for 20 to 30 minutes), a film-like adhesive for semiconductor encapsulation (Examples 2 to 3 and Comparative Examples 1 to 4), in addition to the composition of the raw materials used in accordance with Table 1, The method for producing a film-like adhesive for sealing was used to produce a film-like adhesive for semiconductor encapsulation. The evaluation test of the obtained film-like adhesive was carried out in the following manner. &lt;Evaluation of Resin Foaming&gt; The film-form adhesive to be produced was cut into a size (10 mm x 10 mm x -30 - 201109407 thickness 0.03 mm) and attached to a glass cover sheet (size: 18 mm x 18 mm) having a thickness of 0.12 to 0.17 mm. 'Reloaded on a 300 〇 C2 hot plate to visually observe the appearance of the film-like adhesive to investigate whether the film-like adhesive was foamed with or without resin. &lt;Measurement of void occurrence rate&gt; Fig. 3 is an explanatory view for explaining a method of producing the sample a for measuring the void generation rate. First, the film-form adhesive 12 was cut into a certain size (diameter: 6 mm, thickness: about 1 mm) and attached to a glass wafer 11 (size: 15 mm x 15 mm) having a thickness of 7 mm. Thereafter, as shown in Fig. 3, a glass crucible 13 (size: I8 mmxi8 mni) having a thickness of 0.12 to 0.17 mm was coated, and a sample A of the laminated glass wafer 1 1 , the film-like adhesive 1 2 and the cover glass 13 was sequentially prepared. Next, using a flip chip bonding machine (manufactured by Matsushita Electric Industrial Co., Ltd., trade name: FCB3), the sample A was pressed at a heating temperature of 3 50 ° C, a pressurization pressure of IMP, a heating and pressurizing time of 5 5 seconds or 1 second. In the production of the pressure-bonding body 空隙, the void generation rate of the pressure-sensitive composite body over the entire area of the film-like pressure-sensitive adhesive after the pressure-bonding was calculated by the following formula, and the area ratio of the voids was obtained. The area is also measured by the image taken by the scanner. The rate of occurrence of voids was less than 5% and was evaluated as "A", 5 to 20% was evaluated as "B", 21 to 40% was evaluated as "C", and more than 40% was evaluated as "D". The results are shown in Table 1. Void occurrence rate (%) = void occurrence area / film-like adhesive area after compression x 1 〇 0 -31 - 201109407 &lt;Evaluation of connection resistance (initial conductance)&gt; Figure 4 (A) is evaluated from above A photograph of a semiconductor device for connecting a resistor, and FIG. 4(B) is a photograph of a cross section of a semiconductor device for evaluating a connection resistance. The semiconductor device for evaluating the connection resistance was fabricated in the following manner. After the film-form adhesive was cut into a certain size (2.5 mm X 15.5 mm X thickness 〇.〇3 mm), it was attached to a polyimide substrate 16 (manufactured by Kyori Super-LSI Systems Co., Ltd., trade name: JKIT COF) TEG_30-B, thickness of polyimide substrate: 38 μm, thickness of copper circuit: 8 μm, thickness of tin plating of the circuit: 〇.2 μιη. Using the above flip chip bonding machine, the wafer 14 of gold bumps 15 is formed (曰立超LSI系统股份有限公司, trade name: JTEG PHASE6_30, wafer size: 1 Jmmxl 5.1 mmx thickness 0.4mm, bump size: 2 0 μηι χΙΟΟμιηχ height 15μιη, number of bumps 726) press-fit assembly in polyimine A film-like adhesive is attached to the surface of the substrate on the opposite side of the polyimide substrate. The pressing condition is a pressure mask temperature: 305 ° C, a table temperature: 100 ° C, a pressing time: 1 second, and a pressure. The combined pressure is 50 to 100 N. Thus, the semiconductor device obtained by double-linking the polyimide substrate 16 and the gold bump-attached wafer 14 shown in Fig. 4 (A) and (B) can be obtained by using a multiplexer. The connection resistance of the double-chain connection of the semiconductor device is 値. No film-like adhesive is used. The semiconductor device of the duplex connection to Zhi connection resistance before and after the 160 ohm, so connecting the resistor 120 to Zhi 190Ω when evaluated as "A", or less than 1.20Ω exceeds 190Ω assessment -32-201109407

r &lt;絕緣信賴性試驗(HAST試驗:Highly Accelerated Storage Test ) &gt; 於無菌烤箱(ESPEC製)中以180°C處理上述半導體 裝置樣品(參考圖4 ( A )) 1小時。處理後取出樣品,再 設置於加速壽命試驗裝置(HIRAYAMA公司製,商品名: PL-422R8,條件:1 1 0°C /85%RH/1 00 小時 /施力Π 60V)測 定絕緣電阻。評估方法爲,經過1 00小時後絕緣電阻爲1 X 108Ω以上時爲「A」,絕緣電阻之最低値未達ιχι〇8ω時 爲「Β」。 半導體封閉用薄膜狀黏著劑之原材料的添加量(質量 份),及評估結果如表1所示。 [表1]r &lt;Insulation reliability test (HAST test: Highly Accelerated Storage Test) &gt; The above semiconductor device sample (refer to Fig. 4 (A)) was treated at 180 ° C for 1 hour in a sterile oven (manufactured by ESPEC). After the treatment, the sample was taken out and placed in an accelerated life tester (manufactured by HIRAYAMA Co., Ltd., trade name: PL-422R8, condition: 1 1 0 °C / 85% RH/100 00 / force Π 60 V) to measure the insulation resistance. The evaluation method is "A" when the insulation resistance is 1 X 108 Ω or more after 100 hours, and "Β" when the minimum insulation resistance is less than ι χ 〇 8 ω. The amount (mass) of the raw material of the film-like adhesive for semiconductor encapsulation, and the evaluation results are shown in Table 1. [Table 1]

實施例 比較例 1 2 3 4 1 2 3 4 5 聚醯亞胺樹脂 合成聚醯亞胺 100 100 100 100 100 100 100 100 100 環氧樹脂 EP1032 30 30 30 30 30 30 30 30 30 觸媒型硬化劑 2MAOK-PW 5 _ • _ 5 _ _ _ 2PZ-CNS • 10 _ _ • 10 _ _ _ 2PHZ-PW - • 5 _ _ • 5 • • TPPK _ • _ 5 _ 5 _ 其他硬化劑 MEH7500 嫌 _ _ 15 15 15 15 _ Ψ P估結果 300°C下樹脂發泡 紐 Μ M J » NN M /\\\ ^frrr 無 無 fte /»、、 ^\w 0.5秒壓合時之空隙發生率(%) A A A A C C D D D 1.0秒壓合時之空隙發生率(%) A A A A B B B B D 連接電阻 A A A A A A A A A 絕緣信賴性 A A A A B B B B B -33- 201109407 由表1可確認,既使壓合時間爲0.5秒之極短時間, 實施例1至4之薄膜狀黏著劑也能明顯減少空隙。又比較 例1至5之薄膜狀黏著劑難縮短壓合時間,比較例5之薄 膜狀黏著劑因未含有觸媒型硬化劑故既使加長壓合時間也 無法減少空隙。 又,使用實施例1及比較例1製作之薄膜狀黏著劑, 使用D S C (巴金耶公司製,商品名·· D S C - 7型)以樣品量 5mg、升溫速度1 〇 °C /分之條件測定當時的發熱量,及自 反應開始峰至峰頂所需的時間(以下稱爲「反應時間」) 。如果如表2所示。 [表2] 實施例1 比較例1 發熱量(J/g) 57 40 反應時間(秒) 186 288 由表2可確認,僅含觸媒型硬化劑之實施例1的薄膜 狀黏著劑’比較含有觸媒型硬化劑及其他硬化劑之比較例 的薄膜狀黏著劑,可得充分快速的硬化反應。 【圖式簡單說明】 圖1爲,本發明之較佳實施形態的半導體裝置之製造 方法的第1步驟之模式步驟剖面圖。 圖2爲’本發明之較佳實施形態的半導體裝置之製造 方法的第2步驟之模式步驟剖面圖。 -34- 201109407 圖3爲,說明空隙發生率測定用之試料A的製作方法 用之說明圖。 圖4爲,評估連接電阻用之半導體裝置的照片。 【主要元件符號說明】 1 1 :玻璃晶片 12:半導體封閉用薄膜狀黏著劑(薄膜狀黏著劑) 1 3 :玻璃蓋片 1 4 :晶片(半導體晶片) 1 5 :金凸塊(凸塊) 16:基板(聚醯亞胺基板) 18:金屬電路(銅電路) 22 :硬化樹脂 3 0 :加壓罩 32 :台 -35-EXAMPLES Comparative Example 1 2 3 4 1 2 3 4 5 Polyimine resin synthesis Polyimine 100 100 100 100 100 100 100 100 100 Epoxy EP1032 30 30 30 30 30 30 30 30 30 Catalyst hardener 2MAOK-PW 5 _ • _ 5 _ _ _ 2PZ-CNS • 10 _ _ • 10 _ _ _ 2PHZ-PW - • 5 _ _ • 5 • • TPPK _ • _ 5 _ 5 _ Other hardener MEH7500 _ _ _ 15 15 15 15 _ Ψ P Estimation results Resin foaming neodymium at 300 ° C MJ » NN M /\\\ ^frrr No fte /»,, ^\w 0.5 second gap compression ratio (%) AAAACCDDD 1.0 second gap compression ratio (%) AAAABBBBD connection resistance AAAAAAAAA insulation reliability AAAABBBBB -33- 201109407 It can be confirmed from Table 1 that even if the pressing time is 0.5 seconds, the examples 1 to 4 Film-like adhesives also significantly reduce voids. Further, in comparison with the film-like adhesives of Examples 1 to 5, it was difficult to shorten the press-bonding time, and the film-like adhesive of Comparative Example 5 did not contain the catalyst-type hardener, so that the press-bonding time was not increased and the voids were not reduced. Further, the film-like adhesives prepared in the first embodiment and the comparative example 1 were measured using DSC (manufactured by Bajinye Co., Ltd., trade name: DSC-7 type) under the conditions of a sample amount of 5 mg and a temperature increase rate of 1 〇 ° C /min. The amount of heat generated at that time, and the time required from the start of the reaction to the peak (hereinafter referred to as "reaction time"). If shown in Table 2. [Table 2] Example 1 Comparative Example 1 Calorific value (J/g) 57 40 Reaction time (seconds) 186 288 It can be confirmed from Table 2 that the film-like adhesive of Example 1 containing only a catalyst-type hardener was compared A film-like adhesive of a comparative example containing a catalyst-type hardener and other hardeners can obtain a sufficiently rapid hardening reaction. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic cross-sectional view showing a first step of a method of fabricating a semiconductor device according to a preferred embodiment of the present invention. Fig. 2 is a schematic cross-sectional view showing a second step of a method of manufacturing a semiconductor device according to a preferred embodiment of the present invention. -34- 201109407 Fig. 3 is an explanatory view for explaining a method of producing the sample A for measuring the void occurrence rate. Fig. 4 is a photograph of a semiconductor device for evaluating connection resistance. [Explanation of main component symbols] 1 1 : Glass wafer 12: Film adhesive for semiconductor encapsulation (film adhesive) 1 3 : Glass cover wafer 1 4 : Wafer (semiconductor wafer) 1 5 : Gold bump (bump) 16: Substrate (polyimide substrate) 18: Metal circuit (copper circuit) 22: Hardened resin 3 0 : Pressurized cover 32: Table-35-

Claims (1)

201109407 七、申請專利範園: 1. 一種半導體封閉用薄膜狀黏著劑,其爲含有(a) 環氧樹脂與(b)觸媒型硬化劑,其特徵爲, 不含有任一種經由前述觸媒型硬化劑形成活性體之硬 化劑或可與前述觸媒型硬化劑反應之硬化劑。 2·如申請專利範圍第1項之半導體封閉用薄膜狀黏 著劑,其尙含有(c)重量平均分子量10000以上之高分 子成份。 3. 如申請專利範圍第2項之半導體封閉用薄膜狀黏 著劑,其中,前述(c)重量平均分子量1 0000以上之高 分子成份爲含有(d)聚醯亞胺樹脂。 4. 如申請專利範圍第3項之半導體封閉用薄膜狀黏 著劑,其中,前述(d)聚醯亞胺樹脂具有30000以上之 重量平均分子量,且具有100 °C以下之玻璃轉移溫度。 5 ·如申請專利範圍第1〜4項中任一項之半導體封閉 用薄膜狀黏著劑,其中,前述(b)觸媒型硬化劑爲含有 咪唑類。 6· —種半導體裝置之製造方法,其爲具備有具有凸 塊之半導體晶片,與具有金屬電路之基板的半導體裝置之 製造方法,其特徵爲具有, 使前述半導體晶片與前述基板之間隔著申請專利範圍 第1〜5項中任一項之半導體封閉用薄膜狀黏著劑使前述 凸塊與前述金屬電路以相互對向之方式配置, 將前述半導體晶片與前述基板以對向之方向加壓之同 -36- 201109407 時進 使前 ,其 板於 有金 金一 接。 第6 行加熱,使前述半導體封閉用薄膜狀黏著劑硬化,而 述凸塊與前述金屬電路形成電氣性連接之連接步驟。 7. 如申請專利範圍第6項之半導體裝置之製造方法 中,前述連接步驟爲,於將前述半導體晶片與前述基 對向之方向加壓之同時以3 00 °C以上進行加熱,使含 之前述凸塊與具有鍍錫層之前述金屬電路之間形成 錫共晶,而使前述凸塊與前述金屬電路形成電氣性連 8. 一種半導體裝置,其特徵爲,由如申請專利範圍 或7項之半導體裝置之製造方法所得者。 -37-201109407 VII. Application for Patent Park: 1. A film-like adhesive for semiconductor sealing, which comprises (a) an epoxy resin and (b) a catalyst type hardener, which is characterized in that it does not contain any of the above-mentioned catalysts. The type hardener forms a hardener of the active body or a hardener which can react with the above-mentioned catalyst type hardener. 2. The film-like adhesive for semiconductor encapsulation according to claim 1, wherein the crucible contains (c) a high molecular weight component having a weight average molecular weight of 10,000 or more. 3. The film-like adhesive for semiconductor encapsulation according to the second aspect of the invention, wherein the (c) high molecular weight component having a weight average molecular weight of 1,000,000 or more contains (d) a polyimide resin. 4. The film-like adhesive for semiconductor encapsulation according to claim 3, wherein the (d) polyimine resin has a weight average molecular weight of 30,000 or more and has a glass transition temperature of 100 ° C or lower. The film-like adhesive for semiconductor encapsulation according to any one of claims 1 to 4, wherein the (b) catalyst-type curing agent contains an imidazole. A method of manufacturing a semiconductor device, comprising: a semiconductor wafer having bumps; and a method of manufacturing a semiconductor device having a substrate having a metal circuit, wherein the semiconductor wafer and the substrate are spaced apart from each other The film-like adhesive for semiconductor encapsulation according to any one of claims 1 to 5, wherein the bump and the metal circuit are disposed to face each other, and the semiconductor wafer and the substrate are pressed in a direction opposite thereto. Same as -36- 201109407 Before the advance, the board was in gold. The sixth row is heated to harden the film-like adhesive for semiconductor encapsulation, and the bump is electrically connected to the metal circuit. 7. The method of manufacturing a semiconductor device according to claim 6, wherein the connecting step is to heat the semiconductor wafer at a temperature of 300 ° C or higher while pressurizing the semiconductor wafer in a direction opposite to the base. Forming a tin eutectic between the bump and the metal circuit having a tin plating layer, and electrically connecting the bump to the metal circuit. 8. A semiconductor device characterized by, for example, the patent scope or the seventh item The method of manufacturing a semiconductor device is obtained. -37-
TW099110749A 2009-05-08 2010-04-07 Thin film-like adhesive for semiconductor sealing, semiconductor device, and method of manufacturing the same TWI493010B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009113373 2009-05-08

Publications (2)

Publication Number Publication Date
TW201109407A true TW201109407A (en) 2011-03-16
TWI493010B TWI493010B (en) 2015-07-21

Family

ID=43050118

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099110749A TWI493010B (en) 2009-05-08 2010-04-07 Thin film-like adhesive for semiconductor sealing, semiconductor device, and method of manufacturing the same

Country Status (3)

Country Link
JP (1) JP5578174B2 (en)
TW (1) TWI493010B (en)
WO (1) WO2010128611A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104137240A (en) * 2012-02-24 2014-11-05 日立化成株式会社 Adhesive for semiconductor, fluxing agent, manufacturing method for semiconductor device, and semiconductor device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5881931B2 (en) * 2009-07-21 2016-03-09 日立化成株式会社 Adhesive composition, semiconductor device manufacturing method using the same, and semiconductor device
US10510576B2 (en) * 2013-10-14 2019-12-17 Corning Incorporated Carrier-bonding methods and articles for semiconductor and interposer processing
JP6770432B2 (en) 2014-01-27 2020-10-14 コーニング インコーポレイテッド Articles and methods for controlled binding of thin sheets to carriers
KR20160145062A (en) 2014-04-09 2016-12-19 코닝 인코포레이티드 Device modified substrate article and methods for making
EP3267769B1 (en) * 2015-03-05 2019-12-18 Sumitomo Bakelite Co.,Ltd. Resin composition for sealing, method for producing vehicle-mounted electronic control unit, and vehicle-mounted electronic control unit
JP2018524201A (en) 2015-05-19 2018-08-30 コーニング インコーポレイテッド Articles and methods for bonding sheets with carriers
JP7106276B2 (en) 2015-06-26 2022-07-26 コーニング インコーポレイテッド Articles and methods with sheets and carriers
TW201825623A (en) 2016-08-30 2018-07-16 美商康寧公司 Siloxane plasma polymers for sheet bonding
TWI810161B (en) 2016-08-31 2023-08-01 美商康寧公司 Articles of controllably bonded sheets and methods for making same
CN111615567B (en) 2017-12-15 2023-04-14 康宁股份有限公司 Method for treating substrate and method for producing article including adhesive sheet

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4449325B2 (en) * 2003-04-17 2010-04-14 住友ベークライト株式会社 Adhesive film for semiconductor, semiconductor device, and manufacturing method of semiconductor device.
JP2004349561A (en) * 2003-05-23 2004-12-09 Kyocera Chemical Corp Method of bonding semiconductor device and adhesive to be used for the same
JP2005116590A (en) * 2003-10-03 2005-04-28 Sumitomo Bakelite Co Ltd Adhesive film for semiconductor, and semiconductor device
JP2006193666A (en) * 2005-01-14 2006-07-27 Sumitomo Bakelite Co Ltd Adhesive film for semiconductor, carrier material having adhesive film for semiconductor and semiconductor device
JP5047632B2 (en) * 2007-01-09 2012-10-10 京セラケミカル株式会社 Mounting method using hot-pressure adhesive for flip chip connection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104137240A (en) * 2012-02-24 2014-11-05 日立化成株式会社 Adhesive for semiconductor, fluxing agent, manufacturing method for semiconductor device, and semiconductor device

Also Published As

Publication number Publication date
JPWO2010128611A1 (en) 2012-11-01
WO2010128611A1 (en) 2010-11-11
TWI493010B (en) 2015-07-21
JP5578174B2 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
TW201109407A (en) Film-like adhesive agent for sealing semiconductor, semiconductor device, and process for manufacturing the semiconductor device
JP5922060B2 (en) Manufacturing method of semiconductor device
TW575637B (en) Process for producing thermoresistance resin paste
JP5569576B2 (en) Film adhesive for semiconductor, method for manufacturing semiconductor device, and semiconductor device
JP5577640B2 (en) Manufacturing method of semiconductor device
TW201012893A (en) Dual side adhesive film and electric part using the same
JP5659946B2 (en) Semiconductor sealing adhesive, method for manufacturing the same, and semiconductor device
JP5484706B2 (en) COF semiconductor sealing film adhesive, semiconductor device manufacturing method using the adhesive, and semiconductor device
JP5439863B2 (en) Semiconductor sealing adhesive, semiconductor sealing film adhesive, semiconductor device and manufacturing method thereof
JP5641067B2 (en) Film adhesive for semiconductor encapsulation
JP5748937B2 (en) Film sealing adhesive for semiconductor sealing and manufacturing method of semiconductor device
JP5881927B2 (en) Semiconductor sealing adhesive, semiconductor sealing film adhesive, semiconductor device manufacturing method, and semiconductor device
JP5332799B2 (en) Film-like adhesive for semiconductor sealing, semiconductor device and method for manufacturing the same
KR101464454B1 (en) Adhesive composition, method for producing semiconductor device, and semiconductor device
US9123734B2 (en) Semiconductor-encapsulating adhesive, semiconductor-encapsulating film-form adhesive, method for producing semiconductor device, and semiconductor device
JP5857462B2 (en) Semiconductor sealing adhesive, semiconductor device manufacturing method, and semiconductor device
JP5671778B2 (en) Film-like adhesive for semiconductor sealing, semiconductor device and method for manufacturing the same
JP5263050B2 (en) Adhesive composition, semiconductor device manufacturing method using the same, and semiconductor device
JP5397526B2 (en) Manufacturing method of semiconductor device
JP5710099B2 (en) Film sealing adhesive for semiconductor sealing, semiconductor device manufacturing method using the adhesive, and semiconductor device
JP2014067789A (en) Wiring board with uncured adhesive layer and process of manufacturing semiconductor device