KR970048650A - Low Temperature High Density Process of Silica Particles and Its Apparatus - Google Patents

Low Temperature High Density Process of Silica Particles and Its Apparatus Download PDF

Info

Publication number
KR970048650A
KR970048650A KR1019950049257A KR19950049257A KR970048650A KR 970048650 A KR970048650 A KR 970048650A KR 1019950049257 A KR1019950049257 A KR 1019950049257A KR 19950049257 A KR19950049257 A KR 19950049257A KR 970048650 A KR970048650 A KR 970048650A
Authority
KR
South Korea
Prior art keywords
low temperature
fine particles
temperature
silica
densification
Prior art date
Application number
KR1019950049257A
Other languages
Korean (ko)
Other versions
KR0170195B1 (en
Inventor
박상호
심재기
이윤학
정명영
최태구
Original Assignee
양승택
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 양승택, 한국전자통신연구원 filed Critical 양승택
Priority to KR1019950049257A priority Critical patent/KR0170195B1/en
Publication of KR970048650A publication Critical patent/KR970048650A/en
Application granted granted Critical
Publication of KR0170195B1 publication Critical patent/KR0170195B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1407Deposition reactors therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • C03B19/1423Reactant deposition burners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/80Feeding the burner or the burner-heated deposition site
    • C03B2207/81Constructional details of the feed line, e.g. heating, insulation, material, manifolds, filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

본 발명은 광통신에 사용되는 수동부품을 별도의 기판위에 도파로를 형성하여 광신호의 흐름을 구성하고 광회로를 구현하는 유리막을 용이하게 형성하기 위한 실리카 미립자의 저온 고밀화 공정 및 그 장치에 관한 것으로 통상 화염가수분해법은 광섬유의 제조법인 VAD법에서 파생된 방법으로 상압, 고온의 토치내에 원료를 반응시켜 산화물 미립자를 형성하여 열처리로 고밀화된 유리막을 얻는 방법으로서 종래의 방법은 화염온도가 1200∼1250℃의 고온토치반응이라는 점과 미립자의 녹임공정온도가 1250∼1380℃로 높은 이유 때문에 발생하는 복굴절, 균열등의 문제가 완전히 배제되지 못하며 또한 동일한 고밀화 공정온도에서 점도의 조절이 용이하지 않아 오버 클래드막 증착후 평탄성이 열악한 문제가 있었다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-temperature densification process and apparatus for silica fine particles for easily forming a glass film that forms a waveguide on a separate substrate for a passive component used in optical communication to form an optical signal flow and implements an optical circuit. Flame hydrolysis is a method derived from the VAD method, which is a manufacturing method of optical fiber, to form oxide fine particles by reacting raw materials in a torch at atmospheric pressure and high temperature to obtain a densified glass film by heat treatment. The problem of birefringence and cracking caused by the high temperature torch reaction and the high melting process temperature of 1250 ~ 1380 ℃ cannot be ruled out, and the viscosity of the over clad film is not easily controlled at the same densification process temperature. There was a problem of poor flatness after deposition.

이와 같은 문제점을 해소하기 위하여 안출된 본 발명은 양질의 유리막을 형성하여 광부품의 손실을 근본적으로 개선하고 향후 광통신에서 사용될 각종 광부품의 질적향상을 위하여 고밀화 공정 최적화를 위한 공정방법 및 시스템으로서 실리콘기판과 유리막의 열팽창 계수의 차이에 따른 복굴절, 균열등의 문제를 해소하고 실리콘, 석영등의 기판위에 광회로를 구성하여 극저손실의 광수동부품을 제조할 수 있도록 FHD(화염 가수분해 증착)법을 이용하여 실리콘 기판위에 저손실의 실리카 도파로를 제조하기 위한 입자상의 실리카를 용융, 균일화하는 것이다.The present invention devised to solve such a problem is to form a high quality glass film to fundamentally improve the loss of optical components and to improve the quality of various optical components to be used in optical communication in the future. FHD (Flame Hydrolysis Deposition) method to solve the problems of birefringence and cracks caused by the difference in thermal expansion coefficient between the substrate and the glass film, and to manufacture optical passive components with very low loss by constructing optical circuits on substrates such as silicon and quartz. Is used to melt and homogenize particulate silica to produce a low loss silica waveguide on a silicon substrate.

본 발명은 저온화염으로 형성된 실리카 미립자의 고밀화를 기존의 방법보다 저온에서 공정하여 복굴절, 균열등의 문제를 감소시켜 FHD방법에서 가장 문제시 되는 기판의 크기를 증가시킬 수 있고, 또한 기존의 수평형으로 사용되던 고밀화 전기로를 수직형으로 설계하여 고온에서 석영 튜브의 휨현상을 제거 하였으며 좁은 가열 영역에서도 대량의 기판을 공정할 수 있게 함을 특징으로 하는 것임.The present invention is to reduce the problems of birefringence, cracks, etc. by processing the densification of the silica fine particles formed by the low temperature flame at a lower temperature than conventional methods to increase the size of the substrate which is most problematic in the FHD method, and also the existing horizontal type The high-density electric furnace used as a vertical design eliminates the warpage of quartz tubes at high temperatures and allows processing of a large number of substrates even in narrow heating zones.

Description

실리카 미립자의 저온 고밀화 공정 및 그 장치Low Temperature High Density Process of Silica Particles and Its Apparatus

본 내용은 요부공개 건이므로 전문내용을 수록하지 않았음Since this is an open matter, no full text was included.

제1도는 화염가수분해법에 의한 실리카성막 형성공정의 개략도.1 is a schematic view of a silica film forming process by flame hydrolysis.

제2도는 저온 고밀화 시스템의 전기로의 구성 개략도.2 is a configuration diagram of an electric furnace of a low temperature densification system.

제3도는 본 발명 전기로와 가스라인 구성을 개략적으로 보인 가스라인 구성도.3 is a schematic view of a gas line configuration of the present invention.

Claims (13)

도파로형 광부품의 제조장치로서 가열부의 열효율 및 생산성을 최대화하도록 수직형의 석영튜브를 가열수단으로 하는 고온 저밀화 수직형 전기로와; 상기 수직형 전기로내의 기판장착부의 정확한 온도를 측정하기 위하여 외부의 Pyrometer와 Thermo-Couple이 결합된 Dummy Wafer에 의한 2중제어기능을 갖는 온도조절수단과; 유량조절기(MFC)(29), 바이패스밸브, 혼합배관으로 배관 라인이 구성되고 모든 가스의 인입은 Manifold(33)을 통하여 인입되도록 하는 가스라인과; 로의 상부에는 진공배기라인, Pyrometer(8), 고밀화감지기(14), 미립자 여과기(15) 등으로 구성된 진공배기부를 구성요소로 하여 저온 화염가수분해증착법의 실리카 미립자를 1000∼1100℃의 저온에서 실리카막에 잔류응력을 억제하고 평탄성이 높고 복굴절이 낮은 실리카막형성을 위한 실리카 미립자의 저온 고밀화 장치.An apparatus for manufacturing a waveguide optical component, comprising: a high temperature and low density vertical electric furnace using a vertical quartz tube as a heating means to maximize thermal efficiency and productivity of a heating part; Temperature control means having a double control function by a dummy wafer coupled to an external pyrometer and a thermo-couple to measure an accurate temperature of the substrate mounting part of the vertical furnace; A gas line configured with a flow regulator (MFC) 29, a bypass valve, and a mixed pipe, and the inlet of all the gases is introduced through the manifold 33; The upper part of the furnace is composed of vacuum exhaust lines consisting of a vacuum exhaust line, a pyrometer (8), a densification detector (14), a particulate filter (15), and the like. Low temperature densification apparatus of silica fine particles for suppressing residual stress in film and forming silica film with high flatness and low birefringence. 제1항에 있어서, 가스라인의 혼합배관은 고압 가스인 헬륨과 산소가 배관에 혼합성을 높힌 구성으로 0.25인치(30)에서 0.5인치(31)의 튜브와 0.5인치의 고밀도(0.01μm)필터(32)를 사용한 후 다시 0.25인치튜브로 연결되는 Delay Line의 구성함을 특징으로 하는 실리카 미립자의 저온 고밀화 장치.According to claim 1, the mixing line of the gas line is a high pressure gas of helium and oxygen in the configuration to increase the mixing in the pipe 0.25 inch (30) to 0.5 inch (31) tube and 0.5 inch high density (0.01μm) filter Low temperature densification device of silica particles, characterized in that the configuration of the Delay Line connected to the 0.25 inch tube again after using (32). 제1항에 있어서, 수직형 전기로의 가열수단은 석영관을 튜브로 사용하고 열원은 슈퍼칸탈(6)을 이용함을 특징으로 하는 실리카 미립자의 저온 고밀화 장치.2. The apparatus for compacting low temperature silica fine particles according to claim 1, wherein the heating means of the vertical electric furnace uses a quartz tube as a tube and the heat source uses a supercantal (6). 도파로형 광부품을 제조하기 위하여 온도조절수단, 가스라인, 진공배기구를 구비하고 수직형의 석영튜브를 가열수단으로 하는 고온 저밀화 수직형 전기로에 의하여 저온 화염가수분해 증착법의 실리카 미립자를 1000∼1100℃의 저온에서 실리카막에 잔류응력을 억제하고 평탄성이 높고 복굴절이 낮은 실리카막을 형성하도록 함을 특징으로 하는 실리카 미립자의 저온 고밀화 공정.In order to manufacture waveguide type optical parts, silica particles of low temperature hydrolysis deposition method are prepared by using a high temperature, low density vertical electric furnace having a temperature control means, a gas line, a vacuum vent, and a vertical quartz tube as heating means. A low temperature high-densification process of silica fine particles, characterized in that to suppress residual stress in the silica film at a low temperature and to form a silica film having high flatness and low birefringence. 제4항에 있어서, 상기 저온 고밀화 수직형 전기로의 기판장착부에 공정후 고순도 N2가스를 고속으로 인입하여 실리카 기판을 급속냉각시켜 결정생성을 억제하도록 함을 특징으로 하는 실리카 미립자의 저온 고밀화 공정.5. The low temperature densification process of silica fine particles according to claim 4, wherein a high purity N 2 gas is introduced into the substrate mounting portion of the low temperature high density vertical furnace at a high speed to rapidly cool the silica substrate to inhibit crystal formation. 6. 제4항에 있어서, 상기 저온 고밀화 수직형 전기로의 상부에 미립자의 고밀화 완료시점을 확인하기 위하여 레이저를 조사하고 반사된 광의 세기를 감지하여 정밀한 온도를 제어시키도록 함을 특징으로 하는 실리카 미립자의 저온 고밀화 공정.The method of claim 4, wherein the low temperature of the fine silica particles to control the precise temperature by irradiating a laser and sensing the intensity of the reflected light to confirm the completion time of the high density of the fine particles on the low-temperature densification vertical electric furnace Densification process. 제4항에 있어서, 상기 저온 고밀화 수직형 전기로의 상부 진공배관부에 Gate Valve와 미립자 여과기를 구성하여 펌프의 마모와 불순물 유입을 차단시키도록 함을 특징으로 하는 실리카 미립자의 저온 고밀화 공정.5. The low temperature densification process of silica fine particles according to claim 4, wherein a gate valve and a particulate filter are formed in the upper vacuum pipe of the low temperature densification vertical furnace to block abrasion of the pump and inflow of impurities. 제4항에 있어서, 상기 저온 고밀화 수직형 전기로의 상부 진공배관부에 스크러버로 바이패스되는 라인을 구성하여 유사시 전기로의 독성가스를 배출시키도록 함을 특징으로 하는 실리카 미립자의 저온 고밀화 공정.5. The low temperature densification process of silica fine particles according to claim 4, characterized in that a line is bypassed with a scrubber in the upper vacuum pipe of the low temperature densification vertical furnace to discharge toxic gas from the electric furnace in case of emergency. 제4항에 있어서, 고밀화 공정방법중 OH기의 탈수소를 위하여 수소와 반응성이 우수한 BCl3와 헬륨을 사용하여 750∼850℃의 온도에서 15∼30분간의 공정으로 탈수소시키도록 함을 특징으로 하는 실리카 미립자의 저온 고밀화 공정.[5] The method of claim 4, wherein in the densification process, BCl 3 and helium having excellent reactivity with hydrogen are used to dehydrogenate at a temperature of 750 to 850 DEG C for 15 to 30 minutes for dehydrogenation of OH groups. Low temperature high density process of silica fine particles. 제4항에 있어서, 고밀화 공정방법중 수소와 반응성이 우수한 BCl3와 헬륨을 사용하여 750∼850℃의 온도에서 15∼30분간의 공정으로 막내의 GeO2, B2O3, P2O5등의 첨가산화물의 안정화 우선적인 녹임공정을 유도함을 특징으로 하는 실리카 미립자의 저온 고밀화 공정.According to claim 4, GeO 2 , B 2 O 3 , P 2 O 5 in the film in a process of 15 to 30 minutes at a temperature of 750 ~ 850 ℃ using BCl 3 and helium excellent in hydrogen reactivity in the densification process method Low temperature densification process of silica fine particles, characterized by inducing a preferential melting process for stabilization of added oxides. 제4항에 있어서, 고밀화 공정방법중 저온 고밀화 주공정으로 탈수소반응후에 동일한 로에서 온도를 1000∼1100℃로 조절하여 헬륨과 산소 분위기에서 주조성인 SiO2와 고밀화된 다른 산화물과의 원활한 혼합을 1∼2시간 유지시켜 막의 버블형성을 억제하고 질량이 가벼운 P,B,Ge의 탈착을 Capping하여 안정하고 균질한 실리카막형성을 도모하도록 함을 특징으로 하는 실리카 미립자의 저온 고밀화 공정.5. The method of claim 4, wherein after the dehydrogenation reaction is performed in a high-densification process, the temperature is controlled to 1000 to 1100 ° C. in the same furnace to achieve a smooth mixing of helium and castable SiO 2 with other densified oxides. Low temperature densification process of silica fine particles, characterized in that it is maintained for 2 hours to suppress the bubble formation of the film and capping desorption of light weight P, B, and Ge to achieve stable and homogeneous silica film formation. 제4항에 있어서, 고밀화 공정방법중 Annealing공정으로 헬륨과 산소분위기에서 950∼1000℃로 5∼10시간 가열하여 실리카막을 안정화시키고 열처리 과정에서 발생된 잔류응력을 제거하도록 함을 특징으로 하는 실리카 미립자의 저온 고밀화 공정.The fine particles of claim 4, wherein the silica fine particles are heated by heating at 950-1000 ° C. for 5-10 hours in an helium and oxygen atmosphere to stabilize the silica film and remove residual stresses generated during the heat treatment. Low temperature densification process. 제12항에 있어서, 상기 Annealing공정중 헬륨과 산소분위기에서 950∼1000℃로 5∼10시간 가열한 후 가습분위기에서 실리카막을 안정화시키고 반응부산물을 효과적으로 제거시키도록 함을 특징으로 하는 실리카 미립자의 저온 고밀화 공정.The method of claim 12, wherein the low temperature of the silica fine particles, characterized in that to stabilize the silica film in the humidified atmosphere and to effectively remove the reaction by-products after heating for 5 to 10 hours at 950 ~ 1000 ℃ in the helium and oxygen atmosphere during the annealing process Densification process. ※ 참고사항 : 최초출원 내용에 의하여 공개하는 것임.※ Note: The disclosure is based on the initial application.
KR1019950049257A 1995-12-13 1995-12-13 Low temperature consollidation process and system for silica soot KR0170195B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950049257A KR0170195B1 (en) 1995-12-13 1995-12-13 Low temperature consollidation process and system for silica soot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950049257A KR0170195B1 (en) 1995-12-13 1995-12-13 Low temperature consollidation process and system for silica soot

Publications (2)

Publication Number Publication Date
KR970048650A true KR970048650A (en) 1997-07-29
KR0170195B1 KR0170195B1 (en) 1999-05-01

Family

ID=19439605

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950049257A KR0170195B1 (en) 1995-12-13 1995-12-13 Low temperature consollidation process and system for silica soot

Country Status (1)

Country Link
KR (1) KR0170195B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100347434B1 (en) * 2000-09-28 2002-08-03 김인하 Reactor and method for auto controling temperature of reactor
KR100459770B1 (en) * 2002-01-29 2004-12-04 전자부품연구원 Method for consolidating silica fine particles deposited on a wafer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100347434B1 (en) * 2000-09-28 2002-08-03 김인하 Reactor and method for auto controling temperature of reactor
KR100459770B1 (en) * 2002-01-29 2004-12-04 전자부품연구원 Method for consolidating silica fine particles deposited on a wafer

Also Published As

Publication number Publication date
KR0170195B1 (en) 1999-05-01

Similar Documents

Publication Publication Date Title
JP3249905B2 (en) Aerosol process for fabrication of planar waveguide
JP3064857B2 (en) Optical member for optical lithography and method for producing synthetic quartz glass
KR101869979B1 (en) Titania-doped quartz glass and making method
US4363647A (en) Method of making fused silica-containing material
US7827824B2 (en) Synthetic quartz glass substrate for excimer lasers and making method
US11981594B2 (en) Quartz glass with low content of hydroxyl and high purity and method for preparing the same
CN101798168B (en) Method of producing synthetic quartz glass for excimer laser
US5800860A (en) Method of manufacturing planar optical waveguides
JP2002060227A (en) Method for manufacturing synthetic quartz glass, synthetic quartz glass and synthetic quartz glass substrate
KR970048650A (en) Low Temperature High Density Process of Silica Particles and Its Apparatus
JP2011026173A (en) Heat-treatment method of synthetic quartz glass
JPH1053432A (en) Quartz glass optical member, its production, and projection exposure device
KR100211048B1 (en) Vertical self-centering flame hydrolysis deposition reaction torch
KR0170194B1 (en) Torch of low temperature fhd
JPH05100123A (en) Production of optical waveguide
US20020064360A1 (en) Optical waveguide and a method for producing it
JP2566349B2 (en) Method for manufacturing synthetic quartz glass member
JP3427136B2 (en) Synthetic quartz glass manufacturing apparatus and manufacturing method using the same
KR0170193B1 (en) Gas control system of low temperature fhd(flame hydrolysis deposition)
JP5418428B2 (en) Heat treatment method for synthetic quartz glass block
JP2624985B2 (en) Manufacturing method of high refractive index difference micro core base material
JPS6272537A (en) Production of high-purity quartz glass
JPS6039605A (en) Production of optical waveguiding film
KR100352645B1 (en) Planar silica optical waveguide manufactural method using the High Temperature Substrate and Flame Hydrolysis Deposition method
JPS6366511A (en) Production of quartz optical waveguide

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20031001

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee