KR20210063127A - Microorganism for producing shikimic acid and method for producing shikimic acid using the microorganism - Google Patents

Microorganism for producing shikimic acid and method for producing shikimic acid using the microorganism Download PDF

Info

Publication number
KR20210063127A
KR20210063127A KR1020190151642A KR20190151642A KR20210063127A KR 20210063127 A KR20210063127 A KR 20210063127A KR 1020190151642 A KR1020190151642 A KR 1020190151642A KR 20190151642 A KR20190151642 A KR 20190151642A KR 20210063127 A KR20210063127 A KR 20210063127A
Authority
KR
South Korea
Prior art keywords
coli
gene
aroe
shikimic acid
arok
Prior art date
Application number
KR1020190151642A
Other languages
Korean (ko)
Inventor
이상종
서성열
전계택
김응수
이한나
박은휘
Original Assignee
(주)에스티알바이오텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에스티알바이오텍 filed Critical (주)에스티알바이오텍
Priority to KR1020190151642A priority Critical patent/KR20210063127A/en
Publication of KR20210063127A publication Critical patent/KR20210063127A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y202/00Transferases transferring aldehyde or ketonic groups (2.2)
    • C12Y202/01Transketolases and transaldolases (2.2.1)
    • C12Y202/01001Transketolase (2.2.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/010543-Deoxy-7-phosphoheptulonate synthase (2.5.1.54)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/0104Pyruvate kinase (2.7.1.40)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01071Shikimate kinase (2.7.1.71)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/09Phosphotransferases with paired acceptors (2.7.9)
    • C12Y207/09002Pyruvate, water dikinase (2.7.9.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/03Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
    • C12Y402/030043-Dehydroquinate synthase (4.2.3.4)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present specification discloses gene recombinant E. coli in which tyrR, ptsG, pykA, aroK, and aroL genes; tyrR, ptsG, pykA, aroK, aroL, and shiA genes; tyrR, ptsG, pykA, aroK, aroL, and ydiN genes; or tyrR, ptsG, pykA, aroK, aroL, shiA, and ydiN genes are inactivated and one or more of galP, ppsA, aroG, aroF, aroB, aroD, aroE, and tktA genes are overexpressed. Specifically, the gene recombinant E. coli according to one aspect of the present invention can exhibit high shikimic acid production ability by selectively removing or overexpressing specific genes involved in shikimic acid production.

Description

시킴산 생산용 미생물 및 이를 이용한 시킴산 생산 방법{MICROORGANISM FOR PRODUCING SHIKIMIC ACID AND METHOD FOR PRODUCING SHIKIMIC ACID USING THE MICROORGANISM}Microorganisms for producing shikimic acid and a method for producing shikimic acid using the same {MICROORGANISM FOR PRODUCING SHIKIMIC ACID AND METHOD FOR PRODUCING SHIKIMIC ACID USING THE MICROORGANISM}

본 명세서에는 높은 시킴산 생산능을 갖는 미생물, 및 이를 이용한 시킴산 생산 방법이 개시된다.Disclosed herein are microorganisms having a high shikimic acid-producing ability, and a method for producing shikimic acid using the same.

[국가지원 연구개발에 대한 설명][Description of state-funded R&D]

본 연구는 농촌진흥청 연구사업(세부과제번호: PJ01318702)의 지원에 의해 이루어진 것이다.This study was made with the support of the Rural Development Administration's research project (detailed project number: PJ01318702).

2009년에 북아메리카를 시작으로 전 세계적으로 유행한 신종인플루엔자 A (H1N1) 바이러스의 유일한 치료제로는 로슈 (Roche®)사가 보유하고 있던 타미플루 (성분명: 오셀타미비르(oseltamivir))로 전 세계적으로 수요가 급증하였고 그 원료인 시킴산(shikimic acid)의 가격이 일시적으로 폭등했었다.Tamiflu (ingredient: oseltamivir) owned by Roche® as the only treatment for the swine influenza A (H1N1) virus, which started in North America in 2009 and spread worldwide, is in demand worldwide. and the price of shikimic acid, its raw material, temporarily surged.

타미플루의 성분인 오셀타미비르는 시킴산을 바탕으로 10단계 이상의 화학반응을 거쳐 그 구조가 완성되며, 오셀타미비르의 원료가 되는 시킴산은 일본의 자생식물인 Illicium religiosum (일본명: 시키미)에서 처음 발견되었고, 현재는 중국의 Illicium verum의 팔각열매 (star anise)로부터 추출하는 것으로 알려져 있다. 그러나 30kg의 팔각열매로부터 1kg의 시킴산을 추출할 수 있고, 몇 년의 생장기간을 거친 후 봄에 수확하는 등의 한계점 때문에 공급이 원활하지 않아 가격 변동 및 가격 상승의 가장 큰 요인이 되었다. 또한 타미플루로의 화학합성 과정에서 다량의 시킴산이 이용되기 때문에 시킴산의 필요량은 더욱 많아지고, 대안적인 지속 가능한 공급원을 찾아 개발해야 하는 당위성이 있다.Oseltamivir, a component of Tamiflu, undergoes more than 10 chemical reactions based on shikimic acid to complete its structure. It was first discovered and is now known to be extracted from the star anise of Illicium verum in China. However, 1 kg of shikimic acid can be extracted from 30 kg of octagonal fruit, and the supply is not smooth due to limitations such as harvesting in spring after several years of growth, which is the biggest factor in price fluctuation and price increase. In addition, since a large amount of shikimic acid is used in the chemical synthesis process for Tamiflu, the required amount of shikimic acid is further increased, and there is a justification to find and develop an alternative sustainable source.

최근에는 미생물 발효를 이용한 시킴산의 생산이 주목 받고 있다. 대장균과 코리네박테리아를 포함한 거의 대부분의 미생물은 시킴산 생합성 경로가 존재하며, 글루코오즈로부터 시킴산을 거쳐 트립토판이나 타이로신 같은 필수 방향족 아미노산을 합성하는 경로가 존재한다 (도 1 참조).Recently, the production of shikimic acid using microbial fermentation has attracted attention. Most microorganisms, including Escherichia coli and Corynebacteria, have a shikimic acid biosynthesis pathway, and a pathway for synthesizing essential aromatic amino acids such as tryptophan and tyrosine from glucose through shikimic acid (see FIG. 1 ).

전세계적으로 유행했던 신종인플루엔자 A 바이러스의 유일한 치료제였던 타미플루 공급이 원활하지 못했던 이유 중 하나가, 원료물질인 시킴산의 수급이 원인이었던 것으로 나타났다. 식물(팔각)으로부터 추출하여 공급하던 시킴산은 작황에 따르는 수율의 불안정성과 수확까지 장기간 소요되는 한계점 때문에, 최근에는 미생물로부터 생산하는 연구들이 각광을 받고 있다.It was found that one of the reasons for the lack of supply of Tamiflu, the only treatment for the swine influenza A virus that was prevalent worldwide, was the supply and demand of shikimic acid, a raw material. Since shikimic acid, which has been extracted and supplied from plants (octagonal), is instability in yield depending on crop conditions and has a limitation that it takes a long time to harvest, research on microbial production has recently been in the spotlight.

화학합성을 통해 만들어진 의약품은 오염물질을 배출하고 환경오염의 주범이 되고 있다. 최근 천연물로부터 간단한 단계만을 거쳐 합성되는 천연물의약품 중 가장 대표적이며 시장성을 확보하고 있는 물질이 오셀타미비르 항바이러스제이다. 자연적인 변이를 통해 발병한 신종 바이러스에 대항하는 항바이러스제의 생산을 위해 식물자원에서 제한적인 양으로 생산되는 원료(시킴산)를 안정적으로 원활하게 공급하고, 화학적으로 합성하는 것이 아닌 바이오매스 유래의 당으로부터 미생물을 이용하여 원료가 되는 시킴산을 생산함으로써, 환경친화적이고 안정된 방법을 이용하여 천연물의약품의 원료가 되는 물질이 생산 가능하다.Pharmaceuticals made through chemical synthesis emit pollutants and become the main culprit of environmental pollution. Oseltamivir antiviral agent is one of the most representative and marketable natural medicines synthesized from natural products through simple steps. For the production of antiviral agents against new viruses that have occurred through natural mutation, stable and smooth supply of raw materials (shikimic acid) produced in limited quantities from plant resources, and biomass-derived substances that are not chemically synthesized By producing shikimic acid, which is a raw material, from sugar using microorganisms, it is possible to produce substances that are raw materials for natural medicines using an environmentally friendly and stable method.

또한 시킴산과 유도체들을 이용한 피부 미백 효과의 기능을 테스트하여 시킴산이 피부 미백 효과에 뛰어난 역할을 하는 화장품 원료로서의 가능성을 보여준 연구가 발표된 바 있고, 시킴산으로부터 합성되는 물질 중 하나인 (-)-Zylenone 이 몇몇 암 세포주 (급성 림프구성백혈병, 유방암, 간세포암, 전립선암, 경부암)에 대해 항암효과가 탁월하다는 연구 결과들이 발표되고 있다. 이러한 시킴산은 타미플루 원료로서의 역할 뿐 아니라, 훨씬 광범위하고 다양한 천연물 의약품으로 개발 가능한 잠재력을 지닌 물질로써 앞으로의 잠재적 수요가 더욱 기대되는 물질로서 이를 미생물로부터 대량 생산하는 것에 대한 연구가 필요한 실정이다.In addition, a study was published that tested the function of skin whitening effect using shikimic acid and its derivatives and showed the potential of shikimic acid as a cosmetic raw material that plays an excellent role in skin whitening effect, and (-)-, one of the substances synthesized from shikimic acid, Studies have shown that Zylenone has excellent anticancer effects on several cancer cell lines (acute lymphocytic leukemia, breast cancer, hepatocellular carcinoma, prostate cancer, and cervical cancer). Such shikimic acid not only serves as a raw material for Tamiflu, but also has the potential to be developed into a much broader and more diverse natural product drug.

국제 특허공개공보 제2002-029078호International Patent Publication No. 2002-029078 국제 특허공개공보 제2013-033652호International Patent Publication No. 2013-033652 국제 특허공개공보 제2016-027870호International Patent Publication No. 2016-027870 중국 특허공개공보 제102304539호Chinese Patent Publication No. 102304539 중국 특허공개공보 제104911137호Chinese Patent Publication No. 104911137

일 측면에서, 본 발명은 방향족 아미노산 생합성 경로 상의 특정 유전자의 선택적 제거 및 발현 강화를 통하여 시킴산이 효과적으로 축적될 수 있는, 높은 시킴산 생산능을 보유한 대장균, 및 이를 이용한 시킴산 생산 방법을 제공하는 것을 목적으로 한다.In one aspect, the present invention provides an E. coli having a high shikimic acid production ability, in which shikimic acid can be effectively accumulated through selective removal and expression enhancement of specific genes on an aromatic amino acid biosynthetic pathway, and a method for producing shikimic acid using the same The purpose.

상기한 목적을 달성하기 위하여, 본 발명은, 일 측면에서, tyrR, ptsG, pykA, aroK, aroL 유전자; tyrR, ptsG, pykA, aroK, aroL, shiA 유전자; tyrR, ptsG, pykA, aroK, aroL, ydiN 유전자; 또는 tyrR, ptsG, pykA, aroK, aroL, shiA, ydiN 유전자가 불활성화된, 유전자재조합 대장균을 제공한다.In order to achieve the above object, the present invention, in one aspect, tyrR, ptsG, pykA, aroK, and aroL genes; tyrR, ptsG, pykA, aroK, aroL, and shiA genes; tyrR, ptsG, pykA, aroK, aroL, and ydiN genes; Or tyrR, ptsG, pykA, aroK, aroL, shiA, and ydiN genes are inactivated, it provides a recombinant E. coli.

일 측면에서, 본 발명에 의한 유전자재조합 대장균은, 시킴산 생산에 관여하는 특정 유전자들을 선택적으로 제거하거나 과발현 시킴으로써, 높은 시킴산 생산능을 나타낼 수 있다.In one aspect, the recombinant E. coli according to the present invention can exhibit high shikimic acid production ability by selectively removing or overexpressing specific genes involved in shikimic acid production.

도 1은 대장균(E. coli)에서 시킴산(shikimic acid, SA)를 거쳐 방향족 아미노산이 생합성 되는 경로를 대략적으로 나타낸 것이다.
도 2는 대장균 내 방향족 아미노산 및 시킴산 생합성 경로 및 조절 경로를 나타낸 것이다.
도 3은 aroK aroL 유전자의 결손에 따른 시킴산 생산능을 나타낸 것이다.
도 4는 aroE를 과발현 시키기 위하여, oppA 유전자의 프로모터(promoter) 부분 및 aroE 유전자를 클로닝(cloning)하여 제작한 PoppA-aroE 플라스미드 지도를 나타낸 것이다.
도 5는 tyrR, ptsG, pykA, aroKaroL 유전자가 결손되고, aroE 유전자가 과발현된 대장균(RGAKL-PoppA aroE_1, RGAKL-PoppA aroE_2(재현성))의 시킴산 생산량을 나타낸 것이다 (SHK: 시킴산).
도 6은 tyrR, ptsG, pykA, aroK,aroL 유전자의 결손, aroE 유전자의 과발현, 그리고 galP, ppsA aroG, aroF, aroB aroD 유전자의 과발현에 의한 대장균 내 시킴산(shikimate) 생산량을 나타낸 것이다 (SHK1는 E. coli K12△aroK△aroL, SHK2는 E. coli AB2834 △tyrR△ptsG△pykA△aroK△aroL/PoppA-aroE, SHK3는 E. coli AB2834 △tyrR△ptsG△pykA△aroK△aroL△lacI::Plac-galP-ppsA-Plac-aroG-aroF-Plac-aroB-aroD /PoppA-aroE의 유전자 조합을 갖는 대장균이다).
도 7a는 tyrR, ptsG, pykA, aroK,aroL 유전자가 결손되고 galP, ppsA, aroG, aroF, aroB, aroD, aroE 유전자가 과발현된 대장균(E. coli AB2834 △tyrR△ptsG△pykA△aroK△aroL△lacI::Plac-galP-ppsA-Plac-aroG-aroF-Plac-aroB-aroD/PoppA-aroE)(RGAKL_PAGFBD_aroE)에서 shiA 유전자의 추가 결손(RGAKL_PAGFBD_shiA1_aroE, RGAKL_PAGFBD_shiA2_aroE(재현성))에 의한 시킴산(SHK) 생산량을 나타낸 것이다.
도 7b는 tyrR, ptsG, pykA, aroK,aroL 유전자가 결손되고 aroE 유전자가 과발현된 대장균(E. coli AB2834 △tyrR△ptsG△pykA△aroK△aroL/PoppA-aroE)(RGA_KL_aroE) 대비 galP, ppsA, aroG, aroF, aroB, aroD,aroE 유전자 과발현(RGAKL_PAGFBD_aroE), 및 ydiN의 추가 결손(RGAKL_PAGFBD_ydiN_aroE)에 따른 시킴산(SHK) 생산량을 나타낸 것이다.
도 8은 tktK을 도입하여 과발현 시키기 위하여, oppA 프로모터 하에서 발현되는 aroE 유전자 (도 3 참조)의 뒤쪽 HindIII site에 리보솜 결합 부위(RBS)를 포함한 tktA 유전자를 클로닝하여 제작한 PoppA-aroE-tktA 플라스미드 지도를 대략적으로 나타낸 것이다.
도 9a는 tyrR, ptsG, pykA, aroK,aroL 유전자가 결손되고 galP, ppsA, aroG, aroF, aroB, aroD aroE 유전자가 과발현된 대장균(E. coli AB2834 △tyrR△ptsG△pykA△aroK△aroL△lacI::Plac-galP-ppsA-Plac-aroG-aroF-Plac-aroB-aroD /PoppA-aroE)(RGAKL_PAGFBD_aroE_1-1, RGAKL_PAGFBD_aroE_2-1(재현성)), 여기에 추가로 ydiN 유전자가 결손되고 tktA 유전자가 과발현된 대장균(E. coli AB2834 △tyrR△ptsG△pykA△aroK△aroL△ydiN△lacI::Plac-galP-ppsA-Plac-aroG-aroF-Plac-aroB-aroD/PoppA-aroE-tktA)(RGAKL_PAGFBD_ydiN_aroE_tkt_1-1, RGAKL_PAGFBD_ydiN_aroE_tkt_1-3(재현성)), 및 여기에 추가로 shiA 유전자가 더 결손된 대장균(E. coli AB2834 △tyrR△ptsG△pykA△aroK△aroL△ydiN△shiA△lacI:: Plac-galP-ppsAP-lac-aroG-aroF-Plac-aroB-aroD/PoppA-aroE-tktA) (RGAKL_PAGFBD_ydiN_shiA_aroE_tkt_1-1, RGAKL_PAGFBD_ydiN_shiA_aroE_tkt_2-1 (재현성))의 시킴산(SHK) 생산량을 나타낸 것이다.
도 9b는 tyrR, ptsG, pykA, aroK,aroL 유전자가 결손되고 galP, ppsA, aroG, aroF, aroB, aroD, aroE 유전자가 과발현된 대장균(E. coli AB2834 △tyrR△ptsG△pykA△aroK△aroL△lacI::Plac-galP-ppsA-Plac-aroG-aroF-Plac-aroB-aroD/PoppA-aroE)(RGAKL_PAGFBD_aroE), 여기에 추가로 shiA 유전자, ydiN 유전자, 또는 ydiN shiA 유전자가 결손되고 tktA 유전자가 과발현된 대장균(RGAKL_PAGFBD_shiA_tkt, RGAKL_PAGFBD_ydiN_tkt, RGAKL_PAGFBD_ydiN_shiA_tkt)의 시킴산(SHK) 생산량을 나타낸 것이다.
도 10은 tyrR, ptsG, pykA, aroK,aroL 유전자가 결손되고 galP, ppsA, aroG, aroF, aroB, aroD,aroE 유전자가 과발현된 대장균(E. coli AB2834 △tyrR△ptsG△pykA△aroK△aroL△lacI::Plac-galP-ppsA-Plac-aroG-aroF-Plac-aroB-aroD/PoppA-aroE)의 5L 배양기 배양에서의 시킴산 생산성(맨 아래 그래프; Total metabolite)을 나타낸 것이다.
도 11은 tyrR, ptsG, pykA, aroK, aroL,shiA 유전자가 결손되고 galP, ppsA, aroG, aroF, aroB, aroD, aroE, tktA 유전자가 과발현된 대장균(E. coli AB2834 △tyrR△ptsG△pykA△aroK△aroL△shiA△lacI:: Plac-galP-ppsA-Plac-aroG-aroF-Plac-aroB-aroD/PoppA-aroE-tktA)의 5L 배양기 배양에서의 시킴산 생산성(맨 아래 그래프; Total metabolite)을 나타낸 것이다.
1 schematically shows a pathway through which aromatic amino acids are biosynthesized in E. coli via shikimic acid (SA).
Figure 2 shows the aromatic amino acid and shikimic acid biosynthesis pathway and regulatory pathway in E. coli.
3 shows the shikimic acid production ability according to the deletion of aroK and aroL genes.
Figure 4, shows a PoppA- aroE plasmid mapping a promoter (promoter), and part of the aroE gene oppA gene was cloned (cloning) in order to overexpress aroE.
Figure 5 shows the production of shikimic acid in E. coli (RGAKL-PoppA aroE_1, RGAKL-PoppA aroE_2 (reproducible)) in which the tyrR, ptsG, pykA, aroK and aroL genes are deleted and the aroE gene is overexpressed (SHK: shikimic acid) .
Figure 6 shows the production of shikimate in Escherichia coli by deletion of tyrR, ptsG, pykA, aroK, and aroL genes, overexpression of aroE gene, and overexpression of galP, ppsA aroG, aroF, aroB and aroD genes ( SHK1 is E. coli K12△aroK△aroL, SHK2 is E. coli AB2834 △tyrR △ptsG △pykA △aroK △aroL/PoppA-aroE, SHK3 is E. coli AB2834 △tyrR △ptsG △pykA △aroK △aroL △lacI E. coli having the gene combination of ::Plac-galP-ppsA-Plac-aroG-aroF-Plac-aroB-aroD /PoppA-aroE).
7A shows E. coli AB2834 ΔtyrRΔptsGΔpykAΔaroK in which tyrR, ptsG, pykA, aroK, and aroL genes are deleted and galP, ppsA, aroG, aroF, aroB, aroD, and aroE genes are overexpressed. Additional deletion of the shiA gene in aroLΔlacI::Plac-galP-ppsA-Plac-aroG-aroF-Plac-aroB-aroD/PoppA-aroE ( RGAKL_PAGFBD_aroE) ( △ RGAKL_PAGFBD_ shiA1_aroE, RGAKL_PAGFBD_ shiA) ) shows the production of shikimic acid (SHK).
7b shows E. coli in which the tyrR, ptsG, pykA, aroK, and aroL genes are deleted and the aroE gene is overexpressed ( E. coli AB2834 ΔtyrRΔptsGΔpykAΔaroKΔaroL/PoppA-aroE ) (RGA_KL_aroE) versus galP, ppsA , illustrating aroG, aroF, aroB, aroD, and aroE gene overexpression (△ RGAKL_PAGFBD_aroE), and added defects (△ RGAKL_PAGFBD_ ydiN_aroE) Sikkim acid (SHK) produced according to the ydiN.
8 is PoppA- aroE produced by cloning the tktA gene, including the ribosome binding site (RBS) in the back of the HindIII site, aroE gene expressed under the oppA promoter (see Fig. 3) so as to over-expression by introducing tktK - tktA plasmid map is shown approximately.
9A shows E. coli AB2834 ΔtyrRΔptsGΔpykAΔaroKΔaroL in which the tyrR, ptsG, pykA, aroK, and aroL genes are deleted and the galP, ppsA, aroG, aroF, aroB, aroD and aroE genes are overexpressed. △lacI::Plac-galP-ppsA-Plac-aroG-aroF-Plac-aroB-aroD /PoppA-aroE ) ( RGAKL_PAGFBD_aroE_1-1, RGAKL_PAGFBD_aroE_2-1 (reproducibility)), in addition to this, the ydiN gene is deleted E. coli overexpressed with the tktA gene (E. coli AB2834 ΔtyrRΔptsGΔpykAΔaroKΔaroLΔydiNΔlacI::Plac-galP-ppsA-Plac-aroG-aroF-Plac-aroB-aroD/PoppA-aroE-tktA ) ( RGAKL_PAGFBD_ ydiN_aroE_tkt_1-1, RGAKL_PAGFBD_ ydiN_aroE_tkt_1-3 (reproducibility)), and E. coli AB2834 △ tyrR △ ptsG △ L △ ydi △aroK △ L △ ydi △aroK △ shiAΔlacI::Plac-galP-ppsAP-lac-aroG-aroF-Plac-aroB-aroD/PoppA-aroE-tktA ) ( RGAKL_PAGFBD_ ydiN_ shiA_aroE_tkt_1-1, RGAKL_PAGFBD_ ydiN_ shiA) ) shows the production of shikimic acid (SHK).
9B shows E. coli AB2834 ΔtyrRΔptsGΔpykAΔaroK in which tyrR, ptsG, pykA, aroK, and aroL genes are deleted and galP, ppsA, aroG, aroF, aroB, aroD, and aroE genes are overexpressed. aroL △ lacI :: Plac-galP- ppsA-Plac-aroG-aroF-Plac-aroB-aroD / PoppA-aroE) (△ RGAKL_PAGFBD_aroE), shiA gene further herein, ydiN gene or ydiN gene is deficient and shiA The shikimic acid (SHK) production of E. coli overexpressed with the tktA gene ( △ RGAKL_PAGFBD_ shiA_tkt, RGAKL_PAGFBD_ ydiN_tkt, RGAKL_PAGFBD_ ydiN_ △ shiA_tkt) is shown.
10 shows E. coli AB2834 ΔtyrRΔptsGΔpykAΔaroK in which the tyrR, ptsG, pykA, aroK, and aroL genes are deleted and the galP, ppsA, aroG, aroF, aroB, aroD, and aroE genes are overexpressed. aroLΔlacI::Plac-galP-ppsA-Plac-aroG-aroF-Plac-aroB-aroD/PoppA-aroE ) shows the shikimic acid productivity (bottom graph; total metabolite) in culture in a 5L incubator.
11 shows E. coli in which the tyrR, ptsG, pykA, aroK, aroL, and shiA genes are deleted and the galP, ppsA, aroG, aroF, aroB , aroD, aroE, and tktA genes are overexpressed ( E. coli AB2834 ΔtyrRΔptsG) Shikimic acid productivity (bottom graph; Total) of pykAΔaroKΔaroLΔshiAΔlacI::Plac-galP-ppsA-Plac-aroG-aroF-Plac-aroB-aroD/PoppA-aroE-tktA in 5L incubator culture metabolite) is shown.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에서 사용되는 대장균(Eschericia coli; E. coli)은 그람음성 호기성 세균으로 독성이 없으며, 성장이 매우 빠르고 실험실과 산업현장에서 쉽고 저렴하게 키울 수 있다는 장점을 가지고 있다. 본 발명자는 대한민국 공개특허공보 제10-2015-0120236호 및 제10-2018-0088145호에서 시스,시스-뮤코닉산 및 뮤코닉산의 전구체(DHS; 3-dehydroshikimate)의 합성을 위하여 대장균 내에 3개의 외래유전자를 도입하고 특정 유전자들을 불활성화시킴으로써 방향족 아미노산 생합성경로의 중간물질인 DHS 생합성 및 시스,시스-뮤코닉산 생산성이 증가되는 것을 확인한 바 있으며, 상기 특허문헌은 그 전체가 본 명세서에 참고로서 통합된다.E. coli used in the present invention ( Eschericia coli; E. coli ) is a Gram-negative aerobic bacterium, has no toxicity, is very fast in growth, and has the advantage of being easily and inexpensively grown in laboratories and industrial sites. In the Republic of Korea Patent Publication Nos. 10-2015-0120236 and No. 10-2018-0088145, the present inventors describe 3 in E. coli for the synthesis of cis,cis-muconic acid and a precursor of muconic acid (DHS; 3-dehydroshikimate) It has been confirmed that DHS biosynthesis and cis,cis-muconic acid productivity, which are intermediates of the aromatic amino acid biosynthetic pathway, are increased by introducing a foreign gene and inactivating specific genes, the patent document is hereby incorporated by reference in its entirety. is integrated as

본 발명자는 상기 연구에서 나아가, 상기 방향족 아미노산 생합성경로 내의 시킴산을 높은 수율로 생산할 수 있는 미생물을 제조하기 위하여, 방향족 아미노산 생합성 경로의 최적화를 통해 시킴산 생산성을 증가시키고자 본 발명을 발명하였다.In order to prepare a microorganism capable of producing shikimic acid in a high yield in the aromatic amino acid biosynthetic pathway, the present inventors have developed the present invention to increase the productivity of shikimic acid through optimization of the aromatic amino acid biosynthetic pathway.

대장균 내에서 시킴산의 생합성 경로는 다음과 같다: 탄소원(glucose)으로부터 해당과정(glycolysis) 과정을 거쳐 생성된 PEP(phosphoenolpyruvate)와 E4P(Erythrose 4-phosphate)의 축합반응에 의하여 DAHP(3-Deoxy-D-arabino-heptulosonate 7-phosphate)로부터 시킴산 생합성 경로를 통해 최종산물인 시킴산이 생산된다.The biosynthesis pathway of shikimic acid in E. coli is as follows: DAHP (3-Deoxy) by the condensation reaction of PEP (phosphoenolpyruvate) and E4P (Erythrose 4-phosphate) generated through glycolysis from a carbon source -D-arabino-heptulosonate 7-phosphate), the final product, shikimic acid, is produced through the shikimic acid biosynthesis pathway.

시킴산은 시킴산 인산화효소(shikimate kinase)에 의하여 시킴산 3-포스페이트로 전환되며, 시킴산 인산화효소를 코딩하는 유전자는 aroKaroL인 것으로 알려져 있다. 따라서 우선적으로 시킴산 고생산성 균주를 구축하기 위하여, 도 2에 도시된 바와 같이 방향족 아미노산 생합성 경로 상의 중간산물인 시킴산이 축적될 수 있도록 분해 과정을 차단하기 위해 경로를 조절하였으며, 시킴산에서 시킴산 3-포스페이트로 전환시켜주는 시킴산 인산화효소(shikimate kinase)를 코딩하는 유전자인 aroKaroL 유전자를 결손 시킴으로써 시킴산이 배양액에 축적될 수 있다. 이 때, 일 실시예에 있어서, 상기 aroKaroL을 코딩하는 폴리뉴클레오티드는 각각 서열번호 1 및 2로 표시되는 염기서열을 포함할 수 있다.It is known that shikimic acid is converted into shikimate 3-phosphate by shikimate kinase, and genes encoding shikimate kinase are aroK and aroL. Therefore, in order to preferentially construct a high-productivity strain of shikimic acid, as shown in FIG. 2, the pathway was adjusted to block the degradation process so that shikimic acid, an intermediate product on the aromatic amino acid biosynthesis pathway, could be accumulated, and from shikimic acid to shikimic acid By deleting the aroK and aroL genes, which are genes encoding shikimate kinase that converts to 3-phosphate, shikimate can be accumulated in the culture medium. In this case, in one embodiment, the polynucleotide encoding aroK and aroL may include the nucleotide sequences shown in SEQ ID NOs: 1 and 2, respectively.

따라서, 본 발명은, 일 측면에서, tyrR, ptsG, pykA, aroK, aroL 유전자; tyrR, ptsG, pykA, aroK, aroL, shiA 유전자; tyrR, ptsG, pykA, aroK, aroL, ydiN 유전자; 또는 tyrR, ptsG, pykA, aroK, aroL, shiA, ydiN 유전자가 불활성화된, 유전자재조합 대장균에 관한 것이다.Accordingly, the present invention, in one aspect, tyrR, ptsG, pykA, aroK, and aroL genes; tyrR, ptsG, pykA, aroK, aroL, and shiA genes; tyrR, ptsG, pykA, aroK, aroL, and ydiN genes; or tyrR, ptsG, pykA, aroK, aroL, shiA, and ydiN genes are inactivated, to a recombinant E. coli.

본 발명에서 사용되는 대장균은 E. coli AB2834(구입기관: E. coli Genetic Stock Center, 기탁번호: AB2834)일 수 있으며, 상기 E. coli AB2834에 대하여 특정 유전자들을 불활성화시키거나 과발현 시킴으로써 본 발명에 따른 시킴산 생산능이 증가된 유전자재조합 대장균을 제조할 수 있다. E. coli used in the present invention may be E. coli AB2834 (purchasing agency: E. coli Genetic Stock Center, accession number: AB2834), and in the present invention by inactivating or overexpressing specific genes for the E. coli AB2834. Recombinant E. coli with increased shikimic acid production ability can be produced.

즉, 일 실시예에 있어서, 상기 유전자재조합 대장균의 출발물질인 원균주는 상기 E. coli AB2834일 수 있다.That is, in one embodiment, the source strain that is the starting material of the recombinant E. coli may be the E. coli AB2834.

본 명세서에서 상기 용어 "불활성화"는 특정 유전자의 일부 또는 전부를 제거(deletion)하거나 특정 유전자안에 다른 서열을 첨가(addition)하거나 특정 유전자를 다른 유전자로 치환(substitution)하는 것을 모두 포함한다. 일 실시예에 있어서, 상기 유전자의 불활성화는 상기 대장균에서 상기 유전자가 결손(deletion)된 것일 수 있다.As used herein, the term "inactivation" includes all or part of a specific gene deletion (deletion), addition of another sequence in a specific gene, or substitution of a specific gene with another gene. In one embodiment, the inactivation of the gene may be a deletion (deletion) of the gene in the E. coli.

일 실시예에 있어서, 상기 대장균으로부터의 상기 유전자의 결손 방법은 구체적으로 결손을 위한 플라스미드 제작 단계, 형질전환 단계, 단일 재조합(single recombination) 유도 단계 및 이중 재조합(double recombination) 유도 단계를 포함할 수 있다.In one embodiment, the method for deletion of the gene from E. coli specifically comprises a plasmid preparation step for the deletion, a transformation step, a single recombination induction step and a double recombination induction step. have.

구체적으로, 상기 결손을 위한 플라스미드 제작 단계는 결손시키고자 하는 유전자의 상부(up region)과 하부(down region)를 대장균 자살벡터(suicide vector)에 클로닝(cloning) 하고 이를 증류수에 녹인 순수한 DNA를 준비하는 단계를 포함할 수 있다. 상기 형질전환 단계는 상기 제조된 결손을 위한 플라스미드, 즉 결손 플라스미드(deletion plasmid)를 원하는 균주에 도입하기 위해 균주에 전기천공법을 사용하여 상기 결손 플라스미드를 삽입하는 단계를 포함할 수 있다. 상기 단일 재조합 유도 단계는 상기 결손 플라스미드가 삽입된 형질전환체에서 단일 재조합을 유도하기 위해서 온도를 30-45℃로 올려준 후 클로람페니콜이 첨가된 LB 배지(broth)에 배양한 후, 클로람페니콜이 첨가된 LB 플레이트에 도말하고 30-45℃에서 배양하여 크로모좀에 단일 재조합 되지 않은 균주들을 제거하는 단계를 포함할 수 있다. 상기 이중 재조합 유도 단계는 상기 단일 재조합 된 균주를 항생제가 첨가되지 않은 LB 배지에 30-45℃의 온도에서 배양하여 이중 재조합, 즉 유전자의 결손을 유도하고, 상기 배양된 균주들을 10% 수크로스가 들어간 LB 플레이트에 도말하여 플라스미드가 제거되고 유전자가 결손된 균주를 선별하는 단계를 포함할 수 있다.Specifically, in the step of preparing the plasmid for the deletion, the up region and the down region of the gene to be deleted are cloned into an Escherichia coli suicide vector, and pure DNA dissolved in distilled water is prepared. may include the step of The transformation step may include inserting the deletion plasmid into the strain using electroporation to introduce the prepared deletion plasmid, ie, the deletion plasmid, into a desired strain. In the single recombination induction step, the temperature was raised to 30-45° C. to induce a single recombination in the transformant into which the defective plasmid was inserted, and then cultured in LB medium (broth) supplemented with chloramphenicol, followed by chloramphenicol. It may include the step of removing a single non-recombinant strain in the chromosome by plating on an LB plate and culturing at 30-45°C. The double recombination induction step induces double recombination, i.e., gene deletion, by culturing the single recombined strain in LB medium to which antibiotics are not added at a temperature of 30-45° C. It may include the step of removing the plasmid by plating on the entered LB plate and selecting a strain in which the gene is deleted.

다른 구현 예로서, 상기 대장균으로부터의 상기 유전자의 결손은, CRISPR/cas 시스템을 이용하여 수행될 수 있다. CRISPR/cas 시스템은 유전자 가위에 기반한 유전자 교정 시스템으로서, 특정 염기서열에 특이적으로 결합하는 RNA(gRNA)와 특정한 염기서열을 자르는 가위 역할인 Cas9 nuclease로 구성되어 있다. 기존의 제한효소를 개선하여 특정 유전자 시퀀스를 보다 정밀하게 선택적으로 잘라낼 수 있는 기능을 가지고 있기 때문에, 세포나 동물에 플라스미드(plasmid) DNA를 도입하여 특정 유전자의 기능을 완전히 억제할 수 있는 knock-out이 가능하다. 이러한 CRISPR/cas 시스템을 이용하여 대장균에서 특정 유전자를 결손시킬 수 있으며, CRISPR/cas 시스템 작동을 위한 tool은 addgene (addgene.org)에 등록되어 있는 Sheng Yang 그룹의 플라스미드를 제공받아 진행할 수 있고 (Yu Jiang et al., 2015, Multigene editing in the E. coli genome via the CRISPR-cas9 system, Appl. Environ. Microbiol., 81(7): 2506-2514), sgRNA와 homologous arm을 위한 플라스미드(pTarget)와 cas 단백질 발현을 위한 플라스미드 (pCas)를 각각 삽입하여 세포 내에서 재조합을 유도함으로써 에디팅(editing)이 일어날 수 있도록 한 후, 항생제 내성균주를 선별하고 PCR을 통해 재조합이 완료된 클론(clone)을 찾는 방법으로, 구체적으로, IPTG를 이용하여 pTarget 플라스미드를 없앤 뒤, 37℃ 배양을 통해 pCas 플라스미드를 모두 소실시킴으로써 유전자가 결손된 형질전환체를 확보할 수 있다.As another embodiment, the deletion of the gene from E. coli may be performed using a CRISPR/cas system. The CRISPR/cas system is a gene editing system based on gene scissors. It consists of RNA (gRNA) that specifically binds to a specific nucleotide sequence and Cas9 nuclease, which cuts a specific nucleotide sequence. Knock-out that can completely inhibit the function of a specific gene by introducing plasmid DNA into a cell or animal because it has the ability to cut out specific gene sequences more precisely and selectively by improving the existing restriction enzymes This is possible. Using this CRISPR/cas system, a specific gene can be deleted in E. coli, and a tool for operating the CRISPR/cas system can be performed by receiving the plasmid of Sheng Yang group registered in addgene (addgene.org) and (Yu Jiang et al ., 2015, Multigene editing in the E. coli genome via the CRISPR-cas9 system, Appl. Environ. Microbiol., 81(7): 2506-2514), plasmid for sgRNA and homologous arm (pTarget) and After inserting each plasmid (pCas) for cas protein expression and inducing recombination in the cell so that editing can occur, antibiotic-resistant strains are selected, and a clone whose recombination has been completed through PCR is found. Specifically, after removing the pTarget plasmid by using IPTG, all the pCas plasmids are lost through incubation at 37° C., thereby obtaining a transformant with a deletion in the gene.

일 실시예에 있어서 상기 tyrR 유전자는 아미노산 생합성경로 중에서 DHAP 생성효소(2-dehydro-3-deooxy-phosphoheptonate-aldolase)를 코딩하고 있는 aroG 유전자를 조절한다. 대장균 내 방향족 아미노산 생합성 경로를 통해 생성된 최종산물인 티로신(tyrosine)은 aroGaroF 유전자의 전사를 억제하고 단백질의 기능을 억제함으로써 생합성 경로를 조절하게 되는데, 상기 tyrR 유전자가 코딩하고 있는 TyrR 이라는 단백질은 상기 유전자의 발현을 억제하는 기능을 하는 것으로서, 이에 의해 aroGaroF 유전자의 기능이 조절된다. 따라서 tyrR 유전자를 불활성화시킬 경우, aroGaroF 유전자는 계속 발현될 것이므로, 시킴산(shikimic acid)을 지속적으로 생합성할 수 있다. 일 실시예에 있어서 상기 tyrR 를 코딩하는 폴리뉴클레오티드는 서열번호 3으로 표시되는 염기서열을 포함할 수 있다.In one embodiment, the tyrR gene regulates an aroG gene encoding a DHAP synthase (2-dehydro-3-deooxy-phosphoheptonate-aldolase) in an amino acid biosynthetic pathway. The final product produced via the aromatic amino acid biosynthetic pathway of E. coli tyrosine (tyrosine) is a protein that inhibits transcription of the aroG and aroF genes, and there is controlled the biosynthetic pathway by inhibiting the function of the protein, TyrR that the tyrR gene encoding It is as for the ability to inhibit expression of the gene, whereby the function of the aroG and aroF gene is controlled by. Therefore, to inactivate the tyrR gene, aroG and aroF gene may continue to keep the biosynthesis because it will be expressed, Sikkim acid (shikimic acid). In one embodiment, the polynucleotide encoding the tyrR may include the nucleotide sequence represented by SEQ ID NO: 3.

일 실시예에 있어서 상기 ptsG 유전자는 세포 밖에 존재하는 글루코스를 세포 내로 이동시키는데 관여한다. 상기 유전자에 의해 코딩되는 글루코스 포스포트란스페라아제 IIBC(Glc); 글루코스 퍼미아제는 세포 밖에 존재하는 글루코스를 세포 내로 이동시키면서 PEP를 피루베이트(pyruvate)로 전환시킨다. ptsG 유전자를 불활성화시키면 시킴산의 전구체인 PEP를 소모하지 않게 된다. 일 실시예에 있어서 상기 ptsG를 코딩하는 폴리뉴클레오티드는 서열번호 4로 표시되는 염기서열을 포함할 수 있다.In one embodiment, the ptsG gene is involved in moving glucose existing outside the cell into the cell. glucose phosphotransferase IIBC (Glc) encoded by this gene; Glucose permease converts PEP into pyruvate while moving glucose existing outside the cell into the cell. Inactivation of the ptsG gene prevents consumption of PEP, a precursor of shikimic acid. In one embodiment, the ptsG- encoding polynucleotide may include the nucleotide sequence represented by SEQ ID NO: 4.

일 실시예에 있어서 상기 pykA 유전자는 상기 ptsG 유전자와 마찬가지로 PEP를 피루베이트로 전환시키는데 관여한다. 상기 pykA 유전자가 코딩하는 피루베이트 키나아제±는 PEP를 피루베이트로 전환시켜 탄소원이 TCA(trichloroacetic acid) 사이클에 들어가서 에너지를 만드는데 관여한다. 그러므로 상기 유전자를 불활성화할 경우 PEP를 소모하지 않게 되는 면에서 유리하다. 일 실시예에 있어서 상기 pykA 를 코딩하는 폴리뉴클레오티드는 서열번호 5로 표시되는 염기서열을 포함할 수 있다.The pykA gene according to one embodiment is concerned to convert the PEP to pyruvate Like the ptsG gene. The pykA gene is The coding pyruvate kinase± converts PEP to pyruvate, and the carbon source enters the trichloroacetic acid (TCA) cycle to generate energy. Therefore, when the gene is inactivated, it is advantageous in that PEP is not consumed. In one embodiment, the polynucleotide encoding the pykA may include a nucleotide sequence represented by SEQ ID NO: 5.

일 실시예에 있어서, shiAydiN 유전자는 대장균에서 생성된 시킴산이 세포막을 통과할 수 있도록 수송체(transporter) 기능을 하는 것으로 알려져 있다. 이들 유전자들을 각각 결손 시킴으로써 세포 내에서 생성되어 외부로 배출된 시킴산을 다시 세포 내로 들여보내지 못하게 할 수 있다. 일 실시예에 있어서, 상기 shiAydiN을 코딩하는 폴리뉴클레오티드는 각각 서열번호 6 및 7로 표시되는 염기서열을 포함할 수 있다.In one embodiment, the shiA and ydiN genes are known to function as a transporter so that shikimic acid produced in E. coli can pass through a cell membrane. By deleting each of these genes, it is possible to prevent shikimic acid produced and discharged from the cell from being brought back into the cell. In one embodiment, the polynucleotides encoding shiA and ydiN may include the nucleotide sequences represented by SEQ ID NOs: 6 and 7, respectively.

일 실시예에 있어서, 상기 대장균은, 갈락토오스 투과효소(galactose permease), 옥살로아세테이트(oxaloacetate)를 PEP로 전환시키는 PEP 합성효소, E4P를 DAHP로 전환시키는 DAHP 합성효소 A, PEP를 DAHP로 전환시키는 DAHP 합성효소 B, DAHP를 DHQ로 전환시키는 DHQ 합성효소 및 DHQ 탈수효소를 과발현하고, 락토오스 분해 억제 단백질(lac repressor)을 코딩하는 lacI 유전자가 결손된 것일 수 있다.In one embodiment, the E. coli, galactose permease (galactose permease), PEP synthetase converting oxaloacetate to PEP, DAHP synthase A converting E4P to DAHP, converting PEP to DAHP DAHP synthetase B, DHQ synthetase that converts DAHP to DHQ, and DHQ dehydratase are overexpressed, and the lacI gene encoding a lactose degradation inhibitory protein (lac repressor) may be deleted.

일 실시예에 있어서, 상기 대장균은, 외래로부터 도입된, 상기 갈락토오스 투과효소를 코딩하는 galP 유전자, 상기 PEP 합성효소를 코딩하는 ppsA 유전자, 상기 DAHP 합성효소 A를 코딩하는 aroG 유전자, 상기 DAHP 합성효소 B를 코딩하는 aroF 유전자, 상기 DHQ 합성효소를 코딩하는 aroB 유전자, 및 상기 DHQ 탈수효소를 코딩하는 aroD 유전자를 포함할 수 있다.In one embodiment, the E. coli is introduced from foreign, galP gene coding for the galactose transmission enzyme, ppsA gene encoding the PEP synthase, aroG gene coding for the DAHP synthase A, the DAHP synthase aroF gene encoding a B, aroB gene encoding the DHQ synthase, and may include the aroD gene encoding the DHQ dehydratase.

즉, 상기 대장균은, galP, ppsA, aroG, aroF, aroB aroD 유전자 중 적어도 하나 이상의 유전자가 외래로부터 도입됨으로써, 시킴산의 전구체인 DHS의 합성에 관여하는 효소들이 과발현되어 최종적으로 시킴산의 생합성이 증가될 수 있다.That is, in Escherichia coli, at least one gene among galP, ppsA, aroG, aroF, aroB and aroD genes is introduced from a foreign source, so that the enzymes involved in the synthesis of DHS, a precursor of shikimic acid, are overexpressed and finally biosynthesis of shikimic acid can be increased.

일 실시예에 있어서, 상기 대장균에서의 효소 과발현을 위한 유전자 도입 방법은 구체적으로 과발현을 위한 플라스미드 제작 단계, 형질전환 단계, 단일 재조합(single recombination) 유도 단계 및 이중 재조합(double recombination) 유도 단계를 포함할 수 있다.In one embodiment, the gene introduction method for enzyme overexpression in E. coli specifically includes a plasmid preparation step for overexpression, a transformation step, a single recombination induction step, and a double recombination induction step. can do.

구체적으로, 상기 과발현을 위한 플라스미드 제작단계는 lacI 유전자와 바로 옆에 있는 기존의 lac 프로모터가 함께 제거되도록 lacI 유전자의 상부(upstream)와 하부(downstream) 영역을 설정한 다음, 상기 lacI 유전자의 상부(upstream)과 하부(downstream) 사이의 Xba I 제한효소 site를 남겨두고, 상기 lacI 유전자의 상부(upstream) 단편과 하부(downstream) 단편을 대장균 자살벡터(suicide vector)에 클로닝(cloning)하여 lacI 유전자 결손 벡터를 구축한 후, 과발현하고자 하는 효소를 코딩하는 유전자와 lac 프로모터를 상부(upstream) 단편과 하부(downstream) 단편 사이에 추가로 클로닝(cloning) 하는 단계를 포함할 수 있다. 상기 형질전환 단계는 상기 제조된 과발현을 위한 플라스미드, 즉 과발현 통합 벡터(integration vector)를 원하는 균주에 도입하기 위해 균주에 전기천공법을 사용하여 상기 과발현 통합 벡터를 삽입하는 단계를 포함할 수 있다. 상기 단일 재조합 유도 단계는 상기 과발현 통합 벡터가 삽입된 형질전환체에서 단일 재조합을 유도하기 위해서 온도를 30-45℃로 올려준 후 클로람페니콜이 첨가된 LB 배지(broth)에 배양한 후, 클로람페니콜이 첨가된 LB 플레이트에 도말하고 30-45℃에서 배양하여 크로모좀에 단일 재조합 되지 않은 균주들을 제거하는 단계를 포함할 수 있다. 상기 이중 재조합 유도 단계는 상기 단일 재조합 된 균주를 항생제가 첨가되지 않은 LB 배지에 30-45℃의 온도에서 배양하여 이중 재조합, 즉 효소의 과발현을 위한 유전자의 도입을 유도하고, 상기 배양된 균주들을 10% 수크로스가 들어간 LB 플레이트에 도말하여 플라스미드가 제거되고 효소 과발현을 위한 유전자가 도입된 균주를 선별하는 단계를 포함할 수 있다.Specifically, the upper portion of the plasmid the production stage for the over-expression is set to the upper (upstream) and bottom (downstream) zone of the lacI gene to be removed with a traditional lac promoter on the right next to the lacI gene, and then, the lacI gene ( upstream) and bottom (downstream) to leave a Xba I restriction enzyme site between the upper (upstream) fragment and a lower (downstream) was cloned (cloning) in the fragment of E. coli suicide vector (suicide vector) lacI gene defect of the lacI gene After constructing the vector, it may include a step of further cloning the gene encoding the enzyme to be overexpressed and the lac promoter between the upstream fragment and the downstream fragment. The transformation step may include inserting the overexpression integration vector into the strain using electroporation to introduce the prepared plasmid for overexpression, ie, the overexpression integration vector, into a desired strain. In the single recombination induction step, the temperature was raised to 30-45° C. to induce single recombination in the transformant into which the overexpression integrative vector was inserted, and then cultured in LB medium (broth) supplemented with chloramphenicol, followed by addition of chloramphenicol. It may include the step of removing a single non-recombinant strain in the chromosome by plating on the old LB plate and culturing at 30-45°C. The double recombination induction step induces the introduction of a gene for double recombination, that is, overexpression of an enzyme, by culturing the single recombined strain in LB medium without antibiotics added at a temperature of 30-45° C. It may include the step of selecting a strain in which the plasmid is removed and a gene for enzyme overexpression is introduced by plating on an LB plate containing 10% sucrose.

본 발명의 일 실시예에 있어서, 상기 lacI 유전자는 lac 오페론의 lac 오퍼레이터(operator)에 결합하는 락토오스 분해 억제 단백질(lac repressor)을 코딩하고 있는 유전자로서, lac 프로모터의 전사를 억제하는 역할을 한다. 따라서 각 유전자들이 코딩하는 효소들을 lac 프로모터를 사용하여 과발현하기 위해서는 전사를 억제하는 유전자인 lacI 유전자를 제거할 필요가 있다. 일 실시예로서 상기 lacI를 코딩하는 폴리뉴클레오티드는 서열번호 8로 표시되는 염기서열을 포함할 수 있다.In one embodiment of the present invention, the lacI gene is a gene encoding a lactose degradation suppressor protein (lac repressor) that binds to the lac operator of the lac operon, and serves to suppress transcription of the lac promoter. Therefore, in order to overexpress the enzymes encoded by each gene using the lac promoter, it is necessary to remove the lacI gene, a gene that inhibits transcription. As an embodiment, the polynucleotide encoding lacI may include the nucleotide sequence represented by SEQ ID NO: 8.

본 발명의 일 실시예에 있어서, 상기 갈락토오스 투과효소(galactose permease)는 galP 유전자에 코딩되어 있으며, 세포 밖의 글루코스를 세포 안으로 전달하는 역할을 한다. 따라서 갈락토오스 투과효소를 과발현 함으로써 원활한 글루코스 공급을 통해 시킴산의 전구체인 DHS 생합성이 증가할 수 있다. 일 실시예로서 상기 galP를 코딩하는 폴리뉴클레오티드는 서열번호 9로 표시되는 염기서열을 포함할 수 있다.In one embodiment of the present invention, the galactose permease (galactose permease) is encoded in the galP gene, and serves to transfer extracellular glucose into the cell. Therefore, by overexpressing galactose permease, biosynthesis of DHS, a precursor of shikimic acid, can be increased through smooth glucose supply. As an embodiment, the polynucleotide encoding galP may include the nucleotide sequence shown in SEQ ID NO: 9.

본 발명의 일 실시예에 있어서, 상기 TCA cycle의 옥살로아세테이트 (oxaloacetate)를 DHS의 전구체인 PEP(phosphoenolpyruvate)로 전환하는 PEP 합성효소(phosphoenolpyruvate synthetase)는 ppsA 유전자에 코딩되어 있으며, 이러한 PEP 합성효소를 과발현 함으로써, 시킴산의 전구체인 DHS의 생합성이 증가할 수 있다. 일 실시예로서 상기 ppsA를 코딩하는 폴리뉴클레오티드는 서열번호 10으로 표시되는 염기서열을 포함할 수 있다.In one embodiment of the present invention, the conversion of oxaloacetate in the TCA cycle to phosphoenolpyruvate (PEP), which is a precursor of DHS, PEP synthetase (phosphoenolpyruvate synthetase) is encoded in the ppsA gene, and by overexpressing this PEP synthetase, biosynthesis of DHS, a precursor of shikimic acid, can be increased. As an embodiment, the polynucleotide encoding ppsA may include the nucleotide sequence represented by SEQ ID NO: 10.

본 발명의 일 실시예에 있어서, 상기 DHQ 합성효소(3-dehydroquinate synthase) 및 DHQ 탈수효소(3-dehydroquinate dehydratase)는 각각 aroBaroD 유전자에 코딩되어 있으며, 직접적으로 시킴산의 전구체인 DHS 생산에 관여하는 효소로서 DHAP(3-deoxy-D-arabino-heptulosonic acid 7-phosphate)와 DHQ(3-Dehydroquinic acid)를 거쳐 DHS를 합성하는 효소이다. 상기 DHQ 합성효소 및 DHQ 탈수효소를 과발현 함으로써, 상기 DHS 합성 경로를 강화시켜 시킴산의 전구체인 DHS의 생합성을 증가시킬 수 있다. 일 실시예로서 상기 aroBaroD를 코딩하는 폴리뉴클레오티드는 각각 서열번호 11 및 12로 표시되는 염기서열을 포함할 수 있다.In one embodiment of the present invention, the DHQ synthase (3-dehydroquinate synthase) and DHQ dehydratase (3-dehydroquinate dehydratase) are encoded in the aroB and aroD genes, respectively, and are directly involved in the production of DHS, a precursor of shikimic acid. As an enzyme involved, it is an enzyme that synthesizes DHS through DHAP (3-deoxy-D-arabino-heptulosonic acid 7-phosphate) and DHQ (3-Dehydroquinic acid). By overexpressing the DHQ synthetase and DHQ dehydratase, the biosynthesis of DHS, a precursor of shikimic acid, can be increased by enhancing the DHS synthesis pathway. As an embodiment, the polynucleotides encoding aroB and aroD may include nucleotide sequences represented by SEQ ID NOs: 11 and 12, respectively.

본 발명의 일 실시예에 있어서, 상기 DAHP 합성효소 A 및 DAHP 합성효소 B는 각각 aroG aroF 유전자에 코딩되어 있으며, DAHP 합성효소 A 및 DAHP 합성효소 B는 각각 E4P(erythorse 4-phosphate)와 PEP(phosphoenolpyruvate)로부터 DAHP(3-deoxy-D-arabino-heptulosonic acid 7-phosphate)를 합성하는 효소로서, DHS의 전구체인 PEP와 E4P를 방향족 아미노산 생합성 경로로 보내는 역할을 한다. 따라서 상기 DAHP 합성효소 A 및 B를 과발현 함으로써, 시킴산의 전구체인 DHS의 생합성이 증가할 수 있다. 일 실시예로서 상기 aroGaroF를 코딩하는 폴리뉴클레오티드는 각각 서열번호 13 및 14로 표시되는 염기서열을 포함할 수 있다.In one embodiment of the present invention, the DAHP synthase A and DAHP synthase B are coded in respectively aroG and aroF gene, DAHP synthase A and DAHP synthase B, PEP and each E4P (erythorse 4-phosphate) As an enzyme that synthesizes DAHP (3-deoxy-D-arabino-heptulosonic acid 7-phosphate) from (phosphoenolpyruvate), it plays a role in sending DHS precursors PEP and E4P to the aromatic amino acid biosynthesis pathway. Therefore, by overexpressing the DAHP synthetase A and B, the biosynthesis of DHS, a precursor of shikimic acid, can be increased. In one embodiment the polynucleotide encoding the aroG and aroF may comprise the nucleotide sequence shown in SEQ ID NO: 13 and 14, respectively.

본 발명의 일 실시예에 있어서, 상기 대장균은, aroE; 또는 aroEtktA;를 각각 코딩하는 폴리뉴클레오티드를 포함하고, 상기 폴리뉴클레오티드의 각 업스트림(upstream)에 대장균 유래의 리보솜 결합 부위(ribosome binding site, rbs)를 포함하며, 상기 aroE 또는 tktA를 코딩하는 폴리뉴클레오티드 중 첫 번째 전사되는 폴리뉴클레오티드의 리보솜 결합부위의 업스트림에 oppA 유전자의 프로모터(promoter)를 포함하는 재조합벡터로 더 형질전환된 것일 수 있다.In one embodiment of the present invention, the E. coli, aroE ; or aroE and tktA ; it contains a polynucleotide encoding each, and each upstream of the polynucleotide includes a ribosome binding site (rbs) derived from E. coli, and a polynucleotide encoding the aroE or tktA Among the nucleotides, it may be further transformed with a recombinant vector including a promoter of the oppA gene upstream of the ribosome binding site of the first transcribed polynucleotide.

일 실시예에 있어서, 상기 oppA 유전자는 대장균 내에서 특히 높은 발현율을 보이는 유전자로써, 상기 oppA 유전자의 프로모터를 이용함으로써, 목적 유전자인 aroEtktA의 발현량을 효과적으로 증가시킬 수 있다.In one embodiment, the oppA gene is a gene showing a particularly high expression rate in E. coli, and by using the promoter of the oppA gene, it is possible to effectively increase the expression levels of target genes aroE and tktA.

일 실시예에 있어서, lac 프로모터(promoter), lac 오퍼레이터(operator) 및 cap 결합 부위(cap binding site)가 제거된 벡터의 NdeI site에 E. coli K12(Genetic Resources at YaleCGSC, The Coli Genetic Stock Center) 유래의 aroE 유전자를 클로닝하고, 상기 aroE 유전자의 업스트림 방향에 삽입된 대장균 유래의 리보솜 결합 부위(rbs)를 포함하며, 상기 리보솜 결합 부위의 업스트림에 oppA 유전자의 프로모터를 클로닝하여 PoppA-aroE 플라스미드를 제조할 수 있다. 일 실시예로서, 상기 oppA를 코딩하는 폴리뉴클레오티드는 서열번호 15로 표시되는 염기서열을 포함할 수 있다.In one embodiment, E. coli K12 (Genetic Resources at YaleCGSC, The Coli Genetic Stock Center) in the NdeI site of the vector from which the lac promoter, lac operator and cap binding site are removed. cloning the aroE gene of origin, and comprising the E. coli ribosome binding site (rbs) of the origin inserted in the upstream direction of the aroE gene, producing a PoppA-aroE plasmid upstream of the ribosome binding site cloned into the promoter of the oppA gene can do. In one embodiment, the polynucleotide encoding the oppA may include the nucleotide sequence represented by SEQ ID NO: 15.

다른 실시예에 있어서, 상기 PoppA-aroE 플라스미드에서, 상기 aroE 유전자의 뒤쪽 HindIII site에 리보솜 결합 부위(rbs)를 포함한 tktA 유전자를 PCR하여 클로닝함으로써 Poppa-aroE-tktA 플라스미드를 제조할 수 있다.In another embodiment, in the PoppA-aroE plasmid, a Poppa-aroE-tktA plasmid can be prepared by PCR and cloning the tktA gene including a ribosome binding site (rbs) in the HindIII site behind the aroE gene.

일 실시예에 있어서, 상기 aroE 유전자는 DHS를 시킴산으로 전환시키는 DHS 탈수소효소를 코딩하는 유전자로서, 상기 유전자를 과발현 시킴으로써 DHS로부터 시킴산으로의 전환을 증가시켜 시킴산 생산능을 더욱 증가시킬 수 있다. 일 실시예에 있어서, 상기 aroE를 코딩하는 폴리뉴클레오티드는 서열번호 16으로 표시되는 염기서열을 포함할 수 있다.In one embodiment, the aroE gene is a gene encoding a DHS dehydrogenase that converts DHS to shikimic acid. By overexpressing the gene, the conversion from DHS to shikimic acid can be increased to further increase the shikimic acid production capacity. have. In one embodiment, the polynucleotide encoding the aroE may include the nucleotide sequence represented by SEQ ID NO: 16.

일 실시예에 있어서, 상기 tktA 유전자는 시킴산 생합성의 주요 전구체인 E4P의 합성에 관여한다. 따라서 상기 tktA 유전자를 과발현 시킴으로써 전구체인 E4P의 합성이 증가할 수 있고 최종적으로 시킴산 생산능을 더욱 증가시킬 수 있다. 일 실시예에 있어서, 상기 tktA를 코딩하는 폴리뉴클레오티드는 서열번호 17로 표시되는 염기서열을 포함할 수 있다.In one embodiment, the tktA gene is involved in the synthesis of E4P, a major precursor of shikimic acid biosynthesis. Therefore, by overexpressing the tktA gene, the synthesis of the precursor E4P can be increased, and finally, the ability to produce shikimic acid can be further increased. In one embodiment, the polynucleotide encoding tktA may include the nucleotide sequence represented by SEQ ID NO: 17.

일 측면에서, 상기 유전자재조합 대장균은 시킴산(shikimic acid) 생산용일 수 있다.In one aspect, the recombinant E. coli may be for production of shikimic acid.

다른 측면에서, 본 발명은, 상기 유전자재조합 대장균을 배양하는 단계를 포함하는, 시킴산의 생산 방법에 관한 것일 수 있다.In another aspect, the present invention may relate to a method for producing shikimic acid, comprising culturing the recombinant E. coli.

상기 시킴산 생산방법은, 구체적으로 LB배지에 E.coli 단일 콜로니를 접종하여 하루동안 배양하는 것을 포함하는 E.coli 생산균주의 1차 성장배양 단계; LB배지에 상기 1차 성장배양액을 접종하여 4-8시간 진탕배양 시키는 것을 포함하는 2차 성장배양 단계; 및 생산배지에 상기 2차 성장배양액을 접종 및 배양하여 시킴산을 생산하는 단계를 포함할 수 있다. 보다 구체적으로는, LB배지(tryptone 10 g/L, Yeast extract 5 g/L, NaCl 5 g/) 1.3ml에 E.coli 단일 콜로니를 접종하여 37℃, 220rpm으로 회전진탕기에서 하루 동안 오버나이트 배양하는 것을 포함하는 E.coli 생산균주의 1차 성장배양 단계; LB배지 1.3ml를 24-well 세포 배양 플레이트에 첨가하고 상기 1차 성장배양액 1%를 접종하여 220rpm, 30℃에서 6시간 진탕배양 시키는 것을 포함하는 2차 성장배양 단계; 및 생산배지 1.3ml를 24-well 세포 배양 플레이트에 첨가하고 상기 2차 성장배양액을 1% 접종하여 220rpm, 30℃에서 진탕배양 하여 시킴산을 생산하는 배양단계를 포함할 수 있다.The shikimic acid production method, specifically, the primary growth and culture step of the E. coli producing strain comprising inoculating a single colony of E. coli in LB medium and culturing for one day; A secondary growth culture step comprising inoculating the LB medium with the primary growth culture medium and culturing with shaking for 4-8 hours; and inoculating and culturing the secondary growth medium in a production medium to produce shikimic acid. More specifically, inoculate a single colony of E. coli in 1.3 ml of LB medium (tryptone 10 g/L, Yeast extract 5 g/L, NaCl 5 g/), and overnight at 37° C., 220 rpm on a rotary shaker. The primary growth and culture step of the E. coli producing strain comprising culturing; A secondary growth culture step comprising adding 1.3 ml of LB medium to a 24-well cell culture plate, inoculating 1% of the primary growth culture medium, and culturing with shaking at 220 rpm and 30° C. for 6 hours; and adding 1.3 ml of the production medium to a 24-well cell culture plate, inoculating 1% of the secondary growth medium, and culturing with shaking at 220 rpm and 30° C. to produce shikimic acid.

이하, 본 발명의 내용을 제조예 및 시험예를 통하여 보다 구체적으로 설명한다. 그러나, 이러한 실시예 및 시험예는 본 발명의 내용을 이해하기 위해 제시되는 것일 뿐, 본 발명의 권리범위가 이러한 실시예 및 시험예로 한정되는 것은 아니고, 당업계에서 통상적으로 주지된 변형, 치환 및 삽입 등을 수행할 수 있으며, 이에 대한 것도 본 발명의 범위에 포함된다.Hereinafter, the content of the present invention will be described in more detail through preparation examples and test examples. However, these Examples and Test Examples are only presented to understand the content of the present invention, and the scope of the present invention is not limited to these Examples and Test Examples, and modifications and substitutions commonly known in the art and insertion may be performed, and this is also included in the scope of the present invention.

[제조예][Production Example]

본 발명의 일 실시예에 따른 유전자재조합 대장균을 하기의 방법에 따라 제조하였다.Recombinant E. coli according to an embodiment of the present invention was prepared according to the following method.

배지 및 배양조건Medium and culture conditions

세포 증식, 접종 준비 및 결손 플라스미드 제조를 위하여, 모든 대장균 균주들을 LB(Luria-Bertani) 배지 또는 아가플레이트에서 37℃에서 성장시켰다. 상기 LB 배지는 1L 기준 트립톤 10 g, NaCl 5 g, 효모추출물 5 g을 포함한다. 다양한 농도의 적절한 항생제 또는 수크로스(sucrose), 구체적으로 100 μg/ml의 앰피실린(ampicillin), 25 μg/ml의 클로람페니콜(chloramphenicol) 및 10% 수크로스를 더 포함하는 LB 배지에서 플라스미드가 제거된 콜로니(colony)를 선택하였다.For cell proliferation, inoculation preparation and deletion plasmid preparation, all E. coli strains were grown at 37°C in LB (Luria-Bertani) medium or agar plate. The LB medium contains 10 g of tryptone in 1L, 5 g of NaCl, and 5 g of yeast extract. The plasmid was removed from the LB medium further containing various concentrations of appropriate antibiotics or sucrose, specifically 100 μg/ml ampicillin, 25 μg/ml chloramphenicol and 10% sucrose. Colonies were selected.

CRISPR 시스템을 이용한 유전자결손 대장균 균주 제작을 위한 배지 및 배양조건으로는, LB 배지에 다양한 농도의 적절한 항생제 또는 아라비노오즈(L-arabinose), IPTG(Isopropyl

Figure pat00001
-D-1-thiogalactopyranoside)를 포함시켰으며, 구체적으로는 25 μg/ml의 카나마이신 (kanamycin), 50 μg/ml의 스펙티노마이신 (spectinomycin), 10 mM의 아라비노오즈, 0.5 mM의 IPTG를 첨가하였다. 아라비노오즈를 포함하는 LB 배지에서 유전자 재조합을 유도하였고, 재조합이 완료되어 유전자가 결손된 대장균주는 플라스미드를 제거하기 위하여 IPTG를 첨가하고 LB 배지에서 하루 동안 배양하였다.As the medium and culture conditions for the production of the gene-defective E. coli strain using the CRISPR system, appropriate antibiotics or arabinose (L-arabinose), IPTG (Isopropyl) at various concentrations in LB medium
Figure pat00001
-D-1-thiogalactopyranoside), specifically 25 μg/ml of kanamycin, 50 μg/ml of spectinomycin, 10 mM of arabinose, and 0.5 mM of IPTG were added did. Gene recombination was induced in LB medium containing arabinose, and when the recombination was completed, the E. coli strain in which the gene was deleted was added with IPTG to remove the plasmid and cultured in LB medium for one day.

박테리아 균주 및 플라스미드Bacterial strains and plasmids

E.coli 유전자 스톡으로부터 E.coli AB2834 균주를 얻었다. 대장균 E. coli DH5α(구입처: TaKaRa)를 재조합 플라스미드 제조 시 호스트로 사용하였다. E. coli K12는 (Genetic Resources at YaleCGSC, The Coli Genetic Stock Center)로부터 구입한 것을 사용하였다. 플라스미드 pUC19(구입처: Addgene)를 유전자 결손을 위한 중간 벡터로 사용하였다. 플라스미드 pKOV(구입처: Addgene)을 제한효소(업스트립 절편: BamHI & XbaI, 다운스트림 절편: XbaI & SalI)의 사용에 의한 결손 벡터로서 사용하였다. 제조된 플라스미드는 시퀀싱 및 제한효소분석에 의해 확인하였다. 본 실험에서 사용되거나 제조된 모든 균주들 및 플라스미드들을 하기 표 1 및 표 2에 나열하였다. 하기 표 2에서 용어 "UP & DOWN"은 타겟 유전자들을 결손(deletion)시키기 위한 플라스미드의 제조시 결손되는 유전자의 위쪽 유전자 단편인 up region(up steam, left region, forward region) 및 유전자 아래쪽 단편인 down region(down steam, right region)을 의미한다. E. coli AB2834 strain was obtained from the E. coli gene stock. E. coli DH5α (purchased from: TaKaRa) was used as a host in the preparation of the recombinant plasmid. E. coli K12 was purchased from (Genetic Resources at YaleCGSC, The Coli Genetic Stock Center). Plasmid pUC19 (purchased from Addgene) was used as an intermediate vector for gene deletion. Plasmid pKOV (purchased from Addgene) was used as a deletion vector by the use of restriction enzymes (upstrip fragment: BamHI & XbaI , downstream fragment: XbaI & SalI). The prepared plasmid was confirmed by sequencing and restriction enzyme analysis. All strains and plasmids used or prepared in this experiment are listed in Tables 1 and 2 below. In Table 2 below, the term "UP &DOWN" refers to an up region (up steam, left region, forward region), which is an upstream gene fragment of a gene that is deleted during the preparation of a plasmid for deletion of target genes, and down, a fragment below the gene. It means region (down steam, right region).

본 실험에서, 표준 프로토콜이 중합효소연쇄반응(polymerase chain reactions, PCR) 증폭, DNA 정제, 플라스미드 추출, 효소 절단(restriction) 및 라이게이션(ligation) 반응을 위해 사용되었다. 본 실험에 사용된 프라이머들은 하기 표 3에 나열하였다.In this experiment, standard protocols were used for polymerase chain reactions (PCR) amplification, DNA purification, plasmid extraction, enzyme restriction and ligation reactions. The primers used in this experiment are listed in Table 3 below.

미생물(microbe( E. coliE. coli )) 관련 특성Related characteristics E. coli DH5α E. coli DH5α lacZ ¢M15 hsdR recA lacZ ¢ M15 hsdR recA E. coli AB2834 E. coli AB2834 -- E. coli K12 E. coli K12 -- E. coli K12 △K E. coli K12 △K E. coli K12 △aroK E. coli K12 △aroK E. coli K12 △L E. coli K12 △L E. coli K12 △aroL E. coli K12 △aroL E. coli K12 △KL E. coli K12 △KL E. coli K12 △aroK△aroL E. coli K12 △aroK △aroL △RGA△RGA AB2834 △tyrR△ptsG△pykA AB2834 △tyrR △ptsG △pykA △RGAKL△RGAKL AB2834 △tyrR△ptsG△pykA△aroK△aroL AB2834 △tyrR △ptsG △pykA △aroK △aroL △RGAKL/PoppA-aroE△RGAKL/PoppA-aroE AB2834 △tyrR△ptsG△pykA△aroK△aroL / PoppA-aroEAB2834 △tyrR △ptsG △pykA △aroK △aroL / PoppA-aroE △RGAKL△lacI::BDGFPA/Poppa-aroE△RGAKL △lacI::BDGFPA/Poppa-aroE AB2834 △tyrR△ptsG△pykA△aroK△aroL△lacI:: Plac-aroG-aroF-Plac_aroB-aroD-Plac-galP-ppsA / PoppA-aroE AB2834 △tyrR △ptsG △pykA △aroK △aroL △lacI :: Plac-aroG-aroF-Plac_aroB-aroD-Plac-galP-ppsA / PoppA-aroE △RGAKL△shiA△lacI::BDGFPA/Poppa-aroE△RGAKL△shiA△lacI::BDGFPA/Poppa-aroE AB2834 △tyrR△ptsG△pykA△aroK△aroL△shiA△lacI:: Plac-aroG-aroF-Plac_aroB-aroD-Plac-galP-ppsA / PoppA-aroE AB2834 △tyrR △ptsG △pykA △aroK △aroL △shiA △lacI :: Plac-aroG-aroF-Plac_aroB-aroD-Plac-galP-ppsA / PoppA-aroE △RGAKL△ydiN△lacI::BDGFPA/Poppa-aroE△RGAKL △ydiN △lacI::BDGFPA/Poppa-aroE AB2834 △tyrR△ptsG△pykA△aroK△aroL△ydiN△lacI:: Plac-aroG-aroF-Plac_aroB-aroD-Plac-galP-ppsA / PoppA-aroE AB2834 △tyrR △ptsG △pykA △aroK △aroL △ydiN △lacI :: Plac-aroG-aroF-Plac_aroB-aroD-Plac-galP-ppsA / PoppA-aroE △RGAKL△shiA△ydiN △lacI::BDGFPA/Poppa-aroE△RGAKL △shiA △ydiN △lacI::BDGFPA/Poppa-aroE AB2834 △tyrR△ptsG△pykA△aroK△aroL△shiA△ydiN△lacI:: Plac-aroG-aroF-Plac_aroB-aroD-Plac-galP-ppsA / PoppA-aroE AB2834 △tyrR △ptsG △pykA △aroK △aroL △shiA △ydiN △lacI :: Plac-aroG-aroF-Plac_aroB-aroD-Plac-galP-ppsA / PoppA-aroE △RGAKL△lacI::BDGFPA/Poppa-aroE-tktA△RGAKL △lacI::BDGFPA/Poppa-aroE-tktA AB2834 △tyrR△ptsG△pykA△aroK△aroL△lacI:: Plac-aroG-aroF-Plac_aroB-aroD-Plac-galP-ppsA / PoppA-aroE-tktA AB2834 △tyrR △ptsG △pykA △aroK △aroL △lacI :: Plac-aroG-aroF-Plac_aroB-aroD-Plac-galP-ppsA / PoppA-aroE-tktA △RGAKL△shiA△lacI::BDGFPA/Poppa-aroE-tktA△RGAKL △shiA △lacI::BDGFPA/Poppa-aroE-tktA AB2834 △tyrR△ptsG△pykA△aroK△aroL△shiA△lacI:: Plac-aroG-aroF-Plac_aroB-aroD-Plac-galP-ppsA / PoppA-aroE-tktA AB2834 △tyrR △ptsG △pykA △aroK △aroL △shiA△lacI :: Plac-aroG-aroF-Plac_aroB-aroD-Plac-galP-ppsA / PoppA-aroE-tktA △RGAKL△ydiN△lacI::BDGFPA/Poppa-aroE-tktAΔRGAKLΔydiNΔlacI::BDGFPA/Poppa-aroE-tktA AB2834 △tyrR△ptsG△pykA△aroK△aroL△ydiN△lacI:: Plac-aroG-aroF-Plac_aroB-aroD-Plac-galP-ppsA / PoppA-aroE-tktA AB2834 △tyrR △ptsG △pykA △aroK △aroL △ydiN △lacI :: Plac-aroG-aroF-Plac_aroB-aroD-Plac-galP-ppsA / PoppA-aroE-tktA △RGAKL△shiA△ydiN △lacI::BDGFPA/Poppa-aroE-tktA△RGAKL △shiA △ydiN △lacI::BDGFPA/Poppa-aroE-tktA AB2834 △tyrR△ptsG△pykA△aroK△aroL△shiA△ydiN△lacI:: Plac-aroG-aroF-Plac_aroB-aroD-Plac-galP-ppsA / PoppA-aroE-tktA AB2834 △tyrR △ptsG △pykA △aroK △aroL △shiA △ydiN △lacI :: Plac-aroG-aroF-Plac_aroB-aroD-Plac-galP-ppsA / PoppA-aroE-tktA

플라스미스(벡터)Plasmi (vector) 관련 특성Related characteristics pUC19pUC19 AmpR, lacZα, f1 ori, lac promoter(multiple cloning site)Amp R , lacZ α, f1 ori, lac promoter (multiple cloning site) pKOVpKOV CmR, sacB, Rep101, f1 oriCm R , sacB , Rep101, f1 ori pKOV-△lacI pKOV- △ lacI lacI UP & DOWN 함유 pKOV pKOV containing lacI UP & DOWN pKOV-△lacI:: Plac-aroGFBD, galP, ppsA pKOV- △ lacI :: Plac-aroGFBD, galP, ppsA lac 프로모터, galP, ppsA, aroG, aroF, aroB 및 aroD 함유 pKOV-△lacI lac promoter, galP, ppsA, aroG, aroF , aroB and aroD containing pKOV- △ lacI pMESKpMESK AmpR, lacZα, f1 ori, lac promoter(multiple cloning site), RBS 함유Contains Amp R , lacZ α, f1 ori, lac promoter (multiple cloning site), RBS PoppAPopA oppA 유전자 프로모터 삽입 pMESK Insert the oppA gene promoter pMESK PoppA-aroEPoppA-aroE aroE 함유 PoppA PoppA with aroE PoppA-aroE-tktAPoppA-aroE-tktA aroEtktA 함유 PoppA aroE and tktA containing PoppA

프라이머primer 서열번호Sequence number Sequence (5'→3')Sequence (5'→3') TargetTarget lacI_UP_F lacI _UP_F 1919 ATTCGGATCCTGCTCATCCATGACCTGACCATTCGGATCCTGCTCATCCATGACCTGACC AB2834AB2834 lacI_UP_R lacI _UP_R 2020 GAACTCTAGATAATGCAGCTGGCACGACAGGAACTCTAGATAATGCAGCTGGCACGACAG AB2834AB2834 lacI_DOWN_F lacI _DOWN_F 2121 ATGGTCTAGAGAATGTAATTCAGCTCCGCCATGGTCTAGAGAATGTAATTCAGCTCCGCC AB2834AB2834 lacI_DOWN_R lacI _DOWN_R 2222 ATGCGTCGACTTGTGCGCTCAGTATAGGAAGATGCGTCGACTTGTGCGCTCAGTATAGGAAG AB2834AB2834 aroK_UP_F aroK_ UP_F 2323 TTTCGCACCTGGGATCCAATACGCCTGCGCGGACATTTTTTCGCACCTGGGATCCAATACGCCTGCGCGGACATTT AB2834AB2834 aroK_UP_R aroK_ UP_R 2424 CGACTCTAGAGGATCCGTTGGCCAATGAACGCAATCCCGACTCTAGAGGATCCGTTGGCCAATGAACGCAATCC AB2834AB2834 aroK_DOWN_F aroK_ DOWN_F 2525 TCCTCTAGAGTCGACTTGAGTTGTTGAGCTAACTGGTCCTCTAGAGTCGACTTGAGTTGTTGAGCTAACTGG AB2834AB2834 aroK_DOWN_R aroK_ DOWN_R 2626 CCATTCTCCGGTCGATCTGCTGGCCTCACATCTTCCCATTCTCCGGTCGATCTGCTGGCCTCACATCTTC AB2834AB2834 aroL_UP_F aroL_ UP_F 2727 TTCGCACCTGGGATCGACGCGTGTCCCAATGTAATTTCGCACCTGGGATCGACGCGTGTCCCAATGTAAT AB2834AB2834 aroL_UP_R aroL_ UP_R 2828 CACCTGGCTGGGTTCACGGTTAAGCGAATCGGCAACACCTGGCTGGGTTCACGGTTAAGCGAATCGGCAA AB2834AB2834 aroL_DOWN_F aroL_ DOWN_F 2929 GAACCCAGCCAGGTGATTTCGAACCCAGCCAGGTGATTTC AB2834AB2834 aroL_DOWN_R aroL_ DOWN_R 3030 CGACTCTAGAGGATCTGAAGCACCACTGCTGACACCGACTCTAGAGGATCTGAAGCACCACTGCTGACAC AB2834AB2834 sgRNA-shiA-FsgRNA-shiA-F 3131 GTCCTAGGTATAATACTAGTATTCAGGGATTTGCAGTCGGGTTTTAGAGCTAGAAATAGCGTCCTAGGTATAATACTAGTATTCAGGGATTTGCAGTCGGGTTTTAGAGCTAGAAATAGC AB2834AB2834 sgRNA-HindIII-RsgRNA-HindIII-R 3232 TAATAGATCTAAGCTTCTGCAGGTCGACTCTTAATAGATCTAAGCTTCTGCAGGTCGACTCT AB2834AB2834 shiA_UP_F shiA_ UP_F 3333 GACCTGCAGAAGCTAATATGGATGACAACAAAGTGACCTGCAGAAGCTAATATGGATGACAACAAAGT AB2834AB2834 shiA_UP_R shiA_ UP_R 3434 GTCGACGACGGCACCAGCGAAGCTGCGTCGACGACGGCACCAGCGAAGCTGC AB2834AB2834 shiA_DOWN_F shiA_ DOWN_F 3535 GGTGCCGTCGTCGACAAAGACAGTCAACGCGCTTGGTGCCGTCGTCGACAAAGACAGTCAACGCGCTT AB2834AB2834 shiA_DOWN_R shiA_ DOWN_R 3636 AATAGATCTAAGCTTCCAGTTCTGTTGTCGGGAAGAATAGATCTAAGCTTCCAGTTCTGTTGTCGGGAAG AB2834AB2834 sgRNA-ydiN-FsgRNA-ydiN-F 3737 GTCCTAGGTATAATACTAGTGTGGATGCCCAAATATGCGAGTTTTAGAGCTAGAAATAGCGTCCTAGGTATAATACTAGTGTGGATGCCCAAATATGCGAGTTTTAGAGCTAGAAATAGC AB2834AB2834 ydiN_UP_F ydiN_ UP_F 3838 TTCTCTAGAGTCGACGCAATATTCTTTTCAGGTCATTCTCTAGAGTCGACGCAATATTCTTTTCAGGTCA AB2834AB2834 ydiN_UP_R ydiN_ UP_R 3939 CGCACACTGCCAGACCGTAGGCGAGACGCACACTGCCAGACCGTAGGCGAGA AB2834AB2834 ydiN_DOWN_F ydiN_ DOWN_F 4040 GTCTGGCAGTGTGCGTTTGTTATTCCACTGATTACGTCTGGCAGTGTGCGTTTGTTATTCCACTGATTAC AB2834AB2834 ydiN_DOWN_R ydiN_ DOWN_R 4141 CTTCTGCAGGTCGACGCCATCATCATTAACGATGGCTTCTGCAGGTCGACGCCATCATCATTAACGATGG AB2834AB2834 ptsG_UP_F ptsG _UP_F 4242 TTACATATGCGGGATCCGGTAGGCGAACGTTTACATATGCGGGATCCGGTAGGCGAACGT AB2834AB2834 ptsG_UP_R ptsG _UP_R 4343 CATGGTTTTAACCATCTAGACATAGGCAACAACTCGAGCCAGCGCGGATACATGGTTTTAACCATCTAGACATAGGCAACAACTCGAGCCAGCGCGGATA AB2834AB2834 ptsG_DOWN_F ptsG _DOWN_F 4444 TCCACGCGATTCTAGAAGGCCTGGCATTCCCAAGCTTTATTCTTCTGGGGTCCACGCGATTCTAGAAGGCCTGGCATTCCCAAGCTTTATTCTTCTGGGG AB2834AB2834 ptsG_DOWN_R ptsG _DOWN_R 4545 GTCGACCTACGCCAGCTATAGTCGACCTACGCCAGCTATA AB2834AB2834 tyrR_UP_F tyrR _UP_F 4646 CAGGTGATGGATGTCGACAAACCACTACCGCAGGTGATGGATGTCGACAAACCACTACCG AB2834AB2834 tyrR_UP_R tyrR _UP_R 4747 TCGACAGAGAGCAAAGCTTCAGGCAACGCCTCGACAGAGAGCAAAGCTTCAGGCAACGCC AB2834AB2834 tyrR_DOWN_F tyrR _DOWN_F 4848 ACTGACACAACTCGAGGGTTCTGAGCTGCGACTGACACAACTCGAGGGTTCTGAGCTGCG AB2834AB2834 tyrR_DOWN_R tyrR _DOWN_R 4949 GCATCGCAACGCCTGGATCCGCCAATAGCTGCATCGCAACGCCTGGATCCGCCAATAGCT AB2834AB2834 pykA_UP_F pykA _UP_F 5050 CGTTTCTAGACACCGTCTCGAGGTTCAGTTCGACCGTTTCTAGACACCGTCTCGAGGTTCAGTTCGAC AB2834AB2834 pykA_UP_R pykA _UP_R 5151 CCGCCAAGGATCCGTGATCCCATTCTCCGCCAAGGATCCGTGATCCCATTCT AB2834AB2834 pykA_DOWN_F pykA _DOWN_F 5252 CAACCGCGCCGTCGACTTGCTCCAACCGCGCCGTCGACTTGCTC AB2834AB2834 pykA_DOWN_R pykA _DOWN_R 5353 CAAACGGCTTCTAGACGTTCAAGCTTGGCAACAACAAACGGCTTCTAGACGTTCAAGCTTGGCAACAA AB2834AB2834 aroE_OVER_F aroE _OVER_F 5454 GGAGATATACATATGGAAACCTATGCTGTTTTGGAGATATACATATGGAAACCTATGCTGTTTT AB2834AB2834 aroE_OVER_R aroE _OVER_R 5555 TCGGGGCAAGCTTAATCACGCGGACAATTCCTCCTCGGGGCAAGCTTAATCACGCGGACAATTCCTCC AB2834AB2834 tktA_OVER_F tktA _OVER_F 5656 GTCCGCGTGAAGCTTAAGGGCGTGCCCTTCATCATGTCCGCGTGAAGCTTAAGGGCGTGCCCTTCATCAT AB2834AB2834 tktA_OVER_R tktA _OVER_R 5757 TGTCGGGGCAAGCTTTAATTACAGCAGTTCTTTTGTGTCGGGGCAAGCTTTAATTACAGCAGTTCTTTTG AB2834AB2834 aroG_OVER_F aroG _OVER_F 5858 AGGAGATATACTCGAATGAATTATCAGAACGACGAAGGAGATATACTCGAATGAATTATCAGAACGACGA AB2834AB2834 aroG_OVER_R aroG _OVER_R 5959 GAATTCGATTCTCGATTACCCGCGACGCGCTTTTAGAATTCGATTCTCGATTACCCGCGACGCGCTTTTA AB2834AB2834 aroF_OVER_F aroF _OVER_F 6060 CTCCCGGCCGCCATGATAAACCTCTTAAGCCACGCCTCCCGGCCGCCATGATAAACCTCTTAAGCCACGC AB2834AB2834 aroF_OVER_R aroF _OVER_R 6161 CCCGCGGCCGCCATGTACGTCATCCTCGCTGAGGACCCGCGGCCGCCATGTACGTCATCCTCGCTGAGGA AB2834AB2834 aroB_OVER_F aroB _OVER_F 6262 GAGGGAGTCCAAAAAACAATGGAGAGGATTGTCGTTACTCTCGGAGGGAGTCCAAAAAACAATGGAGAGGATTGTCGTTACTCTCG AB2834AB2834 aroB_OVER_R aroB _OVER_R 6363 TTTACAGTTACGGTTTTCATTACGCTGATTGACAATCGGTTTACAGTTACGGTTTTCATTACGCTGATTGACAATCGG AB2834AB2834 aroD_OVER_F aroD _OVER_F 6464 TTGTCAATCAGCGTAATGAAAACCGTAACTGTAAAAGATTGTCAATCAGCGTAATGAAAACCGTAACTGTAAAAGA AB2834AB2834 aroD_OVER_R aroD _OVER_R 6565 GGCGGGTGTCGGGGCAAGCTTTTATGCCTGGTGTAAAATAGTTGGCGGGTGTCGGGGCAAGCTTTTATGCCTGGTGTAAAATAGTT AB2834AB2834 galP_OVER_F galP _OVER_F 6666 AGGAGATATACTCGAATGCCTGACGCTAAAAAACAAGGAGATATACTCGAATGCCTGACGCTAAAAAACA AB2834AB2834 galP_OVER_R galP _OVER_R 6767 GAATTCGATTCTCGAGGAGATTAATCGTGAGCGCCGAATTCGATTCTCGAGGAGATTAATCGTGAGCGCC AB2834AB2834 ppsA_OVER_F ppsA _OVER_F 6868 CTCCCGGCCGCCATGCACATAACCCCGGCGACTAACTCCCGGCCGCCATGCACATAACCCCGGCGACTAA AB2834AB2834 ppsA_OVER_R ppsA _OVER_R 6969 CCCGCGGCCGCCATGCACAAAAGGATTGTTCGATGCCCGCGGCCGCCATGCACAAAAGGATTGTTCGATG AB2834AB2834

유전자재조합genetic recombination

유전자 제거 및 효소 과발현을 위한 유전자 도입이 상동 재조합 시스템에 사용되었다. 먼저, 전기천공법(tyrR, ptsG, pykA 유전자 결손) 또는 CRISPR/Cas 시스템(aroK, aroL, shiA, ydiN 유전자 결손)에 의해 결손벡터 및 과발현벡터를 수용 균주에 삽입하고, 단일 재조합을 PCR 증폭에 의해 확인하였다. 이중(double) 재조합 균주들을 25 mg/L의 클로람페니콜 및 10 % 수크로스를 포함하는 LB 플레이트에 선택하고, PCR 증폭을 통해 확인하였다. 모든 제조된 플라스미드들은 시퀸싱 및 제한효소 분석에 의해 확인하였다.Gene removal and gene introduction for enzyme overexpression were used in the homologous recombination system. First, the deletion vector and the overexpression vector were inserted into the recipient strain by electroporation (deletion of tyrR, ptsG, pykA gene) or CRISPR/Cas system ( deletion of aroK, aroL, shiA, ydiN gene), and a single recombination was performed for PCR amplification. was confirmed by Double recombinant strains were selected on LB plates containing 25 mg/L of chloramphenicol and 10% sucrose, and confirmed by PCR amplification. All prepared plasmids were confirmed by sequencing and restriction enzyme analysis.

플라스크 배양 조건Flask culture conditions

뮤턴트 균주들을 스톡으로부터 분리하여 적절한 항생제들을 함유한 LB 고체배지에 획선도말법(streaking)에 의해 접종하여 37℃에서 16시간 이상 배양 하였다. 1차 성장배양(1st seed culture)은 24 well 플레이트에 LB 배지 1.3ml를 사용하여 단일 콜로니(single colony)를 접종하고 220rpm, 30℃에서 15시간 동안 배양 함으로써 이루어졌다. 2차 성장배양(2nd seed culture)은 마찬가지로 24 well 플레이트에 LB 배지 1.3ml를 사용하여 1차 성장배양액의 13㎕를 접종하고 220rpm, 30℃에서 6시간 동안 배양함으로써 이루어졌다. 이후 본배양(main culture)은 24 well 플레이트에 E. coli 생산배지인 E. coli production media(EPM) 배지 1.3ml를 사용하여 2차 성장배양액의 1.3㎕를 접종하고 220rpm, 30℃에서 96시간 동안 배양함으로써 이루어졌다.Mutant strains were isolated from the stock and inoculated into LB solid medium containing appropriate antibiotics by streaking, and incubated at 37° C. for 16 hours or more. The primary growth culture (1 st seed culture) was performed by inoculating a single colony using 1.3ml of LB medium in a 24-well plate and culturing at 220rpm, 30℃ for 15 hours. The secondary growth culture (2 nd seed culture) was done by inoculating 13 μl of the primary growth culture solution using 1.3 ml of LB medium in a 24-well plate and culturing at 220 rpm, 30° C. for 6 hours. After that, the main culture was inoculated with 1.3 μl of the secondary growth medium using 1.3 ml of E. coli production media (EPM) medium, which is an E. coli production medium, in a 24-well plate, and inoculated at 220 rpm, 30° C. for 96 hours. This was done by culturing.

유전자 과발현 대장균의 제조Preparation of gene overexpression E. coli

상기 실험에서 상기 수용균주에 과발현벡터를 삽입하여 타겟유전자가 코딩하는 효소를 과발현시키는 방법은 하기와 같다.A method for overexpressing an enzyme encoded by a target gene by inserting an overexpression vector into the recipient strain in the above experiment is as follows.

galP, ppsA, aroG, aroF, aroB galP, ppsA, aroG, aroF, aroB And aroDaroD 유전자 과발현 gene overexpression

-과발현 벡터(플라스미드) 제작단계: lacI 유전자를 제거하기 위해 lacI 유전자의 up region과 down region을 대장균 자살벡터인 pKOV vector에 클로닝하여 lacI 유전자 결손 벡터인 pKOV-βlacI를 구축하고, 이때, lacI 유전자 위치에 추가적으로 과발현할 효소를 코딩하는 유전자를 삽입하기 위해 up region과 down region 사이의 Xba I 제한효소 site를 남겨두었다. 그 다음 과발현하고자 하는 효소를 코딩하는 유전자(galP, ppsA, aroG, aroF, aroB, aroD)와 lac 프로모터를 상기 pKOV-βlacI에 클로닝하여, 과발현 통합 벡터(integration vector)를 제작하였다(도 2 참조).- over-expression vector (plasmid) Preparation step: in order to remove the lacI gene of lacI gene cloned region up and down region in E. coli, a suicide vector, pKOV vector by building the lacI pKOV- βlacI gene-deficient vector, and this time, lacI gene position Xba I restriction enzyme sites between the up and down regions were left in order to insert the gene encoding the enzyme to be overexpressed in addition. Then, the gene encoding the enzyme to be overexpressed ( galP, ppsA, aroG, aroF, aroB, and aroD ) and the lac promoter were cloned into the pKOV- βlacI to construct an overexpression integration vector (see FIG. 2 ). ).

-형질전환 단계: 준비한 과발현벡터를 원하는 균주에 도입하기 위해 균주를 OD600에서 0.8과 1사이의 균주를 취하여 10% 글리세롤를 이용하여 배지를 제거한다. 10% 글리세롤에 현탁한 세포 50μl에 준비한 과발현벡터 DNA 2μl를 섞어서 BioRad Micro Pulsar의 기계와 2mm 간격의 큐벳(Cuvette)을 이용해 전기천공법을 수행한다. 상기 세포에 LB 배지를 1ml을 첨가한 후 30℃에서 한시간 배양하고, 이를 클로람페니콜이 첨가된 LB 플레이트에 도말한 후 30℃에서 배양한 후 형질전환체를 선별한다.-Transformation step: To introduce the prepared overexpression vector into the desired strain, take a strain between 0.8 and 1 at an OD 600 and remove the medium using 10% glycerol. Electroporation is performed by mixing 2 μl of the prepared overexpression vector DNA with 50 μl of cells suspended in 10% glycerol and using a BioRad Micro Pulsar machine and a cuvette with a spacing of 2 mm. After 1 ml of LB medium was added to the cells, the cells were cultured at 30° C. for one hour, spread on an LB plate to which chloramphenicol was added, and then cultured at 30° C., and then transformants were selected.

-단일 재조합(single recombination) 유도 단계: 형질전환체에서 단일 재조합을 유도하기 위해서 37℃로 온도를 올려준 후 클로람페니콜이 첨가된 LB 배지에 배양한 후 클로람페니콜이 첨가된 LB 플레이트에 도말한 후 37℃에서 키워 크로모좀에 단일 재조합 되지 않은 균주들을 제거한다.-Single recombination induction step: In order to induce single recombination in the transformant, the temperature was raised to 37°C, cultured in LB medium supplemented with chloramphenicol, plated on an LB plate supplemented with chloramphenicol, and then plated at 37°C Remove the single non-recombinant strains grown in the chromosome.

-이중 재조합(Double recombination) 유도 단계: 단일 재조합 된 균주를 항생제가 첨가되지 않은 LB 배지 37℃에서 배양하여 이중 재조합, 즉 유전자의 도입을 유도한다. 배양된 균주들을 10% 수크로스가 들어간 LB 플레이트에 도말하여 플레이트가 제거되고 추가로 도입된 유전자의 코딩 효소가 과발현된 균주를 선별한다.-Double recombination induction step: A single recombined strain is cultured at 37°C in LB medium without antibiotics to induce double recombination, that is, the introduction of genes. The cultured strains are spread on an LB plate containing 10% sucrose, the plate is removed, and strains overexpressing the coding enzyme of the introduced gene are selected.

유전자 결손 대장균의 제조Preparation of gene-defective E. coli

상기 실험에서 상기 수용균주에 결손벡터를 삽입하여 타겟유전자를 결손시키는 방법은 하기와 같다.The method of inserting the deletion vector into the recipient strain in the above experiment to delete the target gene is as follows.

tyrR, ptsG, pykA, aroL, aroK tyrR, ptsG, pykA, aroL, aroK 유전자 결손gene deletion

-결손벡터(플라스미드) 제작 단계: 결손하고자 하는 유전자(tyrR, ptsG, pykA)의 up region과 down region을 대장균 자살벡터인 pKOV vector에 클로닝 하고, 상기 유전자를 플라스미트 프렙 키트(plasmid prep kit)를 이용하여 3차 증류수에 녹인 순수한 DNA를 준비한다.-Deletion vector (plasmid) production step: clone the up region and down region of the gene to be deleted ( tyrR, ptsG, pykA ) into pKOV vector, an Escherichia coli suicide vector, and prepare the gene with a plasmid prep kit Prepare pure DNA dissolved in tertiary distilled water using

-형질전환 단계: 준비한 결손벡터를 원하는 균주에 도입하기 위해 균주를 OD600에서 0.8과 1사이의 균주를 취하여 10% 글리세롤를 이용하여 배지를 제거한다. 10% 글리세롤에 현탁한 세포 50μl에 준비한 결손벡터 DNA 2μl를 섞어서 BioRad Micro Pulsar의 기계와 2mm 간격의 큐벳(Cuvette)을 이용해 전기천공법을 수행한다. 상기 세포에 LB 배지를 1ml을 첨가한 후 30℃에서 한시간 배양하고, 이를 클로람페니콜이 첨가된 LB 플레이트에 도말한 후 30℃에서 배양한 후 형질전환체를 선별한다.-Transformation step: To introduce the prepared defect vector into the desired strain, take a strain between 0.8 and 1 at an OD 600 and remove the medium using 10% glycerol. 2 μl of the prepared deletion vector DNA is mixed with 50 μl of cells suspended in 10% glycerol, and electroporation is performed using a BioRad Micro Pulsar machine and a cuvette with a spacing of 2 mm. After 1 ml of LB medium was added to the cells, the cells were cultured at 30° C. for one hour, spread on an LB plate to which chloramphenicol was added, and then cultured at 30° C., and then transformants were selected.

-단일 재조합(single recombination) 유도 단계: 형질전환체에서 단일 재조합을 유도하기 위해서 37℃로 온도를 올려준 후 클로람페니콜이 첨가된 LB 배지에 배양한 후 클로람페니콜이 첨가된 LB 플레이트에 도말한 후 37℃에서 키워 크로모좀에 단일 재조합되지 않은 균주들을 제거한다.-Single recombination induction step: In order to induce single recombination in the transformant, the temperature was raised to 37°C, cultured in LB medium supplemented with chloramphenicol, plated on an LB plate supplemented with chloramphenicol, and then plated at 37°C to remove single non-recombinant strains in the chromosome.

-이중 재조합(Double recombination) 유도 단계: 단일 재조합된 균주를 항생제가 첨가되지 않은 LB 배지 37℃에서 배양하여 이중 재조합, 즉 유전자의 결손을 유도한다. 배양된 균주들을 10% 수크로스가 들어간 LB 플레이트에 도말하여 플레이트가 제거되고 유전자가 결손된 균주를 선별한다.-Double recombination induction step: A single recombined strain is cultured at 37° C. in LB medium without antibiotics to induce double recombination, that is, gene deletion. The cultured strains are spread on an LB plate containing 10% sucrose, the plate is removed, and the gene-defective strain is selected.

shiA, ydiN shiA, ydiN 유전자 결손gene deletion

-결손벡터(플라스미드) 제작 단계: 결손하고자 하는 유전자( shiA, ydiN )에 특이적으로 결합가능한 sgRNA를 포함하고 up region과 down region을 pTarget vector에 클로닝한다. 상기 유전자를 플라스미트 프렙 키트(plasmid prep kit)를 이용하여 3차 증류수에 녹인 순수한 DNA를 준비한다. -Deletion vector (plasmid) production step: Include sgRNA capable of binding specifically to the gene to be deleted ( shiA, ydiN ) and clone the up and down regions into the pTarget vector. Pure DNA is prepared by dissolving the gene in tertiary distilled water using a plasmid prep kit.

-형질전환 단계: 준비한 결손벡터를 원하는 균주에 도입하기 전에, 유전자를 결손시키기 위한 대장균주에서 Cas 단백질이 발현되도록 pCas vector를 도입한 대장균주를 준비한다. 상기 균주를 카나마이신 첨가 LB 배지에 접종하여 30℃에서 하루동안 220 rpm으로 배양한다. -Transformation step: Before introducing the prepared deletion vector into the desired strain, prepare the E. coli strain into which the pCas vector is introduced so that the Cas protein is expressed in the E. coli strain for the deletion of the gene. The strain is inoculated into kanamycin-added LB medium and incubated at 30° C. for one day at 220 rpm.

위 배양액을 새로운 LB 배지 50 ml에 1% 접종하고, 카나마이신, 아라비노오즈를 같이 첨가하여 OD600에서 0.8과 1사이가 되도록 30℃에서 배양한다. 균주를 취하여 10% 글리세롤를 이용하여 배지를 제거한다. 10% 글리세롤에 현탁한 세포 50μl에 준비한 결손벡터 DNA 2μl를 섞어서 BioRad Micro Pulsar의 기계와 2mm 간격의 큐벳(Cuvette)을 이용해 전기천공법을 수행한다. 상기 세포에 LB 배지를 1ml을 첨가한 후 30℃에서 한 시간 배양하고, 이를 카나마이신, 스펙티노마이신이 첨가된 LB 플레이트에 도말한 후 30℃에서 배양한 후 형질전환체를 선별한다.1% of the above culture medium is inoculated into 50 ml of fresh LB medium, and kanamycin and arabinose are added together and incubated at 30° C. so that the OD 600 is between 0.8 and 1. Take the strain and remove the medium using 10% glycerol. 2 μl of the prepared deletion vector DNA is mixed with 50 μl of cells suspended in 10% glycerol, and electroporation is performed using a BioRad Micro Pulsar machine and a cuvette with a spacing of 2 mm. After adding 1 ml of LB medium to the cells, incubated at 30° C. for one hour, plated on an LB plate to which kanamycin and spectinomycin were added, and then cultured at 30° C., transformants are selected.

-이중 재조합(Double recombination) 확인 단계: 선별된 형질전환체는 카나마이신, 스펙티노마이신이 첨가된 LB 플레이트에 새롭게 배양하여 확보한 뒤, PCR 방법으로 결손이 완료된 균주를 선별한다. - Double recombination confirmation step: Selected transformants are newly cultured on an LB plate to which kanamycin and spectinomycin are added, and then, strains whose deletion is completed are selected by PCR.

-플라스미드 소실(curing) 단계: 결손 확인이 완료된 균주들은 결손벡터를 소실시키기 위해 IPTG가 포함된 LB 배지에 접종하여 30℃에서 하루동안 배양한다. 배양이 끝난 세포 배양액을 카나마이신이 포함된 LB 플레이트에 도말하여 단일 콜로니를 확보하고, 단일콜로니를 각각의 스펙티노마이신과 카나마이신 포함 LB 플레이트에 각각 취하여 스펙티노마이신 저항성이 없어진 재조합균주를 선별한다. 스펙티노마이신 저항성이 없어진 균주는 37℃에서 배양하여 온도민감성 origin 을 갖는 pCas 플라스미드를 소실시키고 최종적으로 카나마이신과 스펙티노마이신 저항성이 모두 없어진 균주를 선별한다. -Plasmid erasure (curing) step: In order to eliminate the deletion vector, strains for which the deletion has been completed are inoculated into LB medium containing IPTG and incubated at 30°C for one day. A single colony is secured by spreading the cultured cell culture solution on an LB plate containing kanamycin, and a single colony is taken on an LB plate containing spectinomycin and kanamycin, respectively, and a recombinant strain with no spectinomycin resistance is selected. The strain with no spectinomycin resistance is cultured at 37° C. to abolish the pCas plasmid having a temperature-sensitive origin, and finally, a strain with no resistance to both kanamycin and spectinomycin is selected.

aroE aroE And tktAtktA 유전자 과발현 벡터의 제조 Preparation of gene overexpression vectors

pMESK 플라스미드의 NdeI site에 E. coli K12 유래의 aroE 유전자를 클로닝하고, aroE 유전자의 업스트림에 pET21b 벡터 유래의 리보솜 결합 부위(rbs)를 포함하며, 상기 리보솜 결합 부위의 업스트림에 oppA 유전자의 프로모터를 클로닝하여 PoppA-aroE 플라스미드를 제조하였다 (도 4).Cloning the aroE gene derived from E. coli K12 into the NdeI site of the pMESK plasmid , including a ribosome binding site (rbs) derived from the pET21b vector upstream of the aroE gene, and cloning the promoter of the oppA gene upstream of the ribosome binding site to prepare a PoppA-aroE plasmid (FIG. 4).

또한, 상기 PoppA-aroE 플라스미드에서, 상기 aroE 유전자의 뒤쪽 HindIII site에 리보솜 결합 부위(rbs)를 포함한 tktA 유전자를 PCR하여 클로닝함으로써 PoppA-aroE-tktA 플라스미드를 제조하였다 (도 9).Further, in the above-PoppA aroE plasmid, by PCR, by cloning the tktA gene, including the ribosome binding site (rbs) to the HindIII site in the back of the aroE gene was prepared PoppA-aroE-tktA plasmid (Fig. 9).

상기 제조된 PoppA-aroE 플라스미드는 하기 표 4의 서열번호 70의 염기서열을 포함하며, PoppA-aroE-tktA 플라스미드는 하기 표 5의 서열번호 71의 염기서열을 포함한다.The prepared PoppA-aroE plasmid includes the nucleotide sequence of SEQ ID NO: 70 of Table 4, and the PoppA-aroE-tktA plasmid includes the nucleotide sequence of SEQ ID NO: 71 of Table 5 below.

Figure pat00002
Figure pat00002

Figure pat00003
Figure pat00003

Figure pat00004
Figure pat00004

시킴산 생산용 대장균의 제조Preparation of E. coli for shikimic acid production

상기에서 제조된 다양한 유전자 결손 및 효소 과발현 균주에 상기에서 제조된 aroE, tktA 과발현 벡터인 PoppA-aroE 또는 PoppA-aroE-tktA를 형질전환 시켜, 시킴산 생산용 대장균을 제조하였다.The various gene deletion and enzyme overexpression strains prepared above were transformed with the above-prepared aroE and tktA overexpression vectors, PoppA-aroE or PoppA-aroE-tktA, to prepare Escherichia coli for shikimic acid production.

[시험예 1] aroKaroL 유전자의 결손에 따른 시킴산 생산능 비교 시험[Test Example 1] Comparative test of shikimic acid production ability according to deletion of aroK and aroL genes

상기 제조예에서 제조한 aroK 및/또는 aroL 유전자가 결손된 균주를 LB 배지(박토트립톤 10.0g, 박토효모추출물 5.0g, NaCl 10.0g 함유)와 EPM(글루코오스 (5 g/L), 글리세롤 (10 g/L), 효모 추출물 (2.5 g/L), 트립톤 (2.5 g/L), KH2PO4 (7.5 g/L), MgSO4 (0.5 g/L), (NH4)2SO4 (3.5 g/L), NH4Cl (2.7 g/L), Na2SO4 (0.7 g/L), Na2HPO4·12H2O (9 g/L), 및 금속용액 (1 mL/L) 함유. 이때, 상기 금속용액은 FeSO4·7H2O (10 g/L), CaCl2·2H2O (2 g/L), ZnSO4·7H2O (2.2 g/L), MnSO4·4H2O (0.5 g/L), CuSO4·5H2O (1 g/L), (NH4)6Mo7O24·4H2O (0.1 g/L), 및 Na2B4O7·10H2O (0.02 g/L)를 함유함) 배지에서 플라스크 배양을 진행하였으며, HPLC 분석을 통하여 시킴산이 배양액에서 축적되고 있는지를 확인하였다. The aroK and/or aroL gene-deficient strain prepared in Preparation Example was treated with LB medium (containing 10.0 g of bactotrypton, 5.0 g of bacto yeast extract, and 10.0 g of NaCl) and EPM (glucose (5 g/L), glycerol ( 10 g/L), yeast extract (2.5 g/L), tryptone (2.5 g/L), KH 2 PO 4 (7.5 g/L), MgSO 4 (0.5 g/L), (NH 4 ) 2 SO 4 (3.5 g/L), NH 4 Cl (2.7 g/L), Na 2 SO 4 (0.7 g/L), Na 2 HPO 4 12H 2 O (9 g/L), and metal solution (1 mL) /L) In this case, the metal solution is FeSO 4 ·7H 2 O (10 g/L), CaCl 2 ·2H 2 O (2 g/L), ZnSO 4 ·7H 2 O (2.2 g/L), MnSO 4 .4H 2 O (0.5 g/L), CuSO 4 .5H 2 O (1 g/L), (NH 4 )6Mo 7 O 24 .4H 2 O (0.1 g/L), and Na 2 B 4 The flask was cultured in O 7 ·10H 2 O (containing 0.02 g/L) medium, and it was confirmed whether shikimic acid was accumulated in the culture solution through HPLC analysis.

구체적으로, 채취한 배양액 1㎖을 13000rpm에 10분 원심분리하여 세포를 분리하여 상등액을 0.25㎛ 멤브레인 필터에 여과하여 분석에 사용하였다. 생합성된 전구체들은 HPLC(고속액체크로마토그래피)로 분리-분석되었으며, 사용한 컬럼은 Aminex HPX-87H, 이동상은 5mM H2SO4, 유속은 0.6㎖/L, 분석온도는 30℃에서 수행되었다 (FRC-10A, SHIMADZU). UV 검출은 3-DHS (237㎚), 시킴산(shikimic acid) (263㎚) 에서 수행하였다. 정량분석을 위해 사용한 표준(standard) (3-DHS, Shikimic acid: Sigma 사)는 각각 증류수에 녹여 0.25㎛ 멤브레인에 여과하여 사용하였다.Specifically, 1 ml of the collected culture solution was centrifuged at 13000 rpm for 10 minutes to separate cells, and the supernatant was filtered through a 0.25 μm membrane filter and used for analysis. The biosynthesized precursors were separated-analyzed by HPLC (high-speed liquid chromatography), the column used was Aminex HPX-87H, the mobile phase was 5 mM H 2 SO 4 , the flow rate was 0.6 mL/L, and the analysis temperature was 30° C. (FRC) -10A, SHIMADZU). UV detection was performed in 3-DHS (237 nm), shikimic acid (263 nm). A standard (3-DHS, Shikimic acid: Sigma Co.) used for quantitative analysis was dissolved in distilled water, respectively, and filtered through a 0.25 μm membrane.

그 결과는 도 3에 나타내었으며, 도 3에 도시된 바와 같이, aroK 또는 aroL 유전자가 결손된 균주(E. coli K12△aroK, E. coli K12△aroL)에서는 표준 시킴산(shikimate standard)(Sigma 사)와 비교하였을 때, 같은 머무름 시간(retention time)에서 유사 피크가 확인되었으나, 흡광도를 확인하여 본 결과, 시킴산이 생산되지 않았음을 확인할 수 있었다. 반면, aroK aroL 유전자가 모두 결손된 균주(E. coli K12△aroK△aroL)에서는 LB 배지에서 배양한 경우 극미량의 시킴산이 생산되었으며, EPM 배지를 이용한 배양액에서는 시킴산이 생산되는 것을 확인할 수 있었다. 이로써 두 개의 유전자 모두를 결손시켜 경로를 차단한 경우에만 시킴산이 생산되는 것을 알 수 있었다.The results are shown in FIG. 3 , and as shown in FIG. 3 , in the aroK or aroL gene-deficient strain ( E. coli K12ΔaroK , E. coli K12ΔaroL ), shikimate standard (Sigma) G), a similar peak was confirmed at the same retention time, but as a result of confirming the absorbance, it was confirmed that shikimic acid was not produced. On the other hand, in the strain lacking both aroK and aroL genes ( E. coli K12ΔaroKΔaroL ), a very trace amount of shikimic acid was produced when cultured in LB medium, and it was confirmed that shikimic acid was produced in the culture medium using EPM medium. As a result, it was found that shikimic acid was produced only when the pathway was blocked by deleting both genes.

[시험예 2] tyrR, ptsG, pykA, aroKaroL, 유전자가 결손되고, aroE 유전자가 과발현된 대장균의 시킴산 생산량 평가[Test Example 2] tyrR, ptsG, pykA, aroK and aroL, gene deletion, evaluation of shikimic acid production in Escherichia coli overexpressing aroE gene

상기 제조예에서 제조한 tyrR, ptsG, pykA, aroK,aroL 유전자가 결손되고, aroE 유전자가 과발현된 대장균 (GRAKL-PoppA aroE_1, GRAKL-PoppA aroE_2(재현성))에 대하여 1차에서 12시간 배양, 2차에서 12시간 배양한 것을 제외하고는 상기 제조예에 기술된 배양 조건과 동일한 조건으로 배양한 후 배양액을 HPLC로 분석하였다. HPLC 분석 조건 및 방법은 상기 시험예 1과 동일한 방법으로 수행하였다. 대조군으로는 E. coli K12△aroK△aroL를 사용하였다. The tyrR, ptsG, pykA, aroK, and aroL genes prepared in Preparation Example are deleted, and the aroE gene is overexpressed in Escherichia coli (GRAKL-PoppA aroE_1, GRAKL-PoppA aroE_2 (reproducibility)) from the first culture for 12 hours, After culturing under the same conditions as the culture conditions described in Preparation Example, except for the secondary culture for 12 hours, the culture solution was analyzed by HPLC. HPLC analysis conditions and methods were performed in the same manner as in Test Example 1. As a control group, E. coli K12ΔaroKΔaroL was used.

그 결과는 도 5에 나타내었으며, 도 5에 도시된 바와 같이, 대조군인 E. coli K12 △aroK△aroL의 경우에는 0.61g/L의 생산성을 보인 반면, 본 발명에 따른 E. coli AB2834 βtyrRβptsGβpykAβaroKβaroL / PoppA-aroE 균주는 2.45 g/L, 2.53 g/L(재현성 실험)의 생산성을 보였음을 확인할 수 있었다. 이는 생합성 경로상의 유전자가 재설계되지 않은 대조군 균주에 비하여 본 발명에 따른 유전자재조합 대장균의 경우 4배 가량의 높은 시킴산 생산성을 나타냄을 보여준다.The results are shown in FIG. 5, and as shown in FIG. 5, the control group E. coli K12 ΔaroKΔaroL showed a productivity of 0.61 g/L, whereas the E. coli AB2834 βtyrRβptsGβpykAβaroKβaroL / It was confirmed that PoppA-aroE strain showed productivity of 2.45 g/L and 2.53 g/L (reproducibility test). This shows that the recombinant E. coli according to the present invention exhibits 4 times higher shikimic acid productivity than the control strain in which the gene on the biosynthetic pathway is not redesigned.

[시험예 3] galP, ppsA, aroG, aroF, aroB, 및 aroD 유전자의 과발현에 의한 대장균 내 시킴산 생산량 평가[Test Example 3] Evaluation of shikimic acid production in E. coli by overexpression of galP, ppsA, aroG, aroF, aroB, and aroD genes

상기 시험예 2에서의 E. coli AB2834 βtyrRβptsGβpykAβaroKβaroL / PoppA-aroE 균주에 더하여, galP, ppsA, aroG, aroF, aroB, 및 aroD 유전자가 추가로 과발현된 대장균에 대하여 상기 시험예 2에서와 동일한 방법으로 시킴산 생산량을 평가하였다. In addition to the E. coli AB2834 βtyrRβptsGβpykAβaroKβaroL / PoppA-aroE strain in Test Example 2, E. coli in which the galP, ppsA, aroG, aroF, aroB, and aroD genes were further overexpressed was subjected to the same method as in Test Example 2 above. Acid production was evaluated.

그 결과는 도 6에 나타내었으며, 도 6에 도시된 바와 같이, galP, ppsA, aroG, aroF, aroB, 및 aroD 유전자가 추가로 과발현된 E. coli AB2834 △tyrR△ptsG△pykA△aroK△aroL△lacI::Plac-galP-ppsA-Plac-aroG-aroF-Plac-aroB-aroD/PoppA-aroE 균주의 경우, 시킴산 생산량이 2.95 g/L, 3.18 g/L (재현성 시험)로서 가장 높은 것을 확인할 수 있었다.The results are shown in FIG. 6 , and as shown in FIG. 6 , E. coli AB2834 ΔtyrRΔptsGΔpykAΔaroKΔaroLΔ in which galP, ppsA, aroG, aroF, aroB, and aroD genes are additionally overexpressed In the case of the lacI::Plac-galP-ppsA-Plac-aroG-aroF-Plac-aroB-aroD/PoppA-aroE strain, it was confirmed that the production of shikimic acid was the highest at 2.95 g/L and 3.18 g/L (reproducibility test). could

[시험예 4] shiA 또는 ydiN 유전자의 추가 결손에 의한 대장균 내 시킴산 생산량 평가[Test Example 4] Evaluation of shikimic acid production in E. coli by additional deletion of shiA or ydiN gene

상기 시험예 3에서의 E. coli AB2834 △tyrR△ptsG△pykA△aroK△aroL△lacI:: Plac-galP-ppsA-Plac-aroG-aroF-Plac-aroB-aroD /PoppA-aroE 균주에 더하여, shiA 또는 ydiN 유전자가 추가로 결손된 대장균에 대하여 상기 시험예 2에서와 동일한 방법으로 시킴산 생산량을 평가하였다. 그 결과는 도 8a 및 도 8b에 나타내었다.In addition to the E. coli AB2834 ΔtyrRΔptsGΔpykAΔaroKΔaroLΔlacI::Plac-galP-ppsA-Plac-aroG-aroF-Plac-aroB-aroD /PoppA-aroE strain in Test Example 3, shiA Alternatively, shikimic acid production was evaluated in the same manner as in Test Example 2 for E. coli in which the ydiN gene was further deleted. The results are shown in FIGS. 8A and 8B.

도 7a에 도시된 바와 같이, shiA 유전자가 추가로 결손된 E. coli AB2834 △tyrR△ptsG△pykA△aroK△aroL△shiA△lacI::Plac-galP-ppsA-Plac-aroG-aroF-Plac-aroB-aroD/PoppA-aroE 균주(RGAKL_PAGFBD_shiA1_aroE,As shown in Figure 7a, shiA gene is added to the defect E. coli AB2834 △ tyrR △ ptsG △ pykA △ aroK △ aroL △ shiA △ lacI :: Plac-galP-ppsA-Plac-aroG-aroF-Plac-aroB -aroD/PoppA-aroE strain ( RGAKL_PAGFBD_ shiA1_aroE,

RGAKL_PAGFBD_shiA2_aroE(재현성))의 경우, 시킴산 생산량이 3.15g/L, 3/13g/L(재현성)로서, shiA 유전자가 결손되지 않은 경우에 비하여 증가하는 것을 확인할 수 있었다. In the case of △ RGAKL_PAGFBD_ shiA2_aroE (reproducibility)), the production of shikimic acid was 3.15 g/L and 3/13 g/L (reproducibility), which was confirmed to increase compared to the case where the shiA gene was not deleted.

도 7b에 도시된 바와 같이, ydiN 유전자가 추가로 결손된 E. coli AB2834 △tyrR△ptsG△pykA△aroK△aroL△ydiN△lacI::Plac-galP-ppsA-Plac-aroG-aroF-Plac-aroB-aroD-/PoppA-aroE 균주((RGAKL_PAGFBD_ydiN_aroE)의 경우, 시킴산 생산량이 4.11g/L으로서, ydiN 유전자가 결손되지 않은 경우에 비하여 크게 증가하는 것을 확인할 수 있었다.As it is shown in Figure 7b, the ydiN gene deletion by adding E. coli AB2834 △ tyrR △ ptsG △ pykA △ aroK △ aroL △ ydiN △ lacI :: Plac-galP-ppsA-Plac-aroG-aroF-Plac-aroB In the case of -aroD-/PoppA-aroE strain (( RGAKL_PAGFBD_ ydiN_aroE), the production of shikimic acid was 4.11 g/L, which significantly increased compared to the case in which the ydiN gene was not deleted.

[시험예 5] shiAydiN 유전자의 추가 결손 및 tktA 유전자의 과발현에 의한 대장균 내 시킴산 생산량 평가[Test Example 5] Evaluation of shikimic acid production in E. coli by additional deletion of shiA and ydiN genes and overexpression of tktA gene

상기 시험예 3에서의 E. coli AB2834 △tyrR△ptsG△pykA△aroK△aroL△lacI:: Plac-galP-ppsA-Plac-aroG-aroF-Plac-aroB-aroD/PoppA-aroE 균주에 더하여, shiAydiN 유전자가 모두 추가로 결손되고 tktA 유전자가 추가로 과발현된 대장균에 대하여 상기 시험예 2에서와 동일한 방법으로 시킴산 생산량을 평가하였다. 그 결과는 도 10a 및 도 10b에 나타내었다.In addition to the E. coli AB2834 ΔtyrRΔptsGΔpykAΔaroKΔaroLΔlacI::Plac-galP-ppsA-Plac-aroG-aroF-Plac-aroB-aroD/PoppA-aroE strain in Test Example 3, shiA And ydiN gene was further deleted and the shikimic acid production was evaluated in the same manner as in Test Example 2 for E. coli in which the tktA gene was further overexpressed. The results are shown in FIGS. 10A and 10B.

도 9a 및 도 9b에 도시된 바와 같이, shiAydiN 유전자가 모두 추가로 결손되고 tktA 유전자가 추가로 과발현된 E. coli AB2834 △tyrR△ptsG△pykA△aroK△aroL△ydiN△lacI::Plac-galP-ppsA-Plac-aroG-aroF-Plac-aroB-aroD/PoppA-aroE-tktA 균주의 경우, 시킴산 생산량이 4.24g/L 및 4.56g/L(재현성) (도 9a), 4.34g/L (도 9b)로서, tktA 유전자가 과발현 되고, shiAydiN 유전자 중 하나만 결손된 균주에 비하여 시킴산 생산량이 현저히 증가하는 것을 확인할 수 있었다.As it is shown in Figures 9a and 9b, and the defect shiA to add all the ydiN gene and the tktA gene is added to the over-expression E. coli AB2834 tyrR △ △ △ ptsG pykA aroK △ △ △ aroL ydiN :: △ lacI Plac- In the case of the galP-ppsA-Plac-aroG-aroF-Plac-aroB-aroD/PoppA-aroE-tktA strain, the production of shikimic acid was 4.24 g/L and 4.56 g/L (reproducibility) (FIG. 9a), 4.34 g/L As (FIG. 9b), it was confirmed that the production of shikimic acid was significantly increased compared to the strain in which the tktA gene was overexpressed and only one of the shiA and ydiN genes was deleted.

[시험예 6] 5L 배양기 배양에서의 shiA 유전자 결손 및 tktA 유전자 과발현에 의한 대장균 내 시킴산 생산성 평가[Test Example 6] Evaluation of shikimic acid productivity in Escherichia coli by shiA gene deletion and tktA gene overexpression in 5L culture medium

E. coli AB2834 △tyrR△ptsG△pykA△aroK△aroL△lacI::Plac-galP-ppsA-Plac-aroG-aroF-Plac-aroB-aroD/PoppA-aroE 균주를 이용하여 온도 37℃로 배양하였다. 초기 당이 모두 소모되는 시점인 14시간부터 feeding(glucose 600g/L)을 시작하였고, 초기 feeding 속도는 0.1701ml/min이었으며, 이후 41시간, 85시간째에 각각 0.2268ml/min, 0.2646ml/min으로 속도를 변경하였다. 총 배양시간은 121시간이었다. E. coli AB2834 ΔtyrRΔptsGΔpykAΔaroKΔaroLΔlacI::Plac-galP-ppsA-Plac-aroG-aroF-Plac-aroB-aroD/PoppA-aroE strain was used and cultured at 37°C. Feeding (glucose 600g/L) was started from 14 hours, when all of the initial sugar was consumed, and the initial feeding rate was 0.1701ml/min, and then at 41 and 85 hours, 0.2268ml/min and 0.2646ml/min, respectively. changed the speed to The total incubation time was 121 hours.

구체적인 시험 방법은, LBG agar 배지에서 24시간 동안 고체배양을 진행한 후, 단일 콜로니를 5ml의 LBG 배지에 접종하여 15시간 동안 배양하였다. 그 다음 접종량 1%로 2차 성장배양을 동일하게 20ml의 LBG 배지에서 6시간 동안 배양하였다. 그 후 다시 1%의 접종량으로 생산 발효기에 접종하였다. 작업 용량(working volume)은 2L였고, pH는 10N NaOH와 3N HCl을 이용하여 pH 7로 고정하였다.In a specific test method, after solid culture was performed in LBG agar medium for 24 hours, a single colony was inoculated into 5 ml of LBG medium and cultured for 15 hours. Then, the secondary growth culture at 1% of the inoculum was incubated for 6 hours in 20 ml of LBG medium in the same manner. After that, it was again inoculated into the production fermenter with an inoculum of 1%. The working volume was 2L, and the pH was fixed at pH 7 using 10N NaOH and 3N HCl.

그 결과는 도 10에 나타내었으며, 초기 당이 모두 소모되고 feeding이 시작될 때쯤 시킴산이 생산되지 시작하였고, 배양 121시간까지 시킴산 생산성이 계속 증가하였다. 최종 121시간째에 최대 99g/L의 시킴산이 생산되었으며, 이때 시간당 최대 생산성은 0.84/g/L/hr로 나타났으며, 생산 수율은 0.34g/g으로 나타났다.The results are shown in Fig. 10, when all of the initial sugar was consumed and feeding started, shikimic acid production started, and the shikimic acid productivity continued to increase until 121 hours of culture. At the final 121 hours, a maximum of 99 g/L of shikimic acid was produced, and the maximum productivity per hour was 0.84/g/L/hr, and the production yield was 0.34 g/g.

여기에 더하여, shiA 유전자를 결손시키고 tktA 유전자를 과발현 시킨 E. coli AB2834 △tyrR△ptsG△pykA△aroK△aroL△shiA△lacI::Plac-galP-ppsA-Plac-aroG-aroF-Plac-aroB-aroD /PoppA-aroE-tktA 균주를 이용하여 위 조건과 동일하게 배양하였다. 이후 초기 당이 모두 떨어지는 시점인 11시간부터 feeding을 시작하였고, 초기 속도는 0.1701ml/min이었다. 이후, 41시간, 85시간째에 각각 0.2268ml/min, 0.2646ml/min으로 속도를 변경하였다. 총 배양시간은 87시간이었다. 배양 조건, 사용 배지, 작업 용량, pH 조건 등의 구체적인 시험 방법은 상기와 같다.In addition to this, E. coli having a defective gene and overexpressing shiA tktA genes ptsG △ △ tyrR pykA △ △ AB2834 aroK aroL △ △ △ shiA lacI :: galP-Plac-Plac-ppsA-aroG-aroF-Plac-aroB- The aroD /PoppA-aroE-tktA strain was used and cultured under the same conditions as above. Afterwards, feeding was started from 11 hours, when all the initial sugars fell, and the initial rate was 0.1701 ml/min. Thereafter, the rates were changed to 0.2268 ml/min and 0.2646 ml/min, respectively, at 41 hours and 85 hours. The total incubation time was 87 hours. Specific test methods such as culture conditions, use medium, working capacity, and pH conditions are as described above.

그 결과는 도 11에 나타내었으며, 초기 당이 모두 소모되고 feeding이 시작될 때쯤 시킴산이 생산되기 시작하였고, 배양 78시간까지 시킴산 생산성이 계속 증가하였다. 이후 생산성이 꺾이기 시작하면서 배양을 종료하였다. 배양 78시간째 최대 시킴산 생산성이 103g/L로 나타났으며, 이때의 최대 생산성은 1.34g/L/hr였고 수율은 0.48g/g로 매우 높게 나타났다.The results are shown in FIG. 11, and when all of the initial sugar was consumed and feeding started, shikimic acid started to be produced, and the shikimic acid productivity continued to increase until 78 hours of culture. Thereafter, the culture was terminated as productivity began to decline. At 78 hours of culture, the maximum productivity of shikimic acid was 103 g/L, and the maximum productivity at this time was 1.34 g/L/hr and the yield was very high as 0.48 g/g.

이로부터, shiA 유전자 결손 및 tktA 유전자 과발현에 의해 시킴산 최대 생산 배양시간이 121시간에서 78시간으로 약 40시간 이상 단축되었으며, 최대 생산성으로 비교하였을 때 0.84g/L/hr에서 1.34g/L/hr로 약 1.59배 증가하였으며, 수율 역시 0.34g/g에서 0.48g/g으로 1.41배 증가한 것을 확인할 수 있었다.From this, shiA gene deletion and tktA gene overexpression reduced the culture time for maximum shikimic acid production from 121 hours to 78 hours by more than 40 hours, and compared with the maximum productivity, 0.84 g/L/hr to 1.34 g/L/ hr increased by about 1.59 times, and it was confirmed that the yield also increased by 1.41 times from 0.34 g/g to 0.48 g/g.

<110> STR biotech <120> MICROORGANISM FOR PRODUCING SHIKIMIC ACID AND METHOD FOR PRODUCING SHIKIMIC ACID USING THE MICROORGANISM <130> 19p515/ind <160> 71 <170> KoPatentIn 3.0 <210> 1 <211> 522 <212> DNA <213> Artificial Sequence <220> <223> aroK coding DNA <400> 1 atggcagaga aacgcaatat ctttctggtt gggcctatgg gtgccggaaa aagcactatt 60 gggcgccagt tagctcaaca actcaatatg gaattttacg attccgatca agagattgag 120 aaacgaaccg gagctgatgt gggctgggtt ttcgatttag aaggcgaaga aggcttccgc 180 gatcgcgaag aaaaggtcat caatgagttg accgagaaac agggtattgt gctggctact 240 ggcggcggct ctgtgaaatc ccgtgaaacg cgtaaccgtc tttccgctcg tggcgttgtc 300 gtttatcttg aaacgaccat cgaaaagcaa cttgcacgca cgcagcgtga taaaaaacgc 360 ccgttgctgc acgttgaaac accgccgcgt gaagttctgg aagcgttggc caatgaacgc 420 aatccgctgt atgaagagat tgccgacgtg accattcgta ctgatgatca aagcgctaaa 480 gtggttgcaa accagattat tcacatgctg gaaagcaact aa 522 <210> 2 <211> 525 <212> DNA <213> Artificial Sequence <220> <223> aroL coding DNA <400> 2 atgacacaac ctctttttct gatcgggcct cggggctgtg gtaaaacaac ggtcggaatg 60 gcccttgccg attcgcttaa ccgtcggttt gtcgataccg atcagtggtt gcaatcacag 120 ctcaatatga cggtcgcgga gatcgtcgaa agggaagagt gggcgggatt tcgcgccaga 180 gaaacggcgg cgctggaagc ggtaactgcg ccatccaccg ttatcgctac aggcggcggc 240 attattctga cggaatttaa tcgtcacttc atgcaaaata acgggatcgt ggtttatttg 300 tgtgcgccag tatcagtcct ggttaaccga ctgcaagctg caccggaaga agatttacgg 360 ccaaccttaa cgggaaaacc gctgagcgaa gaagttcagg aagtgctgga agaacgcgat 420 gcgctatatc gcgaagttgc gcatattatc atcgacgcaa caaacgaacc cagccaggtg 480 atttctgaaa ttcgcagcgc cctggcacag acgatcaatt gttga 525 <210> 3 <211> 1542 <212> DNA <213> Artificial Sequence <220> <223> tyrR coding DNA <400> 3 atgcgtctgg aagtcttttg tgaagaccga ctcggtctga cccgcgaatt actcgatcta 60 ctcgtgctaa gaggcattga tttacgcggt attgagattg atcccattgg gcgaatctac 120 ctcaattttg ctgaactgga gtttgagagt ttcagcagtc tgatggccga aatacgccgt 180 attgcgggtg ttaccgatgt gcgtactgtc ccgtggatgc cttccgaacg tgagcatctg 240 gcgttgagcg cgttactgga ggcgttgcct gaacctgtgc tctctgtcga tatgaaaagc 300 aaagtggata tggcgaaccc ggcgagctgt cagctttttg ggcaaaaatt ggatcgcctg 360 cgcaaccata ccgccgcaca attgattaac ggctttaatt ttttacgttg gctggaaagc 420 gaaccgcaag attcgcataa cgagcatgtc gttattaatg ggcagaattt cctgatggag 480 attacgcctg tttatcttca ggatgaaaat gatcaacacg tcctgaccgg tgcggtggtg 540 atgttgcgat caacgattcg tatgggccgc cagttgcaaa atgtcgccgc ccaggacgtc 600 agcgccttca gtcaaattgt cgccgtcagc ccgaaaatga agcatgttgt cgaacaggcg 660 cagaaactgg cgatgctaag cgcgccgctg ctgattacgg gtgacacagg tacaggtaaa 720 gatctctttg cctacgcctg ccatcaggca agccccagag cgggcaaacc ttacctggcg 780 ctgaactgtg cgtctatacc ggaagatgcg gtcgagagtg aactgtttgg tcatgctccg 840 gaagggaaga aaggattctt tgagcaggcg aacggtggtt cggtgctgtt ggatgaaata 900 ggggaaatgt caccacggat gcaggcgaaa ttactgcgtt tccttaatga tggcactttc 960 cgtcgggttg gcgaagacca tgaggtgcat gtcgatgtgc gggtgatttg cgctacgcag 1020 aagaatctgg tcgaactggt gcaaaaaggc atgttccgtg aagatctcta ttatcgtctg 1080 aacgtgttga cgctcaatct gccgccgcta cgtgactgtc cgcaggacat catgccgtta 1140 actgagctgt tcgtcgcccg ctttgccgac gagcagggcg tgccgcgtcc gaaactggcc 1200 gctgacctga atactgtact tacgcgttat gcgtggccgg gaaatgtgcg gcagttaaag 1260 aacgctatct atcgcgcact gacacaactg gacggttatg agctgcgtcc acaggatatt 1320 ttgttgccgg attatgacgc cgcaacggta gccgtgggcg aagatgcgat ggaaggttcg 1380 ctggacgaaa tcaccagccg ttttgaacgc tcggtattaa cccagcttta tcgcaattat 1440 cccagcacgc gcaaactggc aaaacgtctc ggcgtttcac ataccgcgat tgccaataag 1500 ttgcgggaat atggtctgag tcagaagaag aacgaagagt aa 1542 <210> 4 <211> 1434 <212> DNA <213> Artificial Sequence <220> <223> ptsG coding DNA <400> 4 atgtttaaga atgcatttgc taacctgcaa aaggtcggta aatcgctgat gctgccggta 60 tccgtactgc ctatcgcagg tattctgctg ggcgtcggtt ccgcgaattt cagctggctg 120 cccgccgttg tatcgcatgt tatggcagaa gcaggcggtt ccgtctttgc aaacatgcca 180 ctgatttttg cgatcggtgt cgccctcggc tttaccaata acgatggcgt atccgcgctg 240 gccgcagttg ttgcctatgg catcatggtt aaaaccatgg ccgtggttgc gccactggta 300 ctgcatttac ctgctgaaga aatcgcctct aaacacctgg cggatactgg cgtactcgga 360 gggattatct ccggtgcgat cgcagcgtac atgtttaacc gtttctaccg tattaagctg 420 cctgagtatc ttggcttctt tgccggtaaa cgctttgtgc cgatcatttc tggcctggct 480 gccatcttta ctggcgttgt gctgtccttc atttggccgc cgattggttc tgcaatccag 540 accttctctc agtgggctgc ttaccagaac ccggtagttg cgtttggcat ttacggtttc 600 atcgaacgtt gcctggtacc gtttggtctg caccacatct ggaacgtacc tttccagatg 660 cagattggtg aatacaccaa cgcagcaggt caggttttcc acggcgacat tccgcgttat 720 atggcgggtg acccgactgc gggtaaactg tctggtggct tcctgttcaa aatgtacggt 780 ctgccagctg ccgcaattgc tatctggcac tctgctaaac cagaaaaccg cgcgaaagtg 840 ggcggtatta tgatctccgc ggcgctgacc tcgttcctga ccggtatcac cgagccgatc 900 gagttctcct tcatgttcgt tgcgccgatc ctgtacatca tccacgcgat tctggcaggc 960 ctggcattcc caatctgtat tcttctgggg atgcgtgacg gtacgtcgtt ctcgcacggt 1020 ctgatcgact tcatcgttct gtctggtaac agcagcaaac tgtggctgtt cccgatcgtc 1080 ggtatcggtt atgcgattgt ttactacacc atcttccgcg tgctgattaa agcactggat 1140 ctgaaaacgc cgggtcgtga agacgcgact gaagatgcaa aagcgacagg taccagcgaa 1200 atggcaccgg ctctggttgc tgcatttggt ggtaaagaaa acattactaa cctcgacgca 1260 tgtattaccc gtctgcgcgt cagcgttgct gatgtgtcta aagtggatca ggccggcctg 1320 aagaaactgg gcgcagcggg cgtagtggtt gctggttctg gtgttcaggc gattttcggt 1380 actaaatccg ataacctgaa aaccgagatg gatgagtaca tccgtaacca ctaa 1434 <210> 5 <211> 1443 <212> DNA <213> Artificial Sequence <220> <223> pykA coding DNA <400> 5 atgtccagaa ggcttcgcag aacaaaaatc gttaccacgt taggcccagc aacagatcgc 60 gataataatc ttgaaaaagt tatcgcggcg ggtgccaacg ttgtacgtat gaacttttct 120 cacggctcgc ctgaagatca caaaatgcgc gcggataaag ttcgtgagat tgccgcaaaa 180 ctggggcgtc atgtggctat tctgggtgac ctccaggggc ccaaaatccg tgtatccacc 240 tttaaagaag gcaaagtttt cctcaatatt ggggataaat tcctgctcga cgccaacctg 300 ggtaaaggtg aaggcgacaa agaaaaagtc ggtatcgact acaaaggcct gcctgctgac 360 gtcgtgcctg gtgacatcct gctgctggac gatggtcgcg tccagttaaa agtactggaa 420 gttcagggca tgaaagtgtt caccgaagtc accgtcggtg gtcccctctc caacaataaa 480 ggtatcaaca aacttggcgg cggtttgtcg gctgaagcgc tgaccgaaaa agacaaagca 540 gacattaaga ctgcggcgtt gattggcgta gattacctgg ctgtctcctt cccacgctgt 600 ggcgaagatc tgaactatgc ccgtcgcctg gcacgcgatg caggatgtga tgcgaaaatt 660 gttgccaagg ttgaacgtgc ggaagccgtt tgcagccagg atgcaatgga tgacatcatc 720 ctcgcctctg acgtggtaat ggttgcacgt ggcgacctcg gtgtggaaat tggcgacccg 780 gaactggtcg gcattcagaa agcgttgatc cgtcgtgcgc gtcagctaaa ccgagcggta 840 atcacggcga cccagatgat ggagtcaatg attactaacc cgatgccgac gcgtgcagaa 900 gtcatggacg tagcaaacgc cgttctggat ggtactgacg ctgtgatgct gtctgcagaa 960 actgccgctg ggcagtatcc gtcagaaacc gttgcagcca tggcgcgcgt ttgcctgggt 1020 gcggaaaaaa tcccgagcat caacgtttct aaacaccgtc tggacgttca gttcgacaat 1080 gtggaagaag ctattgccat gtcagcaatg tacgcagcta accacctgaa aggcgttacg 1140 gcgatcatca ccatgaccga atcgggtcgt accgcgctga tgacctcccg tatcagctct 1200 ggtctgccaa ttttcgccat gtcgcgccat gaacgtacgc tgaacctgac tgctctctat 1260 cgtggcgtta cgccggtgca ctttgatagc gctaatgacg gcgtagcagc tgccagcgaa 1320 gcggttaatc tgctgcgcga taaaggttac ttgatgtctg gtgacctggt gattgtcacc 1380 cagggcgacg tgatgagtac cgtgggttct actaatacca cgcgtatttt aacggtagag 1440 taa 1443 <210> 6 <211> 1317 <212> DNA <213> Artificial Sequence <220> <223> shiA coding DNA <400> 6 atggactcca cgctcatctc cactcgtccc gatgaaggga cgctttcgtt aagtcgcgcc 60 cgacgagctg cgttaggcag cttcgctggt gccgtcgtcg actggtatga ttttttactc 120 tatggcatca ccgccgcact ggtgtttaat cgcgagtttt tcccgcaagt aagcccggcg 180 atgggaacgc tcgccgcatt tgctaccttt ggcgtcggat ttcttttccg tccgctcggc 240 ggtgtcattt tcggtcactt tggcgaccga ctgggacgta agcgcatgtt aatgctgacc 300 gtctggatga tgggcatcgc gacagccttg attggtattc ttccttcatt ctcgaccatt 360 gggtggtggg cacctatttt gctggtgaca ctgcgtgcca ttcagggatt tgcagtcggc 420 ggcgaatggg gaggcgcggc gttgctttcc gttgaaagtg caccgaaaaa taaaaaagcc 480 ttttacagta gcggtgtaca agttggctac ggtgtaggtt tactgctttc aaccggactg 540 gtttcattga tcagtatgat gacgactgac gaacagtttt taagctgggg ctggcgcatt 600 cctttcctgt ttagcatcgt actggtactg ggagcattgt gggtgcgcaa tggcatggag 660 gagtccgcgg aatttgaaca acagcaacat tatcaagctg ccgcgaaaaa acgcatcccg 720 gttatcgaag cgctgttacg acatcccggt gctttcctga agattattgc gctacgactg 780 tgcgaattgc tgacgatgta catcgttact gcctttgcac ttaattattc aacccagaat 840 atggggctac cgcgcgaact tttccttaat attggtttgc tggtaggtgg attaagctgc 900 ctgacaattc cctgttttgc ctggcttgcc gatcgttttg gtcgccgtag ggtttatatc 960 acaggtacgt taatcggaac gttgagcgca tttcctttct ttatggcgct tgaagcacaa 1020 tctattttct ggatagtttt cttctccata atgctggcaa acattgcgca tgacatggtg 1080 gtgtgtgtgc aacaaccgat gtttaccgaa atgtttggtg ccagttatcg ctatagtggc 1140 gctggagtcg gttatcaggt tgccagtgtg gttggcggtg gatttacacc ttttattgcc 1200 gctgcactca tcacttactt tgccgggaac tggcatagcg tcgccattta tttgctggct 1260 ggatgcctga tttccgcaat gaccgctttg ttgatgaaag acagtcaacg cgcttga 1317 <210> 7 <211> 1266 <212> DNA <213> Artificial Sequence <220> <223> ydiN coding DNA <400> 7 atgtctcaaa ataaggcttt cagcacgcca tttatcctgg ctgttctttg tatttacttc 60 agctacttcc tgcacggcat tagtgttatt acgcttgccc aaaatatgtc atctctggcg 120 gaaaagtttt ccactgacaa cgcgggcatt gcctacttaa tttccggtat cggtttgggg 180 cgattgatca gtattttatt cttcggtgtg atctccgata agtttggtcg tcgggcggtg 240 atattaatgg cagtaataat gtatctgcta ttcttctttg gtattcccgc ttgcccgaat 300 ttaactctcg cctacggtct ggcagtgtgc gtaggtatcg ctaactcagc gctggatacg 360 ggtggctacc ccgcgctcat ggaatgcttt ccgaaagcct ctggttcggc ggtcatactg 420 gttaaagcga tggtgtcatt tgggcaaatg ttctacccaa tgctggtgag ctatatgttg 480 ctcaataata tctggtacgg ctatgggctg attattccgg gtattctatt tgtactgatc 540 acgctgatgc tgttgaaaag caaattcccc agccagttgg tggacgccag cgtaactaat 600 gaattaccgc aaatgaacag caaaccgtta gtctggctgg aaggtgtttc atcggtactg 660 ttcggtgtag ccgcattctc gaccttttat gtgattgtgg tgtggatgcc caaatatgcg 720 atggcttttg ctggtatgtc agaagctgag gcattaaaaa ccatctctta ttacagtatg 780 ggctcgttgg tctgtgtctt tatttttgcc gcactactga aaaaaatggt ccggcccatc 840 tgggctaatg tatttaactc tgcactggca acaataacag cagccattat ctacctgtac 900 ccttctccac tggtgtgcaa tgccggagcc tttgttatcg gtttctcagc agctggcggc 960 attttacagc tcggcgtttc ggtcatgtca gagttttttc ccaaaagcaa agccaaagtc 1020 accagtattt atatgatgat gggtggactg gctaactttg ttattccact gattaccggt 1080 tatctgtcga acatcggcct gcaatatatc attgttctcg attttacttt cgcgctgctg 1140 gccctgatta ccgcaattat tgtttttatc cgctattacc gcgttttcat tattcctgaa 1200 aatgatgtgc ggtttggcga gcgtaaattt tgcacccggt taaacacaat taagcataga 1260 ggttaa 1266 <210> 8 <211> 1083 <212> DNA <213> Artificial Sequence <220> <223> lacI coding DNA <400> 8 gtgaaaccag taacgttata cgatgtcgca gagtatgccg gtgtctctta tcagaccgtt 60 tcccgcgtgg tgaaccaggc cagccacgtt tctgcgaaaa cgcgggaaaa agtggaagcg 120 gcgatggcgg agctgaatta cattcccaac cgcgtggcac aacaactggc gggcaaacag 180 tcgttgctga ttggcgttgc cacctccagt ctggccctgc acgcgccgtc gcaaattgtc 240 gcggcgatta aatctcgcgc cgatcaactg ggtgccagcg tggtggtgtc gatggtagaa 300 cgaagcggcg tcgaagcctg taaagcggcg gtgcacaatc ttctcgcgca acgcgtcagt 360 gggctgatca ttaactatcc gctggatgac caggatgcca ttgctgtgga agctgcctgc 420 actaatgttc cggcgttatt tcttgatgtc tctgaccaga cacccatcaa cagtattatt 480 ttctcccatg aagacggtac gcgactgggc gtggagcatc tggtcgcatt gggtcaccag 540 caaatcgcgc tgttagcggg cccattaagt tctgtctcgg cgcgtctgcg tctggctggc 600 tggcataaat atctcactcg caatcaaatt cagccgatag cggaacggga aggcgactgg 660 agtgccatgt ccggttttca acaaaccatg caaatgctga atgagggcat cgttcccact 720 gcgatgctgg ttgccaacga tcagatggcg ctgggcgcaa tgcgcgccat taccgagtcc 780 gggctgcgcg ttggtgcgga tatctcggta gtgggatacg acgataccga agacagctca 840 tgttatatcc cgccgttaac caccatcaaa caggattttc gcctgctggg gcaaaccagc 900 gtggaccgct tgctgcaact ctctcagggc caggcggtga agggcaatca gctgttgccc 960 gtctcactgg tgaaaagaaa aaccaccctg gcgcccaata cgcaaaccgc ctctccccgc 1020 gcgttggccg attcattaat gcagctggca cgacaggttt cccgactgga aagcgggcag 1080 tga 1083 <210> 9 <211> 1395 <212> DNA <213> Artificial Sequence <220> <223> galP coding DNA <400> 9 atgcctgacg ctaaaaaaca ggggcggtca aacaaggcaa tgacgttttt cgtctgcttc 60 cttgccgctc tggcgggatt actctttggc ctggatatcg gtgtaattgc tggcgcactg 120 ccgtttattg cagatgaatt ccagattact tcgcacacgc aagaatgggt cgtaagctcc 180 atgatgttcg gtgcggcagt cggtgcggtg ggcagcggct ggctctcctt taaactcggg 240 cgcaaaaaga gcctgatgat cggcgcaatt ttgtttgttg ccggttcgct gttctctgcg 300 gctgcgccaa acgttgaagt actgattctt tcccgcgttc tactggggct ggcggtgggt 360 gtggcctctt ataccgcacc gctgtacctc tctgaaattg cgccggaaaa aattcgtggc 420 agtatgatct cgatgtatca gttgatgatc actatcggga tcctcggtgc ttatctttct 480 gataccgcct tcagctacac cggtgcatgg cgctggatgc tgggtgtgat tatcatcccg 540 gcaattttgc tgctgattgg tgtcttcttc ctgccagaca gcccacgttg gtttgccgcc 600 aaacgccgtt ttgttgatgc cgaacgcgtg ctgctacgcc tgcgtgacac cagcgcggaa 660 gcgaaacgcg aactggatga aatccgtgaa agtttgcagg ttaaacagag tggctgggcg 720 ctgtttaaag agaacagcaa cttccgccgc gcggtgttcc ttggcgtact gttgcaggta 780 atgcagcaat tcaccgggat gaacgtcatc atgtattacg cgccgaaaat cttcgaactg 840 gcgggttata ccaacactac cgagcaaatg tgggggaccg tgattgtcgg cctgaccaac 900 gtacttgcca cctttatcgc aatcggcctt gttgaccgct ggggacgtaa accaacgcta 960 acgctgggct tcctggtgat ggctgctggc atgggcgtac tcggtacaat gatgcatatc 1020 ggtattcact ctccgtcggc gcagtatttc gccatcgcca tgctgctgat gtttattgtc 1080 ggttttgcca tgagtgccgg tccgctgatt tgggtactgt gctccgaaat tcagccgctg 1140 aaaggccgcg attttggcat cacctgctcc actgccacca actggattgc caacatgatc 1200 gttggcgcaa cgttcctgac catgctcaac acgctgggta acgccaacac cttctgggtg 1260 tatgcggctc tgaacgtact gtttatcctg ctgacattgt ggctggtacc ggaaaccaaa 1320 cacgtttcgc tggaacatat tgaacgtaat ctgatgaaag gtcgtaaact gcgcgaaata 1380 ggcgctcacg attaa 1395 <210> 10 <211> 2379 <212> DNA <213> Artificial Sequence <220> <223> ppsA coding DNA <400> 10 atgtccaaca atggctcgtc accgctggtg ctttggtata accaactcgg catgaatgat 60 gtagacaggg ttgggggcaa aaatgcctcc ctgggtgaaa tgattactaa tctttccgga 120 atgggtgttt ccgttccgaa tggtttcgcc acaaccgccg acgcgtttaa ccagtttctg 180 gaccaaagcg gcgtaaacca gcgcatttat gaactgctgg ataaaacgga tattgacgat 240 gttactcagc ttgcgaaagc gggcgcgcaa atccgccagt ggattatcga cactcccttc 300 cagcctgagc tggaaaacgc catccgcgaa gcctatgcac agctttccgc cgatgacgaa 360 aacgcctctt ttgcggtgcg ctcctccgcc accgcagaag atatgccgga cgcttctttt 420 gccggtcagc aggaaacctt cctcaacgtt cagggttttg acgccgttct cgtggcagtg 480 aaacatgtat ttgcttctct gtttaacgat cgcgccatct cttatcgtgt gcaccagggt 540 tacgatcacc gtggtgtggc gctctccgcc ggtgttcaac ggatggtgcg ctctgacctc 600 gcatcatctg gcgtgatgtt ctccattgat accgaatccg gctttgacca ggtggtgttt 660 atcacttccg catggggcct tggtgagatg gtcgtgcagg gtgcggttaa cccggatgag 720 ttttacgtgc ataaaccgac actggcggcg aatcgcccgg ctatcgtgcg ccgcaccatg 780 gggtcgaaaa aaatccgcat ggtttacgcg ccgacccagg agcacggcaa gcaggttaaa 840 atcgaagacg taccgcagga acagcgtgac atcttctcgc tgaccaacga agaagtgcag 900 gaactggcaa aacaggccgt acaaattgag aaacactacg gtcgcccgat ggatattgag 960 tgggcgaaag atggccacac cggtaaactg ttcattgtgc aggcgcgtcc ggaaaccgtg 1020 cgctcacgcg gtcaggtcat ggagcgttat acgctgcatt cacagggtaa gattatcgcc 1080 gaaggccgtg ctatcggtca tcgcatcggt gcgggtccgg tgaaagtcat ccatgacatc 1140 agcgaaatga accgcatcga acctggcgac gtgctggtta ctgacatgac cgacccggac 1200 tgggaaccga tcatgaagaa agcatctgcc atcgtcacca accgtggcgg tcgtacctgt 1260 cacgcggcga tcatcgctcg tgaactgggc attccggcgg tagtgggctg tggagatgca 1320 acagaacgga tgaaagacgg tgagaacgtc actgtttctt gtgccgaagg tgataccggt 1380 tacgtctatg cggagttgct ggaatttagc gtgaaaagct ccagcgtaga aacgatgccg 1440 gatctgccgt tgaaagtgat gatgaacgtc ggtaacccgg accgtgcttt cgacttcgcc 1500 tgcctaccga acgaaggcgt gggccttgcg cgtctggaat ttatcatcaa ccgtatgatt 1560 ggcgtccacc cacgcgcact gcttgagttt gacgatcagg aaccgcagtt gcaaaacgaa 1620 atccgcgaga tgatgaaagg ttttgattct ccgcgtgaat tttacgttgg tcgtctgact 1680 gaagggatcg cgacgctggg tgccgcgttt tatccgaagc gcgtcattgt ccgtctctct 1740 gattttaaat cgaacgaata tgccaacctg gtcggtggtg agcgttacga gccagatgaa 1800 gagaacccga tgctcggctt ccgtggcgcg ggccgctatg tttccgacag cttccgcgac 1860 tgtttcgcgc tggagtgtga agcagtgaaa cgtgtgcgca acgacatggg actgaccaac 1920 gttgagatca tgatcccgtt cgtgcgtacc gtagatcagg cgaaagcggt ggttgaagaa 1980 ctggcgcgtc aggggctgaa acgtggcgag aacgggctga aaatcatcat gatgtgtgaa 2040 atcccgtcca acgccttgct ggccgagcag ttcctcgaat atttcgacgg cttctcaatt 2100 ggctcaaacg atatgacgca gctggcgctc ggtctggacc gtgactccgg cgtggtgtct 2160 gaattgttcg atgagcgcaa cgatgcggtg aaagcactgc tgtcgatggc tatccgtgcc 2220 gcgaagaaac agggcaaata tgtcgggatt tgcggtcagg gtccgtccga ccacgaagac 2280 tttgccgcat ggttgatgga agaggggatc gatagcctgt ctctgaaccc ggacaccgtg 2340 gtgcaaacct ggttaagcct ggctgaactg aagaaataa 2379 <210> 11 <211> 1089 <212> DNA <213> Artificial Sequence <220> <223> aroB coding DNA <400> 11 atggagagga ttgtcgttac tctcggggaa cgtagttacc caattaccat cgcatctggt 60 ttgtttaatg aaccagcttc attcttaccg ctgaaatcgg gcgagcaggt catgttggtc 120 accaacgaaa ccctggctcc tctgtatctc gataaggtcc gcggcgtact tgaacaggcg 180 ggtgttaacg tcgatagcgt tatcctccct gacggcgagc agtataaaag cctggctgta 240 ctcgataccg tctttacggc gttgttacaa aaaccgcatg gtcgcgatac tacgctggtg 300 gcgcttggcg gcggcgtagt gggcgatctg accggcttcg cggcggcgag ttatcagcgc 360 ggtgtccgtt tcattcaagt cccgacgacg ttactgtcgc aggtcgattc ctccgttggc 420 ggcaaaactg cggtcaacca tcccctcggt aaaaacatga ttggcgcgtt ctaccaacct 480 gcttcagtgg tggtggatct cgactgtctg aaaacgcttc ccccgcgtga gttagcgtcg 540 gggctggcag aagtcatcaa atacggcatt attcttgacg gtgcgttttt taactggctg 600 gaagagaatc tggatgcgtt gttgcgtctg gacggtccgg caatggcgta ctgtattcgc 660 cgttgttgtg aactgaaggc agaagttgtc gccgccgacg agcgcgaaac cgggttacgt 720 gctttactga atctgggaca cacctttggt catgccattg aagctgaaat ggggtatggc 780 aattggttac atggtgaagc ggtcgctgcg ggtatggtga tggcggcgcg gacgtcggaa 840 cgtctcgggc agtttagttc tgccgaaacg cagcgtatta taaccctgct caagcgggct 900 gggttaccgg tcaatgggcc gcgcgaaatg tccgcgcagg cgtatttacc gcatatgctg 960 cgtgacaaga aagtccttgc gggagagatg cgcttaattc ttccgttggc aattggtaag 1020 agtgaagttc gcagcggcgt ttcgcacgag cttgttctta acgccattgc cgattgtcaa 1080 tcagcgtaa 1089 <210> 12 <211> 759 <212> DNA <213> Artificial Sequence <220> <223> aroD coding DNA <400> 12 atgaaaaccg taactgtaaa agatctcgtc attggtacgg gcgcacctaa aatcatcgtc 60 tcgctgatgg cgaaagatat cgccagcgtg aaatccgaag ctctcgccta tcgtgaagcg 120 gactttgata ttctggaatg gcgtgtggac cactatgccg acctctccaa tgtggagtct 180 gtcatggcgg cagcaaaaat tctccgtgag accatgccag aaaaaccgct gctgtttacc 240 ttccgcagtg ccaaagaagg cggcgagcag gcgatttcca ccgaggctta tattgcactc 300 aatcgtgcag ccatcgacag cggcctggtt gatatgatcg atctggagtt atttaccggt 360 gatgatcagg ttaaagaaac cgtcgcctac gcccacgcgc atgatgtgaa agtagtcatg 420 tccaaccatg acttccataa aacgccggaa gccgaagaaa tcattgcccg tctgcgcaaa 480 atgcaatcct tcgacgccga tattcctaag attgcgctga tgccgcaaag taccagcgat 540 gtgctgacgt tgcttgccgc gaccctggag atgcaggagc agtatgccga tcgtccaatt 600 atcacgatgt cgatggcaaa aactggcgta atttctcgtc tggctggtga agtatttggc 660 tcggcggcaa cttttggtgc ggtaaaaaaa gcgtctgcgc cagggcaaat ctcggtaaat 720 gatttgcgca cggtattaac tattttacac caggcataa 759 <210> 13 <211> 1053 <212> DNA <213> Artificial Sequence <220> <223> aroG coding DNA <400> 13 atgaattatc agaacgacga tttacgcatc aaagaaatca aagagttact tcctcctgtc 60 gcattgctgg aaaaattccc cgctactgaa aatgccgcga atacggttgc ccatgcccga 120 aaagcgatcc ataagatcct gaaaggtaat gatgatcgcc tgttggttgt gattggccca 180 tgctcaattc atgatcctgt cgcggcaaaa gagtatgcca ctcgcttgct ggcgctgcgt 240 gaagagctga aagatgagct ggaaatcgta atgcgcgtct attttgaaaa gccgcgtacc 300 acggtgggct ggaaagggct gattaacgat ccgcatatgg ataatagctt ccagatcaac 360 gacggtctgc gtatagcccg taaattgctg cttgatatta acgacagcgg tctgccagcg 420 gcaggtgagt ttctcgatat gatcacccca caatatctcg ctgacctgat gagctggggc 480 gcaattggcg cacgtaccac cgaatcgcag gtgcaccgcg aactggcatc agggctttct 540 tgtccggtcg gcttcaaaaa tggcaccgac ggtacgatta aagtggctat cgatgccatt 600 aatgccgccg gtgcgccgca ctgcttcctg tccgtaacga aatgggggca ttcggcgatt 660 gtgaatacca gcggtaacgg cgattgccat atcattctgc gcggcggtaa agagcctaac 720 tacagcgcga agcacgttgc tgaagtgaaa gaagggctga acaaagcagg cctgccagca 780 caggtgatga tcgatttcag ccatgctaac tcgtccaaac aattcaaaaa gcagatggat 840 gtttgtgctg acgtttgcca gcagattgcc ggtggcgaaa aggccattat tggcgtgatg 900 gtggaaagcc atctggtgga aggcaatcag agcctcgaga gcggggagcc gctggcctac 960 ggtaagagca tcaccgatgc ctgcatcggc tgggaagata ccgatgctct gttacgtcaa 1020 ctggcgaatg cagtaaaagc gcgtcgcggg taa 1053 <210> 14 <211> 1071 <212> DNA <213> Artificial Sequence <220> <223> aroF coding DNA <400> 14 atgcaaaaag acgcgctgaa taacgtacat attaccgacg aacaggtttt aatgactccg 60 gaacaactga aggccgcttt tccattgagc ctgcaacaag aagcccagat tgctgactcg 120 cgtaaaagca tttcagatat tatcgccggg cgcgatcctc gtctgctggt agtatgtggt 180 ccttgttcca ttcatgatcc ggaaactgct ctggaatatg ctcgtcgatt taaagccctt 240 gccgcagagg tcagcgatag cctctatctg gtaatgcgcg tctattttga aaaaccccgt 300 accactgtcg gctggaaagg gttaattaac gatccccata tggatggctc ttttgatgta 360 gaagccgggc tgcagatcgc gcgtaaattg ctgcttgagc tggtgaatat gggactgcca 420 ctggcgacgg aagcgttaga tccgaatagc ccgcaatacc tgggcgatct gtttagctgg 480 tcagcaattg gtgctcgtac aacggaatcg caaactcacc gtgaaatggc ctccgggctt 540 tccatgccgg ttggttttaa aaacggcacc gacggcagtc tggcaacagc aattaacgct 600 atgcgcgccg ccgcccagcc gcaccgtttt gttggcatta accaggcagg gcaggttgcg 660 ttgctacaaa ctcaggggaa tccggacggc catgtgatcc tgcgcggtgg taaagcgccg 720 aactatagcc ctgcggatgt tgcgcaatgt gaaaaagaga tggaacaggc gggactgcgc 780 ccgtctctga tggtagattg cagccacggt aattccaata aagattatcg ccgtcagcct 840 gcggtggcag aatccgtggt tgctcaaatc aaagatggca atcgctcaat tattggtctg 900 atgatcgaaa gtaatatcca cgagggcaat cagtcttccg agcaaccgcg cagtgaaatg 960 aaatacggtg tatccgtaac cgatgcctgc attagctggg aaatgaccga tgccttgctg 1020 cgtgaaattc atcaggatct gaacgggcag ctgacggctc gcgtggctta a 1071 <210> 15 <211> 1632 <212> DNA <213> Artificial Sequence <220> <223> oppA coding DNA <400> 15 atgaccaaca tcaccaagag aagtttagta gcagctggcg ttctggctgc gctaatggca 60 gggaatgtcg cgctggcagc tgatgtaccc gcaggcgtca cactggcgga aaaacaaaca 120 ctggtacgta acaatggttc agaagttcag tcattagatc cgcacaaaat tgaaggtgtt 180 ccggagtcta atatcagccg agacctgttt gaaggcttac tggtcagcga tcttgacggt 240 catccagcac ctggcgtcgc tgaatcctgg gataataaag acgcgaaagt ctggaccttc 300 catttgcgta aagatgcgaa atggtctgat ggcacgccag tcacagcaca agactttgtg 360 tatagctggc aacgttctgt tgatccgaac actgcttctc cgtatgccag ttatctgcaa 420 tatgggcata tcgccggtat tgatgaaatt cttgaaggga aaaaaccgat taccgatctc 480 ggcgtgaaag ctattgatga tcacacatta gaagtcacct taagtgaacc cgttccgtac 540 ttctataaat tacttgttca cccatcaact tcaccggtgc caaaagccgc tatcgagaaa 600 ttcggcgaaa aatggaccca gcctggtaat atcgtcacca acggtgccta taccttaaaa 660 gattgggtcg taaacgaacg aatcgttctt gaacgcagcc cgacctactg gaacaacgcg 720 aaaaccgtta ttaaccaggt aacctatttg cctattgctt ctgaagttac cgatgtcaac 780 cgctaccgta gtggtgaaat cgacatgacg aataacagca tgccgatcga attgttccag 840 aagctgaaaa aagagatccc ggacgaagtt cacgttgatc catacctgtg cacttactat 900 tacgaaatta acaaccagaa accgccattc aacgatgtgc gtgtgcgtac cgcactgaaa 960 ctaggtatgg accgcgatat cattgttaat aaagtgaaag cgcagggcaa catgcccgcc 1020 tatggttaca ctccaccgta tactgatggc gcaaaattga ctcagccaga atggtttggc 1080 tggagccagg aaaaacgtaa cgaagaagcg aaaaaactgc tggctgaagc gggttatacc 1140 gcagacaaac cgttgaccat caacctgttg tataacacct ccgatctgca taaaaagctg 1200 gcgattgctg cctcttcatt gtggaagaaa aacattggtg taaacgtcaa actggttaac 1260 caggagtgga aaacgttcct cgacacccgt caccagggta cttttgatgt ggcccgtgca 1320 ggctggtgtg ctgactacaa cgaaccaact tccttcctga acaccatgct ttcgaacagc 1380 tcgatgaata ccgcgcatta taagagcccg gcctttgaca gcattatggc ggaaacgctg 1440 aaagtgactg acgaggcgca gcgcacagct ctgtacacta aagcagaaca acagctggat 1500 aaggattcgg ccattgttcc tgtttattac tacgtgaatg cgcgtctggt gaaaccgtgg 1560 gttggtggct ataccggcaa agatccgctg gataatacct atacccggaa tatgtacatt 1620 gtgaagcact aa 1632 <210> 16 <211> 819 <212> DNA <213> Artificial Sequence <220> <223> aroE coding DNA <400> 16 atggaaacct atgctgtttt tggtaatccg atagcccaca gcaaatcgcc attcattcat 60 cagcaatttg ctcagcaact gaatattgaa catccctatg ggcgcgtgtt ggcacccatc 120 aatgatttca tcaacacact gaacgctttc tttagtgctg gtggtaaagg tgcgaatgtg 180 acggtgcctt ttaaagaaga ggcttttgcc agagcggatg agcttactga acgggcagcg 240 ttggctggtg ctgttaatac cctcatgcgg ttagaagatg gacgcctgct gggtgacaat 300 accgatggtg taggcttgtt aagcgatctg gaacgtctgt cttttatccg ccctggttta 360 cgtattctgc ttatcggcgc tggtggagca tctcgcggcg tactactgcc actcctttcc 420 ctggactgtg cggtgacaat aactaatcgg acggtatccc gcgcggaaga gttggctaaa 480 ttgtttgcgc acactggcag tattcaggcg ttgagtatgg acgaactgga aggtcatgag 540 tttgatctca ttattaatgc aacatccagt ggcatcagtg gtgatattcc ggcgatcccg 600 tcatcgctca ttcatccagg catttattgc tatgacatgt tctatcagaa aggaaaaact 660 ccttttctgg catggtgtga gcagcgaggc tcaaagcgta atgctgatgg tttaggaatg 720 ctggtggcac aggcggctca tgcctttctt ctctggcacg gtgttctgcc tgacgtagaa 780 ccagttataa agcaattgca ggaggaattg tccgcgtga 819 <210> 17 <211> 1992 <212> DNA <213> Artificial Sequence <220> <223> tktA coding DNA <400> 17 atgtcctcac gtaaagagct tgccaatgct attcgtgcgc tgagcatgga cgcagtacag 60 aaagccaaat ccggtcaccc gggtgcccct atgggtatgg ctgacattgc cgaagtcctg 120 tggcgtgatt tcctgaaaca caacccgcag aatccgtcct gggctgaccg tgaccgcttc 180 gtgctgtcca acggccacgg ctccatgctg atctacagcc tgctgcacct caccggttac 240 gatctgccga tggaagaact gaaaaacttc cgtcagctgc actctaaaac tccgggtcac 300 ccggaagtgg gttacaccgc tggtgtggaa accaccaccg gtccgctggg tcagggtatt 360 gccaacgcag tcggtatggc gattgcagaa aaaacgctgg cggcgcagtt taaccgtccg 420 ggccacgaca ttgtcgacca ctacacctac gccttcatgg gcgacggctg catgatggaa 480 ggcatctccc acgaagtttg ctctctggcg ggtacgctga agctgggtaa actgattgca 540 ttctacgatg acaacggtat ttctatcgat ggtcacgttg aaggctggtt caccgacgac 600 accgcaatgc gtttcgaagc ttacggctgg cacgttattc gcgacatcga cggtcatgac 660 gcggcatcta tcaaacgcgc agtagaagaa gcgcgcgcag tgactgacaa accttccctg 720 ctgatgtgca aaaccatcat cggtttcggt tccccgaaca aagccggtac ccacgactcc 780 cacggtgcgc cgctgggcga cgctgaaatt gccctgaccc gcgaacaact gggctggaaa 840 tatgcgccgt tcgaaatccc gtctgaaatc tatgctcagt gggatgcgaa agaagcaggc 900 caggcgaaag aatccgcatg gaacgagaaa ttcgctgctt acgcgaaagc ttatccgcag 960 gaagccgctg aatttacccg ccgtatgaaa ggcgaaatgc cgtctgactt cgacgctaaa 1020 gcgaaagagt tcatcgctaa actgcaggct aatccggcga aaatcgccag ccgtaaagcg 1080 tctcagaatg ctatcgaagc gttcggtccg ctgttgccgg aattcctcgg cggttctgct 1140 gacctggcgc cgtctaacct gaccctgtgg tctggttcta aagcaatcaa cgaagatgct 1200 gcgggtaact acatccacta cggtgttcgc gagttcggta tgaccgcgat tgctaacggt 1260 atctccctgc acggtggctt cctgccgtac acctccacct tcctgatgtt cgtggaatac 1320 gcacgtaacg ccgtacgtat ggctgcgctg atgaaacagc gtcaggtgat ggtttacacc 1380 cacgactcca tcggtctggg cgaagacggc ccgactcacc agccggttga gcaggtcgct 1440 tctctgcgcg taaccccgaa catgtctaca tggcgtccgt gtgaccaggt tgaatccgcg 1500 gtcgcgtgga aatacggtgt tgagcgtcag gacggcccga ccgcactgat cctctcccgt 1560 cagaacctgg cgcagcagga acgaactgaa gagcaactgg caaacatcgc gcgcggtggt 1620 tatgtgctga aagactgcgc cggtcagccg gaactgattt tcatcgctac cggttcagaa 1680 gttgaactgg ctgttgctgc ctacgaaaaa ctgactgccg aaggcgtgaa agcgcgcgtg 1740 gtgtccatgc cgtctaccga cgcatttgac aagcaggatg ctgcttaccg tgaatccgta 1800 ctgccgaaag cggttactgc acgcgttgct gtagaagcgg gtattgctga ctactggtac 1860 aagtatgttg gcctgaacgg tgctatcgtc ggtatgacca ccttcggtga atctgctccg 1920 gcagagctgc tgtttgaaga gttcggcttc actgttgata acgttgttgc gaaagcaaaa 1980 gaactgctgt aa 1992 <210> 18 <211> 6 <212> DNA <213> Artificial Sequence <220> <223> ribosome binding site <400> 18 gaagga 6 <210> 19 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> lacI_UP Forward primer <400> 19 attcggatcc tgctcatcca tgacctgacc 30 <210> 20 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> lacI_UP Reverse primer <400> 20 gaactctaga taatgcagct ggcacgacag 30 <210> 21 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> lacI_DOWN Forward primer <400> 21 atggtctaga gaatgtaatt cagctccgcc 30 <210> 22 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> lacI_DOWN Reverse primer <400> 22 atgcgtcgac ttgtgcgctc agtataggaa g 31 <210> 23 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> aroK_UP Forward primer <400> 23 tttcgcacct gggatccaat acgcctgcgc ggacattt 38 <210> 24 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> aroK_UP Reverse primer <400> 24 cgactctaga ggatccgttg gccaatgaac gcaatcc 37 <210> 25 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> aroK_DOWN Forward primer <400> 25 tcctctagag tcgacttgag ttgttgagct aactgg 36 <210> 26 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> aroK_DOWN Reverse primer <400> 26 ccattctccg gtcgatctgc tggcctcaca tcttc 35 <210> 27 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> aroL_UP Forward primer <400> 27 ttcgcacctg ggatcgacgc gtgtcccaat gtaat 35 <210> 28 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> aroL_UP Reverse primer <400> 28 cacctggctg ggttcacggt taagcgaatc ggcaa 35 <210> 29 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroL_DOWN Forward primer <400> 29 gaacccagcc aggtgatttc 20 <210> 30 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> aroL_DOWN Reverse primer <400> 30 cgactctaga ggatctgaag caccactgct gacac 35 <210> 31 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> sgRNA-shiA Forward primer <400> 31 gtcctaggta taatactagt attcagggat ttgcagtcgg gttttagagc tagaaatagc 60 60 <210> 32 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> sgRNA-HindIII Reverse primer <400> 32 taatagatct aagcttctgc aggtcgactc t 31 <210> 33 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> shiA_UP Forward primer <400> 33 gacctgcaga agctaatatg gatgacaaca aagt 34 <210> 34 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> shiA_UP Reverse primer <400> 34 gtcgacgacg gcaccagcga agctgc 26 <210> 35 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> shiA_DOWN Forward primer <400> 35 ggtgccgtcg tcgacaaaga cagtcaacgc gctt 34 <210> 36 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> shiA_DOWN Reverse primer <400> 36 aatagatcta agcttccagt tctgttgtcg ggaag 35 <210> 37 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> sgRNA-ydiN Forward primer <400> 37 gtcctaggta taatactagt gtggatgccc aaatatgcga gttttagagc tagaaatagc 60 60 <210> 38 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> ydiN_UP Forward primer <400> 38 ttctctagag tcgacgcaat attcttttca ggtca 35 <210> 39 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> ydiN_UP Reverse primer <400> 39 cgcacactgc cagaccgtag gcgaga 26 <210> 40 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> ydiN_DOWN Forward primer <400> 40 gtctggcagt gtgcgtttgt tattccactg attac 35 <210> 41 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> ydiN_DOWN Reverse primer <400> 41 cttctgcagg tcgacgccat catcattaac gatgg 35 <210> 42 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> ptsG_UP Forward primer <400> 42 ttacatatgc gggatccggt aggcgaacgt 30 <210> 43 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> ptsG_UP Reverse primer <400> 43 catggtttta accatctaga cataggcaac aactcgagcc agcgcggata 50 <210> 44 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> ptsG_DOWN Forward primer <400> 44 tccacgcgat tctagaaggc ctggcattcc caagctttat tcttctgggg 50 <210> 45 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ptsG_DOWN Reverse primer <400> 45 gtcgacctac gccagctata 20 <210> 46 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> tyrR_UP Forward primer <400> 46 caggtgatgg atgtcgacaa accactaccg 30 <210> 47 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> tyrR_UP Reverse primer <400> 47 tcgacagaga gcaaagcttc aggcaacgcc 30 <210> 48 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> tyrR_DOWN Forward primer <400> 48 actgacacaa ctcgagggtt ctgagctgcg 30 <210> 49 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> tyrR_DOWN Reverse primer <400> 49 gcatcgcaac gcctggatcc gccaatagct 30 <210> 50 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pykA_UP Forward primer <400> 50 cgtttctaga caccgtctcg aggttcagtt cgac 34 <210> 51 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> pykA_UP Reverse primer <400> 51 ccgccaagga tccgtgatcc cattct 26 <210> 52 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> pykA_DOWN Forward primer <400> 52 caaccgcgcc gtcgacttgc tc 22 <210> 53 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pykA_DOWN Reverse primer <400> 53 caaacggctt ctagacgttc aagcttggca acaa 34 <210> 54 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> aroE_OVER Forward primer <400> 54 ggagatatac atatggaaac ctatgctgtt tt 32 <210> 55 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> aroE_OVER Reverse primer <400> 55 tcggggcaag cttaatcacg cggacaattc ctcc 34 <210> 56 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> tktA_OVER Forward primer <400> 56 gtccgcgtga agcttaaggg cgtgcccttc atcat 35 <210> 57 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> tktA_OVER Reverse primer <400> 57 tgtcggggca agctttaatt acagcagttc ttttg 35 <210> 58 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> aroG_OVER Forward primer <400> 58 aggagatata ctcgaatgaa ttatcagaac gacga 35 <210> 59 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> aroG_OVER Reverse primer <400> 59 gaattcgatt ctcgattacc cgcgacgcgc tttta 35 <210> 60 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> aroF_OVER Forward primer <400> 60 ctcccggccg ccatgataaa cctcttaagc cacgc 35 <210> 61 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> aroF_OVER Reverse primer <400> 61 cccgcggccg ccatgtacgt catcctcgct gagga 35 <210> 62 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> aroB_OVER Forward primer <400> 62 gagggagtcc aaaaaacaat ggagaggatt gtcgttactc tcg 43 <210> 63 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> aroB_OVER Reverse primer <400> 63 tttacagtta cggttttcat tacgctgatt gacaatcgg 39 <210> 64 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> aroD_OVER Forward primer <400> 64 ttgtcaatca gcgtaatgaa aaccgtaact gtaaaaga 38 <210> 65 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> aroD_OVER Reverse primer <400> 65 ggcgggtgtc ggggcaagct tttatgcctg gtgtaaaata gtt 43 <210> 66 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> galP_OVER Forward primer <400> 66 aggagatata ctcgaatgcc tgacgctaaa aaaca 35 <210> 67 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> galP_OVER Reverse primer <400> 67 gaattcgatt ctcgaggaga ttaatcgtga gcgcc 35 <210> 68 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> ppsA_OVER Forward primer <400> 68 ctcccggccg ccatgcacat aaccccggcg actaa 35 <210> 69 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> ppsA_OVER Reverse primer <400> 69 cccgcggccg ccatgcacaa aaggattgtt cgatg 35 <210> 70 <211> 3280 <212> DNA <213> Artificial Sequence <220> <223> PoppA-aroE_plasmid sequences <400> 70 gacgaaaggg cctcgtgata cgcctatttt tataggttaa tgtcatgata ataatggttt 60 cttagacgtc aggtggcact tttcggggaa atgtgcgcgg aacccctatt tgtttatttt 120 tctaaataca ttcaaatatg tatccgctca tgagacaata accctgataa atgcttcaat 180 aatattgaaa aaggaagagt atgagtattc aacatttccg tgtcgccctt attccctttt 240 ttgcggcatt ttgccttcct gtttttgctc acccagaaac gctggtgaaa gtaaaagatg 300 ctgaagatca gttgggtgca cgagtgggtt acatcgaact ggatctcaac agcggtaaga 360 tccttgagag ttttcgcccc gaagaacgtt ttccaatgat gagcactttt aaagttctgc 420 tatgtggcgc ggtattatcc cgtattgacg ccgggcaaga gcaactcggt cgccgcatac 480 actattctca gaatgacttg gttgagtact caccagtcac agaaaagcat cttacggatg 540 gcatgacagt aagagaatta tgcagtgctg ccataaccat gagtgataac actgcggcca 600 acttacttct gacaacgatc ggaggaccga aggagctaac cgcttttttg cacaacatgg 660 gggatcatgt aactcgcctt gatcgttggg aaccggagct gaatgaagcc ataccaaacg 720 acgagcgtga caccacgatg cctgtagcaa tggcaacaac gttgcgcaaa ctattaactg 780 gcgaactact tactctagct tcccggcaac aattaataga ctggatggag gcggataaag 840 ttgcaggacc acttctgcgc tcggcccttc cggctggctg gtttattgct gataaatctg 900 gagccggtga gcgtgggtct cgcggtatca ttgcagcact ggggccagat ggtaagccct 960 cccgtatcgt agttatctac acgacgggga gtcaggcaac tatggatgaa cgaaatagac 1020 agatcgctga gataggtgcc tcactgatta agcattggta actgtcagac caagtttact 1080 catatatact ttagattgat ttaaaacttc atttttaatt taaaaggatc taggtgaaga 1140 tcctttttga taatctcatg accaaaatcc cttaacgtga gttttcgttc cactgagcgt 1200 cagaccccgt agaaaagatc aaaggatctt cttgagatcc tttttttctg cgcgtaatct 1260 gctgcttgca aacaaaaaaa ccaccgctac cagcggtggt ttgtttgccg gatcaagagc 1320 taccaactct ttttccgaag gtaactggct tcagcagagc gcagatacca aatactgttc 1380 ttctagtgta gccgtagtta ggccaccact tcaagaactc tgtagcaccg cctacatacc 1440 tcgctctgct aatcctgtta ccagtggctg ctgccagtgg cgataagtcg tgtcttaccg 1500 ggttggactc aagacgatag ttaccggata aggcgcagcg gtcgggctga acggggggtt 1560 cgtgcacaca gcccagcttg gagcgaacga cctacaccga actgagatac ctacagcgtg 1620 agctttgaga aagcgccacg cttcccgaag ggagaaaggc ggacaggtat ccggtaagcg 1680 gcagggtcgg aacaggagag cgcacgaggg agcttccagg gggaaacgcc tggtatcttt 1740 atagtcctgt cgggtttcgc cacctctgac ttgagcgtcg atttttgtga tgctcgtcag 1800 gggggcggag cctatggaaa aacgccagca acgcggcctt tttacggttc ctggcctttt 1860 gctggccttt tgctcacatg ttctttcctg cgttatcccc tgattctgtg gataaccgta 1920 ttaccgcctt tgagtgagct gataccgctc gccgcagccg aacgaccgag cgcagcgagt 1980 cagtgagcga ggaagcggaa gagcgcccaa tacgcaaacc gcctctcccc gcgcgttggc 2040 cgattcatta atgcagctgg cacgacaggg aattcaatgt gtctcgacag gggagacaca 2100 gtacgaatcg acataaggtg atcgtctgaa tcaccagaat aaataaagtc ggtgatagta 2160 atacgtaacg ataaagtaac ctgacagcag aaagtctccg agcctgtgca gggtcccaat 2220 ccgggattac acatgctggt taataccagt aattataatg agggagtcca aaaaacatct 2280 agaaataatt ttgtttaact ttaagaagga gatatacata tggaaaccta tgctgttttt 2340 ggtaatccga tagcccacag caaatcgcca ttcattcatc agcaatttgc tcagcaactg 2400 aatattgaac atccctatgg gcgcgtgttg gcacccatca atgatttcat caacacactg 2460 aacgctttct ttagtgctgg tggtaaaggt gcgaatgtga cggtgccttt taaagaagag 2520 gcttttgcca gagcggatga gcttactgaa cgggcagcgt tggctggtgc tgttaatacc 2580 ctcatgcggt tagaagatgg acgcctgctg ggtgacaata ccgatggtgt aggcttgtta 2640 agcgatctgg aacgtctgtc ttttatccgc cctggtttac gtattctgct tatcggcgct 2700 ggtggagcat ctcgcggcgt actactgcca ctcctttccc tggactgtgc ggtgacaata 2760 actaatcgga cggtatcccg cgcggaagag ttggctaaat tgtttgcgca cactggcagt 2820 attcaggcgt tgagtatgga cgaactggaa ggtcatgagt ttgatctcat tattaatgca 2880 acatccagtg gcatcagtgg tgatattccg gcgatcccgt catcgctcat tcatccaggc 2940 atttattgct atgacatgtt ctatcagaaa ggaaaaactc cttttctggc atggtgtgag 3000 cagcgaggct caaagcgtaa tgctgatggt ttaggaatgc tggtggcaca ggcggctcat 3060 gcctttcttc tctggcacgg tgttctgcct gacgtagaac cagttataaa gcaattgcag 3120 gaggaattgt ccgcgtgaag cttgccccga cacccgccaa cacccgctga cgcgccctga 3180 cgggcttgtc tgctcccggc atccgcttac agacaagctg tgaccgtctc cgggagctgc 3240 atgtgtcaga ggttttcacc gtcatcaccg aaacgcgcga 3280 <210> 71 <211> 5368 <212> DNA <213> Artificial Sequence <220> <223> PoppA-aroE-tktA_plasmid sequences <400> 71 gacgaaaggg cctcgtgata cgcctatttt tataggttaa tgtcatgata ataatggttt 60 cttagacgtc aggtggcact tttcggggaa atgtgcgcgg aacccctatt tgtttatttt 120 tctaaataca ttcaaatatg tatccgctca tgagacaata accctgataa atgcttcaat 180 aatattgaaa aaggaagagt atgagtattc aacatttccg tgtcgccctt attccctttt 240 ttgcggcatt ttgccttcct gtttttgctc acccagaaac gctggtgaaa gtaaaagatg 300 ctgaagatca gttgggtgca cgagtgggtt acatcgaact ggatctcaac agcggtaaga 360 tccttgagag ttttcgcccc gaagaacgtt ttccaatgat gagcactttt aaagttctgc 420 tatgtggcgc ggtattatcc cgtattgacg ccgggcaaga gcaactcggt cgccgcatac 480 actattctca gaatgacttg gttgagtact caccagtcac agaaaagcat cttacggatg 540 gcatgacagt aagagaatta tgcagtgctg ccataaccat gagtgataac actgcggcca 600 acttacttct gacaacgatc ggaggaccga aggagctaac cgcttttttg cacaacatgg 660 gggatcatgt aactcgcctt gatcgttggg aaccggagct gaatgaagcc ataccaaacg 720 acgagcgtga caccacgatg cctgtagcaa tggcaacaac gttgcgcaaa ctattaactg 780 gcgaactact tactctagct tcccggcaac aattaataga ctggatggag gcggataaag 840 ttgcaggacc acttctgcgc tcggcccttc cggctggctg gtttattgct gataaatctg 900 gagccggtga gcgtgggtct cgcggtatca ttgcagcact ggggccagat ggtaagccct 960 cccgtatcgt agttatctac acgacgggga gtcaggcaac tatggatgaa cgaaatagac 1020 agatcgctga gataggtgcc tcactgatta agcattggta actgtcagac caagtttact 1080 catatatact ttagattgat ttaaaacttc atttttaatt taaaaggatc taggtgaaga 1140 tcctttttga taatctcatg accaaaatcc cttaacgtga gttttcgttc cactgagcgt 1200 cagaccccgt agaaaagatc aaaggatctt cttgagatcc tttttttctg cgcgtaatct 1260 gctgcttgca aacaaaaaaa ccaccgctac cagcggtggt ttgtttgccg gatcaagagc 1320 taccaactct ttttccgaag gtaactggct tcagcagagc gcagatacca aatactgttc 1380 ttctagtgta gccgtagtta ggccaccact tcaagaactc tgtagcaccg cctacatacc 1440 tcgctctgct aatcctgtta ccagtggctg ctgccagtgg cgataagtcg tgtcttaccg 1500 ggttggactc aagacgatag ttaccggata aggcgcagcg gtcgggctga acggggggtt 1560 cgtgcacaca gcccagcttg gagcgaacga cctacaccga actgagatac ctacagcgtg 1620 agctttgaga aagcgccacg cttcccgaag ggagaaaggc ggacaggtat ccggtaagcg 1680 gcagggtcgg aacaggagag cgcacgaggg agcttccagg gggaaacgcc tggtatcttt 1740 atagtcctgt cgggtttcgc cacctctgac ttgagcgtcg atttttgtga tgctcgtcag 1800 gggggcggag cctatggaaa aacgccagca acgcggcctt tttacggttc ctggcctttt 1860 gctggccttt tgctcacatg ttctttcctg cgttatcccc tgattctgtg gataaccgta 1920 ttaccgcctt tgagtgagct gataccgctc gccgcagccg aacgaccgag cgcagcgagt 1980 cagtgagcga ggaagcggaa gagcgcccaa tacgcaaacc gcctctcccc gcgcgttggc 2040 cgattcatta atgcagctgg cacgacaggg aattcaatgt gtctcgacag gggagacaca 2100 gtacgaatcg acataaggtg atcgtctgaa tcaccagaat aaataaagtc ggtgatagta 2160 atacgtaacg ataaagtaac ctgacagcag aaagtctccg agcctgtgca gggtcccaat 2220 ccgggattac acatgctggt taataccagt aattataatg agggagtcca aaaaacatct 2280 agaaataatt ttgtttaact ttaagaagga gatatacata tggaaaccta tgctgttttt 2340 ggtaatccga tagcccacag caaatcgcca ttcattcatc agcaatttgc tcagcaactg 2400 aatattgaac atccctatgg gcgcgtgttg gcacccatca atgatttcat caacacactg 2460 aacgctttct ttagtgctgg tggtaaaggt gcgaatgtga cggtgccttt taaagaagag 2520 gcttttgcca gagcggatga gcttactgaa cgggcagcgt tggctggtgc tgttaatacc 2580 ctcatgcggt tagaagatgg acgcctgctg ggtgacaata ccgatggtgt aggcttgtta 2640 agcgatctgg aacgtctgtc ttttatccgc cctggtttac gtattctgct tatcggcgct 2700 ggtggagcat ctcgcggcgt actactgcca ctcctttccc tggactgtgc ggtgacaata 2760 actaatcgga cggtatcccg cgcggaagag ttggctaaat tgtttgcgca cactggcagt 2820 attcaggcgt tgagtatgga cgaactggaa ggtcatgagt ttgatctcat tattaatgca 2880 acatccagtg gcatcagtgg tgatattccg gcgatcccgt catcgctcat tcatccaggc 2940 atttattgct atgacatgtt ctatcagaaa ggaaaaactc cttttctggc atggtgtgag 3000 cagcgaggct caaagcgtaa tgctgatggt ttaggaatgc tggtggcaca ggcggctcat 3060 gcctttcttc tctggcacgg tgttctgcct gacgtagaac cagttataaa gcaattgcag 3120 gaggaattgt ccgcgtgaaa agcttttaag ggcgtgccct tcatcatccg atctggagtc 3180 aaaatgtcct cacgtaaaga gcttgccaat gctattcgtg cgctgagcat ggacgcagta 3240 cagaaagcca aatccggtca cccgggtgcc cctatgggta tggctgacat tgccgaagtc 3300 ctgtggcgtg atttcctgaa acacaacccg cagaatccgt cctgggctga ccgtgaccgc 3360 ttcgtgctgt ccaacggcca cggctccatg ctgatctaca gcctgctgca cctcaccggt 3420 tacgatctgc cgatggaaga actgaaaaac ttccgtcagc tgcactctaa aactccgggt 3480 cacccggaag tgggttacac cgctggtgtg gaaaccacca ccggtccgct gggtcagggt 3540 attgccaacg cagtcggtat ggcgattgca gaaaaaacgc tggcggcgca gtttaaccgt 3600 ccgggccacg acattgtcga ccactacacc tacgccttca tgggcgacgg ctgcatgatg 3660 gaaggcatct cccacgaagt ttgctctctg gcgggtacgc tgaagctggg taaactgatt 3720 gcattctacg atgacaacgg tatttctatc gatggtcacg ttgaaggctg gttcaccgac 3780 gacaccgcaa tgcgtttcga agcttacggc tggcacgtta ttcgcgacat cgacggtcat 3840 gacgcggcat ctatcaaacg cgcagtagaa gaagcgcgcg cagtgactga caaaccttcc 3900 ctgctgatgt gcaaaaccat catcggtttc ggttccccga acaaagccgg tacccacgac 3960 tcccacggtg cgccgctggg cgacgctgaa attgccctga cccgcgaaca actgggctgg 4020 aaatatgcgc cgttcgaaat cccgtctgaa atctatgctc agtgggatgc gaaagaagca 4080 ggccaggcga aagaatccgc atggaacgag aaattcgctg cttacgcgaa agcttatccg 4140 caggaagccg ctgaatttac ccgccgtatg aaaggcgaaa tgccgtctga cttcgacgct 4200 aaagcgaaag agttcatcgc taaactgcag gctaatccgg cgaaaatcgc cagccgtaaa 4260 gcgtctcaga atgctatcga agcgttcggt ccgctgttgc cggaattcct cggcggttct 4320 gctgacctgg cgccgtctaa cctgaccctg tggtctggtt ctaaagcaat caacgaagat 4380 gctgcgggta actacatcca ctacggtgtt cgcgagttcg gtatgaccgc gattgctaac 4440 ggtatctccc tgcacggtgg cttcctgccg tacacctcca ccttcctgat gttcgtggaa 4500 tacgcacgta acgccgtacg tatggctgcg ctgatgaaac agcgtcaggt gatggtttac 4560 acccacgact ccatcggtct gggcgaagac ggcccgactc accagccggt tgagcaggtc 4620 gcttctctgc gcgtaacccc gaacatgtct acatggcgtc cgtgtgacca ggttgaatcc 4680 gcggtcgcgt ggaaatacgg tgttgagcgt caggacggcc cgaccgcact gatcctctcc 4740 cgtcagaacc tggcgcagca ggaacgaact gaagagcaac tggcaaacat cgcgcgcggt 4800 ggttatgtgc tgaaagactg cgccggtcag ccggaactga ttttcatcgc taccggttca 4860 gaagttgaac tggctgttgc tgcctacgaa aaactgactg ccgaaggcgt gaaagcgcgc 4920 gtggtgtcca tgccgtctac cgacgcattt gacaagcagg atgctgctta ccgtgaatcc 4980 gtactgccga aagcggttac tgcacgcgtt gctgtagaag cgggtattgc tgactactgg 5040 tacaagtatg ttggcctgaa cggtgctatc gtcggtatga ccaccttcgg tgaatctgct 5100 ccggcagagc tgctgtttga agagttcggc ttcactgttg ataacgttgt tgcgaaagca 5160 aaagaactgc tgtaattaaa gcttgcatgc ctgcaggtcg actctagagg atccccgggt 5220 accgagagct tgccccgaca cccgccaaca cccgctgacg cgccctgacg ggcttgtctg 5280 ctcccggcat ccgcttacag acaagctgtg accgtctccg ggagctgcat gtgtcagagg 5340 ttttcaccgt catcaccgaa acgcgcga 5368 <110> STR biotech <120> MICROORGANISM FOR PRODUCING SHIKIMIC ACID AND METHOD FOR PRODUCING SHIKIMIC ACID USING THE MICROORGANISM <130> 19p515/ind <160> 71 <170> KoPatentIn 3.0 <210> 1 <211> 522 <212> DNA <213> Artificial Sequence <220> <223> aroK coding DNA <400> 1 atggcagaga aacgcaatat ctttctggtt gggcctatgg gtgccggaaa aagcactatt 60 gggcgccagt tagctcaaca actcaatatg gaattttacg attccgatca agagattgag 120 aaacgaaccg gagctgatgt gggctgggtt ttcgatttag aaggcgaaga aggcttccgc 180 gatcgcgaag aaaaggtcat caatgagttg accgagaaac agggtattgt gctggctact 240 ggcggcggct ctgtgaaatc ccgtgaaacg cgtaaccgtc tttccgctcg tggcgttgtc 300 gtttatcttg aaacgaccat cgaaaagcaa cttgcacgca cgcagcgtga taaaaaacgc 360 ccgttgctgc acgttgaaac accgccgcgt gaagttctgg aagcgttggc caatgaacgc 420 aatccgctgt atgaagagat tgccgacgtg accattcgta ctgatgatca aagcgctaaa 480 gtggttgcaa accagattat tcacatgctg gaaagcaact aa 522 <210> 2 <211> 525 <212> DNA <213> Artificial Sequence <220> <223> aroL coding DNA <400> 2 atgacacaac ctctttttct gatcgggcct cggggctgtg gtaaaacaac ggtcggaatg 60 gcccttgccg attcgcttaa ccgtcggttt gtcgataccg atcagtggtt gcaatcacag 120 ctcaatatga cggtcgcgga gatcgtcgaa agggaagagt gggcgggatt tcgcgccaga 180 gaaacggcgg cgctggaagc ggtaactgcg ccatccaccg ttatcgctac aggcggcggc 240 attattctga cggaatttaa tcgtcacttc atgcaaaata acgggatcgt ggtttatttg 300 tgtgcgccag tatcagtcct ggttaaccga ctgcaagctg caccggaaga agatttacgg 360 ccaaccttaa cgggaaaacc gctgagcgaa gaagttcagg aagtgctgga agaacgcgat 420 gcgctatatc gcgaagttgc gcatattatc atcgacgcaa caaacgaacc cagccaggtg 480 atttctgaaa ttcgcagcgc cctggcacag acgatcaatt gttga 525 <210> 3 <211> 1542 <212> DNA <213> Artificial Sequence <220> <223> tyrR coding DNA <400> 3 atgcgtctgg aagtcttttg tgaagaccga ctcggtctga cccgcgaatt actcgatcta 60 ctcgtgctaa gaggcattga tttacgcggt attgagattg atcccattgg gcgaatctac 120 ctcaattttg ctgaactgga gtttgagagt ttcagcagtc tgatggccga aatacgccgt 180 attgcgggtg ttaccgatgt gcgtactgtc ccgtggatgc cttccgaacg tgagcatctg 240 gcgttgagcg cgttactgga ggcgttgcct gaacctgtgc tctctgtcga tatgaaaagc 300 aaagtggata tggcgaaccc ggcgagctgt cagctttttg ggcaaaaatt ggatcgcctg 360 cgcaaccata ccgccgcaca attgattaac ggctttaatt ttttacgttg gctggaaagc 420 gaaccgcaag attcgcataa cgagcatgtc gttattaatg ggcagaattt cctgatggag 480 attacgcctg tttatcttca ggatgaaaat gatcaacacg tcctgaccgg tgcggtggtg 540 atgttgcgat caacgattcg tatgggccgc cagttgcaaa atgtcgccgc ccaggacgtc 600 agcgccttca gtcaaattgt cgccgtcagc ccgaaaatga agcatgttgt cgaacaggcg 660 cagaaactgg cgatgctaag cgcgccgctg ctgattacgg gtgacacagg tacaggtaaa 720 gatctctttg cctacgcctg ccatcaggca agccccagag cgggcaaacc ttacctggcg 780 ctgaactgtg cgtctatacc ggaagatgcg gtcgagagtg aactgtttgg tcatgctccg 840 gaagggaaga aaggattctt tgagcaggcg aacggtggtt cggtgctgtt ggatgaaata 900 ggggaaatgt caccacggat gcaggcgaaa ttactgcgtt tccttaatga tggcactttc 960 cgtcgggttg gcgaagcca tgaggtgcat gtcgatgtgc gggtgatttg cgctacgcag 1020 aagaatctgg tcgaactggt gcaaaaaggc atgttccgtg aagatctcta ttatcgtctg 1080 aacgtgttga cgctcaatct gccgccgcta cgtgactgtc cgcaggacat catgccgtta 1140 actgagctgt tcgtcgcccg ctttgccgac gagcagggcg tgccgcgtcc gaaactggcc 1200 gctgacctga atactgtact tacgcgttat gcgtggccgg gaaatgtgcg gcagttaaag 1260 aacgctatct atcgcgcact gacacaactg gacggttatg agctgcgtcc acaggatatt 1320 ttgttgccgg attatgacgc cgcaacggta gccgtgggcg aagatgcgat ggaaggttcg 1380 ctggacgaaa tcaccagccg ttttgaacgc tcggtattaa cccagcttta tcgcaattat 1440 cccagcacgc gcaaactggc aaaacgtctc ggcgtttcac ataccgcgat tgccaataag 1500 ttgcgggaat atggtctgag tcagaagaag aacgaagagt aa 1542 <210> 4 <211> 1434 <212> DNA <213> Artificial Sequence <220> <223> ptsG coding DNA <400> 4 atgtttaaga atgcatttgc taacctgcaa aaggtcggta aatcgctgat gctgccggta 60 tccgtactgc ctatcgcagg tattctgctg ggcgtcggtt ccgcgaattt cagctggctg 120 cccgccgttg tatcgcatgt tatggcagaa gcaggcggtt ccgtctttgc aaacatgcca 180 ctgatttttg cgatcggtgt cgccctcggc tttaccaata acgatggcgt atccgcgctg 240 gccgcagttg ttgcctatgg catcatggtt aaaaccatgg ccgtggttgc gccactggta 300 ctgcatttac ctgctgaaga aatcgcctct aaacacctgg cggatactgg cgtactcgga 360 gggattatct ccggtgcgat cgcagcgtac atgtttaacc gtttctaccg tattaagctg 420 cctgagtatc ttggcttctt tgccggtaaa cgctttgtgc cgatcatttc tggcctggct 480 gccatcttta ctggcgttgt gctgtccttc atttggccgc cgattggttc tgcaatccag 540 accttctctc agtgggctgc ttaccagaac ccggtagttg cgtttggcat ttacggtttc 600 atcgaacgtt gcctggtacc gtttggtctg caccacatct ggaacgtacc tttccagatg 660 cagattggtg aatacaccaa cgcagcaggt caggttttcc acggcgacat tccgcgttat 720 atggcgggtg acccgactgc gggtaaactg tctggtggct tcctgttcaa aatgtacggt 780 ctgccagctg ccgcaattgc tatctggcac tctgctaaac cagaaaaccg cgcgaaagtg 840 ggcggtatta tgatctccgc ggcgctgacc tcgttcctga ccggtatcac cgagccgatc 900 gagttctcct tcatgttcgt tgcgccgatc ctgtacatca tccacgcgat tctggcaggc 960 ctggcattcc caatctgtat tcttctgggg atgcgtgacg gtacgtcgtt ctcgcacggt 1020 ctgatcgact tcatcgttct gtctggtaac agcagcaaac tgtggctgtt cccgatcgtc 1080 ggtatcggtt atgcgattgt ttactacacc atcttccgcg tgctgattaa agcactggat 1140 ctgaaaacgc cgggtcgtga agacgcgact gaagatgcaa aagcgacagg taccagcgaa 1200 atggcaccgg ctctggttgc tgcatttggt ggtaaagaaa acattactaa cctcgacgca 1260 tgtattaccc gtctgcgcgt cagcgttgct gatgtgtcta aagtggatca ggccggcctg 1320 aagaaactgg gcgcagcggg cgtagtggtt gctggttctg gtgttcaggc gattttcggt 1380 actaaatccg ataacctgaa aaccgagatg gatgagtaca tccgtaacca ctaa 1434 <210> 5 <211> 1443 <212> DNA <213> Artificial Sequence <220> <223> pykA coding DNA <400> 5 atgtccagaa ggcttcgcag aacaaaaatc gttaccacgt taggcccagc aacagatcgc 60 gataataatc ttgaaaaagt tatcgcggcg ggtgccaacg ttgtacgtat gaacttttct 120 cacggctcgc ctgaagatca caaaatgcgc gcggataaag ttcgtgagat tgccgcaaaa 180 ctggggcgtc atgtggctat tctgggtgac ctccaggggc ccaaaatccg tgtatccacc 240 tttaaagaag gcaaagtttt cctcaatatt ggggataaat tcctgctcga cgccaacctg 300 ggtaaaggtg aaggcgacaa agaaaaagtc ggtatcgact acaaaggcct gcctgctgac 360 gtcgtgcctg gtgacatcct gctgctggac gatggtcgcg tccagttaaa agtactggaa 420 gttcagggca tgaaagtgtt caccgaagtc accgtcggtg gtcccctctc caacaataaa 480 ggtatcaaca aacttggcgg cggtttgtcg gctgaagcgc tgaccgaaaa agacaaagca 540 gacattaaga ctgcggcgtt gattggcgta gattacctgg ctgtctcctt cccacgctgt 600 ggcgaagatc tgaactatgc ccgtcgcctg gcacgcgatg caggatgtga tgcgaaaatt 660 gttgccaagg ttgaacgtgc ggaagccgtt tgcagccagg atgcaatgga tgacatcatc 720 ctcgcctctg acgtggtaat ggttgcacgt ggcgacctcg gtgtggaaat tggcgacccg 780 gaactggtcg gcattcagaa agcgttgatc cgtcgtgcgc gtcagctaaa ccgagcggta 840 atcacggcga cccagatgat ggagtcaatg attactaacc cgatgccgac gcgtgcagaa 900 gtcatggacg tagcaaacgc cgttctggat ggtactgacg ctgtgatgct gtctgcagaa 960 actgccgctg ggcagtatcc gtcagaaacc gttgcagcca tggcgcgcgt ttgcctgggt 1020 gcggaaaaaa tcccgagcat caacgtttct aaacaccgtc tggacgttca gttcgacaat 1080 gtggaagaag ctattgccat gtcagcaatg tacgcagcta accacctgaa aggcgttacg 1140 gcgatcatca ccatgaccga atcgggtcgt accgcgctga tgacctcccg tatcagctct 1200 ggtctgccaa ttttcgccat gtcgcgccat gaacgtacgc tgaacctgac tgctctctat 1260 cgtggcgtta cgccggtgca ctttgatagc gctaatgacg gcgtagcagc tgccagcgaa 1320 gcggttaatc tgctgcgcga taaaggttac ttgatgtctg gtgacctggt gattgtcacc 1380 cagggcgacg tgatgagtac cgtgggttct actaatacca cgcgtatttt aacggtagag 1440 taa 1443 <210> 6 <211> 1317 <212> DNA <213> Artificial Sequence <220> <223> shiA coding DNA <400> 6 atggactcca cgctcatctc cactcgtccc gatgaaggga cgctttcgtt aagtcgcgcc 60 cgacgagctg cgttaggcag cttcgctggt gccgtcgtcg actggtatga ttttttactc 120 tatggcatca ccgccgcact ggtgtttaat cgcgagtttt tcccgcaagt aagcccggcg 180 atgggaacgc tcgccgcatt tgctaccttt ggcgtcggat ttcttttccg tccgctcggc 240 ggtgtcattt tcggtcactt tggcgaccga ctgggacgta agcgcatgtt aatgctgacc 300 gtctggatga tgggcatcgc gacagccttg attggtattc ttccttcatt ctcgaccatt 360 gggtggtggg cacctatttt gctggtgaca ctgcgtgcca ttcagggatt tgcagtcggc 420 ggcgaatggg gaggcgcggc gttgctttcc gttgaaagtg caccgaaaaa taaaaaagcc 480 ttttacagta gcggtgtaca agttggctac ggtgtaggtt tactgctttc aaccggactg 540 gtttcattga tcagtatgat gacgactgac gaacagtttt taagctgggg ctggcgcatt 600 cctttcctgt ttagcatcgt actggtactg ggagcattgt gggtgcgcaa tggcatggag 660 gagtccgcgg aatttgaaca acagcaacat tatcaagctg ccgcgaaaaa acgcatcccg 720 gttatcgaag cgctgttacg acatcccggt gctttcctga agattattgc gctacgactg 780 tgcgaattgc tgacgatgta catcgttact gcctttgcac ttaattattc aacccagaat 840 atggggctac cgcgcgaact tttccttaat attggtttgc tggtaggtgg attaagctgc 900 ctgacaattc cctgttttgc ctggcttgcc gatcgttttg gtcgccgtag ggtttatatc 960 acaggtacgt taatcggaac gttgagcgca tttcctttct ttatggcgct tgaagcacaa 1020 tctattttct ggatagtttt cttctccata atgctggcaa acatgcgca tgacatggtg 1080 gtgtgtgtgc aacaaccgat gtttaccgaa atgtttggtg ccagttatcg ctatagtggc 1140 gctggagtcg gttatcaggt tgccagtgtg gttggcggtg gatttacacc ttttattgcc 1200 gctgcactca tcacttactt tgccgggaac tggcatagcg tcgccattta tttgctggct 1260 ggatgcctga tttccgcaat gaccgctttg ttgatgaaag acagtcaacg cgcttga 1317 <210> 7 <211> 1266 <212> DNA <213> Artificial Sequence <220> <223> ydiN coding DNA <400> 7 atgtctcaaa ataaggcttt cagcacgcca tttatcctgg ctgttctttg tatttacttc 60 agctacttcc tgcacggcat tagtgttatt acgcttgccc aaaatatgtc atctctggcg 120 gaaaagtttt ccactgacaa cgcgggcatt gcctacttaa tttccggtat cggtttgggg 180 cgattgatca gtattttatt cttcggtgtg atctccgata agtttggtcg tcgggcggtg 240 atattaatgg cagtaataat gtatctgcta ttcttctttg gtattcccgc ttgcccgaat 300 ttaactctcg cctacggtct ggcagtgtgc gtaggtatcg ctaactcagc gctggatacg 360 ggtggctacc ccgcgctcat ggaatgcttt ccgaaagcct ctggttcggc ggtcatactg 420 gttaaagcga tggtgtcatt tgggcaaatg ttctacccaa tgctggtgag ctatatgttg 480 ctcaataata tctggtacgg ctatgggctg attattccgg gtattctatt tgtactgatc 540 acgctgatgc tgttgaaaag caaattcccc agccagttgg tggacgccag cgtaactaat 600 gaattaccgc aaatgaacag caaaccgtta gtctggctgg aaggtgtttc atcggtactg 660 ttcggtgtag ccgcattctc gaccttttat gtgattgtgg tgtggatgcc caaatatgcg 720 atggcttttg ctggtatgtc agaagctgag gcattaaaaa ccatctctta ttacagtatg 780 ggctcgttgg tctgtgtctt tatttttgcc gcactactga aaaaaatggt ccggcccatc 840 tgggctaatg tatttaactc tgcactggca acaataacag cagccattat ctacctgtac 900 ccttctccac tggtgtgcaa tgccggagcc tttgttatcg gtttctcagc agctggcggc 960 attttacagc tcggcgtttc ggtcatgtca gagttttttc ccaaaagcaa agccaaagtc 1020 accagtattt atatgatgat gggtggactg gctaactttg ttattccact gattaccggt 1080 tatctgtcga acatcggcct gcaatatatc attgttctcg attttacttt cgcgctgctg 1140 gccctgatta ccgcaattat tgtttttatc cgctattacc gcgttttcat tattcctgaa 1200 aatgatgtgc ggtttggcga gcgtaaattt tgcacccggt taaacacaat taagcataga 1260 ggttaa 1266 <210> 8 <211> 1083 <212> DNA <213> Artificial Sequence <220> <223> lacI coding DNA <400> 8 gtgaaaccag taacgttata cgatgtcgca gagtatgccg gtgtctctta tcagaccgtt 60 tcccgcgtgg tgaaccaggc cagccacgtt tctgcgaaaa cgcgggaaaa agtggaagcg 120 gcgatggcgg agctgaatta cattcccaac cgcgtggcac aacaactggc gggcaaacag 180 tcgttgctga ttggcgttgc cacctccagt ctggccctgc acgcgccgtc gcaaattgtc 240 gcggcgatta aatctcgcgc cgatcaactg ggtgccagcg tggtggtgtc gatggtagaa 300 cgaagcggcg tcgaagcctg taaagcggcg gtgcacaatc ttctcgcgca acgcgtcagt 360 gggctgatca ttaactatcc gctggatgac caggatgcca ttgctgtgga agctgcctgc 420 actaatgttc cggcgttatt tcttgatgtc tctgaccaga cacccatcaa cagtattatt 480 ttctcccatg aagacggtac gcgactgggc gtggagcatc tggtcgcatt gggtcaccag 540 caaatcgcgc tgttagcggg cccattaagt tctgtctcgg cgcgtctgcg tctggctggc 600 tggcataaat atctcactcg caatcaaatt cagccgatag cggaacggga aggcgactgg 660 agtgccatgt ccggttttca acaaaccatg caaatgctga atgagggcat cgttcccact 720 gcgatgctgg ttgccaacga tcagatggcg ctgggcgcaa tgcgcgccat taccgagtcc 780 gggctgcgcg ttggtgcgga tatctcggta gtgggatacg acgataccga agacagctca 840 tgttatatcc cgccgttaac caccatcaaa caggattttc gcctgctggg gcaaaccagc 900 gtggaccgct tgctgcaact ctctcagggc caggcggtga agggcaatca gctgttgccc 960 gtctcactgg tgaaaagaaa aaccaccctg gcgcccaata cgcaaaccgc ctctccccgc 1020 gcgttggccg attcattaat gcagctggca cgacaggttt cccgactgga aagcgggcag 1080 tga 1083 <210> 9 <211> 1395 <212> DNA <213> Artificial Sequence <220> <223> galP coding DNA <400> 9 atgcctgacg ctaaaaaaca ggggcggtca aacaaggcaa tgacgttttt cgtctgcttc 60 cttgccgctc tggcgggatt actctttggc ctggatatcg gtgtaattgc tggcgcactg 120 ccgtttattg cagatgaatt ccagattact tcgcacacgc aagaatgggt cgtaagctcc 180 atgatgttcg gtgcggcagt cggtgcggtg ggcagcggct ggctctcctt taaactcggg 240 cgcaaaaaga gcctgatgat cggcgcaatt ttgtttgttg ccggttcgct gttctctgcg 300 gctgcgccaa acgttgaagt actgattctt tcccgcgttc tactggggct ggcggtgggt 360 gtggcctctt ataccgcacc gctgtacctc tctgaaattg cgccggaaaa aattcgtggc 420 agtatgatct cgatgtatca gttgatgatc actatcggga tcctcggtgc ttatctttct 480 gataccgcct tcagctacac cggtgcatgg cgctggatgc tgggtgtgat tatcatcccg 540 gcaattttgc tgctgattgg tgtcttcttc ctgccagaca gcccacgttg gtttgccgcc 600 aaacgccgtt ttgttgatgc cgaacgcgtg ctgctacgcc tgcgtgacac cagcgcggaa 660 gcgaaacgcg aactggatga aatccgtgaa agtttgcagg ttaaacagag tggctgggcg 720 ctgtttaaag agaacagcaa cttccgccgc gcggtgttcc ttggcgtact gttgcaggta 780 atgcagcaat tcaccgggat gaacgtcatc atgtattacg cgccgaaaat cttcgaactg 840 gcgggttata ccaacactac cgagcaaatg tgggggaccg tgattgtcgg cctgaccaac 900 gtacttgcca cctttatcgc aatcggcctt gttgaccgct ggggacgtaa accaacgcta 960 acgctgggct tcctggtgat ggctgctggc atgggcgtac tcggtacaat gatgcatatc 1020 ggtattcact ctccgtcggc gcagtatttc gccatcgcca tgctgctgat gtttattgtc 1080 ggttttgcca tgagtgccgg tccgctgatt tgggtactgt gctccgaaat tcagccgctg 1140 aaaggccgcg attttggcat cacctgctcc actgccacca actggattgc caacatgatc 1200 gttggcgcaa cgttcctgac catgctcaac acgctgggta acgccaacac cttctgggtg 1260 tatgcggctc tgaacgtact gtttatcctg ctgacattgt ggctggtacc ggaaaccaaa 1320 cacgtttcgc tggaacatat tgaacgtaat ctgatgaaag gtcgtaaact gcgcgaaata 1380 ggcgctcacg attaa 1395 <210> 10 <211> 2379 <212> DNA <213> Artificial Sequence <220> <223> ppsA coding DNA <400> 10 atgtccaaca atggctcgtc accgctggtg ctttggtata accaactcgg catgaatgat 60 gtagacaggg ttgggggcaa aaatgcctcc ctgggtgaaa tgattactaa tctttccgga 120 atgggtgttt ccgttccgaa tggtttcgcc acaaccgccg acgcgtttaa ccagtttctg 180 gaccaaagcg gcgtaaacca gcgcatttat gaactgctgg ataaaacgga tattgacgat 240 gttactcagc ttgcgaaagc gggcgcgcaa atccgccagt ggattatcga cactcccttc 300 cagcctgagc tggaaaacgc catccgcgaa gcctatgcac agctttccgc cgatgacgaa 360 aacgcctctt ttgcggtgcg ctcctccgcc accgcagaag atatgccgga cgcttctttt 420 gccggtcagc aggaaacctt cctcaacgtt cagggttttg acgccgttct cgtggcagtg 480 aaacatgtat ttgcttctct gtttaacgat cgcgccatct cttatcgtgt gcaccagggt 540 tacgatcacc gtggtgtggc gctctccgcc ggtgttcaac ggatggtgcg ctctgacctc 600 gcatcatctg gcgtgatgtt ctccattgat accgaatccg gctttgacca ggtggtgttt 660 atcacttccg catggggcct tggtgagatg gtcgtgcagg gtgcggttaa cccggatgag 720 ttttacgtgc ataaaccgac actggcggcg aatcgcccgg ctatcgtgcg ccgcaccatg 780 gggtcgaaaa aaatccgcat ggtttacgcg ccgacccagg agcacggcaa gcaggttaaa 840 atcgaagacg taccgcagga acagcgtgac atcttctcgc tgaccaacga agaagtgcag 900 gaactggcaa aacaggccgt acaaattgag aaacactacg gtcgcccgat ggatattgag 960 tgggcgaaag atggccacac cggtaaactg ttcattgtgc aggcgcgtcc ggaaaccgtg 1020 cgctcacgcg gtcaggtcat ggagcgttat acgctgcatt cacagggtaa gattatcgcc 1080 gaaggccgtg ctatcggtca tcgcatcggt gcgggtccgg tgaaagtcat ccatgacatc 1140 agcgaaatga accgcatcga acctggcgac gtgctggtta ctgacatgac cgacccggac 1200 tgggaaccga tcatgaagaa agcatctgcc atcgtcacca accgtggcgg tcgtacctgt 1260 cacgcggcga tcatcgctcg tgaactgggc attccggcgg tagtgggctg tggagatgca 1320 acagaacgga tgaaagacgg tgagaacgtc actgtttctt gtgccgaagg tgataccggt 1380 tacgtctatg cggagttgct ggaatttagc gtgaaaagct ccagcgtaga aacgatgccg 1440 gatctgccgt tgaaagtgat gatgaacgtc ggtaacccgg accgtgcttt cgacttcgcc 1500 tgcctaccga acgaaggcgt gggccttgcg cgtctggaat ttatcatcaa ccgtatgatt 1560 ggcgtccacc cacgcgcact gcttgagttt gacgatcagg aaccgcagtt gcaaaacgaa 1620 atccgcgaga tgatgaaagg ttttgattct ccgcgtgaat tttacgttgg tcgtctgact 1680 gaagggatcg cgacgctggg tgccgcgttt tatccgaagc gcgtcattgt ccgtctctct 1740 gattttaaat cgaacgaata tgccaacctg gtcggtggtg agcgttacga gccagatgaa 1800 gagaacccga tgctcggctt ccgtggcgcg ggccgctatg tttccgacag cttccgcgac 1860 tgtttcgcgc tggagtgtga agcagtgaaa cgtgtgcgca acgacatggg actgaccaac 1920 gttgagatca tgatcccgtt cgtgcgtacc gtagatcagg cgaaagcggt ggttgaagaa 1980 ctggcgcgtc aggggctgaa acgtggcgag aacgggctga aaatcatcat gatgtgtgaa 2040 atcccgtcca acgccttgct ggccgagcag ttcctcgaat atttcgacgg cttctcaatt 2100 ggctcaaacg atatgacgca gctggcgctc ggtctggacc gtgactccgg cgtggtgtct 2160 gaattgttcg atgagcgcaa cgatgcggtg aaagcactgc tgtcgatggc tatccgtgcc 2220 gcgaagaaac agggcaaata tgtcgggatt tgcggtcagg gtccgtccga ccacgaagac 2280 tttgccgcat ggttgatgga agaggggatc gatagcctgt ctctgaaccc ggacaccgtg 2340 gtgcaaacct ggttaagcct ggctgaactg aagaaataa 2379 <210> 11 <211> 1089 <212> DNA <213> Artificial Sequence <220> <223> aroB coding DNA <400> 11 atggagagga ttgtcgttac tctcggggaa cgtagttacc caattaccat cgcatctggt 60 ttgtttaatg aaccagcttc attcttaccg ctgaaatcgg gcgagcaggt catgttggtc 120 accaacgaaa ccctggctcc tctgtatctc gataaggtcc gcggcgtact tgaacaggcg 180 ggtgttaacg tcgatagcgt tatcctccct gacggcgagc agtataaaag cctggctgta 240 ctcgataccg tctttacggc gttgttacaa aaaccgcatg gtcgcgatac tacgctggtg 300 gcgcttggcg gcggcgtagt gggcgatctg accggcttcg cggcggcgag ttatcagcgc 360 ggtgtccgtt tcattcaagt cccgacgacg ttactgtcgc aggtcgattc ctccgttggc 420 ggcaaaactg cggtcaacca tcccctcggt aaaaacatga ttggcgcgtt ctaccaacct 480 gcttcagtgg tggtggatct cgactgtctg aaaacgcttc ccccgcgtga gttagcgtcg 540 gggctggcag aagtcatcaa atacggcatt attcttgacg gtgcgttttt taactggctg 600 gaagagaatc tggatgcgtt gttgcgtctg gacggtccgg caatggcgta ctgtattcgc 660 cgttgttgtg aactgaaggc agaagttgtc gccgccgacg agcgcgaaac cgggttacgt 720 gctttactga atctgggaca cacctttggt catgccattg aagctgaaat ggggtatggc 780 aattggttac atggtgaagc ggtcgctgcg ggtatggtga tggcggcgcg gacgtcggaa 840 cgtctcgggc agtttagttc tgccgaaacg cagcgtatta taaccctgct caagcgggct 900 gggttaccgg tcaatgggcc gcgcgaaatg tccgcgcagg cgtatttacc gcatatgctg 960 cgtgacaaga aagtccttgc gggagagatg cgcttaattc ttccgttggc aattggtaag 1020 agtgaagttc gcagcggcgt ttcgcacgag cttgttctta acgccattgc cgattgtcaa 1080 tcagcgtaa 1089 <210> 12 <211> 759 <212> DNA <213> Artificial Sequence <220> <223> aroD coding DNA <400> 12 atgaaaaccg taactgtaaa agatctcgtc attggtacgg gcgcacctaa aatcatcgtc 60 tcgctgatgg cgaaagatat cgccagcgtg aaatccgaag ctctcgccta tcgtgaagcg 120 gactttgata ttctggaatg gcgtgtggac cactatgccg acctctccaa tgtggagtct 180 gtcatggcgg cagcaaaaat tctccgtgag accatgccag aaaaaccgct gctgtttacc 240 ttccgcagtg ccaaagaagg cggcgagcag gcgatttcca ccgaggctta tattgcactc 300 aatcgtgcag ccatcgacag cggcctggtt gatatgatcg atctggagtt atttaccggt 360 gatgatcagg ttaaagaaac cgtcgcctac gcccacgcgc atgatgtgaa agtagtcatg 420 tccaaccatg acttccataa aacgccggaa gccgaagaaa tcattgcccg tctgcgcaaa 480 atgcaatcct tcgacgccga tattcctaag attgcgctga tgccgcaaag taccagcgat 540 gtgctgacgt tgcttgccgc gaccctggag atgcaggagc agtatgccga tcgtccaatt 600 atcacgatgt cgatggcaaa aactggcgta atttctcgtc tggctggtga agtatttggc 660 tcggcggcaa cttttggtgc ggtaaaaaaa gcgtctgcgc cagggcaaat ctcggtaaat 720 gatttgcgca cggtattaac tattttacac caggcataa 759 <210> 13 <211> 1053 <212> DNA <213> Artificial Sequence <220> <223> aroG coding DNA <400> 13 atgaattatc agaacgacga tttacgcatc aaagaaatca aagagttact tcctcctgtc 60 gcattgctgg aaaaattccc cgctactgaa aatgccgcga atacggttgc ccatgcccga 120 aaagcgatcc ataagatcct gaaaggtaat gatgatcgcc tgttggttgt gattggccca 180 tgctcaattc atgatcctgt cgcggcaaaa gagtatgcca ctcgcttgct ggcgctgcgt 240 gaagagctga aagatgagct ggaaatcgta atgcgcgtct attttgaaaa gccgcgtacc 300 acggtgggct ggaaagggct gattaacgat ccgcatatgg ataatagctt ccagatcaac 360 gacggtctgc gtatagcccg taaattgctg cttgatatta acgacagcgg tctgccagcg 420 gcaggtgagt ttctcgatat gatcacccca caatatctcg ctgacctgat gagctggggc 480 gcaattggcg cacgtaccac cgaatcgcag gtgcaccgcg aactggcatc agggctttct 540 tgtccggtcg gcttcaaaaa tggcaccgac ggtacgatta aagtggctat cgatgccatt 600 aatgccgccg gtgcgccgca ctgcttcctg tccgtaacga aatgggggca ttcggcgatt 660 gtgaatacca gcggtaacgg cgattgccat atcattctgc gcggcggtaa agagcctaac 720 tacagcgcga agcacgttgc tgaagtgaaa gaagggctga acaaagcagg cctgccagca 780 caggtgatga tcgatttcag ccatgctaac tcgtccaaac aattcaaaaa gcagatggat 840 gtttgtgctg acgtttgcca gcagattgcc ggtggcgaaa aggccattat tggcgtgatg 900 gtggaaagcc atctggtgga aggcaatcag agcctcgaga gcggggagcc gctggcctac 960 ggtaagagca tcaccgatgc ctgcatcggc tgggaagata ccgatgctct gttacgtcaa 1020 ctggcgaatg cagtaaaagc gcgtcgcggg taa 1053 <210> 14 <211> 1071 <212> DNA <213> Artificial Sequence <220> <223> aroF coding DNA <400> 14 atgcaaaaag acgcgctgaa taacgtacat attaccgacg aacaggtttt aatgactccg 60 gaacaactga aggccgcttt tccattgagc ctgcaacaag aagcccagat tgctgactcg 120 cgtaaaagca tttcagatat tatcgccggg cgcgatcctc gtctgctggt agtatgtggt 180 ccttgttcca ttcatgatcc ggaaactgct ctggaatatg ctcgtcgatt taaagccctt 240 gccgcagagg tcagcgatag cctctatctg gtaatgcgcg tctattttga aaaaccccgt 300 accactgtcg gctggaaagg gttaattaac gatccccata tggatggctc ttttgatgta 360 gaagccgggc tgcagatcgc gcgtaaattg ctgcttgagc tggtgaatat gggactgcca 420 ctggcgacgg aagcgttaga tccgaatagc ccgcaatacc tgggcgatct gtttagctgg 480 tcagcaattg gtgctcgtac aacggaatcg caaactcacc gtgaaatggc ctccgggctt 540 tccatgccgg ttggttttaa aaacggcacc gacggcagtc tggcaacagc aattaacgct 600 atgcgcgccg ccgcccagcc gcaccgtttt gttggcatta accaggcagg gcaggttgcg 660 ttgctacaaa ctcaggggaa tccggacggc catgtgatcc tgcgcggtgg taaagcgccg 720 aactatagcc ctgcggatgt tgcgcaatgt gaaaaagaga tggaacaggc gggactgcgc 780 ccgtctctga tggtagattg cagccacggt aattccaata aagattatcg ccgtcagcct 840 gcggtggcag aatccgtggt tgctcaaatc aaagatggca atcgctcaat tattggtctg 900 atgatcgaaa gtaatatcca cgagggcaat cagtcttccg agcaaccgcg cagtgaaatg 960 aaatacggtg tatccgtaac cgatgcctgc attagctggg aaatgaccga tgccttgctg 1020 cgtgaaattc atcaggatct gaacgggcag ctgacggctc gcgtggctta a 1071 <210> 15 <211> 1632 <212> DNA <213> Artificial Sequence <220> <223> oppA coding DNA <400> 15 atgaccaaca tcaccaagag aagtttagta gcagctggcg ttctggctgc gctaatggca 60 gggaatgtcg cgctggcagc tgatgtaccc gcaggcgtca cactggcgga aaaacaaaca 120 ctggtacgta acaatggttc agaagttcag tcattagatc cgcacaaaat tgaaggtgtt 180 ccggagtcta atatcagccg agacctgttt gaaggcttac tggtcagcga tcttgacggt 240 catccagcac ctggcgtcgc tgaatcctgg gataataaag acgcgaaagt ctggaccttc 300 catttgcgta aagatgcgaa atggtctgat ggcacgccag tcacagcaca agactttgtg 360 tatagctggc aacgttctgt tgatccgaac actgcttctc cgtatgccag ttatctgcaa 420 tatgggcata tcgccggtat tgatgaaatt cttgaaggga aaaaaccgat taccgatctc 480 ggcgtgaaag ctattgatga tcacacatta gaagtcacct taagtgaacc cgttccgtac 540 ttctataaat tacttgttca cccatcaact tcaccggtgc caaaagccgc tatcgagaaa 600 ttcggcgaaa aatggaccca gcctggtaat atcgtcacca acggtgccta taccttaaaa 660 gattgggtcg taaacgaacg aatcgttctt gaacgcagcc cgacctactg gaacaacgcg 720 aaaaccgtta ttaaccaggt aacctatttg cctattgctt ctgaagttac cgatgtcaac 780 cgctaccgta gtggtgaaat cgacatgacg aataacagca tgccgatcga attgttccag 840 aagctgaaaa aagagatccc ggacgaagtt cacgttgatc catacctgtg cacttactat 900 tacgaaatta acaaccagaa accgccattc aacgatgtgc gtgtgcgtac cgcactgaaa 960 ctaggtatgg accgcgatat cattgttaat aaagtgaaag cgcagggcaa catgcccgcc 1020 tatggttaca ctccaccgta tactgatggc gcaaaattga ctcagccaga atggtttggc 1080 tggagccagg aaaaacgtaa cgaagaagcg aaaaaactgc tggctgaagc gggttatacc 1140 gcagacaaac cgttgaccat caacctgttg tataacacct ccgatctgca taaaaagctg 1200 gcgattgctg cctcttcatt gtggaagaaa aacattggtg taaacgtcaa actggttaac 1260 caggagtgga aaacgttcct cgacacccgt caccagggta cttttgatgt ggcccgtgca 1320 ggctggtgtg ctgactacaa cgaaccaact tccttcctga acaccatgct ttcgaacagc 1380 tcgatgaata ccgcgcatta taagagcccg gcctttgaca gcattatggc ggaaacgctg 1440 aaagtgactg acgaggcgca gcgcacagct ctgtacacta aagcagaaca acagctggat 1500 aaggattcgg ccattgttcc tgtttattac tacgtgaatg cgcgtctggt gaaaccgtgg 1560 gttggtggct ataccggcaa agatccgctg gataatacct atacccggaa tatgtacatt 1620 gtgaagcact aa 1632 <210> 16 <211> 819 <212> DNA <213> Artificial Sequence <220> <223> aroE coding DNA <400> 16 atggaaacct atgctgtttt tggtaatccg atagcccaca gcaaatcgcc attcattcat 60 cagcaatttg ctcagcaact gaatattgaa catccctatg ggcgcgtgtt ggcacccatc 120 aatgatttca tcaacacact gaacgctttc tttagtgctg gtggtaaagg tgcgaatgtg 180 acggtgcctt ttaaagaaga ggcttttgcc agagcggatg agcttactga acgggcagcg 240 ttggctggtg ctgttaatac cctcatgcgg ttagaagatg gacgcctgct gggtgacaat 300 accgatggtg taggcttgtt aagcgatctg gaacgtctgt cttttatccg ccctggttta 360 cgtattctgc ttatcggcgc tggtggagca tctcgcggcg tactactgcc actcctttcc 420 ctggactgtg cggtgacaat aactaatcgg acggtatccc gcgcggaaga gttggctaaa 480 ttgtttgcgc acactggcag tattcaggcg ttgagtatgg acgaactgga aggtcatgag 540 tttgatctca ttattaatgc aacatccagt ggcatcagtg gtgatattcc ggcgatcccg 600 tcatcgctca ttcatccagg catttattgc tatgacatgt tctatcagaa aggaaaaact 660 ccttttctgg catggtgtga gcagcgaggc tcaaagcgta atgctgatgg tttaggaatg 720 ctggtggcac aggcggctca tgcctttctt ctctggcacg gtgttctgcc tgacgtagaa 780 ccagttataa agcaattgca ggaggaattg tccgcgtga 819 <210> 17 <211> 1992 <212> DNA <213> Artificial Sequence <220> <223> tktA coding DNA <400> 17 atgtcctcac gtaaagagct tgccaatgct attcgtgcgc tgagcatgga cgcagtacag 60 aaagccaaat ccggtcaccc gggtgcccct atgggtatgg ctgacattgc cgaagtcctg 120 tggcgtgatt tcctgaaaca caacccgcag aatccgtcct gggctgaccg tgaccgcttc 180 gtgctgtcca acggccacgg ctccatgctg atctacagcc tgctgcacct caccggttac 240 gatctgccga tggaagaact gaaaaacttc cgtcagctgc actctaaaac tccgggtcac 300 ccggaagtgg gttacaccgc tggtgtggaa accaccaccg gtccgctggg tcagggtatt 360 gccaacgcag tcggtatggc gattgcagaa aaaacgctgg cggcgcagtt taaccgtccg 420 ggccacgaca ttgtcgacca ctacacctac gccttcatgg gcgacggctg catgatggaa 480 ggcatctccc acgaagtttg ctctctggcg ggtacgctga agctgggtaa actgattgca 540 ttctacgatg acaacggtat ttctatcgat ggtcacgttg aaggctggtt caccgacgac 600 accgcaatgc gtttcgaagc ttacggctgg cacgttattc gcgacatcga cggtcatgac 660 gcggcatcta tcaaacgcgc agtagaagaa gcgcgcgcag tgactgacaa accttccctg 720 ctgatgtgca aaaccatcat cggtttcggt tccccgaaca aagccggtac ccacgactcc 780 cacggtgcgc cgctgggcga cgctgaaatt gccctgaccc gcgaacaact gggctggaaa 840 tatgcgccgt tcgaaatccc gtctgaaatc tatgctcagt gggatgcgaa agaagcaggc 900 caggcgaaag aatccgcatg gaacgagaaa ttcgctgctt acgcgaaagc ttatccgcag 960 gaagccgctg aatttacccg ccgtatgaaa ggcgaaatgc cgtctgactt cgacgctaaa 1020 gcgaaagagt tcatcgctaa actgcaggct aatccggcga aaatcgccag ccgtaaagcg 1080 tctcagaatg ctatcgaagc gttcggtccg ctgttgccgg aattcctcgg cggttctgct 1140 gacctggcgc cgtctaacct gaccctgtgg tctggttcta aagcaatcaa cgaagatgct 1200 gcgggtaact acatccacta cggtgttcgc gagttcggta tgaccgcgat tgctaacggt 1260 atctccctgc acggtggctt cctgccgtac acctccacct tcctgatgtt cgtggaatac 1320 gcacgtaacg ccgtacgtat ggctgcgctg atgaaacagc gtcaggtgat ggtttacacc 1380 cacgactcca tcggtctggg cgaagacggc ccgactcacc agccggttga gcaggtcgct 1440 tctctgcgcg taaccccgaa catgtctaca tggcgtccgt gtgaccaggt tgaatccgcg 1500 gtcgcgtgga aatacggtgt tgagcgtcag gacggcccga ccgcactgat cctctcccgt 1560 cagaacctgg cgcagcagga acgaactgaa gagcaactgg caaacatcgc gcgcggtggt 1620 tatgtgctga aagactgcgc cggtcagccg gaactgattt tcatcgctac cggttcagaa 1680 gttgaactgg ctgttgctgc ctacgaaaaa ctgactgccg aaggcgtgaa agcgcgcgtg 1740 gtgtccatgc cgtctaccga cgcatttgac aagcaggatg ctgcttaccg tgaatccgta 1800 ctgccgaaag cggttactgc acgcgttgct gtagaagcgg gtattgctga ctactggtac 1860 aagtatgttg gcctgaacgg tgctatcgtc ggtatgacca ccttcggtga atctgctccg 1920 gcagagctgc tgtttgaaga gttcggcttc actgttgata acgttgttgc gaaagcaaaa 1980 gaactgctgt aa 1992 <210> 18 <211> 6 <212> DNA <213> Artificial Sequence <220> <223> ribosome binding site <400> 18 gaagga 6 <210> 19 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> lacI_UP Forward primer <400> 19 attcggatcc tgctcatcca tgacctgacc 30 <210> 20 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> lacI_UP Reverse primer <400> 20 gaactctaga taatgcagct ggcaccacag 30 <210> 21 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> lacI_DOWN Forward primer <400> 21 atggtctaga gaatgtaatt cagctccgcc 30 <210> 22 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> lacI_DOWN Reverse primer <400> 22 atgcgtcgac ttgtgcgctc agtataggaa g 31 <210> 23 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> aroK_UP Forward primer <400> 23 tttcgcacct gggatccaat acgcctgcgc ggacattt 38 <210> 24 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> aroK_UP Reverse primer <400> 24 cgactctaga ggatccgttg gccaatgaac gcaatcc 37 <210> 25 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> aroK_DOWN Forward primer <400> 25 tcctctagag tcgacttgag ttgttgagct aactgg 36 <210> 26 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> aroK_DOWN Reverse primer <400> 26 ccattctccg gtcgatctgc tggcctcaca tcttc 35 <210> 27 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> aroL_UP Forward primer <400> 27 ttcgcacctg ggatcgacgc gtgtcccaat gtaat 35 <210> 28 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> aroL_UP Reverse primer <400> 28 cacctggctg ggttcacggt taagcgaatc ggcaa 35 <210> 29 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroL_DOWN Forward primer <400> 29 gaacccagcc aggtgatttc 20 <210> 30 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> aroL_DOWN Reverse primer <400> 30 cgactctaga ggatctgaag caccactgct gacac 35 <210> 31 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> sgRNA-shiA Forward primer <400> 31 gtcctaggta taatactagt attcagggat ttgcagtcgg gttttagagc tagaaatagc 60 60 <210> 32 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> sgRNA-HindIII Reverse primer <400> 32 taatagatct aagcttctgc aggtcgactc t 31 <210> 33 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> shiA_UP Forward primer <400> 33 gacctgcaga agctaatatg gatgacaaca aagt 34 <210> 34 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> shiA_UP Reverse primer <400> 34 gtcgacgacg gcaccagcga agctgc 26 <210> 35 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> shiA_DOWN Forward primer <400> 35 ggtgccgtcg tcgacaaaga cagtcaacgc gctt 34 <210> 36 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> shiA_DOWN Reverse primer <400> 36 aatagatcta agcttccagt tctgttgtcg ggaag 35 <210> 37 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> sgRNA-ydiN Forward primer <400> 37 gtcctaggta taatactagt gtggatgccc aaatatgcga gttttagagc tagaaatagc 60 60 <210> 38 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> ydiN_UP Forward primer <400> 38 ttctctagag tcgacgcaat attcttttca ggtca 35 <210> 39 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> ydiN_UP Reverse primer <400> 39 cgcacactgc cagaccgtag gcgaga 26 <210> 40 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> ydiN_DOWN Forward primer <400> 40 gtctggcagt gtgcgtttgt tattccactg attac 35 <210> 41 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> ydiN_DOWN Reverse primer <400> 41 cttctgcagg tcgacgccat catcattaac gatgg 35 <210> 42 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> ptsG_UP Forward primer <400> 42 ttacatatgc gggatccggt aggcgaacgt 30 <210> 43 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> ptsG_UP Reverse primer <400> 43 catggtttta accatctaga cataggcaac aactcgagcc agcgcggata 50 <210> 44 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> ptsG_DOWN Forward primer <400> 44 tccacgcgat tctagaaggc ctggcattcc caagctttat tcttctgggg 50 <210> 45 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ptsG_DOWN Reverse primer <400> 45 gtcgacctac gccagctata 20 <210> 46 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> tyrR_UP Forward primer <400> 46 caggtgatgg atgtcgacaa accactaccg 30 <210> 47 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> tyrR_UP Reverse primer <400> 47 tcgacagaga gcaaagcttc aggcaacgcc 30 <210> 48 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> tyrR_DOWN Forward primer <400> 48 actgacacaa ctcgagggtt ctgagctgcg 30 <210> 49 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> tyrR_DOWN Reverse primer <400> 49 gcatcgcaac gcctggatcc gccaatagct 30 <210> 50 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pykA_UP Forward primer <400> 50 cgtttctaga caccgtctcg aggttcagtt cgac 34 <210> 51 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> pykA_UP Reverse primer <400> 51 ccgccaagga tccgtgatcc cattct 26 <210> 52 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> pykA_DOWN Forward primer <400> 52 caaccgcgcc gtcgacttgc tc 22 <210> 53 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pykA_DOWN Reverse primer <400> 53 caaacggctt ctagacgttc aagcttggca acaa 34 <210> 54 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> aroE_OVER Forward primer <400> 54 ggagatatac atatggaaac ctatgctgtt tt 32 <210> 55 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> aroE_OVER Reverse primer <400> 55 tcggggcaag cttaatcacg cggacaattc ctcc 34 <210> 56 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> tktA_OVER Forward primer <400> 56 gtccgcgtga agcttaaggg cgtgcccttc atcat 35 <210> 57 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> tktA_OVER Reverse primer <400> 57 tgtcggggca agctttaatt acagcagttc ttttg 35 <210> 58 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> aroG_OVER Forward primer <400> 58 aggagatata ctcgaatgaa ttatcagaac gacga 35 <210> 59 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> aroG_OVER Reverse primer <400> 59 gaattcgatt ctcgattacc cgcgacgcgc tttta 35 <210> 60 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> aroF_OVER Forward primer <400> 60 ctcccggccg ccatgataaa cctcttaagc cacgc 35 <210> 61 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> aroF_OVER Reverse primer <400> 61 cccgcggccg ccatgtacgt catcctcgct gagga 35 <210> 62 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> aroB_OVER Forward primer <400> 62 gagggagtcc aaaaaacaat ggagaggatt gtcgttactc tcg 43 <210> 63 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> aroB_OVER Reverse primer <400> 63 tttacagtta cggttttcat tacgctgatt gacaatcgg 39 <210> 64 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> aroD_OVER Forward primer <400> 64 ttgtcaatca gcgtaatgaa aaccgtaact gtaaaaga 38 <210> 65 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> aroD_OVER Reverse primer <400> 65 ggcgggtgtc ggggcaagct tttatgcctg gtgtaaaata gtt 43 <210> 66 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> galP_OVER Forward primer <400> 66 aggagatata ctcgaatgcc tgacgctaaa aaaca 35 <210> 67 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> galP_OVER Reverse primer <400> 67 gaattcgatt ctcgaggaga ttaatcgtga gcgcc 35 <210> 68 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> ppsA_OVER Forward primer <400> 68 ctcccggccg ccatgcacat aaccccggcg actaa 35 <210> 69 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> ppsA_OVER Reverse primer <400> 69 cccgcggccg ccatgcacaa aaggattgtt cgatg 35 <210> 70 <211> 3280 <212> DNA <213> Artificial Sequence <220> <223> PoppA-aroE_plasmid sequences <400> 70 gacgaaaggg cctcgtgata cgcctatttt tataggttaa tgtcatgata ataatggttt 60 cttagacgtc aggtggcact tttcggggaa atgtgcgcgg aacccctatt tgtttatttt 120 tctaaataca ttcaaatatg tatccgctca tgagacaata accctgataa atgcttcaat 180 aatattgaaa aaggaagagt atgagtattc aacatttccg tgtcgccctt attccctttt 240 ttgcggcatt ttgccttcct gtttttgctc acccagaaac gctggtgaaa gtaaaagatg 300 ctgaagatca gttgggtgca cgagtgggtt acatcgaact ggatctcaac agcggtaaga 360 tccttgagag ttttcgcccc gaagaacgtt ttccaatgat gagcactttt aaagttctgc 420 tatgtggcgc ggtattatcc cgtattgacg ccgggcaaga gcaactcggt cgccgcatac 480 actattctca gaatgacttg gttgagtact caccagtcac agaaaagcat cttacggatg 540 gcatgacagt aagagaatta tgcagtgctg ccataaccat gagtgataac actgcggcca 600 acttacttct gacaacgatc ggaggaccga aggagctaac cgcttttttg cacaacatgg 660 gggatcatgt aactcgcctt gatcgttggg aaccggagct gaatgaagcc ataccaaacg 720 acgagcgtga caccacgatg cctgtagcaa tggcaacaac gttgcgcaaa ctattaactg 780 gcgaactact tactctagct tcccggcaac aattaataga ctggatggag gcggataaag 840 ttgcaggacc acttctgcgc tcggcccttc cggctggctg gtttattgct gataaatctg 900 gagccggtga gcgtgggtct cgcggtatca ttgcagcact ggggccagat ggtaagccct 960 cccgtatcgt agttatctac acgacgggga gtcaggcaac tatggatgaa cgaaatagac 1020 agatcgctga gataggtgcc tcactgatta agcattggta actgtcagac caagtttact 1080 catatatact ttagattgat ttaaaacttc atttttaatt taaaaggatc taggtgaaga 1140 tcctttttga taatctcatg accaaaatcc cttaacgtga gttttcgttc cactgagcgt 1200 cagaccccgt agaaaagatc aaaggatctt cttgagatcc tttttttctg cgcgtaatct 1260 gctgcttgca aacaaaaaaa ccaccgctac cagcggtggt ttgtttgccg gatcaagagc 1320 taccaactct ttttccgaag gtaactggct tcagcagagc gcagatacca aatactgttc 1380 ttctagtgta gccgtagtta ggccaccact tcaagaactc tgtagcaccg cctacatacc 1440 tcgctctgct aatcctgtta ccagtggctg ctgccagtgg cgataagtcg tgtcttaccg 1500 ggttggactc aagacgatag ttaccggata aggcgcagcg gtcgggctga acggggggtt 1560 cgtgcacaca gcccagcttg gagcgaacga cctacaccga actgagatac ctacagcgtg 1620 agctttgaga aagcgccacg cttcccgaag ggagaaaggc ggacaggtat ccggtaagcg 1680 gcagggtcgg aacaggagag cgcacgaggg agcttccagg gggaaacgcc tggtatcttt 1740 atagtcctgt cgggtttcgc cacctctgac ttgagcgtcg atttttgtga tgctcgtcag 1800 gggggcggag cctatggaaa aacgccagca acgcggcctt tttacggttc ctggcctttt 1860 gctggccttt tgctcacatg ttctttcctg cgttatcccc tgattctgtg gataaccgta 1920 ttaccgcctt tgagtgagct gataccgctc gccgcagccg aacgaccgag cgcagcgagt 1980 cagtgagcga ggaagcggaa gagcgcccaa tacgcaaacc gcctctcccc gcgcgttggc 2040 cgattcatta atgcagctgg cacgacaggg aattcaatgt gtctcgacag gggagacaca 2100 gtacgaatcg acataaggtg atcgtctgaa tcaccagaat aaataaagtc ggtgatagta 2160 atacgtaacg ataaagtaac ctgacagcag aaagtctccg agcctgtgca gggtcccaat 2220 ccgggattac acatgctggt taataccagt aattataatg agggagtcca aaaaacatct 2280 agaaataatt ttgtttaact ttaagaagga gatatacata tggaaaccta tgctgttttt 2340 ggtaatccga tagcccacag caaatcgcca ttcattcatc agcaatttgc tcagcaactg 2400 aatattgaac atccctatgg gcgcgtgttg gcacccatca atgatttcat caacacactg 2460 aacgctttct ttagtgctgg tggtaaaggt gcgaatgtga cggtgccttt taaagaagag 2520 gcttttgcca gagcggatga gcttactgaa cgggcagcgt tggctggtgc tgttaatacc 2580 ctcatgcggt tagaagatgg acgcctgctg ggtgacaata ccgatggtgt aggcttgtta 2640 agcgatctgg aacgtctgtc ttttatccgc cctggtttac gtattctgct tatcggcgct 2700 ggtggagcat ctcgcggcgt actactgcca ctcctttccc tggactgtgc ggtgacaata 2760 actaatcgga cggtatcccg cgcggaagag ttggctaaat tgtttgcgca cactggcagt 2820 attcaggcgt tgagtatgga cgaactggaa ggtcatgagt ttgatctcat tattaatgca 2880 acatccagtg gcatcagtgg tgatattccg gcgatcccgt catcgctcat tcatccaggc 2940 atttattgct atgacatgtt ctatcagaaa ggaaaaactc cttttctggc atggtgtgag 3000 cagcgaggct caaagcgtaa tgctgatggt ttaggaatgc tggtggcaca ggcggctcat 3060 gcctttcttc tctggcacgg tgttctgcct gacgtagaac cagttataaa gcaattgcag 3120 gaggaattgt ccgcgtgaag cttgccccga cacccgccaa cacccgctga cgcgccctga 3180 cgggcttgtc tgctcccggc atccgcttac agacaagctg tgaccgtctc cgggagctgc 3240 atgtgtcaga ggttttcacc gtcatcaccg aaacgcgcga 3280 <210> 71 <211> 5368 <212> DNA <213> Artificial Sequence <220> <223> PoppA-aroE-tktA_plasmid sequences <400> 71 gacgaaaggg cctcgtgata cgcctatttt tataggttaa tgtcatgata ataatggttt 60 cttagacgtc aggtggcact tttcggggaa atgtgcgcgg aacccctatt tgtttatttt 120 tctaaataca ttcaaatatg tatccgctca tgagacaata accctgataa atgcttcaat 180 aatattgaaa aaggaagagt atgagtattc aacatttccg tgtcgccctt attccctttt 240 ttgcggcatt ttgccttcct gtttttgctc acccagaaac gctggtgaaa gtaaaagatg 300 ctgaagatca gttgggtgca cgagtgggtt acatcgaact ggatctcaac agcggtaaga 360 tccttgagag ttttcgcccc gaagaacgtt ttccaatgat gagcactttt aaagttctgc 420 tatgtggcgc ggtattatcc cgtattgacg ccgggcaaga gcaactcggt cgccgcatac 480 actattctca gaatgacttg gttgagtact caccagtcac agaaaagcat cttacggatg 540 gcatgacagt aagagaatta tgcagtgctg ccataaccat gagtgataac actgcggcca 600 acttacttct gacaacgatc ggaggaccga aggagctaac cgcttttttg cacaacatgg 660 gggatcatgt aactcgcctt gatcgttggg aaccggagct gaatgaagcc ataccaaacg 720 acgagcgtga caccacgatg cctgtagcaa tggcaacaac gttgcgcaaa ctattaactg 780 gcgaactact tactctagct tcccggcaac aattaataga ctggatggag gcggataaag 840 ttgcaggacc acttctgcgc tcggcccttc cggctggctg gtttattgct gataaatctg 900 gagccggtga gcgtgggtct cgcggtatca ttgcagcact ggggccagat ggtaagccct 960 cccgtatcgt agttatctac acgacgggga gtcaggcaac tatggatgaa cgaaatagac 1020 agatcgctga gataggtgcc tcactgatta agcattggta actgtcagac caagtttact 1080 catatatact ttagattgat ttaaaacttc atttttaatt taaaaggatc taggtgaaga 1140 tcctttttga taatctcatg accaaaatcc cttaacgtga gttttcgttc cactgagcgt 1200 cagaccccgt agaaaagatc aaaggatctt cttgagatcc tttttttctg cgcgtaatct 1260 gctgcttgca aacaaaaaaa ccaccgctac cagcggtggt ttgtttgccg gatcaagagc 1320 taccaactct ttttccgaag gtaactggct tcagcagagc gcagatacca aatactgttc 1380 ttctagtgta gccgtagtta ggccaccact tcaagaactc tgtagcaccg cctacatacc 1440 tcgctctgct aatcctgtta ccagtggctg ctgccagtgg cgataagtcg tgtcttaccg 1500 ggttggactc aagacgatag ttaccggata aggcgcagcg gtcgggctga acggggggtt 1560 cgtgcacaca gcccagcttg gagcgaacga cctacaccga actgagatac ctacagcgtg 1620 agctttgaga aagcgccacg cttcccgaag ggagaaaggc ggacaggtat ccggtaagcg 1680 gcagggtcgg aacaggagag cgcacgaggg agcttccagg gggaaacgcc tggtatcttt 1740 atagtcctgt cgggtttcgc cacctctgac ttgagcgtcg atttttgtga tgctcgtcag 1800 gggggcggag cctatggaaa aacgccagca acgcggcctt tttacggttc ctggcctttt 1860 gctggccttt tgctcacatg ttctttcctg cgttatcccc tgattctgtg gataaccgta 1920 ttaccgcctt tgagtgagct gataccgctc gccgcagccg aacgaccgag cgcagcgagt 1980 cagtgagcga ggaagcggaa gagcgcccaa tacgcaaacc gcctctcccc gcgcgttggc 2040 cgattcatta atgcagctgg cacgacaggg aattcaatgt gtctcgacag gggagacaca 2100 gtacgaatcg acataaggtg atcgtctgaa tcaccagaat aaataaagtc ggtgatagta 2160 atacgtaacg ataaagtaac ctgacagcag aaagtctccg agcctgtgca gggtcccaat 2220 ccgggattac acatgctggt taataccagt aattataatg agggagtcca aaaaacatct 2280 agaaataatt ttgtttaact ttaagaagga gatatacata tggaaaccta tgctgttttt 2340 ggtaatccga tagcccacag caaatcgcca ttcattcatc agcaatttgc tcagcaactg 2400 aatattgaac atccctatgg gcgcgtgttg gcacccatca atgatttcat caacacactg 2460 aacgctttct ttagtgctgg tggtaaaggt gcgaatgtga cggtgccttt taaagaagag 2520 gcttttgcca gagcggatga gcttactgaa cgggcagcgt tggctggtgc tgttaatacc 2580 ctcatgcggt tagaagatgg acgcctgctg ggtgacaata ccgatggtgt aggcttgtta 2640 agcgatctgg aacgtctgtc ttttatccgc cctggtttac gtattctgct tatcggcgct 2700 ggtggagcat ctcgcggcgt actactgcca ctcctttccc tggactgtgc ggtgacaata 2760 actaatcgga cggtatcccg cgcggaagag ttggctaaat tgtttgcgca cactggcagt 2820 attcaggcgt tgagtatgga cgaactggaa ggtcatgagt ttgatctcat tattaatgca 2880 acatccagtg gcatcagtgg tgatattccg gcgatcccgt catcgctcat tcatccaggc 2940 atttattgct atgacatgtt ctatcagaaa ggaaaaactc cttttctggc atggtgtgag 3000 cagcgaggct caaagcgtaa tgctgatggt ttaggaatgc tggtggcaca ggcggctcat 3060 gcctttcttc tctggcacgg tgttctgcct gacgtagaac cagttataaa gcaattgcag 3120 gaggaattgt ccgcgtgaaa agcttttaag ggcgtgccct tcatcatccg atctggagtc 3180 aaaatgtcct cacgtaaaga gcttgccaat gctattcgtg cgctgagcat ggacgcagta 3240 cagaaagcca aatccggtca cccgggtgcc cctatgggta tggctgacat tgccgaagtc 3300 ctgtggcgtg atttcctgaa acacaacccg cagaatccgt cctgggctga ccgtgaccgc 3360 ttcgtgctgt ccaacggcca cggctccatg ctgatctaca gcctgctgca cctcaccggt 3420 tacgatctgc cgatggaaga actgaaaaac ttccgtcagc tgcactctaa aactccgggt 3480 cacccggaag tgggttacac cgctggtgtg gaaaccacca ccggtccgct gggtcagggt 3540 attgccaacg cagtcggtat ggcgattgca gaaaaaacgc tggcggcgca gtttaaccgt 3600 ccgggccacg acatgtcga ccactacacc tacgccttca tgggcgacgg ctgcatgatg 3660 gaaggcatct cccacgaagt ttgctctctg gcgggtacgc tgaagctggg taaactgatt 3720 gcattctacg atgacaacgg tatttctatc gatggtcacg ttgaaggctg gttcaccgac 3780 gacaccgcaa tgcgtttcga agcttacggc tggcacgtta ttcgcgacat cgacggtcat 3840 gacgcggcat ctatcaaacg cgcagtagaa gaagcgcgcg cagtgactga caaaccttcc 3900 ctgctgatgt gcaaaaccat catcggtttc ggttccccga acaaagccgg tacccacgac 3960 tcccacggtg cgccgctggg cgacgctgaa attgccctga cccgcgaaca actgggctgg 4020 aaatatgcgc cgttcgaaat cccgtctgaa atctatgctc agtgggatgc gaaagaagca 4080 ggccaggcga aagaatccgc atggaacgag aaattcgctg cttacgcgaa agcttatccg 4140 caggaagccg ctgaatttac ccgccgtatg aaaggcgaaa tgccgtctga cttcgacgct 4200 aaagcgaaag agttcatcgc taaactgcag gctaatccgg cgaaaatcgc cagccgtaaa 4260 gcgtctcaga atgctatcga agcgttcggt ccgctgttgc cggaattcct cggcggttct 4320 gctgacctgg cgccgtctaa cctgaccctg tggtctggtt ctaaagcaat caacgaagat 4380 gctgcgggta actacatcca ctacggtgtt cgcgagttcg gtatgaccgc gattgctaac 4440 ggtatctccc tgcacggtgg cttcctgccg tacacctcca ccttcctgat gttcgtggaa 4500 tacgcacgta acgccgtacg tatggctgcg ctgatgaaac agcgtcaggt gatggtttac 4560 acccacgact ccatcggtct gggcgaagac ggcccgactc accagccggt tgagcaggtc 4620 gcttctctgc gcgtaacccc gaacatgtct acatggcgtc cgtgtgacca ggttgaatcc 4680 gcggtcgcgt ggaaatacgg tgttgagcgt caggacggcc cgaccgcact gatcctctcc 4740 cgtcagaacc tggcgcagca ggaacgaact gaagagcaac tggcaaacat cgcgcgcggt 4800 ggttatgtgc tgaaagactg cgccggtcag ccggaactga ttttcatcgc taccggttca 4860 gaagttgaac tggctgttgc tgcctacgaa aaactgactg ccgaaggcgt gaaagcgcgc 4920 gtggtgtcca tgccgtctac cgacgcattt gacaagcagg atgctgctta ccgtgaatcc 4980 gtactgccga aagcggttac tgcacgcgtt gctgtagaag cgggtattgc tgactactgg 5040 tacaagtatg ttggcctgaa cggtgctatc gtcggtatga ccaccttcgg tgaatctgct 5100 ccggcagagc tgctgtttga agagttcggc ttcactgttg ataacgttgt tgcgaaagca 5160 aaagaactgc tgtaattaaa gcttgcatgc ctgcaggtcg actctagagg atccccgggt 5220 accgagagct tgccccgaca cccgccaaca cccgctgacg cgccctgacg ggcttgtctg 5280 ctcccggcat ccgcttacag acaagctgtg accgtctccg ggagctgcat gtgtcagagg 5340 ttttcaccgt catcaccgaa acgcgcga 5368

Claims (8)

tyrR, ptsG, pykA, aroK, aroL 유전자; tyrR, ptsG, pykA, aroK, aroL, shiA 유전자; tyrR, ptsG, pykA, aroK, aroL, ydiN 유전자; 또는 tyrR, ptsG, pykA, aroK, aroL, shiA, ydiN 유전자가 불활성화된, 유전자재조합 대장균. tyrR, ptsG, pykA, aroK, and aroL genes; tyrR, ptsG, pykA, aroK, aroL, and shiA genes; tyrR, ptsG, pykA, aroK, aroL, and ydiN genes; or a recombinant E. coli in which the tyrR, ptsG, pykA, aroK, aroL, shiA, and ydiN genes are inactivated. 제1항에 있어서,
상기 유전자의 불활성화는 상기 대장균에서 상기 유전자가 결손(deletion)된 것인, 유전자재조합 대장균.
The method of claim 1,
Inactivation of the gene is that the gene is deleted (deletion) in the E. coli, recombinant E. coli.
제1항에 있어서,
상기 대장균은, 갈락토오스 투과효소(galactose permease), 옥살로아세테이트(oxaloacetate)를 PEP로 전환시키는 PEP 합성효소, E4P를 DAHP로 전환시키는 DAHP 합성효소 A, PEP를 DAHP로 전환시키는 DAHP 합성효소 B, DAHP를 DHQ로 전환시키는 DHQ 합성효소 및 DHQ 탈수효소를 과발현 하고, 락토오스 분해 억제 단백질(lac repressor)을 코딩하는 lacI 유전자가 결손된 것인, 유전자재조합 대장균.
The method of claim 1,
The E. coli, galactose permease, PEP synthetase converting oxaloacetate to PEP, DAHP synthase A converting E4P to DAHP, DAHP synthetase B converting PEP to DAHP, DAHP It overexpresses DHQ synthetase and DHQ dehydratase that converts to DHQ, and the lacI gene encoding a lactose degradation inhibitory protein (lac repressor) is deleted, recombinant E. coli.
제3항에 있어서, 상기 대장균은,
외래로부터 도입된, 상기 갈락토오스 투과효소를 코딩하는 galP 유전자, 상기 PEP 합성효소를 코딩하는 ppsA 유전자, 상기 DAHP 합성효소 A를 코딩하는 aroG 유전자, 상기 DAHP 합성효소 B를 코딩하는 aroF 유전자, 상기 DHQ 합성효소를 코딩하는 aroB 유전자, 및 상기 DHQ 탈수효소를 코딩하는 aroD 유전자를 포함하는, 유전자재조합 대장균
According to claim 3, wherein the E. coli,
Introduced from foreign, galP gene coding for the galactose transmission enzyme, ppsA gene encoding the PEP synthase, aroG gene coding for the DAHP synthase A, aroF gene coding for the DAHP synthase B, the DHQ Synthesis Recombinant E. coli comprising the aroB gene encoding the enzyme, and the aroD gene encoding the DHQ dehydratase
제1항에 있어서, 상기 대장균은,
aroE; 또는 aroEtktA;를 각각 코딩하는 폴리뉴클레오티드를 포함하고, 상기 폴리뉴클레오티드의 각 업스트림(upstream)에 대장균 유래의 리보솜 결합 부위(ribosome binding site, rbs)를 포함하며, 상기 aroE 또는 tktA를 코딩하는 폴리뉴클레오티드 중 첫 번째 전사되는 폴리뉴클레오티드의 리보솜 결합부위의 업스트림에 oppA 유전자의 프로모터(promoter)를 포함하는 재조합벡터로 더 형질전환된 것인, 유전자재조합 대장균.
According to claim 1, wherein the E. coli,
aroE ; or aroE and tktA ; it contains a polynucleotide encoding each, and each upstream of the polynucleotide includes a ribosome binding site (rbs) derived from E. coli, and a polynucleotide encoding the aroE or tktA The recombinant E. coli, which is further transformed with a recombinant vector containing a promoter of the oppA gene upstream of the ribosome binding site of the first transcribed polynucleotide among the nucleotides.
제1항 내지 제5항 중 어느 한 항에 있어서,
상기 유전자재조합 대장균의 원균주는 E. coli AB2834인, 유전자재조합 대장균.
The method according to any one of claims 1 to 5,
The source strain of the recombinant E. coli is E. coli AB2834, recombinant E. coli.
제1항 내지 제5항 중 어느 한 항에 있어서,
상기 대장균은 시킴산(shikimic acid) 생산용인, 유전자재조합 대장균.
The method according to any one of claims 1 to 5,
The E. coli is shikimic acid (shikimic acid) production Yongin, recombinant E. coli.
제1항 내지 제5항 중 어느 한 항의 유전자재조합 대장균을 배양하는 단계를 포함하는, 시킴산의 생산 방법.A method for producing shikimic acid, comprising the step of culturing the recombinant E. coli of any one of claims 1 to 5.
KR1020190151642A 2019-11-22 2019-11-22 Microorganism for producing shikimic acid and method for producing shikimic acid using the microorganism KR20210063127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190151642A KR20210063127A (en) 2019-11-22 2019-11-22 Microorganism for producing shikimic acid and method for producing shikimic acid using the microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190151642A KR20210063127A (en) 2019-11-22 2019-11-22 Microorganism for producing shikimic acid and method for producing shikimic acid using the microorganism

Publications (1)

Publication Number Publication Date
KR20210063127A true KR20210063127A (en) 2021-06-01

Family

ID=76376015

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190151642A KR20210063127A (en) 2019-11-22 2019-11-22 Microorganism for producing shikimic acid and method for producing shikimic acid using the microorganism

Country Status (1)

Country Link
KR (1) KR20210063127A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114591880A (en) * 2022-03-16 2022-06-07 江南大学 Construction and application of escherichia coli capable of accumulating shikimic acid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020029078A (en) 1999-07-29 2002-04-17 추후보정 Process making ammonium glyphosate powder
KR20130033652A (en) 2011-09-27 2013-04-04 이메디정보기술(주) Method and apparatus for developing, distributing and executing object-wise dynamic compileless programs
KR20160027870A (en) 2014-08-29 2016-03-10 삼성전자주식회사 Data interface and data transmit method
KR102304539B1 (en) 2019-09-02 2021-09-23 전영숙 Manufacturing method of five colors onion rice

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020029078A (en) 1999-07-29 2002-04-17 추후보정 Process making ammonium glyphosate powder
KR20130033652A (en) 2011-09-27 2013-04-04 이메디정보기술(주) Method and apparatus for developing, distributing and executing object-wise dynamic compileless programs
KR20160027870A (en) 2014-08-29 2016-03-10 삼성전자주식회사 Data interface and data transmit method
KR102304539B1 (en) 2019-09-02 2021-09-23 전영숙 Manufacturing method of five colors onion rice

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114591880A (en) * 2022-03-16 2022-06-07 江南大学 Construction and application of escherichia coli capable of accumulating shikimic acid
CN114591880B (en) * 2022-03-16 2023-10-03 江南大学 Construction and application of escherichia coli capable of accumulating shikimic acid

Similar Documents

Publication Publication Date Title
CN1930299B (en) Nitrile hydratase of rhodococcus
CN102146371B (en) High glyphosate resistant variant gene and improvement method and application of high glyphosate resistant variant gene
CN108949721B (en) Recombinant strain for expressing phospholipase D and application
KR20110022625A (en) Recombinant cell producing 2-hydroxyisobutyric acid
CN112251464B (en) Gene point mutation induction method
CN111748506B (en) Engineering bacterium for producing glycocyamine and construction method and application thereof
WO2021110993A1 (en) An efficient shuttle vector system for the expression of heterologous and homologous proteins for the genus zymomonas
KR20190017099A (en) Increased production of ginsenosides through yeast cell protein-folding machinery improvement
KR20210063127A (en) Microorganism for producing shikimic acid and method for producing shikimic acid using the microorganism
KR102064475B1 (en) Microorganism for producing muconic acid and method for manufacturing the strain
US20030119155A1 (en) Method for producing target substance
CN103911334A (en) Clostridium beijerinckii with high stress resistance and application thereof
CN107058367A (en) The construction method of the recombined bacillus subtilis of high yield Pullulanase
CN108586571B (en) Novel antimycin derivative and preparation method and application thereof
KR20210136416A (en) Microorganism for producing muconic acid precursor and method for producing muconic acid precursor using the microorganism
CN105567603B (en) A method of Clostridium beijerinckii is improved to 4- hydroxycinnamic acid resistance
CN114317584B (en) Construction system of novel transposon mutant strain library, novel transposon mutant library and application
CN101157935A (en) Novel expression enzyme yeast gene engineering system
CN111471635B (en) Method for increasing content of nucleic acid in bacillus subtilis
CN108611312B (en) New antimycin biosynthesis pathway ketoreductase gene deletion strain, construction method and application
CN109880837B (en) Method for degrading lignin in tobacco straw
CN111118049B (en) Plasmid vector and application thereof
CN112662573B (en) Microbial strain for efficiently synthesizing L-piperazinic acid and construction method and application thereof
KR101030547B1 (en) A plasmid shuttle vector
CN113774047B (en) Fish source protease gene and application thereof

Legal Events

Date Code Title Description
A201 Request for examination