KR20130108091A - Surgical system instrument manipulator - Google Patents

Surgical system instrument manipulator Download PDF

Info

Publication number
KR20130108091A
KR20130108091A KR1020127032773A KR20127032773A KR20130108091A KR 20130108091 A KR20130108091 A KR 20130108091A KR 1020127032773 A KR1020127032773 A KR 1020127032773A KR 20127032773 A KR20127032773 A KR 20127032773A KR 20130108091 A KR20130108091 A KR 20130108091A
Authority
KR
South Korea
Prior art keywords
instrument
manipulator
mover
distal
link
Prior art date
Application number
KR1020127032773A
Other languages
Korean (ko)
Other versions
KR101812485B1 (en
Inventor
토드 솔로몬
토마스 쥐. 쿠퍼
니콜라 디올라이티
유진 에프. 듀발
다니엘 고메즈
로버트 이. 할럽
안토니 케이. 맥그로간
크라이그 알. 램스타드
테오도르 더블류. 로저스
Original Assignee
인튜어티브 서지컬 오퍼레이션즈 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 filed Critical 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드
Publication of KR20130108091A publication Critical patent/KR20130108091A/en
Application granted granted Critical
Publication of KR101812485B1 publication Critical patent/KR101812485B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • A61B17/3421Cannulas
    • A61B17/3423Access ports, e.g. toroid shape introducers for instruments or hands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • A61B17/3421Cannulas
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00131Accessories for endoscopes
    • A61B1/00135Oversleeves mounted on the endoscope prior to insertion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00142Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with means for preventing contamination, e.g. by using a sanitary sheath
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/0218Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3474Insufflating needles, e.g. Veress needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/35Surgical robots for telesurgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B46/00Surgical drapes
    • A61B46/10Surgical drapes specially adapted for instruments, e.g. microscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B46/00Surgical drapes
    • A61B46/20Surgical drapes specially adapted for patients
    • A61B46/23Surgical drapes specially adapted for patients with means to retain or hold surgical implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B50/00Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B50/00Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
    • A61B50/20Holders specially adapted for surgical or diagnostic appliances or instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B50/00Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
    • A61B50/30Containers specially adapted for packaging, protecting, dispensing, collecting or disposing of surgical or diagnostic appliances or instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/90Identification means for patients or instruments, e.g. tags
    • A61B90/98Identification means for patients or instruments, e.g. tags using electromagnetic means, e.g. transponders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M13/00Insufflators for therapeutic or disinfectant purposes, i.e. devices for blowing a gas, powder or vapour into the body
    • A61M13/003Blowing gases other than for carrying powders, e.g. for inflating, dilating or rinsing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0052Gripping heads and other end effectors multiple gripper units or multiple end effectors
    • B25J15/0066Gripping heads and other end effectors multiple gripper units or multiple end effectors with different types of end effectors, e.g. gripper and welding gun
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/04Gripping heads and other end effectors with provision for the remote detachment or exchange of the head or parts thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/04Wound springs
    • F16F1/12Attachments or mountings
    • F16F1/121Attachments or mountings adjustable, e.g. to modify spring characteristics
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/02Coils wound on non-magnetic supports, e.g. formers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/04Arrangements of electric connections to coils, e.g. leads
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/51Housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/555Constructional details for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscopes or borescopes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • A61B17/3421Cannulas
    • A61B2017/3445Cannulas used as instrument channel for multiple instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • A61B17/3421Cannulas
    • A61B2017/3445Cannulas used as instrument channel for multiple instruments
    • A61B2017/3447Linked multiple cannulas
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/302Surgical robots specifically adapted for manipulations within body cavities, e.g. within abdominal or thoracic cavities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/305Details of wrist mechanisms at distal ends of robotic arms
    • A61B2034/306Wrists with multiple vertebrae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B50/00Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
    • A61B50/30Containers specially adapted for packaging, protecting, dispensing, collecting or disposing of surgical or diagnostic appliances or instruments
    • A61B2050/3008Containers specially adapted for packaging, protecting, dispensing, collecting or disposing of surgical or diagnostic appliances or instruments having multiple compartments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/50Supports for surgical instruments, e.g. articulated arms
    • A61B2090/5025Supports for surgical instruments, e.g. articulated arms with a counter-balancing mechanism
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/02Gripping heads and other end effectors servo-actuated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/12Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a layer of regularly- arranged cells, e.g. a honeycomb structure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • G03B2205/0015Movement of one or more optical elements for control of motion blur by displacing one or more optical elements normal to the optical axis
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0069Driving means for the movement of one or more optical element using electromagnetic actuators, e.g. voice coils
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B5/02Lateral adjustment of lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/02Coils wound on non-magnetic supports, e.g. formers
    • H01F2005/027Coils wound on non-magnetic supports, e.g. formers wound on formers for receiving several coils with perpendicular winding axes, e.g. for antennae or inductive power transfer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20207Multiple controlling elements for single controlled element
    • Y10T74/20305Robotic arm

Abstract

기구 조작기 및 기구 조작기(342)를 포함하는 로봇 수술 시스템이 제공된다. 한 구체예에서, 기구 조작기는 복수의 독립적인 가동장치 구동 모듈을 포함하며, 복수의 가동장치 구동 모듈은 각각 가동장치 출력(442b, c, d, e)을 포함하고, 가동장치 출력은 각각 또 다른 가동장치 출력으로부터의 힘 입력 없이 수술 기구의 상응하는 가동장치 입력을 독립적으로 가동시키도록 구성된다. 기구 조작기는 또한 복수의 독립적인 가동장치 구동 모듈을 수용하는 프레임(542i)을 더 포함하며, 프레임은 원단부를 포함하고, 이 원단부로부터 가동장치 출력이 각각 원위 쪽으로 돌출하여 수술 기구의 상응하는 가동장치 입력과 맞물린다.A robotic surgical system is provided that includes an instrument manipulator and an instrument manipulator 342. In one embodiment, the instrument manipulator includes a plurality of independent mover drive modules, each of the plurality of mover drive modules including mover outputs 442b, c, d, and e, the mover outputs respectively being And to independently start the corresponding mover input of the surgical instrument without force input from the other mover output. The instrument manipulator further includes a frame 542i for receiving a plurality of independent mover drive modules, the frame comprising a distal end, from which distal end of the actuator output protrudes distal to correspond to the actuation of the surgical instrument. Meshes with device input.

Figure pct00001
Figure pct00001

Description

수술 시스템 기구 조작기{SURGICAL SYSTEM INSTRUMENT MANIPULATOR}Surgical System Instrument Manipulator {SURGICAL SYSTEM INSTRUMENT MANIPULATOR}

관련 출원의 참조Reference to Related Application

본 출원은 전체 내용이 모든 취지에 있어서 본원에 참고로 포함되는 2010년 5월 14일 제출된 미국 가 출원 제61/334,978호, 발명의 명칭 "Surgical System"의 이익을 주장한다.This application claims the benefit of US Provisional Application No. 61 / 334,978, entitled “Surgical System”, filed May 14, 2010, the entire contents of which are incorporated herein by reference in its entirety.

본 출원은 모든 취지에 있어서 본원에 참고로 포함되는 미국 특허출원 제11/762,165호와 관련된다. 미국 특허출원 제11/762,165호는 이후의 미국 가 특허출원의 우선권을 주장했고, 이들은 모두 본원에 참고로 포함된다: 60/813,028, 발명의 명칭 "단일 입구 시스템 2" 2006년6월13일 제출, Cooper et al.; 60/813,029, 발명의 명칭 "단일 입구 수술 시스템 1" 2006년6월13일 제출, Cooper; 60/813,030, 발명의 명칭 "독립적으로 가동되는 광학 트레인" 2006년6월13일 제출, Larkin et al.; 60/813,075, 발명의 명칭 "모듈형 캐뉼라 구조" 2006년6월13일 제출, Larkin et al.; 60/813,125, 발명의 명칭 "최소한의 혼란으로 중간 구조를 거쳐 기구를 수술 부위로 송달하는 방법" 2006년6월13일 제출, Larkin et al.; 60/813,126, 발명의 명칭 "강성 단일 입구 수술 시스템" 2006년6월13일 제출, Cooper; 60/813,129, 발명의 명칭 "최소 순 힘 가동" 2006년6월13일 제출, Cooper et al.; 60/813,131, 발명의 명칭 "측면 작업하는 도구 및 카메라" 2006년6월13일 제출, Duval et al.; 60/813,172, 발명의 명칭 "조인트를 통과하는 케이블" 2006년6월13일 제출 Cooper; 60/813,173, 발명의 명칭 "매끄럽게 휘는 중공 기구 조인트" 2006년6월13일 제출, Larkin et al.; 60/813,198, 발명의 명칭 "리트랙션 장치 및 방법" 2006년6월13일 제출, Mohr et al.; 60/813,207, 발명의 명칭 "엔도루미날 로봇용의 감지 구조", 2006년6월13일 제출, Diolaiti et al.; 및 60/813,328, 발명의 명칭 "단일 입구 복강경 수술의 개념", 2006년6월13일 제출, Mohr et al. This application is related to US patent application Ser. No. 11 / 762,165, which is incorporated herein by reference in its entirety. US patent application Ser. No. 11 / 762,165 claims the priority of subsequent US patent applications, all of which are incorporated herein by reference: 60 / 813,028, titled “Single Entry System 2,” filed June 13, 2006. , Cooper et al .; 60 / 813,029, titled “Single Inlet Surgical System 1” filed June 13, 2006, Cooper; 60 / 813,030, entitled “Independently Operated Optical Train,” filed June 13, 2006, Larkin et al .; 60 / 813,075, titled “Modular Cannula Structure”, filed June 13, 2006, Larkin et al .; 60 / 813,125, entitled “Method for Delivering Instrument to Surgical Site via Intermediate Structure with Minimal Confusion”, submitted June 13, 2006, Larkin et al .; 60 / 813,126, titled “Rigorous Single Entry Surgical System”, filed Jun. 13, 2006, Cooper; 60 / 813,129, entitled “Minimum Net Force Operation,” filed June 13, 2006, Cooper et al .; 60 / 813,131, entitled “Side Working Tools and Cameras”, filed June 13, 2006, Duval et al .; 60 / 813,172, titled “Cable Through Joints” filed June 13, 2006 Cooper; 60 / 813,173, titled “Smooth Bending Hollow Instrument Joint”, filed June 13, 2006, Larkin et al .; 60 / 813,198, entitled “Retraction Apparatus and Method”, filed June 13, 2006, Mohr et al .; 60 / 813,207, titled "Sense Structures for Endorum Robots," filed June 13, 2006, Diolaiti et al .; And 60 / 813,328, entitled “Concept of Single Entry Laparoscopy”, filed June 13, 2006, Mohr et al.

또한, 본 출원은 하기 계류중인 미국 특허출원과 관련되며, 이들은 모두 본원에 참고로 포함된다: 11/762,217, 발명의 명칭 "단일 입구 진입, 로봇 보조 의료 과정을 위한 조직 리트랙션", Mohr; 11/762,222, 발명의 명칭 "단일 입구 진입, 로봇 보조 의료 과정을 위한 번들형 의료 장치의 지지", Mohr et al.; 11/762,231, 발명의 명칭 "로봇 보조 의료 과정 동안 의료 장치를 지지하기 위한 연장 가능한 흡인면", Schena; 11/762,236, 발명의 명칭 "의료 로봇 시스템에서 비-이상적 가동장치-대-조인트 연결 특징을 보상하도록 구성된 제어 시스템", Diolaiti et al.; 11/762,185, 발명의 명칭 "수술 기구 가동 시스템", Cooper et al.; 11/762,172, 발명의 명칭 "수술 기구 가동장치", Cooper et al.; 11/762,161, 발명의 명칭 "최소 침습 수술 기구 개선", Larkin et al.; 11/762,158, 발명의 명칭 "수술 기구 제어 및 가동", Cooper et al.; 11/762,154, 발명의 명칭 "평행 동작 메커니즘을 지닌 수술 기구", Cooper; 11/762,149, 발명의 명칭 "측면 출구 기구를 지닌 최소 침습 수술 장치", Larkin; 11/762,170, 발명의 명칭 "측면 출구 기구를 지닌 최소 침습 수술 장치", Larkin; 11/762,143, 발명의 명칭 "최소 침습 수술 기구 시스템", Larkin; 11/762,135, 발명의 명칭 "측면 조망 최소 침습 수술 기구 조립체" Cooper et al.; 11/762,132, 발명의 명칭 "측면 조망 최소 침습 수술 기구 조립체" Cooper et al.; 11/762,127, 발명의 명칭 "최소 침습 수술 기구를 위한 가이드 튜브 제어" Larkin et al.; 11/762,123, 발명의 명칭 "최소 침습 수술 가이드 튜브", Larkin et al.; 11/762,120, 발명의 명칭 "최소 침습 수술 가이드 튜브", Larkin et al.; 11/762,118, 발명의 명칭 "최소 침습 수술 리트랙터 시스템", Larkin; 11/762,114, 발명의 명칭 "최소 침습 수술 조명", Schena et al.; 11/762,110, 발명의 명칭 "역행 기구", Duval et al.; 11/762,204, 발명의 명칭 "역행 기구", Duval et al.; 11/762,202, 발명의 명칭 "기구/조직 충돌 방지", Larkin; 11/762,189, 발명의 명칭 "단면이 감소된 최소 침습 수술 기구 조립체", Larkin et al.; 11/762,191, 발명의 명칭 "최소 침습 수술 시스템", Larkin et al.; 11/762,196, 발명의 명칭 "최소 침습 수술 시스템", Duval et al.; 및 11/762,200, 발명의 명칭 "최소 침습 수술 시스템", Diolaiti. The application also relates to the following pending US patent applications, all of which are incorporated herein by reference: 11 / 762,217, entitled “Single Entry Entry, Tissue Retraction for Robotic Assisted Medical Processes”, Mohr; 11 / 762,222, entitled “Single Inlet Entry, Support of Bundled Medical Devices for Robotic Assisted Medical Procedures”, Mohr et al .; 11 / 762,231, entitled “Extensionable Suction Surface for Supporting Medical Devices During Robotic Assisted Medical Procedures”, Schena; 11 / 762,236, entitled “Control System Configured to Compensate for a Non-Ideal Mobility-to-Joint Connection Feature in a Medical Robot System”, Diolaiti et al .; 11 / 762,185, entitled “Surgical Instrument Operation System”, Cooper et al .; 11 / 762,172, entitled “Surgical Instrument Mover”, Cooper et al .; 11 / 762,161, entitled “Minimally Invasive Surgical Instrument Improvement”, Larkin et al .; 11 / 762,158, entitled “Control and Operation of Surgical Instruments”, Cooper et al .; 11 / 762,154, entitled “Surgical Instrument with Parallel Operation Mechanism”, Cooper; 11 / 762,149, entitled “Minimum Invasive Surgical Device with Lateral Exit Mechanism”, Larkin; 11 / 762,170, entitled “Minimal Invasive Surgical Device with Lateral Exit Mechanism”, Larkin; 11 / 762,143, entitled “Minimum Invasive Surgical Instrument System”, Larkin; 11 / 762,135, titled “lateral view minimally invasive surgical instrument assembly” Cooper et al .; 11 / 762,132, entitled “Flat View Minimally Invasive Surgical Instrument Assembly” Cooper et al .; 11 / 762,127, entitled “Guide Tube Control for Minimally Invasive Surgical Instruments” Larkin et al .; 11 / 762,123, entitled “Minimum Invasive Surgical Guide Tube”, Larkin et al .; 11 / 762,120, entitled “Minimum Invasive Surgical Guide Tube”, Larkin et al .; 11 / 762,118, entitled “Minimum Invasive Surgery Retractor System”, Larkin; 11 / 762,114, entitled “Minimum Invasive Surgical Illumination”, Schena et al .; 11 / 762,110, titled "backing mechanism", Duval et al .; 11 / 762,204, titled "backing mechanism", Duval et al .; 11 / 762,202, entitled “Instrument / Tissue Collision Avoidance”, Larkin; 11 / 762,189, entitled “Reduced Minimally Invasive Surgical Instrument Assembly”, Larkin et al .; 11 / 762,191, entitled “Minimum Invasive Surgery System”, Larkin et al .; 11 / 762,196, entitled “Minimum Invasive Surgery System”, Duval et al .; And 11 / 762,200, entitled “Minimum Invasive Surgical System”, Diolaiti.

또한, 본 출원은 하기 미국 특허출원과 관련되며, 이들은 모두 본원에 참고로 포함된다: 12/163,051(2008년6월27일 제출, 발명의 명칭 "분배 배향 및 병진 모드를 이용한 영상 기준 카메라 제어를 가진 의료 로봇 시스템"); 12/163,069(2008년6월27일 제출, 발명의 명칭 "기구 팁 속도가 제한된 진입 가이드 컨트롤러를 가진 의료 로봇 시스템"); 12/494,695(2009년6월30일 제출, 발명의 명칭 "운동학적 단일성에 대한 의료 로봇 시스템 조작기의 제어"); 12/541,913(2009년8월15일, 발명의 명칭 "상이한 작업공간 조건을 지닌 관절화된 기구 횡단 면적의 매끄러운 제어"); 12/571,675(2009년10월1일 제출, 발명의 명칭 "외측 창문이 있는 캐뉼라"); 12/613,328(2009년11월5일 제출, 발명의 명칭 "진입 가이드 안팎으로의 움직임 동안 관절화된 기구의 컨트롤러 보조 재구성"); 12/645,391(2009년12월22일 제출, 발명의 명칭 "사이클로이드 표면을 지닌 기구 리스트"); 12/702,200(2010년2월8일 제출, 발명의 명칭 "다이렉트 풀 수술 그립퍼"); 12/704,669(2010년2월12일 제출, 발명의 명칭 "관절화된 기구의 명령된 상태와 바람직한 자세의 차이를 나타내는 감지 피드백을 제공하는 의료 로봇 시스템"); 12/163,087(2008년6월27일 제출, 발명의 명칭 "진입 가이드의 원단부로부터 연장된 관절화 가능한 기구의 보조 화면을 제공하는 의료 로봇 시스템"); 12/780,071(2010년5월14일 제출, 발명의 명칭 "제어 모드들이 연결된 의료 로봇 시스템"); 12/780,747(2010년5월14일 제출, 발명의 명칭 "케이블 재-순서화 장치"); 12/780,758(2010년5월14일 제출, 발명의 명칭 "로봇 수술 기구를 위한 힘 전달"); 12/780,773(2010년5월14일 제출, 발명의 명칭 "과잉 힘 보호 메커니즘"); 12/832,580(2010년7월8일 제출, 발명의 명칭 "조인트 적용 기구를 위한 외장"); 미국 특허출원 No. 12/855,499(2010년8월12일 제출, 발명의 명칭 "수술 시스템 멸균 드레이프"(대리인 사건번호 No. ISRG02430/US)); 미국 특허출원 No. 12/855,488(2010년8월12일 제출, 발명의 명칭 "수술 시스템 진입 가이드"(대리인 사건번호 No. ISRG02450/US)); 미국 특허출원 No. 12/855,413(2010년8월12일 제출, 발명의 명칭 "수술 시스템 기구 조작기"(대리인 사건번호 No. ISRG02460/US)); 미국 특허출원 No. 12/855,434(2010년8월12일 제출, 발명의 명칭 "수술 시스템 구조"(대리인 사건번호 No. ISRG02550/US)); 미국 특허출원 No. 12/855,475(2010년8월12일 제출, 발명의 명칭 "수술 시스템 평형추"(대리인 사건번호 No. ISRG02560/ US)); 및 미국 특허출원 No. 12/855,461(2010년8월12일, 발명의 명칭 "수술 시스템 기구 멸균 어댑터"(대리인 사건번호 No. ISRG02820/US)).In addition, this application is related to the following US patent applications, all of which are incorporated herein by reference: 12 / 163,051, filed Jun. 27, 2008, entitled “Image Reference Camera Control Using Distributive Orientation and Translation Modes” Having a medical robotic system "); 12 / 163,069 (filed June 27, 2008, entitled “Medical Robotic System with Entry Guide Controller with Limited Instrument Tip Speed”); 12 / 494,695 (filed June 30, 2009, entitled “Control of a Medical Robot System Manipulator for Kinematic Unity”); 12 / 541,913 (August 15, 2009, titled “smooth control of articulated instrument cross-section area with different workspace conditions”); 12 / 571,675 (filed Oct. 1, 2009, titled “Cannula with Outer Window”); 12 / 613,328 (filed Nov. 5, 2009, entitled “Controller Assisted Reconfiguration of Articulated Instruments During Movement In and Out of Entry Guides”); 12 / 645,391 (filed Dec. 22, 2009, entitled “List of Instruments with Cycloidal Surfaces”); 12 / 702,200 (filed Feb. 8, 2010, titled “Direct Pull Surgical Gripper”); 12 / 704,669 (filed Feb. 12, 2010, titled “Medical Robotic System Providing Sensing Feedback Indicative of the Difference in Commanded Status and Desirable Posture of Articulated Instruments”); 12 / 163,087 (filed June 27, 2008, titled “Medical Robot System Providing an Auxiliary Screen of Articulated Instrument Extending from the Distal End of Entry Guide”); 12 / 780,071 (filed May 14, 2010, titled “Medical Robot System with Control Modes Connected”); 12 / 780,747, filed May 14, 2010, entitled “Cable Re-Sequencing Device”; 12 / 780,758, filed May 14, 2010, titled “Power Transfer for Robotic Surgical Instruments”; 12 / 780,773, filed May 14, 2010, entitled “Excessive Force Protection Mechanism”; 12 / 832,580 (July 8, 2010, titled "Exterior for Joint Application Mechanism"); U.S. Patent Application No. 12 / 855,499 (filed Aug. 12, 2010, titled “Surgery System Sterile Drape” (Agent No. ISRG02430 / US)); U.S. Patent Application No. 12 / 855,488 (filed Aug. 12, 2010, titled "Operating System Entry Guide" (Agent No. ISRG02450 / US); U.S. Patent Application No. 12 / 855,413 (filed Aug. 12, 2010, titled “Surgical System Instrument Manipulator” (Agent Case No. ISRG02460 / US)); U.S. Patent Application No. 12 / 855,434, filed Aug. 12, 2010, titled “Surgery System Architecture” (Agent Case No. ISRG02550 / US); U.S. Patent Application No. 12 / 855,475 (filed Aug. 12, 2010, titled “Surgery System Counterweight” (Agent Representative No. ISRG02560 / US)); And US Patent Application No. 12 / 855,461 (August 12, 2010, titled “Surgical System Instrument Sterile Adapter” (Agent No. ISRG02820 / US)).

로봇 보조 또는 원격로봇 수술에서 의사는 전형적으로 마스터 컨트롤러를 조종해서 환자로부터 먼 곳일 수 있는 장소로부터 수술 부위에서 수술 기구의 동작을 원격 제어한다(예를 들어, 수술실을 가로질러, 다른 수술실에서 또는 환자가 있는 곳과 완전히 다른 건물에서). 마스터 컨트롤러는 일반적으로 하나 이상의 손 입력 장치, 예를 들어 조이스틱, 외골격 글러브 등을 포함하며, 이들은 서보 모터를 가진 수술 기구에 연결되어 수술 부위에서 기구를 관절화한다. 서보 모터는 전형적으로 열린 수술 부위 안으로 직접 도입되거나 환자의 복부와 같은 체강으로 트로카 슬리브를 통해서 도입되는 수술 기구를 지지하고 제어하는 전기기계 장치나 수술 조작기("종속")의 일부이다. 작동시키는 동안 수술 조작기는 기계 관절화 및 조직 파지기, 니들 드라이버, 전기수술 소작 프로브 등과 같은 여러 수술 기구의 제어를 제공하며, 이들은 각각 바늘을 잡거나 구동시키는 것, 혈관을 붙잡는 것, 또는 조직을 절개하거나 소작하거나 응고시키는 것 등 의사를 위해 다양한 기능을 수행한다.In robot-assisted or telerobot surgery, doctors typically manipulate the master controller to remotely control the operation of the surgical instrument at the surgical site from a location that may be remote from the patient (eg, across an operating room, in another operating room, or in a patient). In a completely different building than where it is). The master controller generally includes one or more hand input devices, such as joysticks, exoskeleton gloves, etc., which are connected to a surgical instrument with a servo motor to articulate the instrument at the surgical site. Servo motors are part of an electromechanical device or surgical manipulator (“slave”) that typically supports and controls surgical instruments that are introduced directly into an open surgical site or introduced through a trocar sleeve into a body cavity such as the abdomen of a patient. During operation, the surgical manipulator provides control of several surgical instruments, such as mechanical articulation and tissue gripping, needle drivers, electrosurgical cauterization probes, etc., which each hold or drive a needle, hold a blood vessel, or incise tissue It performs a variety of functions for the doctor, such as, cauterization, or coagulation.

자유도(DOF)의 수는 원격로봇 시스템의 자세/구성을 특유하게 식별하는 독립 변수들의 수이다. 로봇 조작기는 (입력) 조인트 공간과 (출력) 데카르트 공간을 맵핑하는 운동학적 사슬이므로 DOF의 인식은 이들 두 공간 중 어느 것으로 표현될 수 있다. 특히, 조인트 DOF의 세트는 모든 독립적으로 제어되는 조인트에 대한 조인트 변수들의 세트이다. 일반성의 손실 없이 조인트는, 예를 들어 단일 병진(프리즘 조인트) 또는 회전(레볼루트 조인트) DOF를 제공하는 메커니즘이다. 2개 이상의 분리된 조인트로서 운동학 모델링 관점으로부터 1 보다 큰 DOF 동작을 제공하는 어떤 메커니즘이 고려된다. 데카르트 DOF의 세트는 일반적으로 3개의 병진(위치) 변수(예를 들어, 서지, 히브, 스웨이)와 3개의 회전(방향) 변수(예를 들어, 율러 각도 또는 롤/피치/요우 각도)에 의해서 표시되며, 이들은 주어진 기준 데카르트 프레임과 관련하여 단부 작동기(또는 팁) 프레임의 위치와 방향을 설명한다.The number of degrees of freedom (DOF) is the number of independent variables that uniquely identifies the attitude / configuration of the remote robotic system. Since the robot manipulator is a kinematic chain that maps the (input) joint space and the (output) cartesian space, the recognition of the DOF can be expressed in either of these two spaces. In particular, the set of joint DOF is the set of joint variables for all independently controlled joints. Joints without loss of generality are, for example, mechanisms that provide single translational (prism joint) or rotational (revolute joint) DOF. Some mechanism is contemplated that provides DOF motion greater than 1 from the kinematic modeling perspective as two or more separate joints. A set of Cartesian DOF is generally defined by three translational (position) variables (e.g. surge, heave, sway) and three rotational (direction) variables (e.g. Euler angle or roll / pitch / yaw angle). And they describe the position and orientation of the end actuator (or tip) frame in relation to a given reference Cartesian frame.

예를 들어, 2개의 독립적인 수직 레일에 장착된 단부 작동기를 지닌 평면 메커니즘은 이 2개 레일에 걸쳐진 영역 안에서 x/y 위치를 제어하는 능력을 가진다(프리즘 DOF). 단부 작동기가 레일의 평면에 수직인 축 주위에서 회전될 수 있다면 3개의 출력 DOF(단부 작동기의 x/y 위치 및 방향 각도)에 상응하는 3개의 입력 DOF가 있게 된다(2개의 레일 위치 및 요우 각도).For example, a planar mechanism with end actuators mounted on two independent vertical rails has the ability to control the x / y position within the area spanning these two rails (prism DOF). If the end actuator can be rotated around an axis perpendicular to the plane of the rail, there will be three input DOFs corresponding to the three output DOFs (x / y position and direction angle of the end actuator) (two rail positions and yaw angles). ).

모든 병진 및 방향 변수가 독립적으로 제어되는 데카르트 기준 프레임 안에서의 바디를 설명하는 비-여분 데카르트 DOF의 수는 6일 수 있지만, 조인트 DOF의 수는 일반적으로 메커니즘과 일의 내역의 복잡성을 고려한 설계 선택의 결과이다. 따라서, 조인트 DOF의 수는 6보다 많거나, 6과 동일하거나, 또는 6보다 적을 수 있다. 비-여분 운동학 사슬의 경우, 독립적으로 제어되는 조인트의 수는 단부 작동기 프레임의 이동성 정도와 같다. 특정한 수의 프리즘 및 레볼루트 조인트 DOF에서, 단부 작동기 프레임은 병진(x/y/z 위치)과 회전(롤/피치/요우 방향 각도) 동작의 조합에 상응하는 데카르트 공간 안에서 동일한 수의 DOF(단일 구성일 때를 제외하고)를 가질 것이다.The number of non-extra Cartesian DOFs that describe the body within the Cartesian frame of reference, where all translational and directional variables are independently controlled, can be 6, while the number of joint DOFs is generally a design choice that takes into account the complexity of the mechanism and work specification. Is the result. Thus, the number of joint DOF may be greater than six, equal to six, or less than six. In the case of non-extra kinematic chains, the number of independently controlled joints is equal to the degree of mobility of the end actuator frame. For a certain number of prisms and revolution joint DOFs, the end actuator frame will have the same number of DOFs (single) in Cartesian space corresponding to the combination of translational (x / y / z position) and rotational (roll / pitch / yaw-direction angle) motions. Except when it is a configuration).

입력 DOF와 출력 DOF의 구분은 운동학 사슬(예를 들어, 기계적 조작기)이 여분성 또는 "불완전성"인 상황에서 극히 중요하다. 특히, "불완전성" 조작기는 독립적으로 제어되는 조인트가 6개 미만이어서 단부 작동기 위치와 방향을 충분히 제어할 수 있는 능력을 갖지 못한다. 대신에, 불완전성 조작기는 위치와 방향 변수의 하위군만을 제어하도록 제한된다. 한편, 여분성 조작기는 6을 넘는 조인트 DOF를 가진다. 따라서, 여분성 조작기는 1을 넘는 조인트 구성을 사용하여 원하는 6-DOF 단부 작동기 자세를 확립할 수 있다. 다시 말해서, 추가의 자유도를 사용해서 단부 작동기의 위치와 방향은 물론 조작기 자체의 "모양"을 제어할 수 있다. 운동학적 자유도에 더하여, 메커니즘은 파지 턱 또는 가위 날의 선회하는 레버 움직임과 같은 다른 DOF를 가질 수 있다.The distinction between input DOF and output DOF is extremely important in situations where kinematic chains (eg mechanical manipulators) are redundant or “incomplete”. In particular, "incomplete" manipulators have less than six independently controlled joints and thus do not have the ability to sufficiently control the end actuator position and orientation. Instead, incomplete manipulators are limited to controlling only a subgroup of position and direction variables. On the other hand, the redundant manipulator has a joint DOF of more than six. Thus, the redundant manipulator can use more than one joint configuration to establish the desired 6-DOF end actuator posture. In other words, additional degrees of freedom can be used to control the position and orientation of the end actuator as well as the "shape" of the manipulator itself. In addition to kinematic degrees of freedom, the mechanism may have other DOF, such as the gripping jaw or pivoting lever movement of the scissors blade.

원격 조작을 통한 원격로봇 수술은 수술에 필요한 절개부의 크기와 수를 줄일 수 있어서 환자 회복을 증진시키며, 또한 환자 외상과 불편함을 줄이는데도 도움이 된다. 그러나, 원격로봇 수술은 또한 많은 새로운 도전을 만들었다. 환자에 인접한 로봇 조작기는 때로 환자측 스텝이 환자에 접근하는 것을 어렵게 만들고, 특히 단일 입구 수술을 위해 설계된 로봇의 경우 단일 입구 접근이 극히 중요하다. 예를 들어, 의사는 수술 과정 동안 전형적으로 많은 수의 상이한 수술 기구/도구를 사용하며, 용이한 조작기 및 단일 입구 접근성과 용이한 기구 교환이 매우 바람직하다.Remote robotic surgery through remote control can reduce the size and number of incisions required for surgery, thereby improving patient recovery and also helping to reduce patient trauma and discomfort. However, telerobot surgery also created many new challenges. Robotic manipulators adjacent to the patient sometimes make it difficult for the patient-side step to access the patient, especially for robots designed for single-entry surgery. For example, surgeons typically use a large number of different surgical instruments / tools during the surgical procedure, with easy manipulators and single inlet accessibility and easy instrument exchange being highly desirable.

또 다른 도전은 전기기계적 수술 조작기의 일부가 수술 부위에 인접해서 위치된다는 사실로 인해서 생긴다. 따라서, 수술 조작기는 수술 동안 오염될 수 있으며, 전형적으로는 폐기되거나 작업 사이에 멸균된다. 비용의 관점에서는 장치를 멸균하는 것이 바람직할 것이다. 그러나, 모터를 로봇 제어하는데 필요한 서보 모터, 센서, 인코더 및 전기 접속은 멸균 과정 동안 이 시스템 부품들이 손상되거나 파손될 수 있기 때문에 전형적으로 종래의 방법, 예를 들어 스팀, 열 및 압력, 또는 화학물질을 사용해서 멸균될 수 없다. Another challenge arises from the fact that some of the electromechanical surgical manipulators are located adjacent to the surgical site. Thus, surgical manipulators may be contaminated during surgery and are typically discarded or sterilized between operations. In terms of cost, it would be desirable to sterilize the device. However, the servo motors, sensors, encoders, and electrical connections required to robot control the motor typically use conventional methods such as steam, heat and pressure, or chemicals because these system components can be damaged or broken during the sterilization process. It cannot be sterilized using.

수술 조작기를 덮기 위한 멸균 드레이프가 이미 사용되고 있으며, 이것은 어댑터(예를 들어, 리스트 유닛 어댑터 또는 캐뉼라 어댑터)가 멸균 현장으로 들어가는 통로인 구멍을 이미 포함했었다. 그러나, 이것은 불리하게도 각 과정 후 어댑터의 탈착과 멸균이 필요하며, 또한 드레이프에 있는 구멍을 통해 오염될 가능성이 크다.A sterile drape to cover the surgical manipulator is already in use, which has already included a hole that is the passage through which the adapter (eg, wrist unit adapter or cannula adapter) enters the sterilization site. However, this disadvantageously requires detachment and sterilization of the adapter after each procedure, and is also likely to be contaminated through the holes in the drape.

또한, 다중 암 수술 로봇 시스템을 위한 현재의 멸균 드레이프 디자인에서는 시스템의 각각의 개별 암이 드레이프로 덮이지만, 이러한 디자인은 단일 입구 시스템의 경우, 특히 모든 기구 가동장치가 단일 종속 조작기에 의해서 함께 움직일 때는 적용될 수 없다.In addition, in current sterile drape designs for multi-arm surgical robotic systems, each individual arm of the system is covered with a drape, but this design is especially true for single inlet systems, especially when all instrument actuators are moved together by a single slave manipulator. Not applicable

따라서, 환자의 수술 부위에서 수술 기구를 원격 제어하기 위한 개선된 원격로봇 시스템, 장치 및 방법이 필요하다. 특히, 이들 시스템, 장치, 및 방법은 시스템과 수술 환자를 보호하면서 비용 효능을 개선하기 위해서 멸균 필요성을 최소화하도록 구성되어야 한다. 이에 더하여, 이들 시스템, 장치, 및 방법은 기구와 조작기 사이에 정확한 인터페이스를 제공하면서 수술 과정 동안 기구 교환 시간 및 어려움을 최소화하도록 설계되어야 한다. 또한, 이들 시스템 및 장치는 형태 요소를 최소화함으로써 수술 스텝을 위해 진입구 주위의 공간을 많이 이용할 수 있도록 하면서 개선된 동작 범위를 제공해야 한다. 또한, 이들 시스템, 장치, 및 방법은 기구와 다른 장치의 충돌을 줄이면서 단일 입구를 통해 다수의 기구를 조직하고 지지하며 효과적으로 작동시킬 수 있어야 한다.Accordingly, there is a need for an improved telerobot system, apparatus, and method for remotely controlling surgical instruments at the surgical site of a patient. In particular, these systems, devices, and methods should be configured to minimize the need for sterilization to improve cost effectiveness while protecting the system and surgical patients. In addition, these systems, devices, and methods should be designed to minimize instrument change time and difficulty during the surgical procedure while providing an accurate interface between the instrument and the manipulator. In addition, these systems and devices should provide an improved range of motion while minimizing the shape factor to make much use of the space around the entrance for surgical steps. In addition, these systems, devices, and methods should be able to organize, support, and effectively operate multiple instruments through a single inlet while reducing collisions of instruments and other devices.

본 개시는 원격로봇 수술을 위한 개선된 수술 시스템, 장치 및 방법을 제공한다. 한 양태에 따라서, 시스템, 장치 및 방법은 정확하며 확실한 인터페이스로서 드레이프로 덮인 기구 조작기와 조작기 암의 원단부에 적어도 하나의 원격조작 수술 기구를 제공하며, 또한 용이한 기구 교환 및 증진된 기구 조작을 제공하고, 각 수술 기구는 서로 독립적으로 작동하며, 각각 데카르트 공간 안에서 적어도 6의 능동적으로 제어되는 자유도를 지닌 단부 작동기를 가진다(즉, 서지, 히브, 스웨이, 롤, 피치, 요우).The present disclosure provides improved surgical systems, apparatus, and methods for telerobot surgery. According to one aspect, the system, apparatus, and method provide, as an accurate and reliable interface, at least one teleoperated surgical instrument at the distal end of the drape-covered instrument manipulator and manipulator arm, and also facilitates easy instrument exchange and enhanced instrument manipulation. Each surgical instrument operates independently of one another, each having an end effector with at least six actively controlled degrees of freedom within the Cartesian space (ie, surge, heave, sway, roll, pitch, yaw).

한 구체예에서, 기구 조작기는 복수의 독립적인 가동장치 구동 모듈을 포함하며, 복수의 가동장치 구동 모듈은 각각 가동장치 출력을 포함하고, 가동장치 출력은 각각 또 다른 가동장치 출력으로부터의 힘 입력 없이 수술 기구의 상응하는 가동장치 입력을 독립적으로 가동시키도록 구성된다. 기구 조작기는 또한 복수의 독립적인 가동장치 구동 모듈을 수용하는 프레임을 포함하며, 프레임은 원단부를 포함하고, 이 원단부로부터 가동장치 출력이 각각 원위 쪽으로 돌출하여 수술 기구의 상응하는 가동장치 입력과 맞물린다.In one embodiment, the instrument manipulator includes a plurality of independent mover drive modules, each of the plurality of mover drive modules including a mover output, each of the mover outputs being without input of force from another mover output. And independently activate the corresponding mover input of the surgical instrument. The instrument manipulator also includes a frame to receive a plurality of independent mover drive modules, the frame including a distal end, from which the movable unit output protrudes distal to engage the corresponding movable input of the surgical instrument. All.

다른 구체예에서, 로봇 수술 시스템은 로봇 수술 시스템의 원격 동작 중심을 위치시키기 위한 셋업 링크, 셋업 링크에 작동 가능하게 연결된 근위 링크, 근위 링크에 작동 가능하게 연결된 원위 링크, 및 원위 링크의 원단부에서 회전 가능한 요소에 작동 가능하게 연결된 상기 설명된 복수의 기구 조작기를 포함한다. 시스템은 또한 복수의 수술 기구를 포함하며, 각각의 기구는 상응하는 기구 조작기에 작동 가능하게 연결된다.In another embodiment, the robotic surgical system includes a setup link for positioning a remote operating center of the robotic surgical system, a proximal link operably connected to the setup link, a distal link operably connected to the proximal link, and a distal link of the distal link. A plurality of instrument manipulators described above operably connected to a rotatable element. The system also includes a plurality of surgical instruments, each instrument operatively connected to a corresponding instrument manipulator.

당업자는 하나 이상의 구체예들에 대한 이후의 상세한 설명을 참조하여 본 개시의 구체예들을 더 완전히 이해하고, 추가의 이점들을 실현할 수 있을 것이다. 첨부된 도면을 참조하며, 먼저 이들을 간단히 설명한다.Those skilled in the art will be able to more fully understand the embodiments of the present disclosure and realize further advantages with reference to the following detailed description of one or more embodiments. Reference is made to the accompanying drawings, which will first be described briefly.

도 1a 및 1b는 본 개시의 한 구체예에 따른 멸균 드레이프가 있을 때와 없을 때의 원격수술 시스템에서 환자측 지지 조립체의 도식도를 각각 예시한다.
도 2a는 멸균 드레이프가 있고 기구가 장착된 원격수술 시스템의 한 구체예를 예시하는 도식적 투시도이다.
도 2b 및 2c는 멸균 드레이프가 도시되지 않은 상태의 도 2a의 원격수술 시스템의 측면도와 상면도를 각각 예시한다.
도 3은 조작기 베이스 플랫폼, 기구 조작기 클러스터, 및 장착된 기구의 한 구체예를 예시하는 투시도이다.
도 4a 및 4b는 삽입 축을 따라 각각 연장된 상태와 접힌 상태의 기구 조작의 투시도이다.
도 5a-1 및 5b-1은 기구 조작기의 원위면에 기구 전달 메커니즘의 근위면을 연결하기 위한 지지 후크의 작동을 예시하고, 도 5a-2 및 5b-2는 도 5a-1 및 5b-1의 단면도를 각각 예시한다.
도 5c-1 내지 5c-4는 외부 하우징이 없는 기구 조작기의 상이한 도면들을 예시한다.
도 6a-6b는 본 개시의 한 구체예에 따른 기구 조작기의 그립 모듈의 상이한 도면들을 예시한다.
도 7a는 본 개시의 한 구체예에 따른 기구 조작기의 짐볼 가동장치 모듈의 도면을 예시한다.
도 7b는 본 개시의 한 구체예에 따른 기구 조작기의 롤 모듈의 도면을 예시한다.
도 8은 본 개시의 한 구체예에 따른 기구 조작기의 텔레스코프 삽입 축의 도면을 예시한다.
도 9a 및 9b는 기구 조작기에 장착하도록 구성된 기구의 근위 부분 및 원위 부분의 투시도를 각각 예시한다.
도 10은 본 개시의 한 구체예에 따른 기구에 작동 가능하게 연결된 기구 조작기의 단면도를 예시한다.
도 11a-11b는 본 개시의 한 구체예에 따른 접힌 상태와 연장된 상태의 멸균 드레이프의 일부분의 투시도를 각각 예시한다.
도 11c는 본 개시의 한 구체예에 따른 베이스 플랫폼을 포함하는 조작기 암의 원단부에 장착된 회전하는 멸균 드레이프 부분의 단면도를 예시한다.
도 11d는 본 개시의 한 구체예에 따른 연장된 멸균 드레이프를 예시한다.
도 12는 본 개시의 한 구체예에 따른 멸균 어댑터를 포함하는 연장된 멸균 드레이프의 일부분의 투시도를 예시한다.
도 13a 및 13b는 본 개시의 한 구체예에 따른 조립된 멸균 어댑터의 투시도와 멸균 어댑터의 분해도를 각각 예시한다.
도 13c는 본 개시의 한 구체예에 따른 롤 가동장치 인터페이스의 확대도를 예시한다.
도 14a 및 14b는 본 개시의 한 구체예에 따른 기구 조작기의 하부 투시도와 하면도를 예시한다.
도 15는 본 개시의 한 구체예에 따른 멸균 어댑터에 작동 가능하게 연결된 기구 조작기의 하부 투시도를 예시한다.
도 16a-16e는 본 개시의 한 구체예에 따른 기구 조작기와 멸균 어댑터를 연결하기 위한 순서를 예시한다.
도 17a-17c는 본 개시의 한 구체예에 따른 멸균 어댑터에 수술 기구를 연결하기 위한 순서를 예시한다.
도 18a 및 18b는 맞물림 전의 기구와 멸균 어댑터의 확대된 투시도와 측면도를 각각 예시한다.
도 19a 및 19b는 접힌 위치와 전개된 위치에 있는 움직일 수 있는 캐뉼라 장착부의 투시도를 각각 예시한다.
도 20a 및 20b는 한 구체예에 따른 캐뉼라 클램프 상에 장착된 캐뉼라의 전면 및 후면 투시도를 예시한다.
도 21은 캐뉼라만의 투시도를 예시한다.
도 22는 본 개시의 한 구체예에 따른 조작기 플랫폼 위에서 기구 조작기에 장착된 기구와 조합된 도 21의 캐뉼라와 도 23a와 23b의 장착된 진입 가이드의 단면도를 예시한다.
도 23a 및 23b는 도 22의 진입 가이드의 투시도와 상면도를 예시한다.
도 24는 본 개시의 한 구체예에 따른 조작기 플랫폼 위에서 기구 조작기에 장착된 기구와 조합된 또 다른 캐뉼라와 또 다른 장착된 진입 가이드의 단면도를 예시한다.
도 24a-24b는 접힌 위치와 전개된 위치에 있는 또 다른 움직일 수 있는 캐뉼라 장착 암의 투시도를 각각 예시한다.
도 24c는 또 다른 구체예에 따른 캐뉼라의 근위 상부 구획을 예시한다.
도 24d는 또 다른 구체예에 따른 캐뉼라 장착 암의 원단부에 있는 캐뉼라 클램프를 예시한다.
도 25a-25c, 26a-26c 및 27a-27c는 기구 조작기 조립체 롤 축 또는 기구 삽입 축이 상이한 방향을 향하는 수술 시스템의 상이한 도면들을 예시한다.
도 28은 한 구체예에 따른 최소 침습 원격수술 시스템을 위한 집중 동작 제어 시스템의 도식도이다.
도 29는 한 구체예에 따른 최소 침습 원격수술 시스템을 위한 분산 동작 제어 시스템의 도식도이다.
도 30a-30b는 한 구체예에 따른 로봇 수술 시스템의 평형추 링크의 상이한 도면들을 예시한다.
도 31은 한 구체예에 따른 외부 하우징이 없는 평형추 링크의 도면을 예시한다.
도 32a 및 32b는 한 구체예에 따른 평형추 링크의 원위 부분의 하부 투시도와 단면도를 각각 예시한다.
도 33은 단부 플러그가 없는 평형추 링크의 원위 부분의 측면도를 예시하고, 도 34는 단부 플러그 직선 가이드의 확대된 투시도를 예시하고, 도 35는 본 개시의 다양한 양태에 따른 조정 핀의 투시도를 예시한다.
도 36a-36c는 본 개시의 다양한 양태에 따른 직선 가이드에 대해 단부 플러그를 움직이는 조정 핀의 동작 범위를 도시하는 단면 측면도를 예시한다.
도 37a-37c는 본 개시의 다양한 양태에 따른 평형추 근위 링크의 원단부로부터의 상세도를 예시한다.
본 개시의 구체예들과 이들의 이점들은 이후의 상세한 설명과 관련하여 가장 잘 이해된다. 유사한 참조 번호들은 도면들 중 하나 이상에 예시된 유사한 요소들을 식별하기 위해 사용된다는 것이 인정되어야 한다. 또한, 도면들은 반드시 축적으로 그릴 필요는 없을 수 있다는 것이 인정되어야 한다.
1A and 1B illustrate schematic diagrams of a patient side support assembly, respectively, in a telesurgical system with and without a sterile drape according to one embodiment of the present disclosure.
2A is a schematic perspective view illustrating one embodiment of a telesurgical system equipped with a sterile drape and equipped with an instrument.
2B and 2C illustrate side and top views, respectively, of the telesurgical system of FIG. 2A with no sterile drape shown.
3 is a perspective view illustrating one embodiment of a manipulator base platform, an instrument manipulator cluster, and a mounted instrument.
4A and 4B are perspective views of instrument operation in the extended and folded states, respectively, along the insertion axis.
5A-1 and 5B-1 illustrate the operation of a support hook for connecting the proximal face of the instrument delivery mechanism to the distal face of the instrument manipulator, and FIGS. 5A-2 and 5B-2 show FIGS. 5A-1 and 5B-1. Each cross section is illustrated.
5C-1 through 5C-4 illustrate different views of an instrument manipulator without an outer housing.
6A-6B illustrate different views of a grip module of an instrument manipulator according to one embodiment of the present disclosure.
7A illustrates a view of a gym ball drive module of an instrument manipulator in accordance with one embodiment of the present disclosure.
7B illustrates a view of a roll module of an instrument manipulator according to one embodiment of the present disclosure.
8 illustrates a view of a telescope insertion axis of an instrument manipulator in accordance with one embodiment of the present disclosure.
9A and 9B illustrate perspective views, respectively, of the proximal and distal portions of an instrument configured to be mounted to an instrument manipulator.
10 illustrates a cross-sectional view of an instrument manipulator operatively connected to an instrument according to one embodiment of the present disclosure.
11A-11B illustrate perspective views of portions of sterile drape in the folded and extended states, respectively, according to one embodiment of the present disclosure.
11C illustrates a cross-sectional view of a rotating sterile drape portion mounted to the distal end of an manipulator arm that includes a base platform according to one embodiment of the disclosure.
11D illustrates an extended sterile drape according to one embodiment of the present disclosure.
12 illustrates a perspective view of a portion of an extended sterile drape comprising a sterile adapter according to one embodiment of the present disclosure.
13A and 13B illustrate a perspective view and an exploded view of a sterile adapter, respectively, in accordance with one embodiment of the present disclosure.
13C illustrates an enlarged view of a roll actuator interface according to one embodiment of the present disclosure.
14A and 14B illustrate a bottom perspective view and a bottom view of an instrument manipulator in accordance with one embodiment of the present disclosure.
15 illustrates a bottom perspective view of an instrument manipulator operatively connected to a sterile adapter according to one embodiment of the present disclosure.
16A-16E illustrate a procedure for connecting an instrument manipulator and a sterile adapter according to one embodiment of the present disclosure.
17A-17C illustrate a procedure for connecting a surgical instrument to a sterile adapter according to one embodiment of the present disclosure.
18A and 18B illustrate enlarged perspective and side views, respectively, of the instrument and sterile adapter prior to engagement.
19A and 19B illustrate perspective views of movable cannula mounts, respectively, in folded and deployed positions.
20A and 20B illustrate front and rear perspective views of a cannula mounted on a cannula clamp according to one embodiment.
21 illustrates a perspective view of the cannula only.
22 illustrates a cross-sectional view of the cannula of FIG. 21 and the mounted entry guide of FIGS. 23A and 23B in combination with an instrument mounted to an instrument manipulator on an manipulator platform according to one embodiment of the present disclosure.
23A and 23B illustrate perspective and top views of the entry guide of FIG. 22.
24 illustrates a cross-sectional view of another cannula and another mounted entry guide in combination with an instrument mounted to an instrument manipulator on an manipulator platform according to one embodiment of the present disclosure.
24A-24B illustrate perspective views of yet another movable cannula mounting arm in the folded position and deployed position, respectively.
24C illustrates the proximal upper compartment of a cannula according to another embodiment.
24D illustrates the cannula clamp at the distal end of the cannula mounting arm according to another embodiment.
25A-25C, 26A-26C, and 27A-27C illustrate different views of a surgical system with the instrument manipulator assembly roll axis or instrument insertion axis facing different directions.
28 is a schematic diagram of a centralized motion control system for a minimally invasive telesurgical system according to one embodiment.
29 is a schematic diagram of a distributed motion control system for a minimally invasive telesurgical system, according to one embodiment.
30A-30B illustrate different views of a counterweight link of a robotic surgical system according to one embodiment.
31 illustrates a view of a counterweight link without an outer housing according to one embodiment.
32A and 32B illustrate bottom perspective and cross-sectional views, respectively, of the distal portion of a counterweight link according to one embodiment.
33 illustrates a side view of a distal portion of an counterweight link without end plug, FIG. 34 illustrates an enlarged perspective view of an end plug straight guide, and FIG. 35 illustrates a perspective view of an adjustment pin in accordance with various aspects of the present disclosure. do.
36A-36C illustrate cross-sectional side views illustrating the operating range of an adjustment pin for moving an end plug relative to a straight guide in accordance with various aspects of the present disclosure.
37A-37C illustrate detailed views from distal ends of counterweight proximal links in accordance with various aspects of the present disclosure.
Embodiments of the present disclosure and their advantages are best understood with respect to the following detailed description. It should be appreciated that like reference numerals are used to identify like elements illustrated in one or more of the figures. It should also be appreciated that the drawings may not necessarily be to scale.

본 개시의 양태들과 구체예들을 예시하는 본 설명 및 첨부한 도면들은 제한으로서 해석되어서는 안 된다. 다양한 기계적, 조성적, 구조적, 전기적 그리고 작동상의 변화들이 본 설명의 정신 및 범위로부터 벗어나지 않고 이루어질 수 있다. 일부 예에서, 잘 공지된 회로, 구조 및 기술은 본 개시를 애매하게 하지 않도록 상세히 나타내지 않았다. 둘 이상의 도면에서 같은 숫자들은 동일하거나 유사한 요소를 나타낸다.The description and the accompanying drawings, which illustrate aspects and embodiments of the disclosure, should not be construed as limiting. Various mechanical, compositional, structural, electrical, and operational changes may be made without departing from the spirit and scope of this description. In some instances, well known circuits, structures, and techniques have not been shown in detail in order not to obscure the present disclosure. Like numbers in the two or more drawings represent the same or similar elements.

또한, 본 설명에서 용어들은 본 개시를 제한하지 않는다. 예를 들어, "밑", "아래", "하부", "위", "상부", "근위", "원위" 등과 같은 공간적으로 상대적인 용어들은 도면에 예시된 한 가지 요소 또는 특징과 다른 요소 또는 특징의 관계를 설명하기 위해서 사용될 수 있다. 이런 공간적으로 상대적인 용어들은 도면에 도시된 위치 및 방향에 더하여 사용중이거나 작동중인 장치의 다른 위치와 방향도 포함하도록 의도된다. 예를 들어, 도면의 장치가 뒤집힌 경우, 다른 요소 또는 특징의 "아래" 또는 "밑"으로서 설명된 요소들은 이 다른 요소 또는 특징의 "위" 또는 "상위"가 될 것이다. 따라서, 예시적인 용어 "아래"는 위와 아래의 위치와 방향을 모두 포함할 수 있다. 장치는 다른 식으로 배향될 수도 있으며(90도 회전 또는 다른 방향으로), 본원에 사용된 공간적으로 상대적인 기술자들은 그에 따라서 해석된다. 마찬가지로, 다양한 축을 따른 움직임과 축 주위의 움직임에 대한 설명도 여러 공간적인 장치 위치 및 방향을 포함한다. 이에 더하여, 단수형 "한" 및 "그"는 문맥상 다른 의미가 아니라면 복수형 역시 포함하도록 의도된다. 용어 "포함하다", "포함하는", "포함하다" 등은 언급된 특징, 단계, 작동, 요소 및/또는 구성요소의 존재를 명시하지만, 하나 이상의 다른 특징, 단계, 작동, 요소, 구성요소 및/또는 그룹의 존재 또는 부가를 배제하지 않는다. 결합된 것으로 설명된 구성요소들은 전기적으로 또는 기계적으로 직접 결합될 수 있거나, 또는 하나 이상의 중간 구성요소를 통해서 간접적으로 결합될 수 있다.Also, the terms in this description do not limit the disclosure. For example, spatially relative terms such as "bottom", "bottom", "bottom", "top", "top", "proximal", "distal", and the like, may be referred to as elements that are different from one element or feature illustrated in the drawings. Or to describe the relationship of features. These spatially relative terms are intended to include other positions and orientations of the device in use or operation in addition to the positions and orientations shown in the figures. For example, when the apparatus of the figure is inverted, elements described as "below" or "below" of another element or feature will be "above" or "above" of this other element or feature. Thus, the exemplary term "below" can include both positions and directions of above and below. The apparatus may be otherwise oriented (rotated 90 degrees or in other directions) and the spatially relative descriptors used herein are interpreted accordingly. Likewise, descriptions of movements along and around the various axes include several spatial device positions and orientations. In addition, the singular forms “a” and “the” are intended to include the plural forms as well, unless the context indicates otherwise. The terms “comprises”, “comprising”, “comprises” and the like specify the presence of the mentioned features, steps, acts, elements and / or components, but one or more other features, steps, acts, elements, components And / or does not exclude the presence or addition of groups. Components described as coupled may be directly coupled electrically or mechanically, or may be coupled indirectly through one or more intermediate components.

한 예에서, 용어 "근위" 또는 "근위 쪽에"는 시스템 움직임의 운동학적 사슬을 따라 조작기 암 베이스에 더 가까이 있는, 또는 시스템 움직임의 운동학적 사슬을 따라 원격 동작 중심(또는 수술 부위)로부터 더 멀리 있는 물체나 요소를 설명하기 위한 일반적인 방식으로 사용된다. 유사하게, 용어 "원위" 또는 "원위 쪽에"는 시스템 움직임의 운동학적 사슬을 따라 조작기 암 베이스로부터 더 멀리 있는, 또는 시스템 움직임의 운동학적 사슬을 따라 원격 동작 중심(또는 수술 부위)에 더 가까이 있는 물체나 요소를 설명하기 위한 일반적인 방식으로 사용된다.In one example, the term "proximal" or "proximal to" is closer to the manipulator arm base along the kinematic chain of system movement, or further away from the remote center of motion (or surgical site) along the kinematic chain of system movement. It is used in a general way to describe an object or element. Similarly, the term "distal" or "distally" refers further away from the manipulator arm base along the kinematic chain of system movement, or closer to the remote center of motion (or surgical site) along the kinematic chain of system movement. Used in a general way to describe an object or element.

로봇 종속 장치를 제어하여 작업 부위에서 작업을 수행하기 위해 마스터 장치에서 오퍼레이터의 입력을 사용하는 것은 잘 알려져 있다. 이러한 시스템은 여러 명칭으로 불리는데, 예를 들어 원격작동, 원격조작 또는 원격로봇 시스템이라고 한다. 원격조작 시스템의 한 가지 타입은 오퍼레이터가 작업 부위에 존재하는 것처럼 인식하는 것이며, 이러한 시스템은 예를 들어 텔레프레젠스 시스템이라고 불린다. 캘리포니아 서니베일의 Intuitive Surgical, Inc.에서 상용화된 da Vinci® 수술 시스템이 텔레프리젠스 원격조작 시스템의 한 예이다. 이러한 수술 시스템에 대한 텔레프리젠스 원리는 본원에 참고로 포함되는 미국특허 제6,574,355호(2001년 3월 21일 제출됨)에 개시된다. 원격작동 수술 시스템(텔레프리젠스 특징을 갖거나 갖지 않거나)은 원격수술 시스템이라고도 할 수 있다.It is well known to use the input of an operator at a master device to control a robot slave device to perform work at the work site. Such a system is called by several names, for example, a remote operation, a remote control or a remote robotic system. One type of teleoperational system is one that recognizes that the operator is present at the work site, such a system is called, for example, a telepresence system. The da Vinci® surgical system, commercially available from Intuitive Surgical, Inc. of Sunnyvale, California, is an example of a telepresence teleoperation system. Telepresence principles for such surgical systems are disclosed in US Pat. No. 6,574,355, filed March 21, 2001, which is incorporated herein by reference. Teleoperated surgical systems (with or without telepresence features) may be referred to as teleoperated systems.

하기 도면 및 설명에서 다양한 양태들과 예시적인 구체예들에 관해서 반복을 피하기 위해서 많은 특징들이 많은 양태들과 구체예들에 공통된다는 것이 이해되어야 한다. 설명이나 도면으로부터 어떤 양태의 생략은 그 양태가 해당 양태가 통합된 구체예에서 빠져 있다는 의미는 아니다. 대신에, 해당 양태는 명료성을 위해서 그리고 장황한 설명을 피하기 위해서 생략된 것일 수 있다. 따라서, 한 묘사된 및/또는 설명된 구체예와 관련해서 설명된 양태들은 실행 불가능하지 않다면 다른 묘사된 및/또는 설명된 구체예들과 함께 존재하거나 거기에 적용될 수 있다.It should be understood that many features are common to many aspects and embodiments in order to avoid repetition with respect to the various aspects and exemplary embodiments in the following figures and description. Omission of any aspect from the description or the drawings does not mean that the aspect is omitted from the embodiment in which the aspect is incorporated. Instead, the aspects may be omitted for clarity and to avoid lengthy explanations. Thus, aspects described in connection with one depicted and / or described embodiment may be present with or apply to other depicted and / or described embodiments if not feasible.

따라서, 몇 가지 일반적인 양태들은 하기 다양한 설명에 적용된다. 다양한 수술 기구, 가이드 튜브 및 기구 조립체들이 본 개시에 적용 가능하며, 본원에 참고로 포함되는 미국 특허출원 제11/762,165호(2007년 6월 13일 제출됨; 미국 특허출원 공개 US 2008/0065105 A1)에 더 설명된다. 수술 기구는 단독으로, 또는 가이드 튜브, 다수의 기구 및/또는 다수의 가이드 튜브를 포함하는 조립체로서 본 개시에 적용 가능하다. 따라서, 다양한 수술 기구가 이용될 수 있으며, 각 수술 기구는 서로 독립적으로 작동하고, 각각 단부 작동기를 가진다. 일부 예에서, 단부 작동기는 환자에 있는 단일 진입구를 통해서 데카르트 공간 내에서 적어도 6의 능동적으로 제어되는 DOF(즉, 서지, 히브, 스웨이, 롤, 피치, 요우)에 의해 작동한다. 1 이상의 추가 단부 작동기 DOF가, 예를 들어 파지 또는 전단 기구에서 단부 작동기의 턱 움직임에 적용될 수 있다.Accordingly, some general aspects apply to the various descriptions that follow. Various surgical instruments, guide tubes and instrument assemblies are applicable to the present disclosure and are incorporated herein by reference, US Patent Application No. 11 / 762,165, filed June 13, 2007; US Patent Application Publication US 2008/0065105 A1 It is further explained in). The surgical instrument is applicable to the present disclosure alone or as an assembly comprising a guide tube, multiple instruments and / or multiple guide tubes. Thus, various surgical instruments may be used, each of which operates independently of each other, and each has an end actuator. In some examples, the end effector is actuated by at least six actively controlled DOFs (ie, surges, hives, sways, rolls, pitches, yaws) within the Cartesian space through a single entry port in the patient. One or more additional end actuator DOF may be applied to the jaw movement of the end actuator, for example in a gripping or shearing mechanism.

예를 들어, 적어도 하나의 수술 단부 작동기가 여러 도면에 도시되거나 설명된다. 단부 작동기는 특정한 수술 기능(예를 들어, 겸자/집게, 니들 드라이버, 가위, 전기소작 후크, 스테이플러, 클립 적용기/제거기 등)을 수행하는 최소 침습 수술 기구 또는 조립체의 일부분이다. 많은 단부 작동기는 그 자체가 단일 DOF를 가지진다(예를 들어, 열리고 닫히는 집게). 단부 작동기는 "리스트" 타입 메커니즘 같은 1 이상의 추가 DOF를 제공하는 메커니즘을 가진 수술 기구 본체에 연결될 수 있다. 이러한 메커니즘의 예들은 본원에 참고로 포함되는 미국특허 제6,371,952호(1999년 6월 28일 제출됨; Madhani et al.)와 미국특허 제6,817,974호(2002년 6월 28일 제출됨; Cooper et al.)에 도시되고, da Vinci® 수술 시스템에서 8mm 및 5mm 기구에 사용되는 것과 같은 다양한 Intuitive Surgical, Inc. Endowrist® 메커니즘으로서 알려져 있다. 본원에 설명된 수술 기구는 일반적으로 단부 작동기를 포함하지만, 일부 양태에서는 단부 작동기가 생략될 수 있음이 이해되어야 한다. 예를 들어, 기구 본체 샤프트의 블런트 원위 팁은 조직의 리트랙션에 사용될 수 있다. 다른 예로서, 흡인 또는 관주 개구가 본체 샤프트 또는 리스트 메커니즘의 원위 팁에 존재할 수 있다. 이들 양태에서, 단부 작동기의 배치 및 배향에 관한 설명은 단부 작동기를 지니지 않은 수술 기구의 팁의 배치 및 배향을 포함한다는 것이 이해되어야 한다. 예를 들어, 단부 작동기의 팁에 대한 기준 프레임을 다루는 설명은 단부 작동기를 지니지 않은 수술 기구의 팁의 기준 프레임을 포함하는 것으로 읽혀야 한다.For example, at least one surgical end actuator is shown or described in various figures. End actuators are portions of minimally invasive surgical instruments or assemblies that perform particular surgical functions (eg, forceps / claws, needle drivers, scissors, electrocautery hooks, staplers, clip applicators / removals, etc.). Many end actuators themselves have a single DOF (eg open and closed tongs). The end actuator can be connected to a surgical instrument body having a mechanism that provides one or more additional DOF, such as a "list" type mechanism. Examples of such mechanisms are described in US Pat. No. 6,371,952 (filed June 28, 1999; Madhani et al.) And US Pat. No. 6,817,974 (filed June 28, 2002; Cooper et al. Intuitive Surgical, Inc., as shown in.) And used for 8 mm and 5 mm instruments in da Vinci® surgical systems. Known as the Endowrist® mechanism. The surgical instrument described herein generally includes an end actuator, but it should be understood that in some embodiments the end actuator may be omitted. For example, a blunt distal tip of the instrument body shaft can be used for retraction of tissue. As another example, suction or irrigation openings may be present at the distal tip of the body shaft or wrist mechanism. In these aspects, it should be understood that the description regarding the placement and orientation of the end actuator includes the placement and orientation of the tip of the surgical instrument without the end actuator. For example, the description dealing with the reference frame for the tip of the end actuator should be read to include the reference frame of the tip of the surgical instrument without the end actuator.

본 설명 전체적으로 단안 또는 입체 영상 시스템/영상 캡처 구성요소/카메라 장치가 단부 작동기가 도시되거나 설명된 어디서든 기구의 원단부에 위치될 수 있거나(이 장치는 "카메라 기구"로 간주될 수 있다), 또는 어떤 가이드 튜브나 다른 기구 조립체 요소의 원단부에 또는 근처에 위치될 수 있다. 따라서, 본원에서 사용된 용어 "영상 시스템" 등은 설명된 양태들과 구체예들의 맥락 내에서 영상 캡처 구성요소 및 영상 캡처 구성요소와 관련 회로구조 및 하드웨어의 조합을 모두 포함하도록 광범하게 해석되어야 한다. 이러한 내시경 영상 시스템(예를 들어, 광학, 적외선, 초음파 등)은 원위 쪽에 위치된 영상 감지 칩과 관련 회로를 가진 시스템을 포함하며, 이들은 무선 또는 유선 접속을 통해서 신체 외부로 캡처된 영상 데이터를 중계한다. 이러한 내시경 영상 시스템은 또한 신체 외부에서 캡처하기 위해 영상을 중계하는 시스템을 포함한다(예를 들어, 로드 렌즈 또는 광섬유를 사용함으로써). 어떤 기구 또는 기구 조립체에서, 다이렉트 뷰 광학 시스템(내시경 영상을 대안렌즈로 직접 본다)이 사용될 수 있다. 원위 쪽에 위치된 반도체 입체 영상 시스템의 예가 본원에 참고로 포함되는 미국 특허출원 제11/614,661호(2006년 12월 2일 제출됨; "입체 내시경"을 개시함; Shafer et al.)에 개시된다. 전기 및 광섬유 조명 접속과 같은 잘 알려진 내시경 영상 시스템 구성요소는 명료성을 위해 생략되거나 기호로 표시된다. 내시경 영상을 위한 조명은 전형적으로 단일 조명 포트에 의해서 도면에 표시된다. 이들 설명은 예시라는 것이 이해되어야 한다. 조명 포트의 크기, 위치 및 수는 변할 수 있다. 조명 포트는 전형적으로 렌즈 구경의 여러 측면에 배열되거나, 또는 렌즈 구경을 완전히 둘러싸면서 배열되며, 이로써 깊은 음영이 최소화될 수 있다.Throughout this description, the monocular or stereoscopic imaging system / image capture component / camera device may be located at the distal end of the instrument wherever the end actuator is shown or described (the device may be considered a “camera instrument”), Or may be located at or near the distal end of any guide tube or other instrument assembly element. Thus, the term “imaging system” and the like as used herein should be interpreted broadly to encompass both the image capture component and the combination of image capture component and associated circuitry and hardware within the context of the described aspects and embodiments. . Such endoscopy imaging systems (e.g., optical, infrared, ultrasonic, etc.) include systems having image sensing chips and associated circuitry located distally, which relay image data captured outside the body via a wireless or wired connection. do. Such endoscopy imaging systems also include systems that relay images for capturing outside the body (eg, by using rod lenses or optical fibers). In some instruments or instrument assemblies, a direct view optical system (viewing the endoscope image directly with the alternative lens) may be used. An example of a distal-side semiconductor stereoscopic imaging system is disclosed in US patent application Ser. No. 11 / 614,661, filed December 2, 2006; discloses "stereoscopic"; Shafer et al. . Well known endoscope imaging system components, such as electrical and fiber optic light connections, are omitted or labeled for clarity. Illumination for an endoscope image is typically represented in the figure by a single illumination port. It is to be understood that these descriptions are examples. The size, location and number of lighting ports can vary. The lighting ports are typically arranged on various sides of the lens aperture, or completely surrounding the lens aperture, whereby deep shading can be minimized.

본 설명에서, 캐뉼라는 전형적으로 수술 기구나 가이드 튜브가 환자 조직에 문지르듯 닿는 것을 방지하기 위해 사용된다. 캐뉼라는 절개부와 자연 개구에 모두 사용될 수 있다. 기구나 가이드 튜브가 그것의 삽입 축(종축)에 대해 자주 병진하거나 회전하지 않는 상황에서는 캐뉼라가 사용되지 않을 수 있다. 취입이 필요한 상황에서는 캐뉼라는 기구나 가이드 튜브를 지나 과잉의 취입 가스가 누출되는 것을 방지할 수 있는 시일을 포함할 수 있다. 수술 부위에서의 취입과 취입 가스가 필요한 과정을 뒷받침하는 캐뉼라 조립체의 예들은 전체 개시가 모든 취지에 있어서 본원에 참고로 포함되는 미국 특허출원 제12/705,439호(2010년 2월 12일 제출됨; "단일 입구 시스템에서 다수 기구를 위한 진입 가이드"를 개시함)에서 찾을 수 있다. 취입이 필요하지 않은 흉부 수술의 경우 캐뉼라 시일은 생략될 수 있으며, 만일 기구 또는 가이드 튜브 삽입 축 움직임이 최소라면 캐뉼라 자체가 생략될 수도 있다. 강직성 가이드 튜브는 일부 구성에서 가이드 튜브에 대해 삽입되는 기구를 위한 캐뉼라로서 기능할 수 있다. 캐뉼라 및 가이드 튜브는, 예를 들어 스틸 또는 압출 플라스틱일 수 있다. 플라스틱은 스틸보다 저렴하며, 일회용으로 적합할 수 있다.In this description, cannula is typically used to prevent surgical instruments or guide tubes from rubbing against patient tissue. Cannula can be used for both incisions and natural openings. The cannula may not be used in situations where the instrument or guide tube does not frequently translate or rotate about its insertion axis (vertical axis). In situations where blowing is necessary, the cannula may include a seal that prevents excess blowing gas from leaking past the instrument or guide tube. Examples of cannula assemblies that support procedures at the site of injection and the need for blowing gas are described in US patent application Ser. No. 12 / 705,439, filed Feb. 12, 2010, the entire disclosure of which is incorporated herein by reference in its entirety; "Entry guide for multiple instruments in a single inlet system". Cannula seals may be omitted for chest surgery that does not require blowing, or the cannula itself may be omitted if the instrument or guide tube insertion axis movement is minimal. The rigid guide tube may function as a cannula for the instrument that is inserted relative to the guide tube in some configurations. The cannula and guide tube can be, for example, steel or extruded plastic. Plastics are less expensive than steel and may be suitable for single use.

가요성 수술 기구 및 가이드 튜브의 다양한 예들과 조립체들이 상기 인용된 미국 특허출원 제11/762,165호에 도시되고 설명된다. 이러한 가요성은 본 설명에서 다양한 방식으로 달성된다. 예를 들어, 기구 또는 가이드 튜브의 어떤 구간이 연속해서 곡선을 이룬 가요성 구조일 수 있으며, 예를 들어 나선형 권선 코일에 기초한 것 또는 여러 구간이 제거된 튜브(예를 들어, 커프 타입 컷들)에 기초한 것일 수 있다. 또는, 가요성 부분은 일련의 짧은 피벗 연결된 구간들로 이루어질 수 있으며, 이들은 연속 곡선 구조로 된 대략적인 뱀 모양을 제공한다. 기구 및 가이드 튜브 구조는 본원에 참고로 포함되는 미국 특허출원 공개 US 2004/0138700(2003년 12월 2일 제출됨; Cooper et al.)에 설명된 것들을 포함할 수 있다. 명료성을 위해서 도면 및 관련 설명은 일반적으로 기구 및 가이드 튜브의 단지 두 구간만을 도시하며, 이들은 근위(전달 메커니즘에 더 가깝고 수술 부위에서는 더 먼 쪽)와 원위(전달 메커니즘에서 더 멀고 수술 부위에 더 가까운 쪽)로 명명된다. 기구와 가이드 튜브는 3개 이상의 구간으로 나눠질 수 있으며, 각 구간은 강직성이거나, 수동적 가요성이거나, 또는 능동적 가요성이라는 것이 이해되어야 한다. 원위 구간, 근위 구간, 또는 전체 메커니즘에 관해 설명된 신축 및 휨은 또한 명료성을 위해 생략된 중간 구간에도 적용된다. 예를 들어, 근위 구간과 원위 구간 사이의 중간 구간은 간단한 또는 복합적인 곡선으로 휠 수 있다. 가요성 구간은 다양한 길이일 수 있다. 외경이 작은 구간은 더 작은 최소 곡률 반경을 가질 수 있고, 외경이 큰 구간보다 휘게 된다. 케이블-제어 시스템의 경우, 허용되지 않는 높은 케이블 마찰이나 바인딩이 휘는 동안의 최소 곡률 반경과 전체 휨 각도를 제한한다. 가이드 튜브의(또는 어떤 조인트의) 최소 휨 반경은 내부 수술 기구 메커니즘의 매끄러운 움직임을 곤란하게 하거나 저지하지 않도록 해야 한다. 가요성 구성요소는, 예를 들어 최대 약 4 피트 길이, 약 0.6 인치 직경일 수 있다. 특정 메커니즘에 대해서는 다른 길이 및 직경(예를 들어, 더 짧은, 더 작은)과 가요성 정도가 메커니즘이 맞춰서 설계된 표적 해부구조에 의해서 결정될 수 있다.Various examples and assemblies of flexible surgical instruments and guide tubes are shown and described in the above-cited US patent application Ser. No. 11 / 762,165. This flexibility is achieved in various ways in this description. For example, a section of the instrument or guide tube may be a flexible structure that is continuously curved, for example based on a spiral winding coil or on a tube (eg cuff type cuts) with several sections removed. It may be based. Alternatively, the flexible portion may consist of a series of short pivoted sections, which provide an approximate snake shape with a continuous curved structure. The instrument and guide tube structure may include those described in US Patent Application Publication US 2004/0138700 (filed December 2, 2003; Cooper et al.) Which is incorporated herein by reference. For clarity, the drawings and associated descriptions generally show only two sections of the instrument and the guide tube, which are proximal (closer to the delivery mechanism and farther from the surgical site) and distal (farther to the delivery mechanism and closer to the surgical site). Page). The instrument and guide tube may be divided into three or more sections, and it should be understood that each section is rigid, passive flexible, or active flexible. The stretching and warping described for the distal segment, the proximal segment, or the overall mechanism also applies to the intermediate segment omitted for clarity. For example, the intermediate section between the proximal and distal sections can be curved in a simple or complex curve. The flexible interval can be of various lengths. A section with a smaller outer diameter may have a smaller minimum radius of curvature and bend more than a section with a larger outer diameter. In cable-controlled systems, unacceptable high cable friction or binding limits the minimum radius of curvature and the overall bending angle during bending. The minimum bending radius of the guide tube (or of any joint) should not prevent or hinder the smooth movement of the internal surgical instrument mechanism. The flexible component can be up to about 4 feet long, about 0.6 inches in diameter, for example. For certain mechanisms, different lengths and diameters (eg, shorter, smaller) and degree of flexibility may be determined by the target anatomy to which the mechanism is designed.

일부 예에서는 기구 또는 가이드 튜브의 원위 구간만이 가요성이고, 근위 구간은 강직성이다. 다른 예에서는 환자 몸안에 존재하는 기구 또는 가이드 튜브의 전체 구간이 가요성이다. 또 다른 예에서, 가장 원위 구간이 강직성일 수 있고, 하나 이상의 다른 근위 구간은 가요성이다. 가요성 구간들은 수동적일 수 있거나, 또는 능동적으로 제어될 수 있다("조종가능"). 이러한 능동적 제어는, 예를 들어 대향하는 케이블 세트를 이용해서 행해질 수 있다(예를 들어, 한 세트는 "피치"를 제어하고 직교하는 세트는 "요우"를 제어한다; 3개의 케이블을 사용하여 유사한 작용을 수행할 수 있다). 작은 전기 또는 자기 가동장치, 형상기억 합금, 전자활성 폴리머("인공 근육"), 기압 또는 유압 풀무 또는 피스톤 등과 같은 다른 제어 요소들이 사용될 수 있다. 기구 또는 가이드 튜브의 구간이 완전히 또는 부분적으로 또 다른 가이드 튜브 안에 위치된 예에서는 능동적 가요성과 수동적 가요성의 다양한 조합들이 존재할 수 있다. 예를 들어, 수동적 가요성 가이드 튜브 안에서 능동적 가요성 기구가 둘러싼 가이드 튜브를 신축할 만큼 충분한 외측 힘을 발휘할 수 있다. 유사하게, 능동적 가요성 가이드 튜브는 그것 안의 수동적 가요성 기구를 신축할 수 있다. 가이드 튜브와 기구의 능동적 가요성 구간은 협력하여 작업할 수 있다. 기구와 가이드 튜브가 가요성이고 강직성인 두 경우 모두, 다양한 디자인에 있어서의 순응성을 고려하여, 중심 종축으로부터 더 멀리 위치된 제어 케이블이 중심 종축에 더 가까이 위치된 케이블보다 기계적 이점을 제공할 수 있다.In some instances, only the distal section of the instrument or guide tube is flexible and the proximal section is rigid. In another example, the entire section of the instrument or guide tube present in the patient's body is flexible. In another example, the most distal segment may be rigid, and one or more other proximal segments are flexible. The flexible intervals can be passive or can be actively controlled (“steerable”). Such active control can be done, for example, using opposing cable sets (eg, one set controls "pitch" and an orthogonal set controls "you"; similar use of three cables Action). Other control elements may be used, such as small electric or magnetic actuators, shape memory alloys, electroactive polymers (“artificial muscles”), pneumatic or hydraulic bellows or pistons, and the like. In the example where the section of the instrument or guide tube is located completely or partially in another guide tube, there may be various combinations of active and passive flexibility. For example, within the passive flexible guide tube, the active flexible mechanism may exert sufficient external force to stretch the surrounding guide tube. Similarly, an active flexible guide tube can stretch a passive flexible instrument therein. The active flexible section of the guide tube and the instrument can work cooperatively. In both cases where the instrument and guide tube are flexible and rigid, taking into account compliance in various designs, a control cable located further away from the central longitudinal axis may provide a mechanical advantage over cables located closer to the central longitudinal axis. .

가요성 구간의 순응성(강성)은 거의 완전히 이완된 상태(적은 내부 마찰이 존재한다)에서부터 실질적으로 강직성인 상태까지 변할 수 있다. 일부 양태에서, 순응성은 제어 가능하다. 예를 들어, 기구 또는 가이드 튜브의 가요성 구간의 어떤 구간이나 전부가 실질적으로(즉, 유효하지만 무한하지는 않은) 강직성일 수 있다(이 구간은 "강직성" 또는 "고정성"이다). 고정성 구간은 직선, 간단한 곡선 또는 복합적 곡선 모양으로 고정될 수 있다. 고정은 마찰을 일으켜 인접한 척추구조가 움직이는 것을 방지할 만큼 충분한 기구나 가이드 튜브를 따라 길이방향으로 이어진 하나 이상의 케이블에 장력을 적용함으로써 달성될 수 있다. 케이블 또는 케이블들은 각 척추구조의 큰 중심 구멍을 통해서 이어질 수 있거나, 또는 척추구조의 바깥 원주 근처에 있는 작은 구멍을 통해서 이어질 수 있다. 또는 달리, 하나 이상의 제어 케이블을 움직이는 하나 이상의 모터의 구동 요소가 제자리에 부드럽게 고정되어(예를 들어, 서보제어에 의해서) 케이블을 제자리에 홀딩함으로써 기구 또는 가이드 튜브 움직임을 방지하고, 이로써 척추구조를 제자리에 고정할 수 있다. 모터 구동 요소를 제자리에 유지함으로써 다른 움직일 수 있는 기구 및 가이드 튜브 구성요소를 역시 제자리에 효과적으로 유지할 수 있다. 서보제어 하의 강성은 유효하기는 하지만 일반적으로 조인트에 직접 위치된 브레이크, 예를 들어 수동적 셋업 조인트를 제자리에 유지하기 위해 사용된 브레이크를 사용하여 얻어질 수 있는 강성보다는 적다는 것이 이해되어야 한다. 일반적으로 케이블 강성은 그것이 일반적으로 서보시스템이나 브레이크 적용된 조인트 강성보다 적기 때문에 중요하다.The compliance (stiffness) of the flexible section can vary from a nearly fully relaxed state (with little internal friction) to a substantially rigid state. In some embodiments, compliance is controllable. For example, any or all of the flexible sections of the instrument or guide tube may be substantially (i.e., valid but not infinite) rigid (this section is "rigid" or "fixed"). The fixed section may be fixed in a straight line, simple curve or complex curve shape. The fixation can be achieved by applying tension to one or more cables extending longitudinally along the guide tube or a mechanism sufficient to frictionally prevent the movement of adjacent vertebral structures. The cable or cables can run through a large central hole in each spine, or through a small hole near the outer circumference of the spine. Alternatively, the drive elements of one or more motors that move one or more control cables are smoothly held in place (e.g., by servo control) to hold the cables in place to prevent instrument or guide tube movement, thereby reducing spinal structure. Can be locked in place. By keeping the motor drive element in place, other movable instruments and guide tube components can also be effectively held in place. It should be understood that the stiffness under servo control is valid but generally less than the stiffness that can be obtained using a brake located directly at the joint, for example a brake used to hold a passive setup joint in place. In general, cable stiffness is important because it is generally less than servo systems or braked joint stiffness.

어떤 상황에서, 가요성 구간의 순응성은 이완된 상태와 강직성 상태에서 계속 변할 수 있다. 예를 들어, 고정한 케이블 장력이 증가하면 강직성 상태에서 가요성 구간의 고정 없이도 강성이 증가할 수 있다. 이러한 중간 순응성은 수술 부위로부터의 반응성 힘에 의해 야기되는 움직임으로 인해 일어날 수 있는 조직 외상을 감소시키면서 원격수술 작동을 허용할 수 있다. 가요성 구간에 통합되는 적합한 휨 센서는 원격수술 시스템이 기구 및/또는 가이드 튜브 위치를 그것이 휘는 상태에 따라 결정할 수 있도록 한다. 본원에 참고로 포함되는 미국 특허출원 공개 US 2006/0013523(2005년 7월 13일 제출됨; Childers et al.)은 광섬유 위치 형상감지 장치와 방법을 개시한다. 본원에 참고로 포함되는 미국 특허출원 제11/491,384호(2006년 7월 20일 제출됨; Larkin et al.)는 이러한 구간 및 가요성 장치의 제어에 사용되는 광섬유 휨 센서(예를 들어, 광 브래그 격자)를 개시한다.In some situations, the compliance of the flexible interval may continue to change in the relaxed and stiff state. For example, if the fixed cable tension is increased, the rigidity can be increased without fixing the flexible section in the rigid state. This intermediate compliance may allow telesurgical operation while reducing tissue trauma that may occur due to movement caused by reactive forces from the surgical site. Suitable bending sensors integrated into the flexible section allow the telesurgical system to determine the position of the instrument and / or guide tube according to its bending state. US Patent Application Publication No. US 2006/0013523, filed Jul. 13, 2005; Childers et al., Incorporated herein by reference, discloses an optical fiber position shape sensing device and method. US patent application Ser. No. 11 / 491,384, filed Jul. 20, 2006; Larkin et al., Incorporated herein by reference, discloses optical fiber bending sensors (e.g., optical Bragg grating).

본원에 설명된 것 같은 최소 침습 수술 기구 조립체, 기구, 단부 작동기, 및 조작기 암 구성의 양태들을 제어하기 위한 의사의 입력은 일반적으로 직관적인 카메라 기준 제어 인터페이스를 사용하여 행해진다. 예를 들어, da Vinci® 수술 시스템은 이러한 제어 인터페이스를 가진 의사 콘솔을 포함하며, 이것은 본원에 설명된 양태들을 제어하도록 변형될 수 있다. 의사는 예를 들어 6의 DOF를 가진 하나 이상의 수동 입력 마스터 메커니즘을 조작하여 종속 기구 조립체 및 기구를 제어할 수 있다. 입력 메커니즘은 1 이상의 단부 작동기 DOF를 제어하기 위한 손가락으로 작동되는 집게를 포함한다(예를 들어, 집게의 턱을 닫는 것). 직관적 제어는 의사의 입력 메커니즘과 영상 출력 표시장치의 위치에 따라 단부 작동기와 내시경 영상 시스템의 상대적 위치를 배향함으로써 제공된다. 이런 배향은 의사가 마치 수술 작업 부위를 실질적으로 실제 현장에서 보고 있는 것처럼 입력 메커니즘과 단부 작동기 컨트롤을 조작할 수 있도록 한다. 이 원격작동 실제 현시는 의사가 오퍼레이터가 수술 부위에서 직접 보면서 작업하는 것처럼 나타난 투시로부터 영상을 본다는 것을 의미한다. 본원에 참고로 포함되는 미국특허 제6,671,581호(2002년 6월 5일 제출됨; Niemeyer et al.)는 최소 침습 수술 장치에서 카메라 기준 제어에 대한 더 이상의 정보를 함유한다.Physician input to control aspects of minimally invasive surgical instrument assemblies, instruments, end actuators, and manipulator arm configurations as described herein are generally made using an intuitive camera reference control interface. For example, the da Vinci® surgical system includes a physician console with such a control interface, which can be modified to control aspects described herein. The surgeon can control the dependent instrument assembly and the instrument by manipulating one or more manual input master mechanisms, for example, with a DOF of six. The input mechanism includes a finger operated forceps for controlling one or more end effector DOF (eg, closing the jaw of the forceps). Intuitive control is provided by orienting the relative position of the end actuator and the endoscope imaging system according to the position of the physician's input mechanism and the image output display. This orientation allows the surgeon to manipulate the input mechanism and end actuator controls as if they were actually viewing the surgical work site in practice. This teleoperational manifestation means that the doctor sees the image from the perspective that appears as if the operator is working directly at the surgical site. US Pat. No. 6,671,581, filed June 5, 2002; Niemeyer et al., Incorporated herein by reference, contains further information on camera reference control in minimally invasive surgical devices.

단일 입구 수술 시스템Single entrance surgical system

이제 도 1a 및 1b와 관련하여, 본원에 설명된 최소 침습 수술 기구, 기구 조립체 및 조작과 제어 시스템의 양태들을 이용하는 로봇-보조(원격조작) 최소 침습 수술 시스템의 양태를 예시하는 도식적 측면도와 정면도가 도시된다. 세 가지 주요 구성요소는 내시경 영상 시스템(102), 의사 콘솔(104)(마스터) 및 환자측 지지 시스템(100)(종속)이며, 도시된 대로 유선(전기 또는 광학) 또는 무선 접속(106)에 의해서 모두 상호 연결된다. 하나 이상의 전자 데이터 처리장치가 이들 주 구성요소에 다양하게 위치될 수 있으며, 이로써 시스템 기능성을 제공할 수 있다. 예들은 상기 인용된 미국특허 출원 제11/762,165호에 개시된다. 점선으로 도시된 멸균 드레이프(1000)가 유익하게 환자측 지지 시스템(100)의 적어도 일부를 덮어서 수술 과정 동안 멸균 현장을 유지하면서 기구와 그것의 관련 조작기 사이의 정확한 인터페이스와 함께 효과적이고 간단한 기구 교환을 제공한다.Referring now to FIGS. 1A and 1B, a schematic side and front view illustrating an embodiment of a robot-assisted (remote manipulation) minimally invasive surgical system using aspects of the minimally invasive surgical instrument, instrument assembly, and manipulation and control system described herein. Shown. The three main components are the endoscopic imaging system 102, the physician console 104 (master) and the patient side support system 100 (dependent), as shown, by wire (electric or optical) or wireless connection 106. All are interconnected. One or more electronic data processing devices may be variously located in these main components, thereby providing system functionality. Examples are disclosed in US Patent Application No. 11 / 762,165, cited above. The sterile drape 1000 shown in dashed lines advantageously covers at least a portion of the patient side support system 100 to provide an effective and simple instrument exchange with an accurate interface between the instrument and its associated manipulator while maintaining the sterile site during the surgical procedure. do.

영상 시스템(102)은, 예를 들어 수술 부위의 캡처된 내시경 영상 데이터 및/또는 환자 외부에 있는 다른 영상 시스템으로부터의 사전작업 또는 실시간 영상 데이터에 대해 영상 처리 기능을 수행한다. 영상 시스템(102)은 처리된 영상 데이터(예를 들어, 수술 부위의 영상뿐만 아니라 관련된 제어 및 환자 정보)를 의사 콘솔(104)의 의사에게 출력한다. 일부 양태에서, 처리된 영상 데이터는 다른 수술실 요원이 볼 수 있는, 또는 수술실에서 먼 곳의 하나 이상의 장소에서 볼 수 있는 선택적 외부 모니터에 출력된다(예를 들어, 다른 장소에 있는 의사가 비디오를 모니터할 수 있다; 바로바로 제공되는 비디오가 훈련에 사용될 수 있다; 등등).Imaging system 102 performs an image processing function on, for example, pre- or real-time image data from captured endoscopic image data of the surgical site and / or from another imaging system external to the patient. The imaging system 102 outputs the processed image data (eg, images of the surgical site as well as related control and patient information) to the doctor of the doctor console 104. In some aspects, the processed image data is output to an optional external monitor visible to other operating room personnel or to one or more places remote from the operating room (eg, a doctor at another location monitors the video). Directly available video can be used for training; etc.).

의사 콘솔(104)은, 예를 들어 의사가 본원에 설명된 수술 기구, 가이드 튜브, 및 영상 시스템("종속") 장치를 조작할 수 있도록 하는 다중 DOF의 기계적 입력("마스터") 장치를 포함한다. 일부 양태에서, 이러한 입력 장치는 기구 및 기구 조립체 구성요소로부터 의사에게 촉각적 피드백을 제공한다. 또한, 콘솔(104)은 표시장치의 영상이 일반적으로 표시장치 스크린 뒤/아래에서 의사의 손작업에 상응하는 거리에서 초점이 맞도록 위치된 입체 비디오 출력 표시장치를 포함한다. 이들 양태는 본원에 참고로 포함되는 미국특허 제6,671,581호에 더 충분히 논의된다.Pseudo console 104 includes, for example, multiple DOF mechanical input (“master”) devices that enable the surgeon to manipulate the surgical instruments, guide tubes, and imaging system (“dependent”) devices described herein. do. In some aspects, such an input device provides tactile feedback to the physician from the instrument and the instrument assembly component. The console 104 also includes a stereoscopic video output display positioned such that the image of the display is focused at a distance corresponding to the hand work of the physician, generally behind / below the display screen. These embodiments are more fully discussed in US Pat. No. 6,671,581, which is incorporated herein by reference.

삽입 동안의 제어는, 예를 들어 의사가 주 장치의 하나 또는 둘 다를 사용하여 실제로 영상을 움직임으로써 달성될 수 있다. 의사는 주 장치를 사용해서 영상을 옆으로 나란히 움직이고 영상을 자신 쪽으로 당겨서 영상 시스템과 그것의 관련 기구 조립체(예를 들어, 가요성 가이드 튜브)에 출력 표시장치 상의 고정된 중심점을 향해 조종하여 환자 몸안에서 나아가도록 명령을 내린다. 한 양태에서, 카메라 제어는 주 장치가 영상에 고정됨으로써 영상이 주 장치 핸들이 움직이는 것과 동일한 방향으로 움직인다는 인상을 제공하도록 설계된다. 이런 설계는 주 장치가 정확한 위치에 있도록 함으로써 의사가 카메라 제어를 하지 않을 때도 기구를 제어할 수 있도록 하며, 결과적으로 기구 제어를 시작하거나 재개하기 전에 주 장치를 클러치(맞물림 해제), 이동 및 제자리로 클러치 해제(맞물림)할 필요성이 없어진다. 일부 양태에서, 주 장치 위치는 넓은 주 장치 작업공간의 사용을 피하기 위해서 삽입 속도에 비례하여 정해질 수 있다. 또는 달리, 의사는 주 장치를 클러치 및 클러치 해제함으로써 래칫 동작을 이용해서 삽입을 행할 수 있다. 일부 양태에서, 삽입은 수동으로 제어될 수 있으며(예를 들어, 손으로 작동되는 휠에 의해서), 자동화된 삽입(예를 들어, 서보모터 구동 롤러)은 수술 기구 조립체의 원단부가 수술 부위 근처에 있을 때 행해진다. 환자의 해부학적 구조와 삽입 궤적에 이용될 수 있는 공간의 사전 작업 또는 실시간 영상 데이터(예를 들어, MRI, 엑스선)를 사용해서 삽입을 보조할 수 있다.Control during insertion can be achieved, for example, by the practitioner actually moving the image using one or both of the main devices. The surgeon uses the main unit to move the image side by side and pull the image towards him, steering it to a fixed center point on the output display in the imaging system and its associated instrument assembly (eg flexible guide tube). Instruct us to move in. In one aspect, the camera control is designed to provide the impression that the image moves in the same direction as the main device handle moves by being fixed to the image. This design ensures that the main unit is in the correct position, allowing the doctor to control the instrument even when camera control is not in effect, and consequently the main unit to clutch (disengage), move and reposition before starting or resuming instrument control. There is no need to release the clutch. In some aspects, the main device position can be determined in proportion to the insertion speed to avoid the use of a large main device workspace. Alternatively, the surgeon can use the ratchet action to insert by clutching and releasing the main device. In some aspects, insertion can be controlled manually (eg by hand operated wheels) and automated insertion (eg servomotor drive rollers) allows the distal end of the surgical instrument assembly to be near the surgical site. It is done when there is. Insertion may be assisted using pre-working or real-time image data (eg, MRI, X-rays) of space that may be used for the patient's anatomy and insertion trajectory.

환자측 지지 시스템(100)은 바닥-장착된 베이스(108), 또는 달리 교호선으로 도시된 것과 같은 천장-장착된 베이스(110)을 포함한다. 베이스는 움직일 수 있거나, 또는 고정될 수 있다(예를 들어, 바닥, 천장, 벽 또는 수술대와 같은 다른 장비에).The patient side support system 100 includes a floor-mounted base 108, or a ceiling-mounted base 110 as otherwise shown by an alternating line. The base may be movable or fixed (for example on a floor, ceiling, wall or other equipment such as operating table).

베이스(108)는 수동적인 비제어형 "셋업" 부분과 능동적으로 제어되는 "조작기" 부분을 포함하는 암 조립체(101)를 지지한다. 한 예에서, 셋업 부분은 2개의 수동적 회전 "셋업" 조인트(116 및 120)를 포함하며, 이들은 조인트 브레이크가 해제되었을 때 연결된 셋업 링크(118 및 122)의 수동 배치를 허용한다. 암 조립체와 링크(114)에 연결된 베이스 사이에 수동적 프리즘형 셋업 조인트(미도시)를 사용하여 더 큰 수직 조정부(112)를 허용할 수 있다. 또는 달리, 이들 셋업 조인트의 일부는 능동적으로 제어될 수 있으며, 다양한 구성에서 셋업 조인트가 더 많이 또는 더 적게 사용될 수 있다. 셋업 조인트와 링크는 데카르트 x, y, z 공간 안에서 다양한 위치와 배향에 암의 로봇 조작기 부분을 배치할 수 있도록 한다. 원격 동작 중심은 요우, 피치 및 롤 축이 교차하는 장소이다(즉, 조인트는 이들의 동작 범위에서 움직이면서 운동학적 사슬은 유효하게 정지된 채로 유지되는 장소). 아래 더 상세히 설명된 대로, 이들 능동적으로 제어되는 조인트의 일부는 개별 수술 기구의 DOF를 제어하는 것과 관련되고, 이들 능동적으로 제어되는 조인트의 나머지는 이들 로봇 조작기의 단일 조립체의 DOF를 제어하는 것과 관련된다. 능동적 조인트와 링크는 모터 또는 다른 가동장치에 의해서 움직일 수 있으며, 의사 콘솔(104)에서 주 장치 암의 움직임과 관련된 움직임 제어 신호를 수신한다.Base 108 supports arm assembly 101 that includes a passive uncontrolled "setup" portion and an actively controlled "operator" portion. In one example, the setup portion includes two passive rotating “setup” joints 116 and 120, which allow manual placement of connected setup links 118 and 122 when the joint brake is released. Passive prismatic setup joints (not shown) can be used between the arm assembly and the base connected to the link 114 to allow for larger vertical adjustments 112. Alternatively, some of these setup joints can be actively controlled, and more or less setup joints can be used in various configurations. Setup joints and links allow the robotic manipulator part of the arm to be placed in various positions and orientations within Cartesian x, y and z spaces. The remote motion center is where the yaw, pitch, and roll axes intersect (ie, where the joints move in their range of motion while the kinematic chain remains effectively stationary). As described in more detail below, some of these actively controlled joints relate to controlling the DOF of individual surgical instruments, and the rest of these actively controlled joints relate to controlling the DOF of a single assembly of these robotic manipulators. do. The active joints and links can be moved by a motor or other mover and receive a motion control signal associated with the movement of the main device arm at the pseudo console 104.

도 1a 및 1b에 도시된 것처럼, 조작기 조립체 요우 조인트(124)는 셋업 링크(122)의 원단부와 제1 조작기 링크(126)의 근단부 사이에 연결된다. 요우 조인트(124)는 링크(126)가 조작기 조립체 요우 축(123) 주위에서 "요우"로서 임의로 한정될 수 있는 동작으로 링크(122)를 기준으로 움직일 수 있도록 한다. 도시된 대로, 요우 조인트(124)의 회전 축은 원격 동작 중심(146)과 정렬되며, 이것은 일반적으로 기구(미도시)가 환자로 들어가는 위치이다(예를 들어, 복부 수술에서는 배꼽). 한 구체예에서, 셋업 링크(122)는 수평 또는 x, y 평면을 따라 회전 가능하며, 요우 조인트(124)는 제1 조작기 링크(126)가 요우 축(123)을 중심으로 회전할 수 있도록 구성되고, 이로써 셋업 링크(122), 요우 조인트(124) 및 제1 조작기 링크(126)가 요우 조인트(124)에서부터 원격 동작 중심(146)까지 수직 점선으로 예시된 대로 로봇 암 조립체에 대해 일정한 수직 요우 축(123)을 제공한다.As shown in FIGS. 1A and 1B, the manipulator assembly yaw joint 124 is connected between the distal end of the setup link 122 and the proximal end of the first manipulator link 126. The yaw joint 124 allows the link 126 to move relative to the link 122 in an operation that can be arbitrarily defined as a “yo” around the manipulator assembly yaw axis 123. As shown, the axis of rotation of the yaw joint 124 is aligned with the teleoperation center 146, which is generally the position at which the instrument (not shown) enters the patient (eg, navel in abdominal surgery). In one embodiment, the setup link 122 is rotatable horizontally or along the x, y plane, and the yaw joint 124 is configured to allow the first manipulator link 126 to rotate about the yaw axis 123. Whereby the setup link 122, the yaw joint 124, and the first manipulator link 126 are constant vertical yaw with respect to the robotic arm assembly as illustrated by the vertical dashed line from the yaw joint 124 to the center of remote operation 146. It provides an axis 123.

제1 조작기 링크(126)의 원단부는 제2 조작기 링크의 근단부에 연결되고, 제2 조작기 링크(130)의 원단부는 제3 조작기 링크(134)의 근단부에 연결되며, 제3 조작기 링크(134)의 원단부는 제4 조작기 링크(138)의 근단부에 연결되고, 이러한 연결은 각각 능동적으로 제어되는 회전 조인트(128, 132 및 136)에 의해 이루어진다. 한 구체예에서, 링크(130, 134 및 138)들이 함께 연결되어 연결된 동작 메커니즘으로서 작용한다. 연결된 동작 메커니즘은 잘 공지되어 있다(예를 들어, 이러한 메커니즘은 입력과 출력 링크 동작이 서로 평행하게 유지될 때 평행 동작 연결로 알려져 있다). 예를 들어, 회전 조인트(128)가 능동적으로 회전되면 조인트(132 및 136)들도 또한 회전하여 링크(138)가 링크(130)와 일정한 관계로 움직인다. 따라서, 조인트(128, 132 및 136)의 회전 축이 평행한 것을 알 수 있다. 이들 축이 조인트(124)의 회전 축과 수직일 때는 링크(130, 134 및 138)가 조작기 조립체 피치 축(139) 주위에서 "피치"로서 임의로 한정될 수 있는 동작으로 링크(126)를 기준으로 움직인다. 한 구체예에서, 링크(130, 134 및 138)는 단일 조립체로서 움직이므로, 제1 조작기 링크(126)는 능동적 근위 조작기 링크라고 간주될 수 있고, 제2 내지 제4 조작기 링크(130, 134 및 138)는 종합해서 능동적 원위 조작기 링크라고 간주될 수 있다.The distal end of the first manipulator link 126 is connected to the proximal end of the second manipulator link 130, the distal end of the second manipulator link 130 is connected to the proximal end of the third manipulator link 134, and the third manipulator link 134. The distal end of is connected to the proximal end of the fourth manipulator link 138, which connection is made by rotary joints 128, 132 and 136, which are actively controlled, respectively. In one embodiment, the links 130, 134 and 138 are linked together to act as a connected operating mechanism. Connected operating mechanisms are well known (for example, such mechanisms are known as parallel operating connections when the input and output link motions remain parallel to each other). For example, if the rotary joint 128 is actively rotated, the joints 132 and 136 also rotate so that the link 138 moves in a constant relationship with the link 130. Thus, it can be seen that the axes of rotation of the joints 128, 132, and 136 are parallel. When these axes are perpendicular to the axis of rotation of the joint 124, the links 130, 134 and 138 may be defined relative to the manipulator assembly pitch axis 139 as "pitch" relative to the link 126. Move. In one embodiment, the links 130, 134, and 138 move as a single assembly, so the first manipulator link 126 may be considered an active proximal manipulator link, and the second to fourth manipulator links 130, 134 and 138 may be considered collectively as an active distal manipulator link.

조작기 조립체 플랫폼(140)은 제4 조작기 링크(138)의 원단부에 연결된다. 조작기 플랫폼(140)은 하기 더 상세히 설명되는 2개 이상의 수술 기구 조작기를 포함하는 조작기 조립체(142)를 지지하는 회전 가능한 베이스 플레이트를 포함한다. 회전하는 베이스 플레이트는 조작기 조립체(142)가 조작기 조립체 롤 축(141) 주위에서 "롤"로서 임의로 한정될 수 있는 동작으로 플랫폼(140)을 기준으로 단일 유닛으로서 회전할 수 있도록 한다.Manipulator assembly platform 140 is connected to the distal end of fourth manipulator link 138. Manipulator platform 140 includes a rotatable base plate that supports manipulator assembly 142 that includes two or more surgical instrument manipulators described in more detail below. The rotating base plate allows the manipulator assembly 142 to rotate as a single unit relative to the platform 140 in an operation that may optionally be defined as a "roll" around the manipulator assembly roll axis 141.

최소 침습 수술의 경우, 불필요한 조직 손상을 피하기 위해서 기구들은 절개부든 자연 개구든 이들이 환자의 몸으로 진입하는 위치와 관련해서 실질적으로 정지된 채로 유지되어야 한다. 따라서, 기구 샤프트의 요우 및 피치 동작은 공간 내에서 비교적 정치한 상태로 머무르는 조작기 조립체 롤 축 또는 기구 삽입 축 상의 단일 위치에 중심이 있어야 한다. 이 위치를 원격 동작 중심이라고 한다. 기구들이 전부(카메라 기구를 포함해서) 하나의 작은 절개부(예를 들어, 배꼽에 있는)나자연 개구를 통해 진입되어야 하는 단일 입구 최소 침습 수술의 경우, 모든 기구는 이러한 일반적으로 정지된 원격 동작 중심을 기준으로 움직여야 한다. 따라서, 조작기 조립체(142)에 대한 원격 동작 중심은 조작기 조립체 요우 축(123)과 조작기 조립체 피치 축(139)의 교차에 의해서 한정된다. 링크(130, 134 및 138) 및 조인트(128, 132 및 136)의 구성은 원격 동작 중심(146)이 조작기 조립체가 환자와 관련하여 자유롭게 움직일 수 있는 충분한 거리를 두고 조작기 조립체(142)의 원위 쪽에 위치된다. 조작기 조립체 롤 축(141)이 또한 원격 동작 중심(146)과 교차한다는 것을 알 수 있다.In the case of minimally invasive surgery, the instruments must remain substantially stationary with respect to the location where they enter the patient's body, whether incisions or natural openings, to avoid unnecessary tissue damage. Thus, the yaw and pitch motion of the instrument shaft should be centered in a single position on the manipulator assembly roll axis or instrument insertion axis that remains relatively stationary in space. This position is called remote operation center. In the case of a single inlet minimally invasive surgery in which the instruments must be entered through a small incision (eg in the navel) or through a natural opening (including camera instruments), all instruments must be You should move around the center. Thus, the remote operating center for manipulator assembly 142 is defined by the intersection of manipulator assembly yaw axis 123 and manipulator assembly pitch axis 139. The configuration of the links 130, 134 and 138 and the joints 128, 132 and 136 allows the remote operation center 146 to be located at the distal side of the manipulator assembly 142 at a sufficient distance for the manipulator assembly to move freely with respect to the patient. Is located. It can be seen that the manipulator assembly roll axis 141 also intersects the remote operation center 146.

아래 더 상세히 설명된 대로, 수술 기구는 조작기 조립체(142)의 각 수술 기구 조작기 상에 장착되어 그것에 의해서 가동된다. 기구들은 탈착 가능하게 장착되며, 이로써 다양한 기구들이 특정 기구 조작기 상에 상호 교환 가능하게 장착될 수 있다. 한 양태에서, 하나 이상의 기구 조작기는 카메라 기구와 같은 특정 타입의 기구를 지지하고 가동하도록 구성될 수 있다. 기구의 샤프트는 기구 조작기로부터 원위 쪽으로 연장된다. 샤프트들은 진입구에 위치된 공통된 캐뉼라를 통해서 환자 몸안으로 연장된다(예를 들어, 체벽을 통해서 또는 자연 개구에서). 한 양태에서, 진입 가이드는 캐뉼라 안에 위치되며, 각 기구 샤프트가 진입 가이드의 채널을 통해서 연장됨으로써 기구 샤프트를 위한 추가의 지지를 제공한다. 캐뉼라는 캐뉼라 장착부(150)에 탈착 가능하게 연결되며, 이것은 한 구체예에서 제4 조작기 링크(138)의 근단부에 연결된다. 한 실시형태에서, 캐뉼라 장착부(150)는 회전 조인트에 의해서 링크(138)에 연결되고, 이것은 장착부가 링크(138)에 인접한 삽입된 위치와 정확한 위치에 캐뉼라를 홀딩하는 작동 위치 사이에서 움직일 수 있도록 하며, 이로써 원격 동작 중심(146)이 캐뉼라를 따라 위치된다. 한 양태에 따라서, 작동 동안 캐뉼라 장착부는 링크(138)에 대해 제자리에 고정된다. 기구(들)는 캐뉼라 장착부(150)의 원단부에 장착된 진입 가이드와 캐뉼라 조립체를 통해 슬라이딩할 수 있으며, 이것의 예들이 하기 더 상세히 설명된다. 다양한 수동적 셋업 조인트/링크와 능동적 조인트/링크가 환자가 움직이는 수술대 위에서 다양한 자세로 있을 때 기구 조작기를 배치함으로써 기구와 영상 시스템을 큰 동작 범위에서 움직일 수 있도록 한다. 일부 구체예에서, 캐뉼라 장착부는 근위 링크 또는 제1 조작기 링크(126)에 연결될 수 있다.As described in more detail below, the surgical instrument is mounted on and actuated by each surgical instrument manipulator of the manipulator assembly 142. The instruments are removably mounted so that various instruments can be interchangeably mounted on a particular instrument manipulator. In an aspect, one or more instrument manipulators can be configured to support and operate a particular type of instrument, such as a camera instrument. The shaft of the instrument extends distal from the instrument manipulator. The shafts extend into the patient's body through a common cannula located at the entrance (eg, through the body wall or at the natural opening). In one aspect, the entry guide is located in the cannula and each instrument shaft extends through the channel of the entry guide to provide additional support for the instrument shaft. The cannula is removably connected to cannula mount 150, which in one embodiment is connected to the proximal end of fourth manipulator link 138. In one embodiment, the cannula mount 150 is connected to the link 138 by a rotary joint, which allows the mount to move between the inserted position adjacent the link 138 and the operating position of holding the cannula in the correct position. This places the remote center of motion 146 along the cannula. According to one aspect, the cannula mount is fixed in place with respect to the link 138 during operation. The instrument (s) can slide through the entry guide and cannula assembly mounted to the distal end of cannula mount 150, examples of which are described in more detail below. Various passive setup joints / links and active joints / links allow the instrument manipulator to move over a large range of motion by placing the instrument manipulator when the patient is in various positions on the operating table. In some embodiments, the cannula mount can be connected to the proximal link or the first manipulator link 126.

조작기 암에서 특정한 셋업 및 능동적 조인트 및 링크는 로봇의 크기와 모양을 줄이기 위해서 생략될 수 있거나, 또는 조인트와 링크가 추가되어 자유도를 증가시킬 수 있다. 조작기 암은 수술을 위한 필요한 자세 범위를 달성하기 위하여 링크, 수동적 조인트 및 능동적 조인트의 다양한 조합을 포함할 수 있음이 이해되어야 한다(여분의 DOF가 제공될 수 있다). 또한, 다양한 수술 기구가 단독으로 또는 가이드 튜브, 다수의 기구 및/또는 다수의 가이드 튜브를 포함하는 기구 조립체, 및 다양한 구성(예를 들어, 기구 전달 수단 또는 기구 조작기의 근위면 또는 원위면 위에)을 통해 기구 조작기(예를 들어, 가동장치 조립체)에 연결된 기구가 본 개시의 양태들에 적용될 수 있다.Certain setups and active joints and links in the manipulator arm may be omitted to reduce the size and shape of the robot, or joints and links may be added to increase the degree of freedom. It should be understood that the manipulator arm may include various combinations of links, passive joints and active joints to achieve the required posture range for surgery (extra DOF may be provided). In addition, various surgical instruments may be alone or in an assembly of instruments comprising a guide tube, multiple instruments and / or multiple guide tubes, and various configurations (eg, on the proximal or distal surface of an instrument delivery means or instrument manipulator). An instrument coupled to an instrument manipulator (eg, a mover assembly) may be applied to aspects of the present disclosure.

도 2a-2c는 각각 원격작동 수술(원격수술) 시스템의 환자측 지지 카트(200)의 도식적 투시도, 측면도 및 상면도이다. 묘사된 카트(200)는 도 1a 및 1b와 관련하여 상기 설명된 일반적 구성의 예시적인 구체예이다. 의사 콘솔과 비디오 시스템은 도시되지 않지만, 도 1a 및 1b와 공지된 원격로봇 수술 시스템 구조(예를 들어, da Vinci® 수술 시스템 구조)와 관련하여 상기 설명된 대로 적용할 수 있다. 이 구체예에서, 카트(200)는 바닥-장착된 베이스(208)를 포함한다. 베이스는 움직일 수 있거나, 또는 고정될 수 있다(예를 들어, 바닥, 천장, 벽 또는 다른 충분히 단단한 구조에). 베이스(208)는 지지 기둥(210)을 지지하며, 암 조립체(201)가 지지 기둥(210)에 연결된다. 암 조립체는 2개의 수동적 회전 셋업 조인트(216 및 220)을 포함하며, 이들은 브레이크가 해제되었을 때 연결된 셋업 링크(218 및 222)의 수동 배치를 허용한다. 묘사된 구체예에서, 셋업 링크(218 및 222)는 수평면에서 움직인다(바닥에 평행하게). 암 조립체는 기둥(210)과 수직 셋업 링크(214) 사이의 수동적 슬라이딩 셋업 조인트(215)에서 지지 기둥(210)에 연결된다. 조인트(215)는 조작기 암이 수직으로 조정되는 것을 허용한다(바닥에 수직으로). 따라서, 수동적 셋업 조인트와 링크를 사용하여 환자를 기준으로 원격 동작 중심(246)을 적절히 배치할 수 있다. 일단 원격 동작 중심(246)이 적절히 위치되면, 각 조인트(215, 216 및 220)에서 브레이크가 설정되어 암의 셋업 부분이 움직이는 것을 방지한다.2A-2C are schematic perspective, side and top views, respectively, of a patient side support cart 200 of a teleoperated surgery (remote surgery) system. The cart 200 depicted is an exemplary embodiment of the general configuration described above in connection with FIGS. 1A and 1B. Pseudo consoles and video systems are not shown, but may be applied as described above in connection with FIGS. 1A and 1B and known remote robotic surgical system structures (eg, da Vinci® surgical system structures). In this embodiment, the cart 200 includes a floor-mounted base 208. The base may be movable or fixed (eg on a floor, ceiling, wall or other sufficiently rigid structure). The base 208 supports the support column 210, and the arm assembly 201 is connected to the support column 210. The arm assembly includes two passive rotary setup joints 216 and 220, which allow manual placement of the connected setup links 218 and 222 when the brake is released. In the depicted embodiment, the setup links 218 and 222 move in a horizontal plane (parallel to the bottom). The arm assembly is connected to the support pillar 210 at a passive sliding setup joint 215 between the pillar 210 and the vertical setup link 214. Joint 215 allows the manipulator arm to be adjusted vertically (perpendicular to the floor). Thus, passive setup joints and links can be used to properly position the telecenter of movement 246 relative to the patient. Once the remote operating center 246 is properly positioned, brakes are set at each joint 215, 216, and 220 to prevent the setup portion of the arm from moving.

이에 더하여, 암 조립체는 조작기 암 구성과 움직임, 기구 조작, 및 기구 삽입을 위한 능동적 조인트 및 링크를 포함한다. 제1 조작기 링크(226)의 근단부는 능동적으로 제어되는 회전 조작기 조립체 요우 조인트(224)를 통해 셋업 링크(222)의 원단부에 연결된다. 도시된 것처럼, 요우 조인트(224)의 회전 조작기 조립체 요우 축(223)은 요우 조인트(224)에서부터 원격 동작 중심(246)까지 수직 점선으로 예시된 대로 원격 동작 중심(246)과 정렬된다.In addition, the arm assembly includes manipulator arm configurations and active joints and links for movement, instrument manipulation, and instrument insertion. The proximal end of the first manipulator link 226 is connected to the distal end of the setup link 222 via a actively controlled rotary manipulator assembly yaw joint 224. As shown, the rotary manipulator assembly yaw axis 223 of the yaw joint 224 is aligned with the remote operating center 246 as illustrated by the vertical dashed line from the yaw joint 224 to the remote operating center 246.

제1 조작기 링크(226)의 원단부는 제2 조작기 링크(230)의 근단부와 연결되고, 제2 조작기 링크(230)의 원단부는 제3 조작기 링크(234)의 근단부와 연결되며, 제3 조작기 링크(234)의 원단부는 제4 조작기 링크(238)의 근단부와 연결되고, 이러한 연결은 각각 능동적으로 제어되는 회전 조인트(228, 232 및 236)에 의해 이루어진다. 상기 설명된 대로, 링크(230, 234 및 238)는 연결된 동작 메커니즘으로서 기능하며, 이로써 링크(230)가 가동될 때 제2 조작기 링크(230)와 협력하여 제4 조작기 링크(238)가 자동으로 움직인다. 묘사된 구체예에서, 미국특허 제7,594,912호(2004년 9월 30일 제출됨)에 개시된 것과 유사한 메커니즘이 용도에 맞게 변형된다(또한, 예를 들어 미국 특허출원 제11/611,849호(2006년 12월 15일 제출됨; 미국 특허출원 공개 US 2007/0089557 A1)를 참조한다). 따라서, 제1 조작기 링크(226)는 능동적 근위 링크라고 생각될 수 있고, 제2 내지 제4 링크(230, 234 및 238)는 종합해서 능동적 원위 링크라고 생각될 수 있다. 한 구체예에서, 제1 링크(226)는 압축 스프링 평형추 메커니즘을 포함할 수 있으며, 이것은 하기 더 설명된 대로 조인트(228)를 중심으로 한 원위 링크의 움직임으로 인한 힘의 균형을 맞추는 역할을 한다.The distal end of the first manipulator link 226 is connected with the proximal end of the second manipulator link 230, the distal end of the second manipulator link 230 is connected with the proximal end of the third manipulator link 234, and the third manipulator link The distal end of 234 is connected with the proximal end of the fourth manipulator link 238, which connection is made by rotary joints 228, 232 and 236, which are actively controlled, respectively. As described above, the links 230, 234 and 238 function as connected operating mechanisms, whereby the fourth manipulator link 238 automatically cooperates with the second manipulator link 230 when the link 230 is activated. Move. In the depicted embodiment, a mechanism similar to that disclosed in U.S. Pat.No. 7,594,912 (filed Sep. 30, 2004) is modified for use (also, for example, in U.S. Patent Application No. 11 / 611,849 (12, 2006). Filed May 15; see US Patent Application Publication US 2007/0089557 A1). Thus, the first manipulator link 226 may be considered to be an active proximal link, and the second to fourth links 230, 234 and 238 may be considered to be active distal links in aggregate. In one embodiment, the first link 226 may comprise a compression spring counterweight mechanism, which serves to balance the forces due to the movement of the distal link about the joint 228 as described further below. do.

조작기 조립체 플랫폼(240)은 제4 링크(238)의 원단부에 연결된다. 플랫폼(240)은 베이스 플레이트(240a)를 포함하며, 그 위에 기구 조작기 조립체(242)가 장착된다. 도 2a에 도시된 대로, 플랫폼(240)은 "할로" 링을 포함하며, 그 안에서 디스크 모양 베이스 플레이스(240a)가 회전한다. 다른 구체예에서는 할로와 디스크 이외의 다른 구성들이 사용될 수 있다. 베이스 플레이트(240)의 회전 중심은 조작기 플랫폼(240)의 중심과 원격 동작 중심(246)을 통해서 연장된 점선으로 나타낸 대로 조작기 조립체 롤 축(241)과 일치한다. 한 구체예에서, 기구(260)는 기구 조작기의 원위면 위에서 조작기 조립체(242)의 기구 조작기에 장착된다.Manipulator assembly platform 240 is connected to the distal end of fourth link 238. Platform 240 includes a base plate 240a on which instrument manipulator assembly 242 is mounted. As shown in FIG. 2A, platform 240 includes a “halo” ring, in which disk-shaped base place 240a rotates. In other embodiments other configurations than halo and disk may be used. The center of rotation of the base plate 240 coincides with the manipulator assembly roll axis 241 as indicated by the dashed line extending through the center of the manipulator platform 240 and the remote operating center 246. In one embodiment, instrument 260 is mounted to the instrument manipulator of manipulator assembly 242 over the distal face of the instrument manipulator.

도 2a 및 2b에 도시된 것처럼, 기구 조작기 조립체(242)는 4개의 기구 조작기(242a)를 포함한다. 각 기구 조작기는 그것의 관련된 기구를 지지하고 가동시킨다. 묘사된 구체예에서, 1개의 기구 조작기(242a)는 카메라 기구를 가동하도록 구성되고, 3개의 기구 조작기(242a)는 수술 부위에서 수술 작업 및/또는 진단 작업을 수행하는 여러 다른 상호 교환가능한 수술 기구를 가동하도록 구성된다. 기구 조작기는 더 많이 또는 더 적게 사용될 수 있다. 일부 작동 구성에서, 하나 이상의 조작기는 수술 과정의 도중에 잠깐 또는 내내 관련된 수술 기구를 갖지 않을 수 있다. 기구 조작기가 아래 더 상세히 개시된다.As shown in FIGS. 2A and 2B, instrument manipulator assembly 242 includes four instrument manipulators 242a. Each instrument manipulator supports and starts its associated instrument. In the depicted embodiment, one instrument manipulator 242a is configured to operate a camera instrument and three instrument manipulators 242a are various other interchangeable surgical instruments that perform surgical and / or diagnostic tasks at the surgical site. It is configured to operate. Instrument manipulators can be used more or less. In some operating configurations, one or more manipulators may have no associated surgical instruments briefly or throughout the course of the surgical procedure. Instrument manipulators are disclosed in more detail below.

상기 언급된 대로, 수술 기구(260)는 각 기구 조작기(242a)에 장착되어 조작기에 의해서 가동된다. 본 개시의 한 양태에 따라서, 각 기구는 단지 기구의 근단부에서만 그것의 관련된 조작기에 장착된다. 도 2a에서 이 근단부 장착 특징부가 기구 조작기 조립체(242)를 유지하고 환자로부터 가능한 멀리 떨어져 플랫폼(240)을 지지한다는 것을 볼 수 있으며, 이것은 주어진 기구 기하구조에서 조작기 암의 능동적으로 제어되는 부분이 환자와 부딪치지 않으면서 환자에 대해 최대 동작 범위 안에서 자유롭게 움직일 수 있도록 한다. 기구(260)는 이들의 샤프트가 조작기 조립체 롤 축(241) 주위에 클러스터를 이루도록 장착된다. 각 샤프트는 기구의 힘 전달 메커니즘으로부터 원위 쪽으로 연장되고, 모든 샤프트는 입구에 위치된 단일 캐뉼라를 통해 환자 몸안으로 연장된다. 캐뉼라는 제4 조작기 링크(238)에 연결된 캐뉼라 장착부(250)에 의해 베이스 플레이트(240a)에 대해 고정된 위치에 탈착 가능하게 홀딩된다. 단일 가이드 튜브가 캐뉼라에 삽입되어 그 안에서 자유롭게 회전하며, 각 기구 샤프트가 가이드 튜브에서 관련된 채널을 통해 연장된다. 캐뉼라와 가이드 튜브의 종축은 일반적으로 롤 축(241)과 일치한다. 따라서, 가이드 튜브는 베이스 플레이트(240a)가 회전함에 따라 캐뉼라 안에서 회전한다. 일부 구체예에서, 캐뉼라 장착부는 제1 조작기 링크(226)에 움직일 수 있게 연결될 수 있다.As mentioned above, surgical instrument 260 is mounted to each instrument manipulator 242a and is operated by the manipulator. According to one aspect of the present disclosure, each instrument is mounted only at its proximal manipulator at its proximal end. It can be seen in FIG. 2A that this proximal end mounting feature holds the instrument manipulator assembly 242 and supports the platform 240 as far as possible from the patient, which indicates that the actively controlled portion of the manipulator arm in the given instrument geometry is affected by the patient. Allows the patient to move freely within the maximum range of motion without hitting the. The instrument 260 is mounted such that their shafts cluster around the manipulator assembly roll axis 241. Each shaft extends distal from the force transmission mechanism of the instrument and all shafts extend into the patient's body through a single cannula located at the inlet. The cannula is detachably held in a fixed position relative to the base plate 240a by a cannula mount 250 connected to the fourth manipulator link 238. A single guide tube is inserted into the cannula and freely rotates therein, with each instrument shaft extending through the associated channel in the guide tube. The longitudinal axis of the cannula and guide tube generally coincides with the roll axis 241. Thus, the guide tube rotates in the cannula as the base plate 240a rotates. In some embodiments, the cannula mount can be movably connected to the first manipulator link 226.

각 기구 조작기(242a)는 베이스 플레이트(240a)에 작동 가능하게 연결된 능동적 텔레스코핑 삽입 메커니즘(224)(도 2b)에 가동 가능하게 연결되며, 이것을 사용하여 수술 기구(들)을 삽입하거나 빼낼 수 있다. 도 2a는 텔레스코핑 삽입 메커니즘(224)의 원단부를 향해 일정 거리 연장된 기구 조작기(242a)를 예시하고(또한, 도 3 및 4a를 참조한다), 도 2b는 텔레스코핑 삽입 메커니즘(244)의 근단부 쪽으로 리트랙트된 기구 조작기(242)를 예시한다(또한, 도 4b를 참조한다). 능동적 조인트(224, 228, 232, 236)와 조작기 플랫폼(240)이 함께 및/또는 독립적으로 움직이며, 이로써 수동적 셋업 암과 조인트에 의해서 원격 동작 중심이 확립된 후에 수술 기구(또는 조립체)가 진입구에서, 예를 들어 환자의 배꼽에서 원격 동작 중심(246) 주위에서 움직인다.Each instrument manipulator 242a is operably connected to an active telescoping insertion mechanism 224 (FIG. 2B) operably connected to the base plate 240a, which may be used to insert or withdraw surgical instrument (s). . 2A illustrates instrument manipulator 242a extending a distance toward the distal end of telescoping insertion mechanism 224 (see also FIGS. 3 and 4A), and FIG. 2B is a proximal end of telescoping insertion mechanism 244. The instrument manipulator 242 retracted toward the side is illustrated (see also FIG. 4B). The active joints 224, 228, 232, 236 and the manipulator platform 240 move together and / or independently, thereby allowing the surgical instrument (or assembly) to enter the entrance after the remote setup center has been established by the passive setup arm and joint. In the patient's navel, for example, moves around the center of distant motion 246.

도 2a에 도시된 대로, 캐뉼라 장착부(250)가 제4 조작기 링크의 근단부 근처에서 제4 링크와 연결된다. 다른 양태에서, 캐뉼라 장착부(250)는 근위 링크의 다른 구간과 연결될 수 있다. 상기 설명된 대로, 캐뉼라 장착부(250)는 힌지를 이루며, 이로써 그것은 제4 링크(238)에 인접한 삽입된 위치와 캐뉼라를 지지할 수 있는 연장된 위치(도시된 것처럼)를 왔다갔다 할 수 있다. 한 양태에 따라서, 작동하는 동안 캐뉼라 장착부(250)는 제4 링크(238)에 대해 고정된 위치에 홀딩된다.As shown in FIG. 2A, cannula mount 250 is connected with the fourth link near the proximal end of the fourth manipulator link. In another aspect, the cannula mount 250 can be connected with other sections of the proximal link. As described above, the cannula mount 250 forms a hinge whereby it can move back and forth between the inserted position adjacent the fourth link 238 and an extended position (as shown) capable of supporting the cannula. According to one aspect, the cannula mount 250 is held in a fixed position relative to the fourth link 238 during operation.

제1 조작기 링크(226)는 묘사된 구체예에서는 일반적으로 한 예로서 뒤집힌 "L" 모양임을 알 수 있다. "L" 모양 링크의 근위쪽 다리는 요우 조인트(224)에서 링크(226)에 연결되고, 링크의 원위쪽 다리는 회전 조인트(228)에서 제2 조작기 링크(238)에 연결된다. 이 예시적인 구체예에서, 2개 다리는 일반적으로 수직이고, 제1 조작기 링크의 근위쪽 다리가 조작기 조립체 요우 축(223)에 일반적으로 수직인 평면 주위에서 회전한다(예를 들어, 요우 축이 수직(z)일 경우 수평(x, y)면). 따라서, 원위쪽 다리는 조작기 조립체 요우 축(223)에 일반적으로 평행하게 연장된다(예를 들어, 요우 축이 수평일 경우 수직(z)으로). 이 모양은 조작기 링크(230, 234 및 238)가 요우 축(224) 아래에서 움직이는 것을 허용하며, 이로써 링크(230, 234 및 238)는 원격 동작 중심(246)과 교차하는 조작기 조립체 피치 축(239)을 제공한다. 제1 링크(226)의 다른 구성들도 가능하다. 예를 들어, 제1 링크(226)의 근위쪽 다리와 원위쪽 다리는 서로 수직이 아닐 수 있으며, 근위쪽 다리가 수평면과 상이한 평면에서 회전할 수 있거나, 또는 링크(226)가 원호 모양과 같은 일반적인 "L" 모양이 아닌 다른 모양을 가질 수 있다.It can be seen that the first manipulator link 226 is inverted " L " shape generally as an example in the depicted embodiment. The proximal leg of the “L” shaped link is connected to the link 226 at the yaw joint 224, and the distal leg of the link is connected to the second manipulator link 238 at the rotary joint 228. In this exemplary embodiment, the two legs are generally vertical and the proximal leg of the first manipulator link rotates around a plane that is generally perpendicular to the manipulator assembly yaw axis 223 (eg, the yaw axis is Horizontal (x, y) plane for vertical (z). Thus, the distal leg extends generally parallel to manipulator assembly yaw axis 223 (eg, vertically (z) if the yaw axis is horizontal). This shape allows manipulator links 230, 234, and 238 to move below yaw axis 224, whereby links 230, 234, and 238 intersect manipulator assembly pitch axes 239 to intersect remote operation center 246. ). Other configurations of the first link 226 are also possible. For example, the proximal and distal legs of the first link 226 may not be perpendicular to each other, the proximal leg may rotate in a plane different from the horizontal plane, or the link 226 may be shaped like an arc. It may have a shape other than the general "L" shape.

점선(249)(도 2c)으로 도시된 대로 수직 요우 축(223)이 링크(226)가 실질적으로 360도 회전하도록 허용한다는 것을 알 수 있다. 한 예에서, 조작기 조립체의 요우 회전은 연속적일 수 있으며, 다른 예에서 조작기 조립체의 요우 회전은 대략 +180도이다. 또 다른 예에서, 조작기 조립체 요우 회전은 대략 660도일 수 있다. 피치 축(239)은 이러한 요우 축 회전 동안 일정하게 유지될 수도 있고 그렇지 않을 수도 있다. 기구들이 일반적으로 조작기 조립체의 롤 축(241)과 정렬된 방향으로 환자에 삽입되므로, 암을 능동적으로 제어하여 조작기 조립체 요우 축 주위에서 어떤 원하는 방향으로 기구 삽입 방향을 배치 및 재배치할 수 있다(예를 들어, 환자의 머리 쪽을 향한 기구 삽입 방향을 도시한 도 25a-25c와 환자의 발 쪽을 향한 기구 삽입 방향을 도시한 도 26a-26c를 참조한다). 이런 능력은 일부 수술에서는 상당히 유익할 수 있다. 기구가 배꼽에 위치된 단일 입구를 통해서 삽입되는 특정한 복부 수술에서, 예를 들어 기구들은 환자의 체벽에 새로운 입구를 열 필요없이 복부의 4개 사분면 모두에 접근할 수 있도록 위치될 수 있다. 다중 사분면 접근은, 예를 들어 복부를 통해 림프절에 접근하는 경우 필요할 수 있다. 반면에, 다중 입구 원격로봇 수술 시스템의 사용은 다른 복부 사분면에 더 충분히 접근하기 위해서 환자의 체벽에 추가의 입구를 만드는 것이 필요할 수 있다.It can be seen that the vertical yaw axis 223 allows the link 226 to rotate substantially 360 degrees, as shown by the dashed line 249 (FIG. 2C). In one example, the yaw rotation of the manipulator assembly can be continuous, and in another example the yaw rotation of the manipulator assembly is approximately +180 degrees. In yet another example, the manipulator assembly yaw rotation can be approximately 660 degrees. Pitch axis 239 may or may not remain constant during this yaw axis rotation. Since the instruments are generally inserted into the patient in a direction aligned with the roll axis 241 of the manipulator assembly, the arms can be actively controlled to position and reposition the instrument insertion direction in any desired direction around the manipulator assembly yaw axis (eg See, for example, FIGS. 25A-25C showing the direction of instrument insertion towards the patient's head and FIGS. 26A-26C showing the direction of instrument insertion towards the patient's foot). This ability can be quite beneficial in some surgeries. In certain abdominal surgeries where the instrument is inserted through a single inlet positioned in the navel, for example, the instruments may be positioned to access all four quadrants of the abdomen without having to open a new inlet on the patient's body wall. Multiple quadrant access may be required, for example, when accessing lymph nodes through the abdomen. On the other hand, the use of a multi-entry telerobot surgical system may require the creation of additional inlets in the patient's body wall to gain more access to other abdominal quadrants.

추가로, 조작기는 약간 위로 피치된 구성으로 수직으로 아래를 향하도록 기구에 명령할 수 있다(예를 들어, 위로 피치된 기구 삽입 방향을 도시한 도 27a-27c를 참조한다). 이와 같이, 단일 진입구를 통한 기구의 진입 각도(원격 중심을 중심으로 요우와 피치 모두)가 쉽게 조작될 수 있고, 또한 환자 안전성 및 환자측 요원이 잘 조종할 수 있도록 하기 위해 진입구 주변의 공간을 넓히면서 변경될 수 있다.In addition, the manipulator may instruct the instrument to face down vertically in a slightly upward pitched configuration (see, for example, FIGS. 27A-27C showing the instrument insertion direction pitched upward). As such, the angle of entry of the instrument (both yaw and pitch about the remote center) through the single entry port can be easily manipulated, and also changed while increasing the space around the entry port to allow for better patient safety and better handling of the patient side. Can be.

또한, 링크(230, 234 및 238)는 조인트(228, 232 및 236)와 함께 사용되며, 이로써 단일 진입구 주변에 공간을 만들면서 단일 진입구를 통과하는 기구의 진입 피치 각도를 쉽게 조작할 수 있다. 예를 들어, 링크(230, 234 및 238)는 환자로부터 "멀리 원호를 그리는" 형태 요소를 갖도록 위치될 수 있다. 이러한 떨어진 원호는 요우 축(223)을 중심으로 조작기 암의 회전을 허용하며, 조작기 암과 환자의 충돌을 일으키기 않는다. 또한, 이러한 떨어진 원호는 환자측 요원이 기구 교환시 조작기에 쉽게 접근할 수 있도록 하며, 수동 기구(예를 들어, 수동 복강경 기구 또는 리트랙션 장치)의 삽입 및 작동을 위한 진입구 접근도 용이하게 한다. 또 다른 예에서, 제4 링크(238)는 원격 동작 중심과 그에 따라 환자로부터 멀리 원호를 그리는 형태 요소를 가지며, 이로써 환자 안전성이 높아진다. 다른 용어로서, 기구 조작기(242a)의 클러스터의 작동 엔벨로프는 대략 원뿔형이며, 기구 조작기(242a)의 원격 동작 중심(246)에 원뿔의 팁이 위치되고, 근단부에 원뿔의 원형 단부가 위치된다. 이러한 작동 엔벨로프는 환자와 수술 로봇 시스템 사이의 방해를 줄이고, 시스템의 동작 범위를 크게 하여 수술 부위로의 접근성을 개선하며, 수술 스텝들의 환자 접근성을 개선한다.In addition, the links 230, 234 and 238 are used with the joints 228, 232 and 236, thereby making it easy to manipulate the entry pitch angle of the mechanism passing through the single inlet while creating a space around the single inlet. For example, links 230, 234, and 238 can be positioned to have a shape element that “draws an arc” from the patient. This dropped arc allows rotation of the manipulator arm about the yaw axis 223 and does not cause the manipulator arm to collide with the patient. In addition, these dropped arcs allow patient personnel to easily access the manipulators when changing instruments, and also facilitate entry access for insertion and operation of manual instruments (eg, manual laparoscopic instruments or retraction devices). In another example, the fourth link 238 has a telecentric element and thus a shape element that arcs away from the patient, thereby increasing patient safety. In other terms, the operational envelope of the cluster of instrument manipulator 242a is approximately conical, with the tip of the cone positioned at the remote center of motion 246 of the instrument manipulator 242a, and the circular end of the cone positioned at the proximal end. This actuating envelope reduces the interference between the patient and the surgical robotic system, increases the operating range of the system to improve access to the surgical site, and improves patient access to the surgical steps.

따라서, 조작기 암 조립체(201)의 구성 및 기하구조는 그것의 큰 동작 범위와 함께 단일 입구를 통한 다중 사분면 수술을 허용한다. 단일 절개부를 통해서 조작기는 기구를 한 방향으로 보내고 쉽게 방향을 변경할 수 있으며, 예를 들어 환자의 머리나 골반 쪽에서 작업한 다음(예를 들어, 도 25a-25c를 참조한다), 조작기 암을 일정한 수직 요우 축을 중심으로 움직여서 방향을 환자의 골반이나 머리 쪽으로 변경할 수 있다(예를 들어, 도 26a-26c를 참조한다).Thus, the construction and geometry of the manipulator arm assembly 201 allows multiple quadrant surgery through a single inlet with its large range of operation. A single incision allows the manipulator to send the instrument in one direction and easily change its orientation, for example by working on the patient's head or pelvis (see for example FIGS. 25A-25C) and then manipulating the manipulator arm in a constant vertical position. By moving around the yaw axis, the direction can be changed toward the patient's pelvis or head (see, eg, FIGS. 26A-26C).

이 예시적인 조작기 암 조립체는, 예를 들어 원격 동작 중심을 참조하여 움직이도록 작동되는 기구 조립체에 사용된다. 조작기 암에서 특정한 셋업 및 능동적 조인트 및 링크는 생략될 수 있거나, 또는 자유도를 증가시키기 위해 조인트와 링크가 추가될 수 있다. 조작기 암은 수술에 필요한 자세 범위를 달성하기 위해서 링크, 수동적 조인트 및 능동적 조인트(여분의 DOF가 제공될 수 있다)의 다양한 조합을 포함할 수 있다는 것이 이해되어야 한다. 또한, 다양한 수술 기구는 단독으로 또는 가이드 튜브, 다수의 기구, 및/또는 다수의 가이드 튜브를 포함하는 기구 조립체로, 및 다양한 구성(예를 들어, 가동장치 조립체 또는 전달 메커니즘의 근위면 또는 원위면에)을 통해 기구 조작기에 연결된 기구들로서 본 개시에 적용될 수 있다.This exemplary manipulator arm assembly is used, for example, in an instrument assembly that is operated to move with reference to a remote operation center. Certain setups and active joints and links in the manipulator arm may be omitted, or joints and links may be added to increase the degree of freedom. It is to be understood that the manipulator arm may include various combinations of links, passive joints and active joints (extra DOF may be provided) to achieve the posture range required for surgery. In addition, various surgical instruments may be used alone or in an instrument assembly comprising a guide tube, multiple instruments, and / or multiple guide tubes, and various configurations (eg, proximal or distal surfaces of a mover assembly or delivery mechanism). And may be applied to the present disclosure as instruments connected to an instrument manipulator.

이제 도 3, 4a-4b, 5a-1 내지 5b-2, 5c-1 내지 5c-4 및 8에 관해서, 기구 조작기의 양태들과 구체예들이 더 상세히 설명되지만, 이들 양태와 구체예들에 본 개시가 제한되는 것은 아니다. 도 3은 조작기 조립체 플랫폼의 회전 가능한 베이스 플레이트(340a), 베이스 플레이트(340a)에 장착되어 기구 조작기 조립체를 형성하는 4개의 기구 조작기(342)의 클러스터, 및 관련 기구 조작기(342)의 원위면에 각각 장착된 4개의 기구(360)(근위 부분이 예시된다)의 구체예의 투시도이다. 베이스 플레이트(340a)는 상기 설명된 대로 조작기 조립체 롤 축(341)을 중심으로 회전할 수 있다. 한 구체예에서, 롤 축(341)은 캐뉼라와 진입 가이드 조립체의 길이방향 중심을 통해서 이어지며, 진입 가이드를 통해서 기구(360)가 환자의 몸으로 들어간다. 롤 축(341)은 또한 각 기구 조작기(342)의 원위면의 실질적으로 단일 평면에 실질적으로 수직이며, 그 결과 기구 조작기의 원위면에 장착된 기구의 근위면의 실질적으로 단일 평면에도 실질적으로 수직이다.3, 4a-4b, 5a-1 to 5b-2, 5c-1 to 5c-4, and 8, aspects and embodiments of the instrument manipulator are now described in more detail, but are seen in these aspects and embodiments. The disclosure is not limited. 3 shows a rotatable base plate 340a of the manipulator assembly platform, a cluster of four instrument manipulators 342 mounted to the base plate 340a to form an instrument manipulator assembly, and a distal face of the associated instrument manipulator 342. A perspective view of an embodiment of four instruments 360 (proximal portions are illustrated) each mounted. Base plate 340a may rotate about manipulator assembly roll axis 341 as described above. In one embodiment, the roll axis 341 runs through the longitudinal center of the cannula and entry guide assembly through which the instrument 360 enters the patient's body. The roll axis 341 is also substantially perpendicular to a substantially single plane of the distal face of each instrument manipulator 342, and consequently substantially perpendicular to a substantially single plane of the proximal face of the instrument mounted to the distal face of the instrument manipulator. to be.

각 기구 조작기(342)는 베이스 플레이트(340a)에 연결된 삽입 메커니즘을 포함한다. 도 8은 기구 삽입 메커니즘의 구체예를 더 상세히 예시하는 컷어웨이 투시도이다. 도 8에 도시된 대로, 기구 삽입 메커니즘(844)은 텔레스코핑 방식으로 서로에 관하여 직선 슬라이딩하는 3개의 링크를 포함한다. 삽입 메커니즘(844)은 캐리지(802), 캐리지 링크(804) 및 베이스 링크(808)를 포함한다. 본원에 참고로 포함되는 미국 특허출원 제11/613,800호(2006년 12월 20일 제출됨; 미국 특허출원 공개 US 2007/0137371 A1)에 설명된 대로, 캐리지 링크(804)는 베이스 링크(808)를 따라 슬라이드하고, 캐리지(802)는 캐리지 링크(804)를 따라 슬라이드한다. 캐리지(802)와 링크(804, 808)는 커플링 루프(806)에 의해서 상호연결된다(이것은 한 예에서 하나 이상의 가요성 금속 벨트를 포함한다; 또는 달리 하나 이상의 케이블이 사용될 수 있다). 베이스 링크(808)의 리드 스크류(808a)가 커플링 루프(806) 상의 고정된 위치에 연결된 슬라이더(808b)를 구동시킨다. 캐리지(802)도 역시 고정된 위치에서 커플링 루프(806)에 연결되고, 이로써 슬라이더(808b)가 베이스 링크(808)를 기준으로 특정한 거리 x를 슬라이드함에 따라 캐리지(802)는 베이스 링크(808)를 기준으로 2x 만큼 슬라이드한다. 다양한 다른 직선 동작 메커니즘(예를 들어, 리드 스크류 및 캐리지)들도 삽입 메커니즘의 다른 실시형태에서 사용될 수 있다.Each instrument manipulator 342 includes an insertion mechanism connected to the base plate 340a. 8 is a cutaway perspective view illustrating an embodiment of the instrument insertion mechanism in more detail. As shown in FIG. 8, the instrument insertion mechanism 844 includes three links that linearly slide relative to one another in a telescoping manner. Insertion mechanism 844 includes carriage 802, carriage link 804, and base link 808. As described in US patent application Ser. No. 11 / 613,800, filed Dec. 20, 2006; U.S. patent application publication US 2007/0137371 A1, the carriage link 804 is a base link 808; Slide along, and carriage 802 slides along carriage link 804. The carriage 802 and the links 804, 808 are interconnected by a coupling loop 806 (which in one example includes one or more flexible metal belts; or alternatively one or more cables may be used). The lead screw 808a of the base link 808 drives the slider 808b connected to a fixed position on the coupling loop 806. The carriage 802 is also connected to the coupling loop 806 in a fixed position, whereby the carriage 802 moves the base link 808 as the slider 808b slides a specific distance x relative to the base link 808. Slide 2x based on). Various other linear actuation mechanisms (eg, lead screws and carriages) may also be used in other embodiments of the insertion mechanism.

도 3 및 8에 도시된 것처럼, 베이스 링크(808)의 근단부는 회전 가능한 베이스 플레이트(340a)에 연결되고, 캐리지(802)는 기구 조작기(342)의 외부 쉘 또는 내부 프레임에 연결된다(예를 들어, 도 5c-1 내지 5c-3의 내부 프레임 구경(542i') 안에). 서보모터(미도시)가 리드 스크류(808a)를 구동시키고, 그 결과 기구 조작기(342)가 일반적으로 롤 축(341)과 평행한 방향으로 베이스 플레이트(340a)를 기준으로 근위와 원위 쪽으로 움직인다. 수술 기구(360)가 조작기(342)에 연결되므로, 삽입 메커니즘(344)은 캐뉼라를 통해 기구를 수술 부위를 향해서 삽입하고 수술 부위로부터 멀리 빼내는 기능을 한다(기구 삽입 DOF). 커플링 루프에 인접하여 이어진 평평한 전기전도성 신축성 케이블(미도시)이 기구 조작기에 파워, 신호 및 접지를 제공할 수 있다.3 and 8, the proximal end of the base link 808 is connected to the rotatable base plate 340a and the carriage 802 is connected to the outer shell or inner frame of the instrument manipulator 342 (eg For example, in the inner frame aperture 542i 'of FIGS. 5C-1 through 5C-3). A servomotor (not shown) drives the lead screw 808a so that the instrument manipulator 342 is moved proximally and distally relative to the base plate 340a in a direction generally parallel to the roll axis 341. Since surgical instrument 360 is coupled to manipulator 342, insertion mechanism 344 functions to insert the instrument towards the surgical site through the cannula and to pull it away from the surgical site (instrument insertion DOF). A flat, electrically conductive flexible cable (not shown) running adjacent to the coupling loop can provide power, signal, and ground to the instrument manipulator.

삽입 메커니즘(344)의 텔레스코핑 특징부의 이점은 그것이 기구 조작기가 그것의 완전히 근위 위치에서 그것의 완전히 원위 위치로 움직일 때 더 큰 동작 범위를 제공한다는 점임을 알 수 있으며, 조작기가 그것의 완전히 근위 위치에 있을 때는 단지 하나의 정지된 삽입 단계 피스만이 사용된 경우보다 삽입 메커니즘이 더 적게 돌출된다(예를 들어, 도 4a(완전히 원위 위치)와 4b(완전히 근위 위치)를 참조한다). 단축된 돌출부는 기구 조작기가 그것의 근위 위치에 있을 때 삽입 메커니즘이 수술 동안 환자를 방해하는 것과 예를 들어 기구 교환 동안 수술실 요원을 방해하는 것을 방지한다.The advantage of the telescoping feature of the insertion mechanism 344 can be seen that it provides a greater range of motion when the instrument manipulator moves from its fully proximal position to its fully distal position, with the manipulator in its fully proximal position When in the position, the insertion mechanism protrudes less than if only one stationary insertion step piece was used (see, for example, FIGS. 4A (completely distal position) and 4B (completely proximal position)). The shortened protrusion prevents the insertion mechanism from disturbing the patient during surgery and, for example, operating room personnel during instrument change when the instrument manipulator is in its proximal position.

도 3에 더 예시된 것처럼, 텔레스코핑 삽입 메커니즘(344)은 한 구체예에서 회전 가능한 베이스 플레이트(340a)에 대칭 장착되고, 따라서 기구 조작기(342)와 장착된 기구(360)가 롤 축(341)을 중심으로 대칭 클러스터를 이루게 된다. 한 구체예에서, 기구 조작기(342)와 그것의 관련 기구(360)는 일반적으로 파이-웨지 레이아웃으로 롤 축 주위에 배치되며, 기구 샤프트는 조작기 조립체 롤 축(341) 근처에 위치된다. 따라서, 베이스 플레이트가 롤 축(341)을 중심으로 회전함에 따라 기구 조작기(342)와 장착된 기구(360)의 클러스터도 역시 롤 축을 중심으로 회전한다.As further illustrated in FIG. 3, the telescoping insertion mechanism 344 is symmetrically mounted to the rotatable base plate 340a in one embodiment, such that the instrument manipulator 342 and the mounted instrument 360 are roll axis 341. ) To form a symmetric cluster. In one embodiment, the instrument manipulator 342 and its associated instrument 360 are generally disposed around the roll axis in a pie-wedge layout and the instrument shaft is located near the manipulator assembly roll axis 341. Thus, as the base plate rotates about the roll axis 341, the cluster of instrument manipulator 342 and the mounted instrument 360 also rotates about the roll axis.

도 4a 및 4b는 각각 회전 가능한 베이스 플레이트(440a)에 장착된 삽입 메커니즘(444)을 따라 연장된 위치와 리트랙트된 위치에 있는 기구 조작기(442)를 예시하는 투시도이다. 상기 주지된 대로, 기구 조작기(442)는 삽입 메커니즘(444)에 인접한 이중 화살표로 도시된 대로 삽입 메커니즘의 베이스 플레이트(440a)와 자유 원단부(444a) 사이의 삽입 메커니즘(444)의 종축을 따라 연장되고 리트랙트될 수 있다. 이 예시적인 구체예에서, 기구는 기구 조작기(442)의 원위면(442a)에 대해 장착된다.4A and 4B are perspective views illustrating instrument manipulator 442 in extended and retracted positions along insertion mechanism 444 mounted to rotatable base plate 440a, respectively. As noted above, the instrument manipulator 442 is along the longitudinal axis of the insertion mechanism 444 between the free mechanism 444a and the base plate 440a of the insertion mechanism as shown by the double arrows adjacent to the insertion mechanism 444. Can be extended and retracted. In this exemplary embodiment, the instrument is mounted relative to the distal surface 442a of the instrument manipulator 442.

원위면(442a)은 가동력을 장착된 기구로 전달하는 다양한 가동 출력을 포함한다. 도 4a 및 4b에 도시된 대로, 이러한 가동 출력은 그립 출력 레버(442b)(기구 단부 작동기의 그립 동작 제어), 조글 출력 짐볼(442c)(원단부 평행 연결("조글" 또는 "엘보" 메커니즘)의 사이드 투 사이드 동작 및 업 앤 다운 동작 제어), 리스트 출력 짐볼(442d)(기구 단부 작동기의 요우 동작 및 피치 동작 제어), 및 롤 출력 디스크(442e)(기구의 롤 동작 제어)를 포함할 수 있다. 이러한 출력들과 이러한 출력을 수용하는 기구 힘 전달 메커니즘의 관련 부품들에 대한 상세한 내용은 본원에 참고로 포함되는 미국 특허출원 제12/060,104호(2008년 3월 31일 제출됨; 미국 특허출원 공개 US 2009/0248040 A1)에서 찾을 수 있다. 이러한 입력을 수용할 수 있는 예시적인 수술 기구의 근단부의 예들은 상기 참조된 미국 특허출원 제11/762,165호에서 찾을 수 있다. 간단히 말해서, 사이드 투 사이드 및 업 앤 다운 DOF는 원단부 평행 연결에 의해서 제공되고, 단부 작동기 요우 및 단부 작동기 피치 DOF는 원위 가요성 리스트 메커니즘에 의해서 제공되고, 기구 롤 DOF는 단부 작동기를 본질적으로 일정한 위치 및 피치/요우 방향에 유지하면서 기구 샤프트를 롤링함으로써 제공되고, 기구 그립 DOF는 2개의 움직이는 대향 단부 작동기 턱에 의해서 제공된다. 이러한 DOF는 더 많은 또는 더 적은 DOF의 예시이다(예를 들어, 일부 실시형태에서 카메라 기구는 기구 롤과 그립 DOF가 생략된다).Distal face 442a includes various movable outputs that transmit movable force to the mounted instrument. As shown in Figs. 4A and 4B, this movable output includes a grip output lever 442b (control the grip movement of the instrument end actuator), a joggle output gym ball 442c (parallel parallel connection ("jog" or "elbow" mechanism)). Side to side motion and up and down motion control), list output gym ball 442d (yaw motion and pitch motion control of the instrument end actuator), and roll output disk 442e (roll motion control of the instrument) have. Details of these outputs and the associated components of the mechanism force transmission mechanism that accommodates such outputs are described in US Patent Application 12 / 060,104, filed March 31, 2008; US Patent Application Publication US 2009/0248040 A1). Examples of near-end portions of exemplary surgical instruments that can accept such inputs can be found in US Patent Application Ser. No. 11 / 762,165, referenced above. In short, the side to side and up and down DOF are provided by distal parallel connection, the end actuator yaw and the end actuator pitch DOF are provided by the distal flexible wrist mechanism, and the instrument roll DOF is essentially constant By rolling the instrument shaft while maintaining in position and pitch / yaw direction, the instrument grip DOF is provided by two moving opposing end actuator jaws. This DOF is an example of more or less DOF (eg, in some embodiments the camera mechanism omits the instrument roll and grip DOF).

기구 조작기의 원위면에 대한 기구의 장착을 용이하게 하기 위해서 지지 후크(442f)와 같은 지지물이 기구 조작기 상에 위치된다. 묘사된 구체예에서, 지지 후크는 기구 조작기의 메인 하우징에 관련하여 정지되어 있으며, 기구 조작기의 원위 표면이 근위와 원위 쪽으로 움직여서 기구 조작기와 기구 사이에 확고한 상호연결을 제공한다. 래치 메커니즘(442a)을 사용하여 기구 조작기의 원위면을 기구의 근위면 쪽으로 움직인다. 다른 구체예에서, 래치 메커니즘은 기구의 근위면을 조작기의 원위면 쪽으로 움직이기 위해 사용될 수 있으며, 이로써 조작기 출력과 기구 입력이 맞물리거나 맞물림이 해제될 수 있다.A support, such as support hook 442f, is positioned on the instrument manipulator to facilitate mounting of the instrument on the distal face of the instrument manipulator. In the depicted embodiment, the support hook is stationary relative to the main housing of the instrument manipulator and the distal surface of the instrument manipulator moves proximally and distally to provide a firm interconnect between the instrument manipulator and the instrument. Latch mechanism 442a is used to move the distal surface of the instrument manipulator toward the proximal surface of the instrument. In another embodiment, the latch mechanism can be used to move the proximal surface of the instrument toward the distal surface of the manipulator, which can engage or disengage the manipulator output and the instrument input.

도 5a-1 및 5b-1은 기구 조작기(542)의 예시적인 구조를 예시하는 투시도이다. 도 5a-2 및 5b-2는 각각 절단선 I-I 및 II-II를 따른 도 5a-1 및 5b-1의 단면도이다. 도시된 대로, 조작기는 외부 셀(542h)에, 예를 들어 슬라이딩 조인트, 레일 등에 의해서 움직일 수 있게 연결된 내부 프레임(542i)을 포함한다. 내부 프레임(542i)은 래치 메커니즘(542g)의 작용 결과로서 외부 셀(542h)을 기준으로 원위 및 근위 쪽으로 움직인다.5A-1 and 5B-1 are perspective views illustrating exemplary structures of instrument manipulator 542. 5A-2 and 5B-2 are cross-sectional views of FIGS. 5A-1 and 5B-1 along cut lines I-I and II-II, respectively. As shown, the manipulator includes an inner frame 542i movably connected to the outer cell 542h, for example by sliding joints, rails and the like. The inner frame 542i moves distally and proximally relative to the outer cell 542h as a result of the action of the latch mechanism 542g.

이제 도 5a-1 내지 5b-2에 관해서, 기구 조작기(542)에 기구(미도시)를 장착하기 위한 지지 후크(542f)와 래치 메커니즘(542g)의 작동이 예시된다. 도시된 대로, 기구 조작기(542)의 원위면(542a)은 실질적으로 단일 평면이며, 그것은 기구 힘 전달 메커니즘의 근위면에 작동 가능하게 연결된다(예를 들어, 도 9a-9b에서 기구(960)의 근위면(960')). 래치 메커니즘(542g)은 도르래 및 와이어와 같은 가동 메커니즘을 포함할 수 있으며, 이로써 기구 조직기의 내부 프레임과 외부 셀을 서로에 대해서 움직일 수 있고, 작동 동안 원위면(542a)을 기구에 대해 홀딩할 수 있다.Referring now to FIGS. 5A-1-5B-2, the operation of the support hook 542f and latch mechanism 542g for mounting an instrument (not shown) to the instrument manipulator 542 is illustrated. As shown, the distal face 542a of the instrument manipulator 542 is substantially single plane, which is operably connected to the proximal face of the instrument force transfer mechanism (eg, instrument 960 in FIGS. 9A-9B). Proximal face (960 '). The latch mechanism 542g may include movable mechanisms such as pulleys and wires, which may move the inner frame and the outer cell of the instrument organizer relative to each other and hold the distal surface 542a against the instrument during operation. Can be.

묘사된 구체예에서, 기구 지지 후크(542f)는 기구 조작기 외부 셀(542h)에 단단히 장착되며, 래치 메커니즘(542g)이 가동되었을 때 기구 조작기의 내부 프레임(542i)의 원위면(542a)이 기구 조작기의 외부 셀의 근위면(542j)으로부터 멀어지면서 지지 후크(542f)의 원단부를 향해 원위 쪽으로 움직인다. 따라서, 기구 힘 전달 메커니즘이 지지 후크(542f)에 장착된 경우, 기구 조작기의 원위면(542a)은 지지 후크(542f)에 의해 구속되는 기구 전달 메커니즘의 근위면을 향해 움직이며, 이로써 도 5a-1 및 5a-2에서 화살표 A1으로 예시된 대로 기구 조작기 출력과 기구 힘 전달 입력이 맞물리거나 작동 가능하게 인터페이스된다. 이 구체예에 의해 예시된 대로, 조작기의 가동장치 출력은 근위 기구 면에 대해 압착되어 인터페이스를 형성함으로써 기구 가동장치 신호를 기구로 전달한다. 래치(542g)가 역 방향으로 가동되었을 때는 기구 조작기의 원워면(542a)이 기구 조작기의 근위면(542j)을 향해 움직이며(즉, 정지된 지지 후크(542f)의 원단부로부터 멀리), 이로써 도 5b-1 및 5b-2에서 화살표 A2로 예시된 대로 기구 조작기 출력과 기구 입력의 맞물림이 해제된다. 묘사된 구체예의 장점은 래치 메커니즘이 활성화되었을 때 기구 조작기의 가동장치 부분이 지지 후크 상의 공간에 고정된 정지된 기구에 대해 움직인다는 점이다. 기구를 향한 또는 기로부터 멀어지는 기구 조작기 가동장치의 움직임은 래치 또는 래치 해제 과정 동안 불필요한 또는 의도치 않은 기구 동작을 최소화한다. 따라서, 기구가 기구 장착 과정 동안 환자에 대해 움직이지 않으므로 기구의 원단부가 계속 환자의 몸안에 있을 수 있기 때문에 가능한 조직 손상이 방지된다.In the depicted embodiment, the instrument support hook 542f is securely mounted to the instrument manipulator outer cell 542h and the distal surface 542a of the inner frame 542i of the instrument manipulator is instrumented when the latch mechanism 542g is actuated. Move away from the proximal surface 542j of the outer cell of the manipulator toward the distal end of the support hook 542f. Thus, when the instrument force transmission mechanism is mounted to the support hook 542f, the distal surface 542a of the instrument manipulator moves toward the proximal surface of the instrument transmission mechanism that is constrained by the support hook 542f, thereby reducing FIGS. The instrument manipulator output and the instrument force transmission input are engaged or operatively interfaced as illustrated by arrow A1 in 1 and 5a-2. As exemplified by this embodiment, the actuator output of the manipulator is pressed against the proximal instrument side to form an interface to transmit instrument actuator signals to the instrument. When the latch 542g is actuated in the reverse direction, the primary surface 542a of the instrument manipulator moves toward the proximal surface 542j of the instrument manipulator (ie, away from the distal end of the stationary support hook 542f), thereby The engagement of the instrument manipulator output with the instrument input is released as illustrated by arrow A2 in FIGS. 5B-1 and 5B-2. An advantage of the depicted embodiment is that when the latch mechanism is activated the mover portion of the instrument manipulator moves relative to a stationary instrument fixed in space on the support hook. Movement of the instrument manipulator move toward or away from the instrument minimizes unnecessary or unintentional instrument operation during the latch or unlatch process. Thus, possible tissue damage is prevented because the distal end of the instrument may still be in the patient's body since the instrument does not move relative to the patient during the instrument mounting process.

다른 구체예에서, 지지 후크(542f)는 근위면(542j)을 향해 리트랙트되어 기구의 근위면을 정지된 기구 조작기의 원위면(542a) 쪽으로 이동시켜 도 5a-1 및 5a-2에서 화살표 B1으로 도시된 대로 기구 조작기 출력과 기구 입력을 맞물리게 한다. 래치가 열리거나 역 가동될 때는 이 과정이 역전되어 지지 후크(542f)가 정지된 기구 조작기의 원위면(542a)으로부터 멀어져서 도 5b-1 및 5b-2에서 화살표 B2로 예시된 대로 기구 조작기 출력과 기구 입력의 맞물림이 해제된다.In another embodiment, the support hook 542f is retracted toward the proximal surface 542j to move the proximal surface of the instrument toward the distal surface 542a of the stationary instrument manipulator, arrow B1 in FIGS. 5A-1 and 5A-2. Engage the instrument manipulator output with the instrument input as shown. When the latch is opened or reversed, this process is reversed so that the support hook 542f is away from the distal face 542a of the stationary instrument manipulator and the instrument manipulator output as illustrated by arrow B2 in FIGS. 5B-1 and 5B-2. And the input of the instrument are released.

도 5c-1 내지 5c-4는 외부 셀(542h)이 없는 기구 조작기(542)의 상이한 도면들을 예시하며, 이로써 기구 조작기 출력을 가동시키기 위한 독립적인 구동 모듈들이 드러난다. 구동 모듈은 기구 조작기의 내부 프레임(542i)에 모듈 형태로 장착되며, 이것은 구동 모듈을 따라 기구 조작기의 외부 셀(542h)과 지지 후크(542f)에 대해 움직인다. 래치가 닫혔을 때 기구 조작기의 내부 프레임은 설정된 거리를 기구를 향해 움직이고, 스프링 로딩된 모듈 출력이 멸균 드레이프를 통해 기구 입력과 맞물리는데, 이것은 아래 더 설명된다. 래치가 열렸을 때는 이 과정이 역전된다. 스프링 로딩된 가동장치 구동 모듈 출력은 하기 더 상세히 설명된 대로 드레이프를 통한 기구 힘 전달 메커니즘 입력과의 강고한 인터페이스를 제공한다.5C-1 through 5C-4 illustrate different views of instrument manipulator 542 without external cell 542h, thereby revealing independent drive modules for actuating the instrument manipulator output. The drive module is mounted in module form in the inner frame 542i of the instrument manipulator, which moves along the drive module with respect to the outer cell 542h of the instrument manipulator and the support hook 542f. The internal frame of the instrument manipulator moves the set distance toward the instrument when the latch is closed, and the spring loaded module output engages the instrument input through a sterile drape, which is further described below. This process is reversed when the latch is opened. The spring loaded actuator drive module output provides a robust interface with the instrument force transmission mechanism input through the drape as described in more detail below.

묘사된 구체예에 예시된 대로, 기구 조작기(542)는 그립 출력 레버(542b)를 가동하기 위한 그립 가동장치 구동 모듈(542b'), 조글 출력 짐볼(542c)을 가동하기 위한 조글 가동장치 구동 모듈(542c'), 리스트 출력 짐볼(542d)을 가동하기 위한 리스트 가동장치 구동 모듈(542d') 및 롤 출력 디스크(542e)를 가동하기 위한 롤 가동장치 구동 모듈(542e')을 포함한다. 출력(542b, 542c, 542d 및 542e)은 예를 들어 도 5c-4에 도시된 대로 기구 조작기의 원위면(542a)로부터 원위 쪽으로 돌출되며, 이들은 기구 힘 전달 메커니즘 출력과 맞물려 장착된 기구의 X-Y 병진과 그립, 피치, 요우 및 롤 단부 작동기 움직임을 가동시키도록 개조된다.As illustrated in the depicted embodiment, the instrument manipulator 542 includes a grip mover drive module 542b 'for operating the grip output lever 542b and a jog mover drive module for operating the jog output gym ball 542c. 542c ', a list mover drive module 542d' for operating the list output gym ball 542d, and a roll mover drive module 542e 'for operating the roll output disk 542e. The outputs 542b, 542c, 542d and 542e project distally from the distal surface 542a of the instrument manipulator, for example as shown in Figs. And adapted to activate grip, pitch, yaw and roll end actuator movement.

도 6a-6b는 기구 조작기의 그립 가동장치 구동 모듈(642b')의 상부 및 하부 투시도이다. 그립 가동장치 구동 모듈(642b')은 직선 슬라이드(602), 스프링(606)을 포함하는 구동 스프링 메커니즘(604) 및 그립 구동 출력 레버(642b)를 포함한다. 구동 스프링 메커니즘(604)은 기구 조작기의 내부 프레임(542i)에 연결된다. 래치(542g)가 가동되어 기구와 맞물림에 따라 내부 프레임이 움직이고, 그립 구동 모듈(642b')이 출력 레버(642b)가 그것의 기구 상의 메이팅 입력과 접촉할 때까지 직선 슬라이드(602)를 따라 움직인다. 이런 접촉은 스프링(606)에 미리 하중을 부과하며, 이로써 기구가 제자리에 래칫됨에 따라 기구 입력에 대해 그립 출력(642b)에 스프링이 로딩된다. 사전 로딩된 스프링(606)이 다음에 적절한 가동장치 구동 출력/입력 접촉이 작동 동안 유지되도록 보장하며, 이로써 출력/입력 접촉에 클리어런스가 발생하지 않고, 정밀한 운동학적 제어가 어렵게 된다.6A-6B are top and bottom perspective views of grip actuator drive module 642b ′ of the instrument manipulator. The grip actuator drive module 642b ′ includes a straight slide 602, a drive spring mechanism 604 including a spring 606, and a grip drive output lever 642b. The drive spring mechanism 604 is connected to the inner frame 542i of the instrument manipulator. The latch 542g is actuated to move the inner frame as it engages the instrument and the grip drive module 642b 'moves along the linear slide 602 until the output lever 642b contacts the mating input on its instrument. . This contact preloads the spring 606, thereby loading the spring on the grip output 642b relative to the instrument input as the instrument is latched in place. The preloaded spring 606 next ensures that the appropriate actuator drive output / input contact is maintained during operation, so that no clearance occurs in the output / input contact, and precise kinematic control is difficult.

도 7a는 기구의 조글 메커니즘의 X-Y 병진을 제어하는 조글 출력 짐볼 또는 기구 단부 작동기의 피치 및 요우를 제어하기 위한 리스트 출력 짐볼을 제공하는데 사용될 수 있는 기구 조작기의 짐볼 구동 모듈(742c/d')의 하부 투시도이다. 이 구체예에서, 짐볼 구동 모듈(742c/d')은 직선 슬라이드(702), 스프링(706)을 포함하는 구동 스프링 메커니즘(704) 및 짐볼 핀(710)상의 가동장치 출력 짐볼(742c/d)을 포함한다. 구동 스프링 메커니즘(704)은 기구 조작기의 내부 프레임(542i)에 연결된다. 래치(542f)가 가동되어 기구와 맞물림에 따라 내부 프레임은 원위 쪽으로 움직이고, 가동장치 구동 모듈(742c/d')은 출력 짐볼(742c/d)이 기구 상의 메이팅 입력과 접촉할 때까지 직선 슬라이드(702)를 따라 움직인다. 이런 접촉은 스프링(706)을 미리 로딩함으로써 기구가 제자리에 래칫될 때 기구 입력에 대해 출력 짐볼(742c/d)를 스프링 로딩한다. 그립 가동장치 구동 모듈과 마찬가지로, 미리 로딩된 스프링은 작동 동안 적절한 가동장치 구동 출력/입력 접촉이 유지되도록 보장하며, 이로써 출력/입력 접촉시 클리어런스가 발생하지 않아서 정밀한 운동학적 제어가 어렵게 된다. 짐볼 구동 모듈(742c/d')은 2개의 "도그 본" 링크(712), 2개의 볼 스크류(714), 2개의 모터(716), 2개의 홀 이펙트 센서(718) 및 2개의 회전 또는 직선 동작 인코더(720)를 더 포함한다. 모터(716)는 관련된 볼 스크류(714)를 구동시키고, 이것은 도그 본 링크(712)를 가동시킨다. 도그 본 링크(712)의 근단부는 직선 슬라이드(721)에 연결되고, 이것은 볼 스크류(714)와 평행한 축을 따라 움직인다. 도그 본 라인(712)의 원단부는 출력 짐볼(742c/d)과 연결되며, 이것은 각각 짐볼 핀(710)을 통해 종축에 수직인 2개의 직교 축을 중심으로 회전한다. 한 양태에서, 구동 모듈의 짐볼은 2의 자유도를 갖지만, 직교 축은 갖지 않는다.FIG. 7A is a view of a ball drive module 742c / d 'of an instrument manipulator that may be used to provide a jog output gym ball to control the XY translation of the jog mechanism of the instrument or a list output gym ball to control the pitch and yaw of the instrument end actuator. Bottom perspective view. In this embodiment, the ball drive module 742c / d 'includes a straight slide 702, a drive spring mechanism 704 including a spring 706 and a mover output load ball 742c / d on the ball ball pin 710. It includes. The drive spring mechanism 704 is connected to the inner frame 542i of the instrument manipulator. As the latch 542f is actuated and engaged with the instrument, the inner frame moves distally, and the actuator drive module 742c / d 'moves the linear slide until the output ball 742c / d contacts the mating input on the instrument. 702). This contact preloads the spring 706 to spring load the output gym ball 742c / d relative to the instrument input when the instrument is latched in place. As with the grip actuator drive module, the preloaded spring ensures that the appropriate actuator drive output / input contact is maintained during operation, which results in no clearance during output / input contact, making precise kinematic control difficult. The gym ball drive module 742c / d 'includes two "dog bone" links 712, two ball screws 714, two motors 716, two Hall effect sensors 718 and two rotary or straight lines. The apparatus further includes an operation encoder 720. The motor 716 drives the associated ball screw 714, which drives the dog bone link 712. The proximal end of the dog bone link 712 is connected to a straight slide 721, which moves along an axis parallel to the ball screw 714. The distal end of the dog bone line 712 is connected to the output gym ball 742c / d, which rotates about two orthogonal axes perpendicular to the longitudinal axis, respectively, via the gym ball pin 710. In one aspect, the ball of the drive module has two degrees of freedom, but no orthogonal axis.

도 7b는 장착된 기구의 롤 움직임을 제어하는 롤 출력 디스크를 제공하는데 사용될 수 있는 기구 조작기의 롤 가동장치 구동 모듈(742e')의 하부 투시도이다. 이 구체예에서, 롤 가동장치 구동 모듈(742e')은 하모닉 드라이브(736)를 구동시키는 모터(734)를 포함하며, 이것은 이어서 수퍼 기어(740)를 구동시킨다. 수퍼 기어(740)는 롤 출력 디스크(742e)를 회전시키고, 따라서 기구 상의 롤 입력 디스크를 구동시킨다. 인코더(732)를 사용하여 위치를 감지해서 모터(734)를 정류한다. 절대 인코더(738)는 롤 출력 디스크(742e)에 연결되고, 기구 롤의 절대 위치를 감지한다.7B is a bottom perspective view of the roll mover drive module 742e 'of the instrument manipulator which may be used to provide a roll output disk to control roll movement of the mounted instrument. In this embodiment, the roll mover drive module 742e 'includes a motor 734 that drives the harmonic drive 736, which in turn drives the super gear 740. Super gear 740 rotates roll output disk 742e, thus driving the roll input disk on the instrument. The encoder 732 is used to sense the position to rectify the motor 734. The absolute encoder 738 is connected to the roll output disk 742e and senses the absolute position of the instrument roll.

한 양태에서, 시스템 구동 모듈은 작동 가능하게 독립적이며 서로 충분히 분리됨으로써 하나의 인터페이스 출력을 통해 적용되는 큰 힘이 나머지 인터페이스 출력에 전달되지 않는다. 다시 말해서, 하나의 인터페이스 출력을 통한 큰 힘은 다른 인터페이스 출력에 전달되지 않고, 이로써 나머지 인터페이스 출력에 의해 가동되는 기구 구성요소에 영향을 미치지 않는다. 한 양태에서, 구동 모듈과 그것의 상응하는 가동장치 출력은 다른 구동 모듈 및/또는 그것의 상응하는 가동장치 출력으로부터의 의도치 않은 힘 입력이 실질적으로 없게 된다. 이런 특징은 기구 작동을 개선하고, 결과적으로 환자 안전성을 개선한다.In one aspect, the system drive modules are operably independent and fully separated from each other so that large forces applied through one interface output are not transmitted to the other interface output. In other words, a large force through one interface output is not transmitted to the other interface output, thereby not affecting the instrument components driven by the other interface output. In one aspect, the drive module and its corresponding mover output are substantially free of unintended force inputs from the other drive module and / or its corresponding mover output. This feature improves instrument operation and consequently improves patient safety.

도 9a 및 9b는 각각 도 4a-4b와 5a-1 내지 5c-4의 기구 조작기에 장착하도록 구성된 기구(960)의 근위 부분(960a)과 원위 부분(960b)의 투시도이다. 기구(960)의 전달 메커니즘의 근위면(960')은 그립 출력 레버(542b)와 인터페이스되는 기구 그립 입력 레버(962b), 조글 출력 짐볼(542c)과 인터페이스되는 기구 조글 입력 짐볼(962c), 리스트 출력 짐볼(542d)과 인터페이스되는 기구 리스트 입력 짐볼(962d) 및 롤 출력 디스크(542e)와 인터페이스되는 기구 롤 입력 디스크(962e)를 포함한다. 도 9b는 리스트(964), 조글 메커니즘(966) 및 단부 작동기(968)를 포함하는 가요성 수술 기구(960)의 원단부(960b)의 일례를 예시한다. 한 구체예에서, 기구(960)의 전달 메커니즘의 근위면(960')은 조작기 출력과 기구 입력이 작동 가능하게 맞물렸을 때 기구 조작기의 원위면과 작동 가능하게 인터페이스되는 실질적으로 단일 평면이다. 본원에 참고로 포함되는 미국 특허출원 제11/762,165호, 발명의 명칭 "최소 침습 수술 시스템"(Larkin et al.) 및 본원에 참고로 포함되는 미국 특허출원 제11/762,154호, 발명의 명칭 "평행 동작 메커니즘 수술 기구"(Cooper et al.)가 기구(960)와 같은 수술 기구의 적용 가능한 원위 부분 및 근위 부분에 대해 더 상세히 개시한다.9A and 9B are perspective views of the proximal portion 960a and distal portion 960b of the instrument 960 configured for mounting to the instrument manipulator of FIGS. 4A-4B and 5A-1-5C-4, respectively. The proximal surface 960 'of the transfer mechanism of the instrument 960 includes the instrument grip input lever 962b interfaced with the grip output lever 542b, the instrument jog input gym ball 962c interfaced with the jog output gym ball 542c, and the list. The instrument list input gym ball 962d interfaced with the output gym ball 542d and the instrument roll input disk 962e interfaced with the roll output disc 542e. 9B illustrates an example of a distal end 960b of a flexible surgical instrument 960 that includes a wrist 964, a joggle mechanism 966, and an end actuator 968. In one embodiment, the proximal face 960 'of the delivery mechanism of the instrument 960 is a substantially single plane that is operatively interfaced with the distal surface of the instrument manipulator when the manipulator output and the instrument input are operatively engaged. US patent application Ser. No. 11 / 762,165, incorporated herein by reference, "Minimal Invasive Surgery System" (Larkin et al.) And US patent application Ser. No. 11 / 762,154, incorporated herein by reference, "Name of invention" Parallel Operation Mechanism Surgical Instruments ”(Cooper et al.) Discloses in more detail the applicable distal and proximal portions of surgical instruments, such as instrument 960.

도 9a 및 9b에 도시된 예시적인 양태에서, 기구(960)는 그것의 근단부에 전달 부분, 기다란 기구 본체, 다양한 수술 단부 작동기(968) 중 하나, 및 단부 작동기(968)와 조글 메커니즘(966)과 기구 본체를 연결하는 뱀 모양의 2 자유도 리스트 메커니즘(964)을 포함한다. da Vinci® 수술 시스템과 마찬가지로, 일부 양태에서 전달 부분은 지지 암에 영구 장착된 전기 가동장치(예를 들어, 서보모터)와 인터페이스되는 디스크를 포함하며, 이로써 기구는 쉽게 교환될 수 있다. 짝을 이루는 짐볼 플레이트와 레버와 같은 다른 연결들도 기계적 인터페이스에서 가동력을 전달하는데 사용될 수 있다. 전달 부분의 기계 메커니즘(예를 들어, 기어, 레버, 짐볼)은 디스크로부터의 가동력을 기구 본체(이것은 하나 이상의 관절화된 부분을 포함할 수 있다)에 있는 하나 이상의 채널을 통해 이어진 케이블, 와이어 및/또는 케이블, 와이어 및 하이포튜브 조합으로 전달하여 리스트(964)와 단부 작동기(970) 움직임을 제어한다. 일부 양태에서, 하나 이상의 디스크 및 관련 메커니즘이 그것의 종축 주위에서 기구 본체를 롤링하는 가동력을 전달한다. 기구 본체의 주 부분은 실질적으로 강직성인 단일 튜브이며, 일부 양태에서는 약간 탄성이 있는 가요성일 수 있다. 이런 작은 가용성은 가이드 튜브의 근위 본체편 근위부(즉, 환자 바깥쪽의)가 약간 신축될 수 있도록 하며, 이로써 동일한 길이의 몇 개의 잘린 꽃들이 목이 좁은 화병에 위치된 것처럼 몇 개의 기구 본체가 이들의 각각의 전달 부분 하우징이 허용할 수 있는 것보다 가이드 튜브 안에서 더 밀착하여 있을 수 있다. 이런 신축은 최소한이며(예를 들어, 한 구체예에서 약 5도의 휨 각도 이하), 기구 본체 내에서 제어 케이블과 하이포튜브의 휨 각도가 작기 때문에 유의한 마찰을 일으키지도 않는다. 다시 말해서, 한 구체예에서 기구 샤프트는 힘 전달 메커니즘의 원위면 또는 근위면에 직교하는 대신 약간의 각도로 힘 전달 메커니즘의 원위 쪽에서 빠져나올 수 있다. 다음에, 기구 샤프트는 약간 휘어 계속 직선을 유지하면서 힘 전달 메커니즘의 원위 쪽에서 빠져나오는 기구 샤프트의 원위 구간에서 약간 원호를 형성할 수 있다. 이와 같이, 기구는 가이드 튜브 가까이 있는 근위 곡선 구간과 원위 직선 구간을 가진 기구 샤프트를 가질 수 있다. 한 예에서, 기구 샤프트는 힘 전달 메커니즘을 원위 쪽에서 빠져나올 때 약 0도 내지 약 5도로 피치될 수 있다.In the exemplary embodiment shown in FIGS. 9A and 9B, the instrument 960 has a delivery portion at its proximal end, an elongated instrument body, one of various surgical end actuators 968, and an end actuator 968 and a jog mechanism 966. And a snake shaped two degree of freedom list mechanism 964 connecting the instrument body. As with the da Vinci® surgical system, in some embodiments the delivery portion includes a disk that interfaces with an electrically actuated device (eg, a servomotor) permanently mounted to the support arm, whereby the instrument can be easily exchanged. Other connections, such as mating gym plates and levers, can also be used to transmit moving force at the mechanical interface. Mechanical mechanisms (eg gears, levers, gym balls) of the transmission portion may be used to transfer the actuation force from the disk through one or more channels in the instrument body (which may include one or more articulated portions), and And / or a cable, wire, and hypotube combination to control the movement of wrist 964 and end actuator 970. In some aspects, one or more disks and associated mechanisms deliver a movable force that rolls the instrument body around its longitudinal axis. The main portion of the instrument body is a single tube that is substantially rigid and in some embodiments may be slightly elastic and flexible. This small availability allows the proximal body piece proximal portion of the guide tube (ie, outside the patient) to be slightly stretched, so that several instrument bodies of their length are positioned as if several cut flowers of the same length were placed in a narrow neck vase. Each delivery portion housing may be tighter in the guide tube than is acceptable. This stretching is minimal (eg less than about 5 degrees of bending angle in one embodiment) and does not cause significant friction because of the small bending angles of the control cable and hypotube within the instrument body. In other words, in one embodiment the instrument shaft may exit at the distal side of the force transmission mechanism at a slight angle instead of orthogonal to the distal or proximal surface of the force transmission mechanism. The instrument shaft may then be slightly curved to form a slight arc in the distal section of the instrument shaft exiting from the distal side of the force transmission mechanism while continuing to remain straight. As such, the instrument may have an instrument shaft having a proximal curve segment and a distal straight segment that are close to the guide tube. In one example, the instrument shaft can be pitched from about 0 degrees to about 5 degrees when exiting the force transmission mechanism from the distal side.

도 9a 및 9b에 도시된 대로, 기구(960)는 근위 본체편(968)(한 예에서 가이드 튜브를 통해 연장된다)과 적어도 하나의 원위 본체편 또는 조글 메커니즘(966)(한 예에서 가이드 튜브의 원단부를 지나 위치된다). 예를 들어, 기구(960)는 근위 본체편(968), 조인트(967)에서 근위 본체편(968)에 연결된 조글 메커니즘(966), 또 다른 조인트(965)에서 조글 메커니즘(966)과 연결된 리스트 메커니즘(964)(이 연결은 또 다른 짧은 원위 본체편을 포함할 수 있다), 및 단부 작동기(970)를 포함한다. 일부 양태에서, 조글 메커니즘(966)과 조인트(965 및 967)는 평행 동작 메커니즘으로 기능하며, 이 메커니즘의 원단부에 있는 기준 프레임의 위치는 원위 기준 프레임의 방향을 변경하지 않고 메커니즘의 근단부에 있는 기준 프레임에 대해 변경될 수 있다. 적용 가능한 기구의 관련된 조인트를 포함하는 적용 가능한 평행 동작 또는 조글 메커니즘의 상세한 내용은 본원에 참고로 포함되는 미국 특허출원 제11/762,165호에 더 개시된다.As shown in FIGS. 9A and 9B, the instrument 960 includes a proximal body piece 968 (which extends through a guide tube in one example) and at least one distal body piece or jog mechanism 966 (in one example, a guide tube). Is located past the distal end of the device). For example, the instrument 960 may be a proximal body piece 968, a jog mechanism 966 connected to the proximal body piece 968 at the joint 967, and a wrist connected to the jog mechanism 966 at another joint 965. Mechanism 964 (this connection may comprise another short distal body piece), and an end actuator 970. In some aspects, the joggle mechanism 966 and joints 965 and 967 function as parallel motion mechanisms, the position of the reference frame at the distal end of the mechanism being at the proximal end of the mechanism without changing the direction of the distal reference frame. Can be changed for the reference frame. Details of applicable parallel motion or joggle mechanisms, including associated joints of applicable instruments, are further disclosed in US patent application Ser. No. 11 / 762,165, which is incorporated herein by reference.

도 10은 본 개시의 양태에 따른 기구(960)에 작동 가능하게 연결된 기구 조작기(542)의 단면도이다. 도 10에 도시된 대로, 기구 조작기(542)의 원위면 상의 가동장치 출력(542b-542e)은 수술 기구(960)의 근위면 상의 가동장치 입력(962b-962e)과 인터페이스된다.10 is a cross-sectional view of an instrument manipulator 542 operably connected to an instrument 960 in accordance with aspects of the present disclosure. As shown in FIG. 10, mover outputs 542b-542e on the distal surface of instrument manipulator 542 interface with mover inputs 962b-962e on the proximal surface of surgical instrument 960.

수술을 용이하게 하기 위해서 기구 단부 작동기에 7의 자유도(기구 삽입, 그립, 2-DOF 리스트 관절화, 2-DOF 조글(리스트 병진) 및 기구 롤)가 제공되므로, 기구 가동 정밀도의 요건은 높으며, 기구와 기구 조작기 사이에는 높은 충실도, 낮은 백러시 인터페이스가 바람직하다. 기구 조작기의 독립적으로 작동되는 구동 시스템 모듈(예를 들어, 모듈 542b', 542c', 542d' 및 542e')이 다양한 구동 트레인이 실질적으로 성능은 포함하지 않는 부정확하게 제조된 드레이프를 통해서 수술 기구에 연결되는 것을 허용된다. 구동 시스템 모듈들은 서로 연결되지 않고 서로 충분히 분리되어 있으므로, 하나의 인터페이스 출력을 통해 적용되는 큰 힘은 나머지 인터페이스 출력으로 전달되지 않는다. 다시 말해서, 하나의 인터페이스 출력을 통한 큰 힘은 다른 인터페이스 출력으로 전달되지 않으며, 이로써 나머지 인터페이스 출력에 의해서 가동되는 기구 구성요소에 영향을 미치지 않는다. 한 양태에서, 구동 모듈과 그것의 상응하는 가동장치 출력은 다른 구동 모듈 및/또는 그것의 상응하는 가동장치 출력으로부터 유래하는 의도치 않은 힘을 실질적으로 갖지 않는다. 이런 특징은 기구 작동을 개선하고, 결과적으로 환자 안전성을 개선한다.In order to facilitate surgery, the instrument end actuator is provided with 7 degrees of freedom (insertion of the instrument, grip, 2-DOF wrist articulation, 2-DOF joggle (list translation) and instrument roll), so the requirements for instrument operation accuracy are high. A high fidelity, low backlash interface is preferred between the instrument and the instrument manipulator. Independently actuated drive system modules (eg, modules 542b ', 542c', 542d 'and 542e') of the instrument manipulator are mounted to the surgical instrument through an incorrectly manufactured drape in which the various drive trains do not substantially include performance. It is allowed to be connected. Since the drive system modules are not connected to each other and are sufficiently separated from each other, the large force applied through one interface output is not transmitted to the other interface output. In other words, a large force through one interface output is not transmitted to another interface output, thereby not affecting the instrument components driven by the other interface output. In one aspect, the drive module and its corresponding mover output are substantially free of unintended forces resulting from the other drive module and / or its corresponding mover output. This feature improves instrument operation and consequently improves patient safety.

한 양태에서, da Vinci® 수술 시스템 기구 인터페이스에서처럼 힘 전달 특징부와 가동 특징부에 메이팅 디스크가 사용될 수 있다. 다른 양태에서, 메이팅 짐볼 플레이트와 레버가 사용된다. 전달 메커니즘의 다양한 기계 구성요소(예를 들어, 기어, 레버, 케이블, 도르래, 케이블 가이드, 짐볼 등)를 사용하여 기계적인 힘을 인터페이스로부터 제어되는 요소로 전달한다. 각 가동장치 메커니즘은 관련 기구의 원단부에서 움직임을 제어하는 적어도 하나의 가동장치(예를 들어, 서보모터(브러시 또는 무브러시)를 포함한다. 예를 들어, 가동장치는 수술 기구의 단부 작동기 그립 DOF를 제어하는 전기 서보모터일 수 있다. 기구(본원에 설명된 가이드 프로브를 포함한다) 또는 가이드 튜브(또는 종합해서 기구 조립체)는 관련된 가동장치 메커니즘으로부터 해제되어 슬라이드될 수 있다. 다음에, 다른 기구나 가이드 튜브로 대체될 수 있다. 기계적 인터페이스에 더하여, 각 전달 메커니즘과 가동장치 메커니즘 사이에 전자적 인터페이스가 있다. 이런 전자적 인터페이스는 데이터의 전달을 허용한다(예를 들어, 기구/가이드 튜브 타입). 다양한 기구, 가이드 튜브 및 영상 시스템, 그리고 또한 멸균 현장을 보존하기 위한 멸균 드레이프에 대한 예들은 본원에 모두 참고로 포함되는 미국특허 제6,866,671호(2001년 8월 13일 제출됨; Tierney et al.)와 제6,132,368호(1997년 11월 21일 제출됨; Cooper)에 개시된다.In one aspect, mating discs can be used for force transmission features and movable features as in the da Vinci® surgical system instrument interface. In another aspect, mating gymball plates and levers are used. Various mechanical components of the transfer mechanism (eg gears, levers, cables, pulleys, cable guides, gym balls, etc.) are used to transfer mechanical forces from the interface to the controlled elements. Each mover mechanism includes at least one mover (eg, a servomotor (brush or brushless)) that controls movement in the distal end of the associated instrument, for example, the mover is an end actuator grip of a surgical instrument. It can be an electric servomotor that controls the DOF The instrument (including the guide probes described herein) or the guide tube (or instrument assembly collectively) can be released and slide from the associated mover mechanism. It can be replaced by an instrument or a guide tube In addition to the mechanical interface, there is an electronic interface between each transfer mechanism and the actuator mechanism, which allows for the transfer of data (eg, instrument / guide tube type). Various instruments, guide tubes and imaging systems, and also sterilization to preserve sterilization sites Examples of drapes are disclosed in US Pat. Nos. 6,866,671 (filed Aug. 13, 2001; Tierney et al.) And 6,132,368 (filed Nov. 21, 1997; Cooper), which are all incorporated herein by reference. do.

수술 기구는 단독으로 또는 가이드 튜브, 다수의 기구 및/또는 다수의 가이드 튜브를 포함하는 조립체로, 및 다양한 구성(예를 들어, 기구/가동장치 조립체의 근위면 또는 원위면 상에)을 통해 가동장치 조립체에 연결된 기구로서 본 개시에 적용될 수 있다. 따라서, 다양한 수술 기구가 이용될 수 있으며, 각 수술 기구는 서로 독립적으로 작동하고, 각각은 환자의 단일 진입구를 통해서 데카르트 공간(즉, 서지, 히브, 스웨이, 롤, 피치, 요우) 안에서 적어도 6의 능동적으로 제어되는 DOF를 가진 단부 작동기를 가진다.Surgical instruments may be operated alone or in assemblies comprising guide tubes, multiple instruments and / or multiple guide tubes, and through various configurations (eg, on the proximal or distal surfaces of the instrument / mover assembly). It can be applied to the present disclosure as a mechanism connected to the device assembly. Thus, a variety of surgical instruments may be used, each operating instrument operating independently of each other, each of at least six within the Cartesian space (ie, surge, heave, sway, roll, pitch, yaw) through a single entry port of the patient. It has an end effector with actively controlled DOF.

상기 설명된 이들 운동학적 사슬의 단부를 형성하는 기구 샤프트는 환자로의 삽입을 위한 캐뉼라 및/또는 진입 가이드를 통해 가이드될 수 있으며, 이것은 하기 더 설명된다. 캐뉼라와 같은 적용 가능한 부속 클램프와 부속품들은 전체 내용이 모든 취지를 위해서 본원에 참고로 포함되는 계류중인 미국 특허출원 제11/240,087호(2005년 9월 30일)에 개시된다.The instrument shafts forming the ends of these kinematic chains described above can be guided through cannula and / or entry guides for insertion into a patient, which is described further below. Applicable accessory clamps and accessories such as cannula are disclosed in pending US patent application Ser. No. 11 / 240,087 (September 30, 2005), the entire contents of which are incorporated herein by reference for all purposes.

멸균 Sterile 드레이프Drape

멸균 드레이프의 구체예들이 이제 더 상세히 설명될 것이다. 다시 도 1a-1b 및 2a-2c와 관련하여, 멸균 드레이프(1000 및 2000)가 각각 암 조립체(101 및 201)의 일부를 덮어서 조작기 암의 비-멸균 부품을 멸균 현장으로부터 차폐하고, 또한 암과 그것의 여러 부품을 수술 과정의 물질(예를 들어, 체액 등)로부터 차폐하는 것이 도시된다. 한 구체예에서, 멸균 드레이프는 기구 조작기 조립체의 기구 조작기를 수용하도록 구성된 드레이프 포켓을 포함한다. 드레이프 포켓은 멸균 현장에 인접한 외부 표면과 비-멸균 기구 조작기에 인접한 내부 표면을 포함한다. 드레이프는 기구 조작기의 출력(예를 들어, 관련 기구에 가동력을 전달하는 인터페이스)과 수술 기구의 입력(예를 들어, 관련 기구 조작기로부터의 가동력을 수용하는 인터페이스) 사이의 인터페이스를 위한 드레이프 포켓의 원단부의 가요성 멤브레인, 및 드레이프 포켓의 근위 개구에 작동 가능하게 연결된 회전 가능한 시일을 포함한다.Embodiments of sterile drape will now be described in more detail. Referring again to FIGS. 1A-1B and 2A-2C, sterile drapes 1000 and 2000 cover portions of the arm assemblies 101 and 201, respectively, to shield non-sterile parts of the manipulator arm from the sterilization site, It is shown shielding its various parts from the material of the surgical procedure (eg, body fluids, etc.). In one embodiment, the sterile drape includes a drape pocket configured to receive an instrument manipulator of the instrument manipulator assembly. The drape pocket includes an outer surface adjacent to the sterilization site and an inner surface adjacent to the non-sterile instrument manipulator. The drape is the distal end of the drape pocket for the interface between the output of the instrument manipulator (eg, an interface that transmits motive force to the associated instrument) and the input of the surgical instrument (eg, an interface that accepts motive force from the associated instrument operator). A negative flexible membrane and a rotatable seal operably connected to the proximal opening of the drape pocket.

다른 구체예에서, 멸균 드레이프는 복수의 드레이프 포켓을 포함하며, 각 드레이프 포켓은 각 기구 조작기의 출력과 수술 기구의 리스트, 롤, 그립 및 병진 동작을 제어하는 각 수술 기구의 입력 사이에 인터페이스를 위해 원단부에 복수의 가요성 멤브레인을 포함한다. 라비린스 시일과 같은 회전 가능한 시일이 드레이프 포켓의 근위 개구에 작동 가능하게 연결되어 모든 드레이프 포켓이 드레이프의 더 근위 부분을 기준으로 그룹으로서 함께 회전할 수 있도록 한다. 한 예에서, 다수의 드레이프 포켓을 포함하는 회전 가능한 시일의 제1 부분은 조작기 조립체 플랫폼의 회전 가능한 베이스 플레이트에 연결되고, 회전 가능한 시일의 제2 부분은 조작기 조립체 플랫폼의 프레임에 연결된다.In another embodiment, the sterile drape includes a plurality of drape pockets, each drape pocket for an interface between the output of each instrument manipulator and the input of each surgical instrument that controls the list, roll, grip, and translation of the surgical instrument. The distal end includes a plurality of flexible membranes. A rotatable seal, such as a labyrinth seal, is operatively connected to the proximal opening of the drape pocket to allow all drape pockets to rotate together as a group about the more proximal portion of the drape. In one example, the first portion of the rotatable seal comprising a plurality of drape pockets is connected to the rotatable base plate of the manipulator assembly platform and the second portion of the rotatable seal is connected to the frame of the manipulator assembly platform.

또 다른 구체예에서, 로봇 수술 시스템의 조작기 암에 드레이프를 걸치는 방법은 먼저 기구 조작기의 원단부에 멸균 드레이프의 원단부를 위치시키고, 이어서 기구 조작기의 원단부로부터 기구 조작기의 근단부를 향해서 드레이프 포켓으로 각 기구 조작기를 덮는 것을 포함한다. 다음에, 멸균 드레이프의 회전 가능한 시일이 조작기 조립체 플랫폼의 회전 가능한 베이스 플레이트와 프레임에 연결된다. 다음에, 원한다면 조작기 암의 원단부로부터 조작기 암의 근단부를 향해서 조작기 암의 나머지 부분들에 드레이프가 덮일 수 있다. 이 예에서, 조작기 암은 기구 조작기로부터 요우 조인트 쪽으로 드레이프가 덮인다.In another embodiment, a method of draping a manipulator arm of a robotic surgical system comprises first placing a distal end of a sterile drape in the distal end of an instrument manipulator, and then angling the distal pocket from the distal end of the instrument manipulator toward the near end of the instrument manipulator. Covering the instrument manipulator. The rotatable seal of the sterile drape is then connected to the rotatable base plate and frame of the manipulator assembly platform. Then, if desired, the drape may be covered in the remaining portions of the manipulator arm from the distal end of the manipulator arm toward the proximal end of the manipulator arm. In this example, the manipulator arm is drape from the instrument manipulator toward the yaw joint.

유익하게는, 멸균 드레이프를 구비한 조작기 암과 기구 조작기의 구성 및 기하구조는 큰 동작 범위를 제공하여, 단일 입구를 통한 다중 사분면 수술(즉, 단일 진입구에서 모든 환자 사분면으로의 수술적 접근), 환자 및 진입구 주위의 증가된 공간 및 증가된 환자 안전성을 허용하며, 동시에 또한 상기 설명된 대로 강고한 기구/조작기 인터페이스, 용이한 기구 교환 및 멸균 환경 유지를 제공한다.Advantageously, the construction and geometry of manipulator arms and instrument manipulators with sterile drape provide a large range of motion, such as multiple quadrant surgery (ie, surgical access from a single entry point to all patient quadrants), It allows for increased space around the patient and entry and increased patient safety, while at the same time providing a robust instrument / operator interface, easy instrument changeover and maintenance of sterile environment as described above.

다시 도 10과 관련하여, 기구 조작기(542)의 가동장치 출력은 멸균 드레이프(1000 또는 2000)를 통해서 기구(960)의 가동장치 입력과 맞물린다. 상기 주지된 대로, 한 구체예에서 래치(542g)가 가동되었을 때 기구 조작기(542)의 내부 프레임이 기구(960)를 향해 설정된 거리를 움직이고, 스프링 로딩된 모듈 출력(542b-542e)이 드레이프(1000 또는 2000)를 통해 기구 입력(962b-962e)과 맞물린다. 기구 조작기(542)의 독립적인 가동장치 구동 모듈(542b', 542c', 542d' 및 542e')은 각각 가동장치 출력(542b, 542c, 542d 및 542e)을 제공하고, 이들은 상기 설명된 대로 래치 메커니즘(542g)를 가동했을 때 멸균 드레이프를 통해 기구 입력(962b, 962c, 962d 및 962e)과 각각 맞물린다.Referring again to FIG. 10, the actuator output of instrument manipulator 542 is engaged with the actuator input of instrument 960 via sterile drape 1000 or 2000. As noted above, in one embodiment the internal frame of the instrument manipulator 542 moves a set distance towards the instrument 960 when the latch 542g is actuated, and the spring loaded module outputs 542b-542e are drape ( (1000 or 2000) with the instrument inputs (962b-962e). Independent mover drive modules 542b ', 542c', 542d 'and 542e' of instrument manipulator 542 provide mover outputs 542b, 542c, 542d and 542e, respectively, which are latch mechanisms as described above. When 542g is activated it engages with instrument inputs 962b, 962c, 962d and 962e, respectively, via a sterile drape.

이제 도 10과 함께 도 11a-11d를 보면, 도 11a-11b는 각각 리트랙트된 상태와 연장된 상태의 멸균 드레이프(1100)(도 11d)의 제1 드레이프 부분(1100a)의 투시도를 예시하고, 도 11c는 본 개시의 구체예에 따른 조작기 플랫폼의 회전 가능한 베이스 플레이트(1140a)의 원단부에 장착된 드레이프 부분(1100a)의 단면도를 예시한다. 상기 멸균 드레이프(1000 및 2000)에 관한 설명이 멸균 드레이프(1100)와 관련해서도 적용될 수 있다. 예를 들어, 멸균 드레이프(1100)는 조작기 암 조립체의 일부, 특히 기구 조작기를 덮어서 조작기 암의 비-멸균 부품을 멸균 현장으로부터 차폐한다. 또한, 드레이프 부분(1100a)은 복수의 포켓(1105)(예를 들어, 4개의 웨지 모양 드레이프 포켓(1105a-1105d가 도시된다)을 포함하며, 각 포켓은 멸균 현장에 인접하도록 구성된 외부 표면과 비-멸균 기구 조작기에 인접하도록 구성된 내부 표면을 포함한다. 드레이프 포켓(1105)은 각각 기구 조작기의 출력과 수술 기구의 입력 사이의 인터페이스를 위해 드레이프 포켓(1105)의 원단부(1101)에 복수의 가요성 멤브레인(1102)을 포함한다. 한 예에서, 가요성 멤브레인(1102b, 1102c, 1102d 및 1102e)이 기구 조작기 출력(542b, 542c, 542d, 542e)과 기구 입력(962b, 962c, 962d, 962e) 사이에 인터페이스되어 각각 수술 기구의 기구 그립, 병진, 리스트 및 롤 동작을 제어한다. 가요성 멤브레인은 각 기구 조작기(예를 들어, 삽입 메커니즘(444))의 텔레스코핑 삽입 메커니즘에 포켓 연장부(1106)를 제공하며, 이것을 따라 기구 조작기가 병진할 수 있다.Referring now to FIGS. 11A-11D in conjunction with FIG. 10, FIGS. 11A-11B illustrate a perspective view of the first drape portion 1100a of the sterile drape 1100 (FIG. 11D) in the retracted and extended states, respectively, 11C illustrates a cross-sectional view of the drape portion 1100a mounted to the distal end of the rotatable base plate 1140a of the manipulator platform according to embodiments of the present disclosure. The description of the sterile drape 1000 and 2000 can also be applied in connection with the sterile drape 1100. For example, sterile drape 1100 covers a portion of the manipulator arm assembly, particularly the instrument manipulator, to shield non-sterile parts of the manipulator arm from the sterilization site. Drape portion 1100a also includes a plurality of pockets 1105 (e.g., four wedge shaped drape pockets 1105a-1105d are shown), each pocket having a non-external surface configured to be adjacent to the sterilization site. A drape pocket 1105 has a plurality of flexes at the distal end 1101 of the drape pocket 1105 for an interface between the output of the instrument manipulator and the input of the surgical instrument, respectively. And a flexible membrane 1102. In one example, flexible membranes 1102b, 1102c, 1102d, and 1102e are instrument manipulator outputs 542b, 542c, 542d, 542e and instrument inputs 962b, 962c, 962d, 962e. Interfacing between each to control instrument grip, translation, wrist and roll operation of the surgical instrument A flexible membrane is a pocket extension 1106 to the telescoping insertion mechanism of each instrument manipulator (eg, insertion mechanism 444). ) And a mechanism actuator to translational along it.

한 양태에서, 포켓 연장부(1106)의 원단부는 드레이프 포켓 연장부(1106)가 삽입 메커니즘과 함께 움직이고, 환자로부터 멀어져서는 컴팩트 형태로 유지됨으로써 수술 입구에 공간과 접근성을 제공할 수 있도록 삽입 메커니즘에 부착된다. 한 예에서, 포켓 연장부(1106)의 원단부는 클립, 탭, 벨크로 스트립 등과 같은 어떤 적절한 부착 수단에 의해서 삽입 메커니즘(844)(도 8)의 캐리지 링크(804)에 부착될 수 있다.In one aspect, the distal end of the pocket extension 1106 is adapted to the insertion mechanism such that the drape pocket extension 1106 moves with the insertion mechanism and is kept compact in distance from the patient to provide space and access to the surgical inlet. Attached. In one example, the distal end of the pocket extension 1106 may be attached to the carriage link 804 of the insertion mechanism 844 (FIG. 8) by any suitable attachment means such as clips, tabs, velcro strips, and the like.

회전 가능한 시일(1108)은 드레이프 포켓(1105)의 근위 개구(1103)와 조작기 암 조립체의 조작기 플랫폼을 작동 가능하게 연결한다. 한 예에서, 회전 가능한 시일(1108)은 롤 커버 부분(1108a)과 롤 커버 부분(1108a) 안에서 그것에 대해 회전할 수 있는 베이스 콤 부분(1108b)을 가진 회전 가능한 라비린스 시일을 포함한다. 한 구체예에서, 베이스 콤 부분(1108b)은 구멍을 가진 복수의 웨지 모양 "프레임"을 형성하는 립(1104)을 가진 디스크를 포함하며, 각 프레임은 기구 조작기를 둘러쌀 수 있는 크기이다. 한 구체예에서, 베이스 콤 부분(1108b)은 디스크 안에서 90도 떨어져 형성된 립(1104)을 포함한다. 드레이프 포켓(1105)의 근단부는 베이스 콤 부분(1108b)의 각 프레임에 연결된다. 따라서, 립을 가진 베이스 콤 부분(1108b)은 기구 조작기의 회전 가능한 베이스 플레이트 위에서 밀착 클러스터를 이루고 있는 개별 기구 조작기들에 드레이프를 덮는 것을 보조하며, 더 나아가 수술 과정 동안 드레이프가 덮인 기구 조작기가 움직임일 때 드레이프 포켓(1105)의 방향 및 배치를 유지하는데도 도움이 된다.The rotatable seal 1108 operatively connects the manipulator platform of the manipulator arm assembly with the proximal opening 1103 of the drape pocket 1105. In one example, the rotatable seal 1108 includes a rotatable labyrinth seal having a roll cover portion 1108a and a base comb portion 1108b that can rotate therein within the roll cover portion 1108a. In one embodiment, the base comb portion 1108b includes a disk having a lip 1104 that defines a plurality of wedge shaped “frames” with holes, each frame sized to enclose the instrument manipulator. In one embodiment, the base comb portion 1108b includes a lip 1104 formed 90 degrees apart in the disk. The proximal end of the drape pocket 1105 is connected to each frame of the base comb portion 1108b. Thus, the base comb portion 1108b with lip assists in covering the drape to individual instrument manipulators that form a tight cluster on the rotatable base plate of the instrument manipulator, and furthermore, the drape covered instrument manipulator may be moved during the surgical procedure. It also helps to maintain the orientation and placement of the drape pocket 1105.

롤 커버 부분(1108a)은 조작기 플랫폼의 프레임에 고정 장착되고, 베이스 콤 부분(1108b)은 회전 가능한 베이스 플레이트(1140a)에 고정 장착되며, 이로써 베이스 플레이트(1140a)가 회전할 때 베이스 콤 부분(1108b)도 드레이프 덮인 기구 조작기와 함께 회전하며, 이때 롤 커버 부분(1108a)은 조작기 플랫폼 프레임에 고정 장착된 상태로 정지되어 있다.The roll cover portion 1108a is fixedly mounted to the frame of the manipulator platform, and the base comb portion 1108b is fixedly mounted to the rotatable base plate 1140a, whereby the base comb portion 1108b is rotated when the base plate 1140a rotates. ) Also rotates with the drape covered instrument manipulator, where roll cover portion 1108a is stationary mounted to the manipulator platform frame.

도 11a 및 11b는 기구 조작기가 그것의 각 삽입 축을 따라 리트랙트되고 연장될 때 리트랙트된 상태와 연장된 상태의 드레이프 포켓(1105)을 각각 예시한다. 4개의 드레이프 포켓(1105)이 동일하게 리트랙트되고 연장되는 것으로 도시되지만, 드레이프 포켓은 기구 조작기가 서로에 대해 독립적으로 및/또는 의존적으로 제어되기 때문에 독립적으로 리트랙트되고 연장될 수 있다.11A and 11B illustrate the drape pocket 1105 in the retracted and extended states, respectively, when the instrument manipulator is retracted and extended along its respective insertion axis. Although the four drape pockets 1105 are shown to be equally retracted and extended, the drape pockets can be independently retracted and extended because the instrument manipulators are controlled independently and / or dependent on each other.

또한, 베이스 콤 부분(1108b)은 베이스 콤 부분의 각 프레임을 통해 기구 조작기를 장착할 수 있는 공간이 제공되기만 한다면 90도가 아닌 다른 각도로 배향된 다수의 립을 포함할 수 있다는 것이 주지되어야 한다. 한 예에서, 베이스 콤 부분(1108b)은 원형 면적을 각각 기구 조작기를 봉입할 수 있는 크기를 가진 다수의 구간으로 나누는 립들로 이루어질 수 있다.It should also be noted that the base comb portion 1108b may include a number of ribs oriented at an angle other than 90 degrees provided that space is provided through each frame of the base comb portion for mounting the instrument manipulator. In one example, the base comb portion 1108b may consist of ribs that divide the circular area into a number of sections, each sized to enclose an instrument manipulator.

또한, 멸균 드레이프(1100)는 도 11d에 도시된 대로 개별 기구 조작기에 덮인 드레이프를 조작기 암 조립체의 나머지 부분으로 이전하는 것을 허용한다. 드레이프(1100)는 회전 가능한 시일(1108)(예를 들어, 롤 커버 부분(1108a))로부터 계속되어 원한다면 조작기 암의 나머지 부분(예를 들어, 조인트 및 링크)을 덮도록 설계된 더 큰 제2의 드레이프 부분(1100b)에 합쳐질 수 있으며, 한 예에서는 조작기 조립체 요우 조인트(예를 들어, 요우 조인트(124, 224))까지 조작기 암을 연속하여 덮는다. 따라서, 회전 가능한 시일(1108)은 실질적으로 전체 암 조립체에 드레이프가 덮인 상태를 유지하면서 기구 조작기 클러스터가 조작기 암 조립체의 나머지 부분에 대해 자유롭게 회전하는 것을 허용하며, 이로써 수술 부위의 멸균 환경이 보존된다.In addition, the sterile drape 1100 allows the transfer of the drape covered by the individual instrument manipulator to the rest of the manipulator arm assembly as shown in FIG. 11D. Drape 1100 continues from rotatable seal 1108 (e.g., roll cover portion 1108a) and has a larger, second, designed to cover the rest of the manipulator arm (e.g., joint and link). And can be joined to the drape portion 1100b, and in one example successively cover the manipulator arm up to the manipulator assembly yaw joint (eg, yaw joints 124 and 224). Thus, the rotatable seal 1108 allows the instrument manipulator cluster to rotate freely relative to the rest of the manipulator arm assembly while substantially drape the entire arm assembly, thereby preserving the sterile environment of the surgical site. .

다른 구체예에 따라서, 멸균 드레이프 부분(1100b)은 리트랙션 가능한 캐뉼라 장착 암에 드레이프를 덮도록 설계되며, 이것은 아래 더 상세히 설명된다. 한 구체예에서, 움직이는 캐뉼라 장착부는 조작기 암에 연결된 베이스 부분과 베이스 부분에 움직일 수 있게 연결된 리트랙션 가능한 부분을 포함한다. 리트랙션 가능한 부분은 회전 조인트를 통해서 리트랙트된 위치와 전개된 위치에서 움직일 수 있으며, 이로써 리트랙션 가능한 부분이 위를 향해 회전되거나, 또는 베이스 부분을 향해 접혀서 환자 주위에 더 많은 공간을 만들 수 있고 및/또는 조작기 암에 드레이프를 덮을 때 캐뉼라 장착부 위에 더 쉽게 드레이프를 입힐 수 있다. 다른 조인트들도 리트랙션 가능한 부분과 베이스 부분을 연결하는데 사용될 수 있으며, 제한은 아니지만 이들은 볼 소켓 조인트 또는 만능 조인트, 텔레스코핑 효과를 만드는 슬라이딩 조인트 등을 포함하고, 이로써 리트랙션 가능한 부분이 베이스 부분에 더 가깝게 움직여서 캐뉼라 장착부의 전체적인 형태 요인을 감소시킬 수 있다. 또 다른 구체예에서, 전체 캐뉼라 장착부는 조작기 암에 대해 안쪽으로 텔레스코핑될 수 있다. 따라서, 움직이는 캐뉼라 장착 암은 드레이프에 비교적 작은 개구를 가진 더 큰 로봇 암의 드레이프를 허용한다. 드레이프는 리트랙트된 캐뉼라 장착 암 위에 위치될 수 있으며, 다음에 포켓(1110) 안에서 드레이프가 덮인 후 캐뉼라 장착 암이 작동 위치로 연장될 수 있다. 한 양태에 따라서, 캐뉼라 장착 암은 기구의 작동 동안 작업 위치에 고정된다.According to another embodiment, the sterile drape portion 1100b is designed to cover the drape on the retractable cannula mounting arm, which is described in more detail below. In one embodiment, the movable cannula mount includes a base portion connected to the manipulator arm and a retractable portion movably connected to the base portion. The retractable part can be moved in the retracted and deployed positions through the revolving joint, so that the retractable part can be rotated upwards or folded toward the base part to create more space around the patient. And / or drape more easily over the cannula mount when covering the drape to the manipulator arm. Other joints may also be used to connect the retractable portion with the base portion, including but not limited to, ball socket joints or universal joints, sliding joints that produce a telescoping effect, and the like, whereby the retractable portion may be attached to the base portion. By moving closer, the overall form factor of the cannula mount can be reduced. In yet another embodiment, the entire cannula mount can be telescoped inwards relative to the manipulator arm. Thus, the movable cannula mounting arm allows the drape of a larger robot arm with a relatively small opening in the drape. The drape may be positioned over the retracted cannula mounting arm, and then the cannula mounting arm may extend to the operating position after the drape is covered in pocket 1110. According to one aspect, the cannula mounting arm is fixed in the working position during operation of the instrument.

한 예에서, 드레이프 포켓(1110)은 캐뉼라 장착 암의 원단부에 있는 클램프(예를 들어, 도 19a-19b 및 20a-20b의 클램프(1754) 및 도 24a-24d의 클램프(2454)와 수용부(2456)를 참조한다) 위에 장착하는 강화된 드레이프 부분(1111)을 포함할 수 있다.In one example, the drape pocket 1110 includes a clamp (eg, clamp 1754 in FIGS. 19A-19B and 20A-20B and clamp 2454 in FIGS. 24A-24D) and a receptacle at the distal end of the cannula mounting arm. (Refer to 2456)).

드레이프(1100a)는 개별 드레이프 포켓(1105)의 측면에 래치 커버(1107)를 더 포함할 수 있으며, 이로써 사용 도중에 기구 조작기의 원주 밖으로 연장될 수 있는 개별 래치(1342g)(도 14a, 15, 16a 및 17a-17c)를 덮을 수 있다.Drape 1100a may further include a latch cover 1107 on the sides of individual drape pockets 1105, thereby allowing individual latches 1342g (FIGS. 14A, 15, 16A) to extend out of the circumference of the instrument manipulator during use. And 17a-17c).

유익하게는, 기구와 인터페이스되는 기구 조작기의 원위면, 기구 조작기의 스프링 로딩된 독립적인 출력, 및 유익한 멸균 드레이프 때문에, 기구들은 수술 과정 동안 확실한 멸균 환경을 유지하면서 기구 조작기 위에서 쉽게 그리고 확실하게 교환될 수 있다. 또한, 멸균 드레이프는 빠르고 쉽게 제조될 수 있는 수술 로봇 시스템을 허용하며, 동시에 또한 작은 형태 요인을 가진 개선된 동작 범위(예를 들어, 회전 동작)를 제공하고, 이로써 수술실 제조 시간과 비용이 줄어든다.Advantageously, because of the distal surface of the instrument manipulator that interfaces with the instrument, the spring loaded independent output of the instrument manipulator, and the beneficial sterile drape, the instruments can be easily and reliably exchanged on the instrument manipulator while maintaining a stable sterile environment during the surgical procedure. Can be. In addition, sterile drape allows for a surgical robotic system that can be manufactured quickly and easily, while at the same time providing an improved range of motion (eg, rotational motion) with small form factors, thereby reducing operating room manufacturing time and costs.

멸균 어댑터Sterile adapter

멸균 어댑터를 포함하는 드레이프의 또 다른 구체예가 이제 더 상세히 설명된다. 도 12는 본 개시의 또 다른 구체예에 따른 멸균 어댑터(1250)를 포함하는 연장된 멸균 드레이프의 드레이프 부분(1200a)의 투시도를 예시한다. 드레이프 부분(1200a)은 도 11d의 드레이프 부분(1100a)을 대체할 수 있으며, 회전 가능한 시일(1108)과 실질적으로 유사한 회전 가능한 시일(1208)의 방식으로 드레이프 부분(1100b)과 작동 가능하게 연결된다. 드레이프 부분(1200a)은 회전 가능한 시일(1208)과 멸균 어댑터(1250) 사이에 연결된 복수의 드레이프 슬리브(1205)를 포함한다. 드레이프 부분(1200a)은 기구 조작기의 삽입 메커니즘 위에 드레이프를 덮기 위해 멸균 어댑터(1250)에 연결된 포켓 연장부(1206)를 더 포함한다.Another embodiment of the drape comprising a sterile adapter is now described in more detail. 12 illustrates a perspective view of a drape portion 1200a of an extended sterile drape comprising a sterile adapter 1250 according to another embodiment of the present disclosure. The drape portion 1200a may replace the drape portion 1100a of FIG. 11D and is operatively connected to the drape portion 1100b in the manner of a rotatable seal 1208 substantially similar to the rotatable seal 1108. . Drape portion 1200a includes a plurality of drape sleeves 1205 connected between rotatable seal 1208 and sterile adapter 1250. Drape portion 1200a further includes a pocket extension 1206 connected to sterile adapter 1250 to cover the drape over the insertion mechanism of the instrument manipulator.

회전 가능한 시일(1208)은 드레이프 슬리브(1205)의 근위 개구(1203)와 조작기 암 조립체의 조작기 플랫폼을 작동 가능하게 연결한다. 한 예에서, 회전 가능한 시일(1208)은 롤 커버 부분(1208a)과 롤 커버 부분(1208a)에 대해 회전 가능한 베이스 콤 부분(1208b)을 가진 회전 가능한 라비린스 시일을 포함한다. 한 구체예에서, 베이스 콤 부분(1208b)은 구멍을 가진 복수의 웨지 모양 "프레임"을 형성하는 립(1204)을 가진 디스크를 포함하며, 각 프레임은 기구 조작기를 둘러쌀 수 있는 크기이다. 한 구체예에서, 베이스 콤 부분(1208b)은 디스크 안에서 90도 떨어져 형성된 립(1204)을 포함한다. 드레이프 슬리브(1205)의 근단부는 베이스 콤 부분(1208b)의 각 프레임에 연결된다. 따라서, 립을 가진 베이스 콤 부분(1208b)은 기구 조작기의 회전 가능한 베이스 플레이트 위에서 밀착 클러스터를 이루고 있는 개별 기구 조작기들에 드레이프를 덮는 것을 보조하며, 더 나아가 수술 과정 동안 드레이프가 덮인 기구 조작기가 움직임일 때 드레이프 포켓(1205)의 방향 및 배치를 유지하는데도 도움이 된다.The rotatable seal 1208 operatively connects the manipulator platform of the manipulator arm assembly with the proximal opening 1203 of the drape sleeve 1205. In one example, the rotatable seal 1208 includes a rotatable labyrinth seal having a roll cover portion 1208a and a base comb portion 1208b that is rotatable relative to the roll cover portion 1208a. In one embodiment, the base comb portion 1208b includes a disk having a lip 1204 forming a plurality of wedge shaped “frames” with holes, each frame sized to enclose the instrument manipulator. In one embodiment, the base comb portion 1208b includes a lip 1204 formed 90 degrees apart in the disk. The proximal end of the drape sleeve 1205 is connected to each frame of the base comb portion 1208b. Thus, the base comb portion 1208b with the lip assists in covering the drape to individual instrument manipulators that form a tight cluster on the rotatable base plate of the instrument manipulator, and furthermore, the drape covered instrument manipulator may be moved during the surgical procedure. It also helps to maintain the orientation and placement of the drape pocket 1205.

도 12는 드레이프 슬리브(1205)가 모두 연장된 상태인 것, 예를 들어 기구 조작기가 이들의 각 삽입 메커니즘을 따라 연장된 것을 예시하지만, 기구 조작기가 독립적으로 및/또는 의존적으로 서로에 대해 제어되기 때문에 드레이프 슬리브가 독립적으로 리트랙트되고 연장될 수 있다는 것이 주지된다.12 illustrates that the drape sleeves 1205 are all extended, for example, the instrument manipulator extends along their respective insertion mechanism, but the instrument manipulators are controlled independently and / or dependent on each other. It is therefore noted that the drape sleeve can be independently retracted and extended.

또한, 베이스 콤 부분(1208b)은 베이스 콤 부분의 각 프레임을 통해 기구 조작기를 장착할 수 있는 공간이 제공되기만 한다면 90도가 아닌 다른 각도로 배향된 다수의 립을 포함할 수 있다는 것이 주지되어야 한다. 한 예에서, 베이스 콤 부분(1208b)은 원형 면적을 각각 기구 조작기를 봉입할 수 있는 크기를 가진 다수의 구간으로 나누는 립들로 이루어질 수 있다.It should also be noted that the base comb portion 1208b may include a number of ribs oriented at an angle other than 90 degrees provided that space is provided through each frame of the base comb portion for mounting the instrument manipulator. In one example, the base comb portion 1208b may consist of ribs that divide the circular area into a number of sections, each sized to enclose an instrument manipulator.

롤 커버 부분(1208a)은 조작기 플랫폼의 프레임(예를 들어, 조작기 할로)에 고정 장착되고, 베이스 콤 부분(1208b)은 회전가능한 베이스 플레이트(1140a)에 고정 장착되며, 이로써 베이스 플레이트(1140a)가 회전할 때 베이스 콤 부분(1208b)도 역시 드레이프가 덮인 기구 조작기와 함께 회전한다. 한 예에서, 드레이프 슬리브(1205)의 근단부가 베이스 콤 부분(1208b)에 연결되므로, 모든 드레이프 슬리브(1205)가 더 근위 쪽의 드레이프 부분(1100b)을 기준으로 그룹으로서 함께 회전한다.The roll cover portion 1208a is fixedly mounted to the frame of the manipulator platform (eg manipulator halo), and the base comb portion 1208b is fixedly mounted to the rotatable base plate 1140a, thereby allowing the base plate 1140a to be mounted. When rotating, the base comb portion 1208b also rotates with the drape covered instrument manipulator. In one example, since the proximal end of the drape sleeve 1205 is connected to the base comb portion 1208b, all the drape sleeves 1205 rotate together as a group about the more proximal drape portion 1100b.

도 13a 및 13b는 본 개시의 구체예에 따른 조립된 멸균 어댑터(1250)의 투시도 및 멸균 어댑터(1250)의 분해도를 각각 예시한다. 멸균 어댑터(1250)는 부트 벽(1252a)과 기구 조작기 상의 포스트를 위한 통로로 사용되는 원통형 구멍(1252b)을 가진 부트(1252)를 포함하며, 이것은 아래 더 설명된다. 드레이프 슬리브(1205)의 원단부가 부트 벽(1252a)의 외부 표면에 연결될 수 있다. 어댑터(1250)는 또한 멸균 어댑터의 상부면 위의 기구 조작기와 맞물리도록 멸균 어댑터 밑에 수술 기구를 적절히 정렬하고 배치하고 보유하는데 사용되는 한 쌍의 지지물(1258)을 포함한다. 어댑터(1250)는 또한 수술 기구의 리스트, 롤, 그립 및 병진 동작을 제어하기 위한 각 기구 조작기의 출력과 각 수술 기구의 입력 사이에서 인터페이스되는 가요성 멤브레인 인터페이스(1254)를 포함한다. 한 구체예에서, 멤브레인 인터페이스(1254)는 관련된 기구 조작기 출력과 인터페이스되는 그립 가동장치 인터페이스(1254b), 조글 가동장치 인터페이스(1254c), 리스트 가동장치 인터페이스(1254d) 및 롤 가동장치 인터페이스(1254e)를 포함한다.13A and 13B illustrate a perspective view of an assembled sterile adapter 1250 and an exploded view of the sterile adapter 1250, respectively, in accordance with embodiments of the present disclosure. Sterile adapter 1250 includes a boot 1252 having a boot wall 1252a and a cylindrical hole 1252b used as a passageway for posts on the instrument manipulator, which is further described below. The distal end of the drape sleeve 1205 may be connected to the outer surface of the boot wall 1252a. Adapter 1250 also includes a pair of supports 1258 used to properly align, position and hold the surgical instrument under the sterile adapter to engage the instrument manipulator on the top surface of the sterile adapter. Adapter 1250 also includes a flexible membrane interface 1254 that is interfaced between the output of each instrument manipulator and the input of each surgical instrument for controlling the list, roll, grip, and translation of the surgical instrument. In one embodiment, the membrane interface 1254 has a grip actuator interface 1254b, a joggle actuator interface 1254c, a wrist actuator interface 1254d and a roll actuator interface 1254e that interface with associated instrument manipulator outputs. Include.

한 구체예에서, 롤 가동장치 인터페이스(1254e)는 멸균 어댑터(1250) 안에서 멸균 장벽을 회전시키고 유지할 수 있도록 설계된다. 도 13c에 예시된 대로, 한 양태에서, 롤 가동장치 인터페이스(1254e)는 평평한 보유 플레이트(1254f)를 수용하는 디스크의 원주 주위에 슬롯 또는 홈(1257b)이 있는 롤 디스크(1257a)를 포함한다(도 13b). 보유 플레이트(1254f)는 가요성 멤브레인 인터페이스(1254)에 부착되어 멸균 어댑터와 드레이프의 멸균 장벽을 유지하면서 롤 디스크가 회전할 수 있도록 한다.In one embodiment, roll mover interface 1254e is designed to rotate and maintain a sterile barrier within sterile adapter 1250. As illustrated in FIG. 13C, in one aspect, roll mover interface 1254e includes roll disk 1257a with slots or grooves 1257b around the circumference of the disk containing flat retaining plate 1254f ( 13b). Retention plate 1254f is attached to flexible membrane interface 1254 to allow the roll disk to rotate while maintaining the sterile barrier of the sterile adapter and drape.

멤브레인 인터페이스(1254)는 부트(1252)와 지지물(1258) 사이에 위치되고, 튜브(1256)가 부트(1252)와 멤브레인 인터페이스(1254)와 지지물(1258)을 함께 연결한다. 튜브(1256)는 부트 구멍(1252b) 및 멤브레인 구멍(1254b)과 정렬되고, 튜브(1256)의 샤프트 부분이 구멍들 사이에 위치된다. 튜브 립(1256a)이 부트 구멍 (1252b) 안에 보유되고, 튜브 단부(1256)는 튜브(1256)와 그에 따른 지지물(1258)이 도 13a에서 이중 화살표로 도시된 대로 튜브 샤프트의 특정한 길이방향 거리를 이동할 수 있도록 지지물(1258)에 고정 연결된다.Membrane interface 1254 is positioned between boot 1252 and support 1258, and tube 1256 connects boot 1252, membrane interface 1254, and support 1258 together. The tube 1256 is aligned with the boot hole 1252b and the membrane hole 1254b, with the shaft portion of the tube 1256 located between the holes. A tube lip 1256a is retained in the boot hole 1252b, and the tube end 1256 holds the particular longitudinal distance of the tube shaft as shown by the double arrows in FIG. 13A and the support 1258. It is fixedly connected to the support 1258 to be movable.

선택적으로, 그립 가동장치 인터페이스 플레이트(1254b'), 조글 가동장치 인터페이스 플레이트(1254c') 및 리스트 가동장치 인터페이스 플레이트(1254d')가 그립 가동장치 인터페이스(1254b), 조글 가동장치 인터페이스(1254c) 및 리스트 가동장치 인터페이스(1254d)의 밑부분에 각각 연결될 수 있으며, 관련 기구 입력과의 맞물림과 연결이 증가된다.Optionally, the grip mover interface plate 1254b ', the joggle mover interface plate 1254c' and the list mover interface plate 1254d 'are provided with the grip mover interface 1254b, the joggle mover interface 1254c and the roll. Connected to the bottom of the actuator interface 1254d, respectively, the engagement and connection with the associated instrument input is increased.

도 14a 및 14b는 본 개시의 구체예에 따른 기구 조작기(1300)의 하부 투시도 및 하부도를 예시한다. 이 예시적인 구체예에서, 기구는 기구 조작기(1300)의 원위면(1342a)에 대해 장착된다. 원위면(1342a)은 도 3-8과 관련하여 상기 설명된 기구 조작기와 유사하게 가동력을 장착된 기구로 전달하는 다양한 가동 출력을 포함한다. 도 14a와 14b에 도시된 대로, 이러한 가동 출력은 그립 출력 레버(1342b)(기구 단부 작동기의 그립 동작 제어), 조글 출력 짐볼(1342c)(원단부 평행 연결("조글" 또는 "엘보" 메커니즘)의 사이드 투 사이드 동작 및 업 앤 다운 동작 제어), 리스트 출력 짐볼(1342d)(기구 단부 작동기의 요우 동작 및 피치 동작 제어), 및 롤 출력 디스크(1342e)(기구의 롤 동작 제어)를 포함할 수 있다. 기구 조작기(1300)의 독립적 가동장치 구동 모듈(모듈(542b', 542c', 542d' 및 542e')과 관련하여 상기 설명된 것들과 유사하다)이 가동장치 출력(1342b, 1342c, 1342d 및 1342e)을 제공한다. 유사한 방식으로, 가동장치 출력(1342b-1342e)은 스프링-로딩될 수 있다. 이러한 출력들과 이러한 출력을 수용하는 기구 힘 전달 메커니즘의 관련 부품들에 대한 상세한 내용은 본원에 참고로 포함되는 미국 특허출원 제12/060,104호(2008년 3월 31일 제출됨; 미국 특허출원 공개 US 2009/0248040 A1)에서 찾을 수 있다. 이러한 입력을 수용할 수 있는 예시적인 수술 기구의 근단부의 예들은 상기 참조된 미국 특허출원 제11/762,165호에서 찾을 수 있다. 이러한 입력을 수용할 수 있는 예시적인 수술 기구의 근단부의 예들은 상기 참조된 미국 특허출원 제11/762,165호에서 찾을 수 있다. 간단히 말해서, 사이드 투 사이드 및 업 앤 다운 DOF는 원단부 평행 연결에 의해서 제공되고, 단부 작동기 요우 및 단부 작동기 피치 DOF는 원위 가요성 리스트 메커니즘에 의해서 제공되고, 기구 롤 DOF는 단부 작동기를 본질적으로 일정한 위치 및 피치/요우 방향에 유지하면서 기구 샤프트를 롤링함으로써 제공되고, 기구 그립 DOF는 2개의 움직이는 대향 단부 작동기 턱에 의해서 제공된다. 이러한 DOF는 더 많은 또는 더 적은 DOF의 예시이다(예를 들어, 일부 실시형태에서 카메라 기구는 기구 롤과 그립 DOF가 생략된다).14A and 14B illustrate bottom perspective and bottom views of instrument manipulator 1300 according to embodiments of the present disclosure. In this exemplary embodiment, the instrument is mounted relative to the distal face 1342a of the instrument manipulator 1300. Distal face 1342a includes various movable outputs that transmit movable force to a mounted instrument similar to the instrument manipulator described above with respect to FIGS. 3-8. As shown in Figs. 14A and 14B, this movable output includes a grip output lever 1342b (controlling grip movement of the instrument end actuator), a joggle output gym ball 1342c (distal parallel connection ("jog" or "elbow" mechanism) mechanism). Side to side motion and up and down motion control), list output gym 1342d (yaw motion and pitch motion control of the instrument end actuator), and roll output disk 1342e (roll motion control of the instrument). have. Independent mover drive modules (similar to those described above in connection with modules 542b ', 542c', 542d 'and 542e') of instrument manipulator 1300 are mover outputs 1342b, 1342c, 1342d and 1342e. To provide. In a similar manner, mover output 1342b-1342e can be spring-loaded. Details of these outputs and the associated components of the mechanism force transmission mechanism that accommodates such outputs are described in US Patent Application 12 / 060,104, filed March 31, 2008; US Patent Application Publication US 2009/0248040 A1). Examples of near-end portions of exemplary surgical instruments that can accept such inputs can be found in US Patent Application Ser. No. 11 / 762,165, referenced above. Examples of near-end portions of exemplary surgical instruments that can accept such inputs can be found in US Patent Application Ser. No. 11 / 762,165, referenced above. In short, the side to side and up and down DOF are provided by distal parallel connection, the end actuator yaw and the end actuator pitch DOF are provided by the distal flexible wrist mechanism, and the instrument roll DOF is essentially constant By rolling the instrument shaft while maintaining in position and pitch / yaw direction, the instrument grip DOF is provided by two moving opposing end actuator jaws. This DOF is an example of more or less DOF (eg, in some embodiments the camera mechanism omits the instrument roll and grip DOF).

기구 조작기(1300)는 멸균 어댑터(1250)를 통해 기구 조작기(1300)의 가동장치 출력과 장착된 기구의 가동장치 입력을 맞물리기 위한 래치 메커니즘(1342g)을 더 포함한다. 한 구체예에서, 상기 설명된 래치 메커니즘과 유사하게, 래치(1342g)가 가동되었을 때 기구 조작기(1300)의 내부 프레임(1342i)은 외부 셀(1342h)에 대해 장착된 기구 쪽으로 설정된 거리를 움직인다. 스프링-로딩 모듈 출력(1342b-1342e)은 멸균 어댑터(1250)를 통해서, 한 구체예에서 멤브레인 인터페이스(1254)를 통해서 적절한 기구 입력을 맞물린다. 따라서, 장착된 기구가 멸균 어댑터의 멤브레인 인터페이스를 통해서 지지물(1258)의 상부 표면과 스프링 로딩된 출력 사이에 클램프된다.The instrument manipulator 1300 further includes a latch mechanism 1342g for engaging the actuator output of the instrument mounted with the actuator output of the instrument operator 1300 via a sterile adapter 1250. In one embodiment, similar to the latch mechanism described above, when the latch 1342g is actuated, the inner frame 1342i of the instrument manipulator 1300 moves a set distance toward the mounted instrument with respect to the outer cell 1342h. The spring-loading module outputs 1342b-1342e engage the appropriate instrument inputs via sterile adapter 1250, in one embodiment through the membrane interface 1254. Thus, the mounted instrument is clamped between the top surface of the support 1258 and the spring loaded output through the membrane interface of the sterile adapter.

상기 주지된 대로, 드레이프(1100a)는 개별 드레이프 포켓(1105) 위의 래치 커버(1107)를 포함할 수 있으며, 이로써 사용 도중에 기구 조작기의 원주 바깥으로 연장될 수 있는 개별 래치(1342g)를 덮을 수 있다. 래치 핸들은 각각 상응하는 기구 조작기의 원주 안에서 접힐 수 있으며, 이로써 드레이프의 회전 가능한 시일이 기구 조작기를 확실히 지나갈 수 있다.As noted above, the drape 1100a may include a latch cover 1107 over an individual drape pocket 1105, thereby covering an individual latch 1342g that may extend out of the circumference of the instrument manipulator during use. have. The latch handles can each be folded in the circumference of the corresponding instrument manipulator, so that the rotatable seal of the drape can reliably pass through the instrument manipulator.

기구 조작기(1300)는 기구 조작기(1300)와 멸균 어댑터(1250)의 작동 가능한 연결을 위한 포스트(1350)를 더 포함하며, 이것은 하기 더 설명된다.Instrument manipulator 1300 further includes a post 1350 for operative connection of instrument manipulator 1300 and sterile adapter 1250, which is further described below.

이제 도 15 및 16a-16c에 관해서, 기구 조작기(1300)와 멸균 어댑터(1250)의 연결이 예시되고 설명된다. 도 15는 본 개시의 구체예에 따른 멸균 어댑터(1250)에 작동 가능하게 연결된 기구 조작기(1300)의 하부 투시도이다. 도 16a-16e는 본 개시의 구체예에 따른 멸균 어댑터(1250)와 기구 조작기(1300)를 연결하는 순서를 예시한다. 도 16a에 도시된 것처럼, 포스트(1350)가 부트 구멍(1252b) 내에서 튜브(1256)와 정렬된다. 다음에, 도 16b에 도시된 대로, 포스트(1350)의 자유 단부가 포스트(1350)의 단부에 있는 탭이 도 16e에 도시된 대로 관련 지지물 구멍과 맞물릴 때까지 튜브(1256)를 통과해 위치된다. 따라서, 포스트(1350)의 한쪽 단부가 지지물(1258)에 고정 장착된다. 한 구체예에서, 지지물(1258)은 도 16c-1 및 16c-2에 예시된 대로 키홀 구멍(1258b)을 가진 슬라이드(1258a)를 포함한다. 멸균 어댑터가 화살표 II로 도시된 대로 최종 위치로 리프트됨에 따라 지지물(1258)은 화살표 I의 방향으로 슬라이드되어 포스트(1350)가 키홀 구멍(1258b)의 단부로 넘어가게 된다. 다음에, 지지물(1258)은 바이어싱 수단에 의해 화살표 III의 방향으로 리턴되며, 이로써 키홀 구멍(1258b)의 좁은 구간이 포스트(1350)에 있는 홈(1350a)에 고정된다(도 16e).Referring now to FIGS. 15 and 16A-16C, the connection of instrument manipulator 1300 and sterile adapter 1250 is illustrated and described. 15 is a bottom perspective view of an instrument manipulator 1300 operatively connected to a sterile adapter 1250 in accordance with embodiments of the present disclosure. 16A-16E illustrate the sequence of connecting a sterile adapter 1250 and an instrument manipulator 1300 according to embodiments of the present disclosure. As shown in FIG. 16A, the post 1350 is aligned with the tube 1256 within the boot hole 1252b. Next, as shown in FIG. 16B, the free end of the post 1350 is positioned through the tube 1256 until the tab at the end of the post 1350 engages with the associated support hole as shown in FIG. 16E. do. Thus, one end of the post 1350 is fixedly mounted to the support 1258. In one embodiment, the support 1258 includes a slide 1258a having a keyhole hole 1258b as illustrated in FIGS. 16C-1 and 16C-2. As the sterile adapter is lifted to its final position as shown by arrow II, the support 1258 slides in the direction of arrow I, causing the post 1350 to cross over to the end of the keyhole hole 1258b. The support 1258 is then returned by the biasing means in the direction of arrow III, whereby a narrow section of the keyhole hole 1258b is fixed to the groove 1350a in the post 1350 (FIG. 16E).

멸균 어댑터의 지지물(1258)이 기구 조작기 하우징의 포스트에 부착된 후 멸균 어댑터(1250)의 부트(1252)가 기구 조작기(1300)의 원위면(1342a)에 부착된다. 한 구체예에서, 이 부착은 기구 조작기의 내부 프레임(1342i)의 측면들에 있는 오목부에 정합하는 부트의 내벽 상의 돌출부에 의해서 달성된다. 이러한 부착은 내부 프레임이 래치(1342g)에 의해 상승하거나 하강할 때 부트가 내부 프레임에 부착된 채로 머무르는 것을 허용한다.The support 1258 of the sterile adapter is attached to the post of the instrument manipulator housing and then the boot 1252 of the sterile adapter 1250 is attached to the distal face 1342a of the instrument manipulator 1300. In one embodiment, this attachment is accomplished by protrusions on the inner wall of the boot that mate with recesses in the sides of the inner frame 1342i of the instrument manipulator. This attachment allows the boot to remain attached to the inner frame when the inner frame is raised or lowered by the latch 1342g.

이제 도 17a-17c와 18a-18b에 관해서, 수술 기구(1460)와 멸균 어댑터(1250)의 연결이 예시되며 설명된다. 도 17a-17c는 본 개시의 구체예에 따른 멸균 어댑터(1250)와 수술 기구(1460)를 연결하는 순서를 예시한다. 도 17a에 도시된 것처럼, 기구(1460)는 힘 전달 메커니즘(1460a)과 샤프트(1460b)를 포함한다. 샤프트(1460b)의 팁은 캐뉼라(1600) 안에서 자유롭게 회전 가능한 진입 가이드(1500) 안에 위치된다. 도 17b는 한 쌍의 지지물(1258)에 의해 정렬되어 그와 맞물린 기구(1460)의 힘 전달 메커니즘(1460a) 상의 탭(예를 들어, 도 18a의 탭(1462))을 도시하고, 도 17c는 힘 전달 메커니즘(1460a)을 도시하는데, 이것은 지지물(1258)의 상부면을 따라 또한 병진된다.Referring now to FIGS. 17A-17C and 18A-18B, the connection of surgical instrument 1460 and sterile adapter 1250 is illustrated and described. 17A-17C illustrate the order of connecting sterile adapter 1250 and surgical instrument 1460 in accordance with embodiments of the present disclosure. As shown in FIG. 17A, the instrument 1460 includes a force transmission mechanism 1460a and a shaft 1460b. The tip of the shaft 1460b is located in the freely rotatable entry guide 1500 within the cannula 1600. FIG. 17B shows a tab (eg, tab 1462 of FIG. 18A) on the force transfer mechanism 1460a of the mechanism 1460 aligned and engaged by a pair of supports 1258, FIG. 17C The force transmission mechanism 1460a is shown, which is also translated along the top surface of the support 1258.

도 18a 및 18b는 지지물(1258)을 따라 힘 전달 메커니즘(1460a)이 완전히 이전되기 전의 기구(1460)와 멸균 어댑터(1250)의 확대된 투시도와 측면도를 각각 예시한다. 기구(1460)는 보유 메커니즘이 지지물을 따라 도달하게 될 때까지 지지물(1258)을 따라 이전되며, 이것은 한 예에서 지지물(1258)의 윗면에 있는 구멍과 정렬되어 결합되는 탭(1462)의 밑면에 있는 돌출부일 수 있다. 래치(1342g)가 다음에 가동되어 기구 조작기 출력과 기구 입력이 멸균 어댑터(1250)를 통해서 맞물릴 수 있다. 한 구체예에서, 지지물(1258)은 기구가 장착된 후 포스트(1350)로부터 제거되는 것이 방지된다. 한 양태에서, 지지물 상의 돌출부가 기구 힘 전달 메커니즘 하우징의 측면에 있는 오목부와 맞물려 기구가 장착되는 동안 지지물이 움직이는 것을 방지한다.18A and 18B illustrate enlarged perspective and side views, respectively, of instrument 1460 and sterile adapter 1250 before force transfer mechanism 1460a is fully transferred along support 1258. The instrument 1460 is moved along the support 1258 until the retention mechanism is reached along the support, which in one example is at the bottom of the tab 1462 that is aligned and engaged with the hole in the top of the support 1258. It may be a protrusion. The latch 1342g is then actuated to allow the instrument manipulator output and instrument input to engage via sterile adapter 1250. In one embodiment, the support 1258 is prevented from being removed from the post 1350 after the instrument is mounted. In one aspect, the protrusion on the support engages a recess in the side of the instrument force transmission mechanism housing to prevent the support from moving while the instrument is mounted.

진입 가이드Entry guide

진입 가이드, 캐뉼라 및 캐뉼라 장착 암의 구체예들이 이제 더 상세히 설명된다. 앞서 설명된 대로, 수술 기구는 각각의 수술 기구 조작기에 장착되어 가동된다. 기구들은 착탈 가능하게 장착되며, 이로써 다양한 기구들이 특정한 조작기에 상호 교환 가능하게 장착될 수 있다. 한 양태에서, 하나 이상의 조작기는 카메라 기구와 같은 특정한 타입의 기구를 지지하고 가동하도록 구성될 수 있다. 기구의 샤프트는 기구 조작기로부터 원위 쪽으로 연장된다. 샤프트는 환자 몸안으로의 진입구에 위치된 공통 캐뉼라를 통해서 연장된다(예를 들어, 체벽을 통해서, 자연 개구에서). 캐뉼라는 조작기 암에 움직일 수 있게 연결된 캐뉼라 장착 암에 연결된다. 한 양태에서, 진입 가이드는 적어도 부분적으로 캐뉼라 안에 위치되며, 각 기구 샤프트는 진입 가이드의 채널을 통해서 연장되고, 이로써 기구 샤프트에 대해 추가의 지지가 제공될 수 있다.Embodiments of the entry guide, cannula and cannula mounting arm are now described in more detail. As described above, the surgical instrument is mounted and actuated on each surgical instrument manipulator. The instruments are removably mounted so that various instruments can be interchangeably mounted to a particular manipulator. In an aspect, one or more manipulators can be configured to support and operate a particular type of instrument, such as a camera instrument. The shaft of the instrument extends distal from the instrument manipulator. The shaft extends through a common cannula located at the entrance into the patient's body (eg, through the body wall, at the natural opening). The cannula is connected to a cannula mounting arm movably connected to the manipulator arm. In one aspect, the entry guide is at least partially located in the cannula, with each instrument shaft extending through the channel of the entry guide, thereby providing additional support for the instrument shaft.

도 19a 및 19b는 접힌 위치와 전개된 위치에 있는 움직일 수 있고/있거나 탈착할 수 있는 캐뉼라 장착부(1750)의 구체예의 투시도를 각각 예시한다. 캐뉼라 장착부(1750)는 제4 조작기 링크(138)(도 1a 및 1b)의 근단부에 인접한 것과 같이, 조작기 암의 링크(1738)에 움직일 수 있게 연결된 연장부(1752)를 포함한다. 캐뉼라 장착부(1750)는 연장부(1752)의 원단부에 클램프(1754)를 더 포함한다. 한 실시형태에서, 연장부(1752)는 링크(1738)에 인접한 집어 넣어진 위치와 정확한 위치에 캐뉼라를 유지한 작동 위치 사이에서 연장부(1752)가 움직이도록 허용하는 회전 조인트(1753)에 의해서 링크(1738)에 연결되며, 이로써 원격 동작 중심이 캐뉼라를 따라 위치되게 된다. 한 실시형태에서, 연장부(1752)는 화살표 C로 도시된 대로 위를 향해 회전되거나 링크(1738)를 향해 접힐 수 있으며, 이로써 환자 주위에 더 많은 공간이 생기고/생기거나 조작기 암에 드레이프를 덮을 때 드레이프를 캐뉼라 장착부 위에 더 쉽게 입힐 수 있게 된다. 연장부(1752)를 연결하는데 다른 조인트들도 사용될 수 있으며, 제한은 아니지만 이들은 볼 소켓 조인트 또는 만능 조인트, 텔레스코핑 효과를 내는 슬라이딩 조인트 등을 포함하고, 이로써 연장부는 링크에 더 가까이 이동됨으로써 캐뉼라 장착부와 조작기 암의 전체적인 형태 요소를 감소시킬 수 있다. 다른 구체예에서, 연장부(1752)는 조작기 암에 대해 안쪽으로 텔레스코핑될 수 있거나, 또는 연장부(1752)는 링크로부터 탈착될 수 있고, 링크에 작동 가능하게 연결될 수 있다. 수술 시스템의 작동 동안 연장부(1752)는 작업 위치에 유지된다.19A and 19B illustrate perspective views of embodiments of movable and / or removable cannula mounts 1750 in the folded and deployed positions, respectively. Cannula mount 1750 includes an extension 1722 movably connected to link 1738 of the manipulator arm, such as adjacent the proximal end of fourth manipulator link 138 (FIGS. 1A and 1B). Cannula mount 1750 further includes a clamp 1754 at the distal end of extension 1175. In one embodiment, the extension 1702 is by a rotary joint 1753 that allows the extension 1702 to move between the retracted position adjacent the link 1738 and the operating position keeping the cannula in the correct position. A link 1738 is connected, whereby the center of remote operation is located along the cannula. In one embodiment, extension 1702 can be rotated up or folded toward link 1738 as shown by arrow C, thereby creating more space around the patient and / or covering the drape on the manipulator arm. This makes it easier to coat the drape over the cannula mount. Other joints may also be used to connect extension 1752, including, but not limited to, ball socket joints or universal joints, sliding joints with telescoping effects, and the like, whereby the extensions are moved closer to the link so that the cannula mount And reduce the overall shape element of the manipulator arm. In another embodiment, the extension 1702 can be telescoped inwardly with respect to the manipulator arm, or the extension 1702 can be detached from the link, and can be operatively connected to the link. Extension 1752 is maintained in the working position during operation of the surgical system.

도 20a 및 20b는 도 19a-19b에 예시된 캐뉼라 장착부(1750)의 클램프(1754)에 장착된 캐뉼라(1800)의 투시도를 예시하고, 도 21은 자유-기립형 캐뉼라(1800)의 투시도를 예시한다. 한 구체예에서, 캐뉼라(1800)는 클램프(1754)에 탈착 가능하게 연결된 근위 부분(1804)과 기구 샤프트가 통과하는 튜브(1802)(도 22에 도시된 대로)를 포함한다. 일단 캐뉼라(1800)가 클램프(1754)에 장착되면 클램프는 캐뉼라(1800)가 회전하지 않도록 할 수 있다. 한 예에서, 튜브(1802)는 스테인리스 스틸로 이루어지고, 튜브(1802)의 내면은 윤활재나 마찰방지재로 코팅되거나 라이닝될 수 있지만, 캐뉼라는 다른 재료나 라이너로 이루어질 수도 있고, 라이너가 없을 수도 있다. 근위 부분(1804)은 도 22, 23a-23b에 도시된 대로 외부 릿지(1806, 1808)와 채널을 지닌 진입 가이드를 수용하기 위한 내부 공간을 포함할 수 있으며, 이것은 아래 더 상세히 설명된다. 캐뉼라와 같은 적용 가능한 부속 클램프 및 부속품들의 예들은 전체 내용이 모든 취지에 있어서 본원에 참고로 포함되는 2005년 9월 30일 제출된 계류중인 미국 특허출원 제11/240,087에 개시된다.20A and 20B illustrate perspective views of cannula 1800 mounted to clamp 1754 of cannula mount 1750 illustrated in FIGS. 19A-19B, and FIG. 21 illustrates a perspective view of free-standing cannula 1800. do. In one embodiment, cannula 1800 includes a proximal portion 1804 detachably connected to clamp 1754 and a tube 1802 through which the instrument shaft passes (as shown in FIG. 22). Once the cannula 1800 is mounted to the clamp 1754, the clamp may prevent the cannula 1800 from rotating. In one example, the tube 1802 is made of stainless steel and the inner surface of the tube 1802 may be coated or lined with a lubricant or antifriction material, but the cannula may be made of other materials or liners, or may be without liners. have. Proximal portion 1804 may include an interior space for receiving an entry ridge with outer ridges 1806 and 1808 and a channel, as shown in FIGS. 22, 23A-23B, which is described in more detail below. Examples of applicable accessory clamps and accessories, such as cannulas, are disclosed in pending US patent application Ser. No. 11 / 240,087, filed Sep. 30, 2005, which is hereby incorporated by reference in its entirety for all purposes.

본 개시의 구체예에 따른 이제 도 22 및 23a-23b에 관해서, 도 22는 도 21의 캐뉼라(1800)의 단면도, 및 장착된 진입 가이드 튜브(2200)의 단면도를 예시한다. 기구 조작기(1942)는 조작기 플랫폼의 회전 가능한 베이스 플레이트(1940)에, 한 예에서 텔레스코핑 삽입 메커니즘(1942a)에 의해 연결되며, 기구(2160)는 기구 조작기(1942)에 장착된다(예를 들어, 기구 조작기의 원위면 또는 근위면에). 한 구체예에서, 텔레스코핑 삽입 메커니즘(1942a)은 회전 가능한 베이스 플레이트(1940)에 대칭 장착되며, 한 예에서 서로 90도 떨어지게 설정되어 4개의 기구 조작기를 제공한다. 삽입 메커니즘(및 그에 따른 기구 조작기와 기구)의 다른 구성 및 수도 가능하다.Referring now to FIGS. 22 and 23A-23B in accordance with embodiments of the present disclosure, FIG. 22 illustrates a cross-sectional view of cannula 1800 of FIG. 21, and a cross-sectional view of mounted entry guide tube 2200. Instrument manipulator 1942 is connected to rotatable base plate 1940 of the manipulator platform, in one example by telescoping insertion mechanism 1942a, and instrument 2160 is mounted to instrument manipulator 1942 (eg , On the distal or proximal surface of the instrument manipulator). In one embodiment, the telescoping insertion mechanism 1942a is symmetrically mounted to the rotatable base plate 1940 and in one example is set 90 degrees apart from each other to provide four instrument manipulators. Other configurations and configurations of the insertion mechanism (and hence the instrument manipulator and instrument) are possible.

따라서, 기구(2160)는 기구 샤프트(2160b)들이 조작기 조립체 롤 축(1941) 주위에 클러스터를 이루도록 기구 조작기(1942)에 장착된다. 각 샤프트(2160b)는 기구의 힘 전달 메커니즘(2160a)으로부터 원위 쪽으로 연장되고, 모든 샤프트가 환자 몸안으로의 입구에 위치된 캐뉼라(1800)를 통해서 연장된다. 캐뉼라(1800)는 캐뉼라 장착부(1750)에 의해서 베이스 플레이트(1940)를 기준으로 고정된 위치에 탈착 가능하게 유지되며, 캐뉼라 장착부는 한 구체예에서 제4 조작기 링크(138)에 연결된다. 진입 가이드 튜브(2200)는 캐뉼라(1800)에 삽입되어 그 안에서 자유롭게 회전하고, 각 기구 샤프트(2160b)가 가이드 튜브(2200)의 관련 채널(2204)을 통해 연장된다. 캐뉼라와 가이드 튜브의 중심 종축은 일반적으로 롤 축(1941)과 일치한다. 따라서, 베이스 플레이트(1940)가 회전하여 기구 조작기와 각 가구 샤프트를 회전시킴에 따라 가이드 튜브(2200)도 베이스 플레이트(1940)가 회전함에 따라 캐뉼라 안에서 회전한다. 한 예에서, 진입 가이드 튜브(2200)는 캐뉼라의 중심 종축과 정렬된 가이드 튜브의 중심 종축을 중심으로 캐뉼라 안에서 자유롭게 회전할 수 있으며, 계속해서 캐뉼라의 중심 종축은 조작기 플랫폼의 롤 축(1941)과 정렬되거나 평행하게 이어진다. 다른 구체예에서, 진입 가이드 튜브(2200)는 기구 샤프트를 위해 고정된 지지물이 바람직할 경우 캐뉼라에 고정 장착될 수 있다.Thus, instrument 2160 is mounted to instrument manipulator 1942 such that instrument shafts 2160b cluster in a manipulator assembly roll axis 1941. Each shaft 2160b extends distal from the force transmission mechanism 2160a of the instrument and all shafts extend through cannula 1800 located at the inlet into the patient's body. The cannula 1800 is detachably held in a fixed position relative to the base plate 1940 by the cannula mount 1750, which can be connected to the fourth manipulator link 138 in one embodiment. The entry guide tube 2200 is inserted into the cannula 1800 and freely rotates therein, with each instrument shaft 2160b extending through the associated channel 2204 of the guide tube 2200. The central longitudinal axis of the cannula and guide tube generally coincides with the roll axis 1941. Thus, as the base plate 1940 rotates to rotate the instrument manipulator and each furniture shaft, the guide tube 2200 also rotates in the cannula as the base plate 1940 rotates. In one example, the entry guide tube 2200 can rotate freely within the cannula about a central longitudinal axis of the guide tube aligned with the central longitudinal axis of the cannula, while the central longitudinal axis of the cannula is in line with the roll axis 1941 of the manipulator platform. Aligned or parallel. In another embodiment, the entry guide tube 2200 may be fixedly mounted to the cannula if a support fixed for the instrument shaft is desired.

진입 가이드 튜브(2200)의 단면도는 커플링 립(2202), 튜브(2206) 및 채널 (2204a, 2204b)을 가진 진입 가이드 튜브(2200)의 측면도 및 상면도를 각각 예시하는 도 23a 및 23b의 선 III-III를 따라 취한 것이다. 진입 가이드 튜브(2200)는 튜브(2206)의 근단부 상에 진입 가이드와 캐뉼라의 근위 부분(1804)를 회전 가능하게 연결하기 위한 립(2202)을 포함한다. 한 예에서, 립(2202)은 캐뉼라의 릿지(예를 들어, 도 22의 릿지(1806 및 1808))들을 연결한다. 다른 구체예에서, 진입 가이드는 커플링 립을 필요로 하지 않으며, 이것은 하기 더 설명된다.Cross-sectional views of the entry guide tube 2200 are lines of FIGS. 23A and 23B illustrating side and top views, respectively, of the entry guide tube 2200 with the coupling lip 2202, the tube 2206 and the channels 2204a, 2204b. Taken according to III-III. The entry guide tube 2200 includes a lip 2202 for rotatably connecting the entry guide and the proximal portion 1804 of the cannula on the proximal end of the tube 2206. In one example, lip 2202 connects the ridges of the cannula (eg, ridges 1806 and 1808 of FIG. 22). In another embodiment, the entry guide does not require a coupling lip, which is described further below.

진입 가이드 튜브(2200)는 기구 샤프트(예로서 도 22의 기구 샤프트(2160b))의 통로로서 진입 가이드를 통하는 캐뉼라(2204a, 2204b)를 더 포함한다. 한 양태에서, 1개의 채널 또는 통로가 기구 샤프트마다 제공되며, 채널은 상이한 기하 모양과 크기를 가질 수 있다. 도 23a 및 23b에 예시된 것처럼, 채널(2204a)은 채널(2204b)과는 다른 모양과 크기를 가지며, 한 예에서 채널(2204a)은 더 크고 더 강직성인 샤프트를 가진 카메라 기구를 안내하는데 사용되고, 채널(2204b)은 전형적인 기구의 기구 샤프트를 안내하는데 사용된다. 다른 모양과 크기의 채널들도 적용될 수 있으며, 제한은 아니지만 원형, 계란형, 타원형, 삼각형, 정사각형, 직사각형 및 다각형의 모양을 가진 개구를 포함한다.The entry guide tube 2200 further includes cannula 2204a, 2204b through the entry guide as a passageway for the instrument shaft (eg, the instrument shaft 2160b of FIG. 22). In one aspect, one channel or passageway is provided per instrument shaft, and the channels can have different geometric shapes and sizes. As illustrated in Figures 23A and 23B, channel 2204a has a different shape and size than channel 2204b, and in one example channel 2204a is used to guide a camera mechanism with a larger, more rigid shaft, Channel 2204b is used to guide the instrument shaft of a typical instrument. Other shapes and sizes of channels may also be applied, including but not limited to openings having the shape of round, oval, oval, triangular, square, rectangular and polygonal.

베이스 플레이트가 롤 축(1941)을 중심으로 회전할 때 기구 조작기(1942)와 기구(2160)의 클러스터도 롤 축을 중심으로 회전한다. 기구 샤프트(2160b)가 진입 가이드의 채널(2204) 안에 있는 채로 롤 축(1941)을 중심으로 회전할 때 기구 샤프트는 진입 가이드 채널의 내면에 부딪히게 되고, 적어도 하나의 회전하는 기구 샤프트가 진입 가이드 튜브(2200)를 구동시켜 캐뉼라(1800) 안에서 그것에 대해 회전시킬 수 있으며, 캐뉼라(1800)는 캐뉼라 장착부의 클램프, 예를 들어 캐뉼라 장착부(1750)의 클램프(1754)에 의해서 클램핑되어 정지된 상태로 유지된다.When the base plate rotates about the roll axis 1941, the cluster of the instrument manipulator 1942 and the instrument 2160 also rotates about the roll axis. When the instrument shaft 2160b rotates about the roll axis 1941 while in the channel 2204 of the entry guide, the instrument shaft impinges on the inner surface of the entry guide channel and at least one rotating instrument shaft is The tube 2200 can be driven and rotated about it in the cannula 1800, which can be clamped by a clamp of the cannula mount, for example a clamp 1754 of the cannula mount 1750, in a stationary state. maintain.

기구 샤프트는 각 삽입 메커니즘(1942a)의 움직임에 의해서 독립적으로 또는 서로 협력하여 진입 가이드 채널을 통해 삽입되고 철수될 수 있다. 기구(2160)는 롤 축(1941)을 중심으로 시계 방향 또는 반시계 방향으로 회전할 수 있으며, 그에 따라 진입 가이드 튜브(2200)도 상응하여 롤 축을 중심으로 시계 방향 또는 반시계 방향으로 회전할 수 있다. 또한, 4개의 채널이 진입 가이드에 예시되고, 복수의 기구 샤프트가 진입 가이드와 캐뉼라를 통과하는 것으로 예시되지만, 진입 가이드와 캐뉼라 조립체는 진입 가이드와 캐뉼라를 통해 이어진 다른 수의 채널 및 기구/기구 조립체 샤프트를 가진 수술 시스템 안에서 기능할 수 있다. 예를 들어, 진입 가이드와 캐뉼라를 통해 하나 이상의 기구/기구 조립체 샤프트가 이어지는 하나 이상의 채널을 가진 진입 가이드 튜브도 본 개시의 범위 내에 들어간다. 또한, 기구 샤프트에 의해 제공되어 진입 가이드를 회전시킬 수 있는 토크는 복수의 기구 샤프트에 의해 대칭 제공될 필요는 없으며, 단일 기구 샤프트에 의해서 제공되는 토크의 대부분을 포함해서 비대칭으로 그리고 독립적으로 제공될 수 있다.The instrument shaft can be inserted and withdrawn through the entry guide channel independently or in cooperation with each other by the movement of each insertion mechanism 1942a. The instrument 2160 can rotate clockwise or counterclockwise about the roll axis 1941 so that the entry guide tube 2200 can correspondingly rotate clockwise or counterclockwise about the roll axis. have. In addition, although four channels are illustrated in the entry guide and a plurality of instrument shafts are illustrated passing through the entry guide and cannula, the entry guide and cannula assembly is a different number of channels and instrument / instrument assemblies that run through the entry guide and cannula. Can function within a surgical system with a shaft. For example, an entry guide tube having one or more channels through which the one or more instrument / instrument assembly shafts lead through the entry guide and cannula also falls within the scope of the present disclosure. Furthermore, the torque provided by the instrument shaft to rotate the entry guide need not be provided symmetrically by the plurality of instrument shafts, but asymmetrically and independently, including most of the torque provided by the single instrument shaft. Can be.

한 구체예에서, 진입 가이드 튜브(2200)와 캐뉼라(1800)는 각각 라디오 주파수 식별(RFID) 칩 또는 택과 같은 전자 인터페이스 또는 무선 인터페이스를 포함하며, 이것은 캐뉼라 및/또는 진입 가이드 튜브에 대한 정보를 확인하는 것을 포함하고, 수술 시스템이 특정한 진입 가이드 및/또는 캐뉼라의 식별을 인식할 수 있도록 한다(예를 들어, 조작기 암에 의해 판독된다). 또한, 금속 링, 기계적 핀 및 유도 감지 메커니즘을 사용하여 식별 데이터를 판독할 수 있다. 이런 전자 또는 무선 인터페이스는 데이터(예를 들어, 진입 가이드 튜브/캐뉼라 타입)가 수술 시스템으로 전달되는 것을 허용한다. 다양한 기구, 가이드 튜브 및 영상 시스템을 위한 기계적 및 전기적 인터페이스와 멸균 필드를 보존하기 위한 멸균 드레이프 적용에 대한 상세한 내용은 모두 본원에 참고로 포함되는 미국특허 제6,866,671호(Tierney et al.) 및 제6,132,368호(Cooper)에서 논의되며, 이들은 진입 가이드 및 캐뉼라와 함께 유사하게 사용될 수 있다.In one embodiment, the entry guide tube 2200 and the cannula 1800 each comprise an electronic or wireless interface, such as a radio frequency identification (RFID) chip or tag, which provides information about the cannula and / or entry guide tube. And confirming, allowing the surgical system to recognize the identification of the particular entry guide and / or cannula (eg, read by the manipulator arm). In addition, identification data can be read using metal rings, mechanical pins, and inductive sensing mechanisms. Such an electronic or air interface allows data (eg, entry guide tube / cannula type) to be transferred to the surgical system. Details of the application of sterile drape to preserve sterile fields and mechanical and electrical interfaces for various instruments, guide tubes and imaging systems are all described in US Pat. Nos. 6,866,671 (Tierney et al.) And 6,132,368, which are incorporated herein by reference. Discussed in Cooper, these can similarly be used with the entry guide and cannula.

다른 구체예에서, 진입 가이드 튜브는 커플링 립을 포함하지 않을 수 있다는 것이 더 주지된다. 도 24는 캐뉼라(2400)에 장착된 진입 가이드 튜브(2300)의 단면도를 예시한다. 진입 가이드 튜브(2300)는 채널(2304)을 포함하며, 상기 설명된 진입 가이드 튜브(2200)와 유사하지만 커플링 립을 포함하지 않는다. 대신, 진입 가이드 튜브(2300)는 진입 가이드 튜브 채널(2304)의 내벽에 기구 샤프트(2160b)가 부딪히는 힘에 의해서 캐뉼라의 근위 부분에 회전 가능하게 연결된다. 또한, 캐뉼라가 근위 부분에 외부 릿지를 포함할 필요가 없다는 것이 주지된다. 또한, 한 양태에서, 진입 가이드 튜브는 진입 가이드 튜브를 통해 이어진 기구 샤프트에 의해서 구동되는, 캐뉼라의 종축 또는 롤 축을 따라 길이 방향으로 회전하면서 움직일 수 있다.It is further noted that in other embodiments, the entry guide tube may not include a coupling lip. 24 illustrates a cross-sectional view of entry guide tube 2300 mounted to cannula 2400. The entry guide tube 2300 includes a channel 2304 and is similar to the entry guide tube 2200 described above but without a coupling lip. Instead, the entry guide tube 2300 is rotatably connected to the proximal portion of the cannula by a force against which the instrument shaft 2160b strikes the inner wall of the entry guide tube channel 2304. It is also noted that the cannula does not need to include an outer ridge in the proximal portion. In addition, in one aspect, the entry guide tube can move while rotating longitudinally along the longitudinal axis or roll axis of the cannula, which is driven by an instrument shaft running through the entry guide tube.

이제 도 24a-24d에 관해서, 상기 설명된 진입 가이드와 함께 사용될 수 있는 캐뉼라 장착 암, 클램프 및 캐뉼라의 상이한 구체예가 예시된다. 도 24a 및 24b는 접힌 위치와 전개된 작동 위치에 있는 움직일 수 있고/있거나 탈착할 수 있는 캐뉼라 장착부(2450)의 구체예의 투시도를 각각 예시한다. 캐뉼라 장착부(2450)는 제4 조작기 링크(138)(도 1a, 1b)의 근단부에 인접한 것과 같이 기구 조작기 조립체 플랫폼(2440)을 가진 조작기 암의 링크(2438)에 움직일 수 있게 연결된 연장부(2452)를 포함한다. 한 실시형태에서, 연장부(2452)는 링크(2438)에 인접한 집어 넣어진 위치와 정확한 위치에 캐뉼라를 유지한 작동 위치 사이에서 연장부(2452)가 움직이도록 허용하는 회전 조인트(2453)에 의해서 링크(2438)에 연결되며, 이로써 원격 동작 중심이 캐뉼라를 따라 위치되게 된다. 한 실시형태에서, 연장부(2452)는 화살표 D로 도시된 대로 위를 향해 회전되거나 링크(2438)를 향해 접힐 수 있으며, 이로써 환자 주위에 더 많은 공간이 생기고/생기거나 조작기 암에 드레이프를 덮을 때 드레이프를 캐뉼라 장착부 위에 더 쉽게 입힐 수 있게 된다. 연장부(2452)를 연결하는데 다른 조인트들도 사용될 수 있으며, 제한은 아니지만 이들은 볼 소켓 조인트 또는 만능 조인트, 텔레스코핑 효과를 내는 슬라이딩 조인트 등을 포함하고, 이로써 연장부는 링크에 더 가까이 이동됨으로써 캐뉼라 장착부와 조작기 암의 전체적인 형태 요소를 감소시킬 수 있다. 다른 구체예에서, 연장부(2452)는 조작기 암에 대해 안쪽으로 텔레스코핑될 수 있거나, 또는 연장부(2452)는 링크로부터 탈착될 수 있고, 링크에 작동 가능하게 연결될 수 있다. Referring now to FIGS. 24A-24D, different embodiments of cannula mounting arms, clamps, and cannula that can be used with the entry guide described above are illustrated. 24A and 24B illustrate perspective views of embodiments of movable and / or removable cannula mounts 2450 in the folded and deployed operating positions, respectively. Cannula mount 2450 is operatively connected to link 2438 of manipulator arm with instrument manipulator assembly platform 2440 as adjacent the proximal end of fourth manipulator link 138 (FIGS. 1A, 1B). ). In one embodiment, the extension 2452 is by means of a rotary joint 2453 allowing the extension 2452 to move between the retracted position adjacent the link 2438 and the operating position keeping the cannula in the correct position. Link 2438, whereby the center of remote operation is located along the cannula. In one embodiment, extension 2452 can be rotated up or folded toward link 2438 as shown by arrow D, thereby creating more space around the patient and / or covering the drape on the manipulator arm. This makes it easier to coat the drape over the cannula mount. Other joints may also be used to connect extension 2452, including but not limited to, ball socket joints or universal joints, telescoping sliding joints, and the like, whereby the extension is moved closer to the link so that the cannula mount And reduce the overall shape element of the manipulator arm. In other embodiments, the extension 2452 can be telescoped inwardly with respect to the manipulator arm, or the extension 2452 can be detached from the link, and operatively connected to the link.

캐뉼라 장착부(2450)는 연장부(2452)의 원단부 상에서 수용부(2456) 위에 클램프(2454)를 더 포함한다. 도 24c는 도 24d에 예시된 캐뉼라 장착부(2450)의 클램프(2454)와 수용부(2456)에 장착 가능한 캐뉼라(2470)의 투시도를 예시한다. 한 구체예에서, 캐뉼라(2470)는 보스(2476)를 가진 근위 부분(2474)을 포함한다. 보스(2476)는 짝을 이루는 수용부(2456) 안에 위치된 하부 반구면(2478)을 포함한다(반구면(2478)에서부터 수용부(2456)까지 화살표로 도시된 대로). 보스(2476)는 클램프(2454)와 맞물리는 상부면(2479)을 더 포함하며, 이로써 보스가 제자리에 고정되고, 그에 따라 캐뉼라(2470)도 캐뉼라 장착부 연장부(2452)에 대해 고정된 위치에 고정된다. 클램프(2454)는 레버(2480)에 의해서 가동된다. 캐뉼라(2470)는 기구 샤프트의 통로로서 튜브(2472)를 더 포함한다(도 22 및 24에 도시된 대로). 일단 캐뉼라(2470)가 클램프(2454)와 수용부(2456)에 의해 장착되면 클램프는 캐뉼라(2470)가 회전하지 않도록 할 수 있다. 한 예에서, 튜브(2472)는 스테인리스 스틸로 이루어지고, 튜브(2472)의 내면은 윤활재나 마찰방지재로 코팅되거나 라이닝될 수 있지만, 캐뉼라는 다른 재료나 라이너로 이루어질 수도 있고, 라이너가 없을 수도 있다. 근위 부분(2474)은 도 22 및 23a-23b 및 24에 도시된 대로 채널을 지닌 진입 가이드를 수용하기 위한 내부 공간을 포함한다. 캐뉼라와 같은 적용 가능한 부속 클램프 및 부속품들의 예들은 전체 내용이 모든 취지에 있어서 본원에 참고로 포함되는 2005년 9월 30일 제출된 계류중인 미국 특허출원 제11/240,087에 개시된다.Cannula mount 2450 further includes a clamp 2454 over receiver 2456 on the distal end of extension 2452. FIG. 24C illustrates a perspective view of the cannula 2470 mountable to the clamp 2454 and the receptacle 2456 of the cannula mount 2450 illustrated in FIG. 24D. In one embodiment, cannula 2470 includes a proximal portion 2474 with boss 2476. Boss 2476 includes a lower hemisphere 2478 located within the mating receptacle 2456 (as shown by the arrow from hemisphere 2478 to the receptacle 2456). Boss 2476 further includes an upper surface 2479 that engages clamp 2454, thereby securing the boss in place, such that cannula 2470 is also in a fixed position relative to cannula mount extension 2452. It is fixed. The clamp 2454 is actuated by the lever 2480. Cannula 2470 further includes a tube 2472 as the passageway of the instrument shaft (as shown in FIGS. 22 and 24). Once the cannula 2470 is mounted by the clamp 2454 and the receptacle 2456, the clamp may prevent the cannula 2470 from rotating. In one example, the tube 2472 is made of stainless steel and the inner surface of the tube 2472 may be coated or lined with lubricant or antifriction material, but the cannula may be made of other materials or liners, or may be without liners. have. Proximal portion 2474 includes an interior space for receiving an entry guide with channels as shown in FIGS. 22 and 23A-23B and 24. Examples of applicable accessory clamps and accessories, such as cannulas, are disclosed in pending US patent application Ser. No. 11 / 240,087, filed Sep. 30, 2005, which is hereby incorporated by reference in its entirety for all purposes.

한 양태에서, 상기 설명된 진입 가이드와 캐뉼라 조립체는 취입 및 수술 부위에 취입 가스가 필요한 과정을 지원한다. 진입 가이드와 캐뉼라 조립체를 통한 취입에 관한 추가의 개시는 전체 내용이 모든 취지에 있어서 본원에 참고로 포함되는 2010년 2월 12일 제출된 미국 특허출원 제12/705,439호, 발명의 명칭 "단일 입구 시스템에서 다수의 기구를 위한 진입 가이드"에서 찾을 수 있다.In one aspect, the entry guide and cannula assembly described above supports a process that requires blowing gas at the blowing and surgical site. Further disclosure regarding the intake through the entry guide and cannula assembly is described in U.S. patent application Ser. No. 12 / 705,439, filed Feb. 12, 2010, the entire disclosure of which is incorporated herein by reference in its entirety, "single entry." Entry guide for multiple instruments in the system.

유익하게는, 진입 가이드가 기구 샤프트(들)에 의해 종속되어 구동되기 때문에, 진입 가이드를 회전시키기 위한 모터나 다른 가동 메커니즘에 대한 필요가 사라진다. 또한, 진입 가이드는 환자 또는 수술 부위 근처에서 부피가 큰 가동장치 메커니즘을 없애는 것을 허용한다. 따라서, 진입 가이드와 캐뉼라 조립체는 단일 입구를 통해서 다수의 기구를 유익하게 조직화하여 지지하고, 수술 과정 동안 기구와 다른 장치의 충돌을 줄일 수 있는 효과적이며 확실한 수단을 제공한다.Advantageously, since the entry guide is driven subordinately by the instrument shaft (s), the need for a motor or other actuation mechanism for rotating the entry guide is eliminated. The entry guide also allows for the elimination of bulky actuator mechanisms near the patient or surgical site. Thus, the entry guide and cannula assembly provide an effective and reliable means of beneficially organizing and supporting multiple instruments through a single inlet and reducing the collision of instruments and other devices during the surgical procedure.

단일 입구 수술 시스템 구조Single entrance surgical system structure

도 25a-25c, 26a-26c 및 27a-27c는 환자(P)에 대해 상이한 방향을 향하는 기구 조작기 조립체 롤 축 또는 기구 삽입 축을 가진 수술 시스템(2500)의 상이한 도면들을 예시한다. 도 25a-25c는 환자(P)의 머리(H) 쪽으로 아래 방향으로 지정된 조작기 조립체 롤 축(2541)을 예시한다. 도 26a-26c는 환자(P)의 발(F) 쪽으로 아래 방향으로 지정된 조작기 조립체 롤 축(2541)을 예시한다. 도 27a-27c는 환자(P)의 머리(H) 쪽으로 위를 향해 지정된 조작기 조립체 롤 축(2541)을 예시한다.25A-25C, 26A-26C and 27A-27C illustrate different views of a surgical system 2500 with instrument manipulator assembly roll axes or instrument insertion axes facing different directions relative to patient P. FIGS. 25A-25C illustrate the manipulator assembly roll axis 2541 directed downward toward the head H of the patient P. FIGS. 26A-26C illustrate the manipulator assembly roll axis 2541 directed downward toward the foot F of the patient P. FIGS. 27A-27C illustrate the manipulator assembly roll axis 2541 designated upwards towards the head H of the patient P. FIGS.

수술 시스템(2500)은 로봇 수술 시스템의 원격 동작 중심을 위치시키기 위한 셋업 링크(2518) 및 능동적 근위 링크(2526)와 능동적 원위 링크(2528)를 포함하는 조작기 암 조립체(2501)를 포함하며, 근위 링크(2526)가 능동적 요우 조인트(2524)에 의해서 셋업 링크(2528)에 작동 가능하게 연결된다. 복수의 기구 조작기(2542)가 원위 링크(2528)의 원단부에 회전 가능하게 연결된 기구 조작기 조립체를 형성한다. 한 구체예에서, 복수의 기구 조작기들은 텔레스코핑 삽입 메커니즘(2544)에 의해서 조작기 조립체 플랫폼(2540)에 연결된다. 복수의 기구 조작기(2542)는 롤 축(2541)을 중심으로 회전할 수 있다. 한 구체예에서, 복수의 기구 조작기는 각각 원위면을 포함하며, 이 원위면으로부터 복수의 가동장치 출력이 원위 쪽으로 돌출되고, 복수의 수술 기구(2560)가 상응하는 기구 조작기의 원위면에 연결된다. 캐뉼라 장착부(2550)가 원위 링크(2528)에 움직일 수 있게 연결되고, 캐뉼라와 진입 가이드 튜브 조립체(2552)가 캐뉼라 장착부(2550)에 연결된다. 한 구체예에서, 캐뉼라는 롤 축(2541)과 실질적으로 일치하는 중심 종축을 가진다. 각 수술 기구는 진입 가이드 튜브와 캐뉼라를 통과하는 샤프트를 가지며, 이로써 적어도 하나의 기구 샤프트의 회전이 캐뉼라의 종축을 중심으로 진입 가이드 튜브를 회전시킨다.The surgical system 2500 includes a manipulator arm assembly 2501 that includes a setup link 2518 and an active proximal link 2526 and an active distal link 2528 for locating a remote operating center of the robotic surgical system, Link 2526 is operatively connected to setup link 2528 by active yoke joint 2524. A plurality of instrument manipulators 2252 form an instrument manipulator assembly rotatably connected to the distal end of distal link 2528. In one embodiment, the plurality of instrument manipulators are connected to manipulator assembly platform 2540 by telescoping insertion mechanism 2544. The plurality of instrument manipulators 2254 can rotate about the roll axis 2581. In one embodiment, the plurality of instrument manipulators each includes a distal face, from which the plurality of mover outputs protrude toward the distal face and a plurality of surgical instruments 2560 are connected to the distal face of the corresponding instrument manipulator. . Cannula mount 2550 is movably connected to distal link 2528, and cannula and entry guide tube assembly 2552 is connected to cannula mount 2550. In one embodiment, the cannula has a central longitudinal axis substantially coincident with the roll axis 2581. Each surgical instrument has an entry guide tube and a shaft through the cannula such that rotation of at least one instrument shaft rotates the entry guide tube about the longitudinal axis of the cannula.

요우 조인트(2524)에서 수직 조작기 조립체 요우 축(2523)은 수술 시스템의 원격 동작 중심을 중심으로 근위 링크(2526)가 실질적으로 360도 이상 회전할 수 있도록 한다(예를 들어, 도 2c를 참조한다). 한 예에서, 조작기 조립체 요우 회전은 연속적일 수 있으며, 다른 예에서 조작기 조립체 요우 회전은 대략 +180도이다. 또 다른 예에서, 조작기 조립체 요우 회전은 대략 660도일 수 있다. 기구가 조작기 조립체 롤 축(2541)과 일반적으로 정렬된 방향으로 환자 몸안으로 삽입되므로, 조작기 암 조립체(2501)를 능동적으로 제어하여 조작기 조립체 요우 축 주위에서 임의의 원하는 방향으로 기구 삽입 방향을 배치 및 재배치할 수 있다(예를 들어, 환자의 머리 쪽을 향한 기구 삽입 방향을 도시하는 도 25a-25c와 환자의 발 쪽을 향한 기구 삽입 방향을 도시하는 도 26a-26c를 참조한다). 이런 능력은 일부 수술 과정에서 매우 유익할 수 있다. 기구가 배꼽에 위치된 단일 입구를 통해 삽입되는 특정한 복부 수술에서(예를 들어, 도 25a-25c를 참조한다), 예를 들어 기구는 환자의 체벽에 새로운 입구를 열 필요 없이 복부의 4개의 사분면 모두에 접근할 수 있도록 위치될 수 있다. 다중 사분면 접근은, 예를 들어 복부 전체에서의 림프절 접근에 필요할 수 있다. 반면에, 다중 입구 원격로봇 수술 시스템의 사용은 다른 복부 사분면에도 더 충분히 접근하기 위해서 환자의 체벽에 추가의 입구를 만들 필요가 있을 수 있다.Vertical manipulator assembly yaw axis 2523 at yaw joint 2524 allows proximal link 2526 to rotate substantially 360 degrees or more about a remote operating center of the surgical system (see, eg, FIG. 2C). ). In one example, manipulator assembly yaw rotation can be continuous, in another example manipulator assembly yaw rotation is approximately +180 degrees. In yet another example, the manipulator assembly yaw rotation can be approximately 660 degrees. Since the instrument is inserted into the patient's body in a direction generally aligned with the manipulator assembly roll axis 2581, the manipulator arm assembly 2501 is actively controlled to position the instrument insertion direction in any desired direction around the manipulator assembly yaw axis and May be repositioned (see, for example, FIGS. 25A-25C showing the direction of instrument insertion towards the patient's head and FIGS. 26A-26C showing the direction of instrument insertion towards the patient's foot). This ability can be very beneficial in some surgical procedures. In certain abdominal surgeries in which the instrument is inserted through a single inlet located in the navel (see, eg, FIGS. 25A-25C), for example, the instrument has four quadrants of the abdomen without having to open a new inlet to the patient's body wall. It can be located to access everyone. Multiple quadrant access may be necessary, for example, for lymph node access throughout the abdomen. On the other hand, the use of a multi-entry telerobot surgical system may need to make additional inlets in the patient's body wall to more fully access other abdominal quadrants.

추가로, 조작기는 기구를 약간 위를 향해 피치된 구성으로 수직으로 아래를 향해 보낼 수 있다(예를 들어, 신체의 구멍(O) 근처에서 위를 향해 피치된 기구 삽입 방향을 도시한 도 27a-27c를 참조한다). 따라서, 단일 진입구를 통해 기구를 진입하는 각도(원격 중심을 중심으로 요우와 피치 모두)는 쉽게 조작되어 변경될 수 있으며, 동시에 또한 환자 안전성과 환자측 요원의 조종능을 위해 진입구 주위에 증가된 공간이 제공될 수 있다.In addition, the manipulator may send the instrument vertically downward in a slightly upwardly pitched configuration (eg, FIG. 27A-showing the instrument insertion direction pitched upward near the hole O of the body). See 27c). Thus, the angle at which the instrument enters through a single entry port (both yaw and pitch about the remote center) can be easily manipulated and changed, while at the same time increasing the space around the entry port for patient safety and patient control. Can be provided.

또한, 조작기 암 조립체(2501)의 링크와 능동적 조인트를 사용해서 단일 진입구 주위에 공간을 만들면서 단일 진입구를 통한 기구의 진입 각도의 피치를 쉽게 조작할 수 있다. 예를 들어, 암 조립체(2501)의 링크는 환자로부터 "멀리 원호를 그리는" 형태 요소를 갖도록 위치될 수 있다. 이러한 멀리 떨어져 원호를 이루는 것은 요우 축(2523)을 중심으로 한 조작기 암의 회전시 조작기 암과 환자의 충돌이 일으나지 않도록 한다. 또한, 이러한 원호는 환자측 요원이 조작기에 쉽게 접근하여 기구를 교환할 수 있도록 하고, 진입구에 쉽게 접근하여 수동 기구(예를 들어, 수동 복강경 기구 또는 리트랙션 장치)를 삽입하고 작동시킬 수 있도록 한다. 다시 말해서, 기구 조작기(2542)의 클러스터의 작업 엔벨로프는 대략 원뿔형일 수 있으며, 원격 동작 중심에 원뿔의 팁이 위치하고, 기구 조작기(2542)의 근단부에 원뿔의 원형 단부가 위치한다. 이러한 작업 엔벨로프는 환자와 수술 로봇 시스템 사이의 방해를 줄이고, 시스템의 동작 범위를 크게 하여 수술 부위 접근성을 개선하며, 수술 스태프들의 환자 접근성을 개선한다.In addition, the link and active joint of manipulator arm assembly 2501 can be used to easily manipulate the pitch of the entry angle of the instrument through a single entry port while creating space around the single entry port. For example, the link of the arm assembly 2501 may be positioned to have a shape element that "draws an arc" from the patient. This distant arc is such that the collision between the manipulator arm and the patient does not occur when the manipulator arm is rotated about the yaw axis 2523. In addition, these arcs allow the patient side personnel to easily access the manipulator to change instruments, and to easily access the entry port to insert and operate a manual instrument (eg, a manual laparoscopic instrument or a retraction device). In other words, the working envelope of the cluster of instrument manipulator 2542 may be approximately conical, with the tip of the cone positioned at the center of the remote operation, and the circular end of the cone positioned at the proximal end of the instrument manipulator 2542. This working envelope reduces the interference between the patient and the surgical robotic system, increases the operating range of the system, improves access to the surgical site, and improves patient accessibility of the surgical staff.

따라서, 조작기 암 조립체(2501)의 구성 및 기하구조는 그것의 큰 동작 범위와 함께 단일 입구를 통한 다중 사분면 수술을 허용한다. 단일 절개부를 통해서 조작기가 기구를 한 방향으로 보낼 수 있고 쉽게 방향을 바꿀 수도 있다. 예를 들어, 환자의 머리 쪽에서 작업한 다음(예를 들어, 도 25a-25c를 참조한다), 일정한 수직 요우 축(2523)을 중심으로 조작기 암을 움직임으로써 환자의 골반 쪽으로 방향을 바꿀 수 있다(예를 들어, 도 26a-26c를 참조한다).Thus, the construction and geometry of manipulator arm assembly 2501 allows multiple quadrant surgery through a single inlet with its large range of operation. A single incision allows the manipulator to send the instrument in one direction and easily change direction. For example, one may work on the patient's head (see, eg, FIGS. 25A-25C) and then turn toward the patient's pelvis by moving the manipulator arm about a constant vertical yaw axis 2523 ( See, eg, FIGS. 26A-26C).

이제 도 28에 관해서, 도식도는 본원에 설명된 수술 기구 조립체와 구성요소들을 통합한 최소 침습 원격수술 시스템의 집중 동작 제어 및 코디네이션 시스템 구조의 양태를 예시한다. 동작 코디네이터 시스템(2802)은 마스터 입력(2804), 센서 입력(2806) 및 최적화 입력(2808)을 수신한다.Referring now to FIG. 28, the schematic diagram illustrates aspects of centralized motion control and coordination system architecture of a minimally invasive telesurgical system incorporating the surgical instrument assembly and components described herein. The operation coordinator system 2802 receives a master input 2804, a sensor input 2806, and an optimization input 2808.

마스터 입력(2804)은 마스터 제어 메커니즘 상에서 의사의 팔, 손목, 손 및 손가락의 움직임을 포함할 수 있다. 입력은 또한 다른 움직임(예를 들어, 버튼, 레버, 스위치 등을 누르거나 움직이는 손가락, 발, 무릎 등) 및 특정 구성요소의 위치 및 방향을 제어하는 명령(예를 들어, 음성)이나 일-특이적 작업을 제어하는 명령(예를 들어, 전기소작 단부 작동기 또는 레이저에 에너지 적용, 영상 시스템 작동 등)으로부터 있을 수 있다.Master input 2804 may include movement of the doctor's arm, wrist, hand and fingers on the master control mechanism. Input can also be other movements (eg, pressing buttons, levers, switches, etc. or moving fingers, feet, knees, etc.) and commands (eg, voice) or one-specific controls to control the position and direction of certain components. Instructions for controlling the enemy task (eg, applying energy to an electrocauterized end actuator or laser, operating an imaging system, etc.).

센서 입력(2806)은, 예를 들어 측정된 서보모터 위치 또는 감지된 휨 정보로부터의 위치 정보를 포함할 수 있다. 본원에 참고로 포함되는 미국 특허출원 제11/491,384호(Larkin, et al.), 발명의 명칭 "섬유 브래그 격자를 이용한 위치 센서를 포함하는 로봇 수술 시스템"은 위치 감지를 위한 섬유 브래그 격자의 사용을 설명한다. 이러한 휨 센서는 본원에 설명된 다양한 기구 및 영상 시스템에 통합될 수 있으며, 구성요소(예를 들어, 단부 작동기 팁)의 위치 및 방향 정보를 결정할 때 사용될 수 있다. 또한, 위치 및 방향 정보는 환자의 외부에 위치된 하나 이상의 센서(예를 들어, 형광투시기, MRI, 초음파 등)에 의해 생성될 수 있으며, 환자 내부에서 구성요소의 위치 및 배향의 변화를 실시간으로 감지한다.Sensor input 2806 may include, for example, position information from measured servomotor position or sensed bending information. US patent application Ser. No. 11 / 491,384 (Larkin, et al.), Incorporated herein by reference, refers to the use of a fiber Bragg grating for position sensing using the invention “robot surgical system comprising a position sensor using a fiber Bragg grating”. Explain. Such bending sensors can be integrated into the various instrumentation and imaging systems described herein and can be used to determine position and orientation information of components (eg, end actuator tips). In addition, the position and orientation information may be generated by one or more sensors (eg, fluoroscopy, MRI, ultrasound, etc.) located outside of the patient, in real time to change the position and orientation of components within the patient. Detect.

아래 설명된 대로, 사용자 인터페이스는 3개의 연결된 제어 모드를 가지며, 이들은 기구(들)에 대한 모드, 영상 시스템에 대한 모드 및 조작기 암 구성 및/또는 롤 축 제어에 대한 모드이다. 가이드 튜브(들)에 대한 모드가 또한 이용될 수 있다. 이들 연결된 모드는 한 부분씩 직접 제어하는 것이 아니라 사용자가 시스템을 전체로서 다룰 수 있도록 한다. 따라서, 동작 코디네이터가 특정한 목표를 달성하기 위해 전체적인 시스템 운동학(즉, 시스템의 전체 DOF)을 어떻게 이용할 수 있을지 결정해야 한다. 예를 들어, 한 가지 목표는 환자 주위의 공간을 최적화하는 것, 또는 조작기 암의 형태 요소를 최소화하는 것일 수 있다. 또 다른 목표는 특정한 구성에 맞춰 기구 작업공간을 최적화하는 것일 수 있다. 다른 목표는 영상 시스템의 시야를 두 기구 사이에 중심을 둔 채로 유지하는 것을 수 있다. 따라서, 최적화 입력(2808)은 하이-레벨 커맨드일 수 있거나, 또는 이 입력은 더 상세한 명령 또는 지각 정보를 포함할 수 있다. 하이-레벨 커맨드의 예는 지능형 컨트롤러에 작업공간을 최적화하라고 하는 명령일 수 있다. 더 상세한 명령의 예는 영상 시스템에 그것의 카메라를 시작하거나 중지하라고 하는 명령일 수 있다. 센서 입력의 예는 작업공간 한계에 도달했다는 신호일 수 있다.As described below, the user interface has three connected control modes, which are the mode for the instrument (s), the mode for the imaging system and the mode for manipulator arm configuration and / or roll axis control. Modes for the guide tube (s) can also be used. These connected modes allow the user to handle the system as a whole, rather than directly controlling it part by part. Thus, one must determine how the motion coordinator can use the overall system kinematics (ie, the overall DOF of the system) to achieve a particular goal. For example, one goal may be to optimize the space around the patient, or to minimize the form factor of the manipulator arm. Another goal may be to optimize the instrument workspace for specific configurations. Another goal may be to keep the vision of the imaging system centered between the two instruments. Thus, optimization input 2808 may be a high-level command, or this input may include more detailed command or perceptual information. An example of a high-level command may be a command to tell the intelligent controller to optimize the workspace. An example of a more detailed command may be a command to the imaging system to start or stop its camera. An example of a sensor input may be a signal that a workspace limit has been reached.

동작 코디네이터(2802)는 다양한 원격수술 시스템 암의 조작기와 관련된 다양한 가동장치 컨트롤러 및 가동장치(예를 들어, 서보모터)에 명령 신호를 출력한다. 도 28은 4개의 기구 컨트롤러(2810), 영상 시스템 컨트롤러(2812), 롤 축 컨트롤러(2814) 및 조작기 암 컨트롤러(2816)에 출력 신호를 전송하는 일례를 묘사하며, 이들은 이어서 기구 가동장치, 능동적 암 조인트, 조작기 플랫폼의 회전 메커니즘, 및 능동적 텔레스코핑 삽입 메커니즘에 제어 신호를 전송할 수 있다. 다른 수의 컨트롤러 및 조합이 사용될 수 있다. 제어 및 피드백 메커니즘과 신호, 예를 들어 위치 정보(예를 들어, 하나 이상의 무선 송신기, RFID 칩 등의) 및 감지 시스템으로부터의 다른 데이터는 본원에 참고로 포함되는 미국 특허출원 제11/762,196호에 개시되며, 이들은 본 개시에 적용될 수 있다.Operation coordinator 2802 outputs command signals to various mover controllers and movers (eg, servomotors) associated with manipulators of the various telesurgical system arms. 28 depicts an example of sending output signals to four instrument controllers 2810, imaging system controller 2812, roll axis controller 2814 and manipulator arm controller 2816, which in turn are instrument actuators, active arms. Control signals can be sent to the joint, the rotation mechanism of the manipulator platform, and the active telescoping insertion mechanism. Other numbers of controllers and combinations can be used. Control and feedback mechanisms and signals, such as location information (eg, one or more wireless transmitters, RFID chips, etc.) and other data from sensing systems, are described in US patent application Ser. No. 11 / 762,196, which is incorporated herein by reference. Disclosed, and they can be applied to the present disclosure.

따라서, 일부 양태에서, 원격수술 시스템을 운용하는 의사는 상기 확인된 적어도 3개의 제어 모드에 동시에 자동으로 접근하게 될 것이며, 이들은 기구를 움직이기 위한 기구 제어 모드, 영상 시스템을 움직이기 위한 영상 시스템 제어 모드, 및 특정한 형태 요소로 또는 서로에 대해 조작기 암의 링크를 구성하거나 조작기 플랫폼의 회전을 구성하고, 또한 다중 사분면 수술을 보장하기 위한 외부 요우 축을 중심으로 한 능동적 움직임을 위한 조작기 암 롤 축 제어 모드이다. 유사한 집중 구조가 본원에 설명된 다양한 다른 메커니즘 양태들에 따라서 작업할 수 있도록 개조될 수 있다.Thus, in some aspects, the physician operating the telesurgical system will automatically access the identified at least three control modes simultaneously, these being the instrument control mode for moving the instrument, the imaging system control for moving the imaging system. Mode, and manipulator arm roll axis control mode for active movement about the outer yaw axis to configure the linkage of the manipulator arms or to configure the rotation of the manipulator platform to specific shape elements or relative to each other. to be. Similar concentrating structures can be adapted to work in accordance with various other mechanism aspects described herein.

도 29는 본원에 설명된 수술 기구 조립체와 구성요소들을 통합한 최소 침습 원격수술 시스템에 대한 분산된 동작 제어 및 코디네이션 시스템 구조의 양태를 예시하는 도식도이다. 도 29에 도시된 예시적인 양태에서, 제어 및 변환 프로세서 (2902)는 2개의 마스터 암 최적화기/컨트롤러(2904a, 2904b)와, 3개의 수술 기구 최적화기/컨트롤러(2906a, 2906b, 2906c)와, 영상 시스템 최적화기/컨트롤러(2908)와, 그리고 롤 축 최적화기/컨트롤러(2910)와 정보를 교환한다. 각 최적화기/컨트롤러는 원격수술 시스템의 마스터 암 또는 종속 암(이것은 예를 들어 카메라(영상 시스템) 암, 기구 암 및 조작기 암을 포함한다)과 관련된다. 최적화기/컨트롤러는 각각 암-특이적 최적화 목표(2912a-2912g)를 수신한다. FIG. 29 is a schematic diagram illustrating aspects of distributed motion control and coordination system architecture for a minimally invasive telesurgical system incorporating the surgical instrument assembly and components described herein. In the exemplary aspect shown in FIG. 29, the control and conversion processor 2902 includes two master arm optimizers / controllers 2904a and 2904b, three surgical instrument optimizers / controllers 2906a, 2906b, and 2906c. Information is exchanged with the imaging system optimizer / controller 2908 and the roll axis optimizer / controller 2910. Each optimizer / controller is associated with a master or subordinate arm of the telesurgery system, which includes, for example, a camera (imaging system) arm, an instrument arm and a manipulator arm. The optimizer / controller each receives a cancer-specific optimization target 2912a-2912g.

제어 및 변환 프로세서(2902)와 다양한 최적화기/컨트롤러 사이의 이중 화살표는 최적화기/컨트롤러의 암과 관련된 추적 데이터의 교환을 표시한다. 추적 데이터는 베이스 프레임과 원위 팁 프레임을 포함하는 전체 암의 완전한 데카르트 구성을 포함한다. 제어 및 변환 프로세서(2902)는 각 최적화기/컨트롤러로부터 수신된 추적 데이터를 모든 최적화기/컨트롤러로 보내고, 이로써 각 최적화기/컨트롤러는 시스템에 있는 모든 암의 현재 데카르트 구성에 대한 데이터를 가지게 된다. 이에 더하여, 각 암의 최적화기/컨트롤러는 암에 특유한 최적화 목표를 수신한다. 다음에, 각 암의 최적화기/컨트롤러는 최적화 목표를 추구할 때 나머지 암 위치를 입력 및 구속으로서 이용한다. 한 양태에서, 각 최적화 컨트롤러는 내장된 로컬 최적화기를 사용해서 그것의 최적화 목표를 추구한다. 각 암의 최적화기/컨트롤러의 최적화 모듈은 독립적으로 켜지거나 꺼질 수 있다. 예를 들어, 단지 영상 시스템과 기구 암의 최적화 모듈만 켜질 수 있다.Double arrows between the control and conversion processor 2902 and various optimizers / controllers indicate the exchange of tracking data associated with the arms of the optimizer / controller. The tracking data includes the complete Cartesian configuration of the entire arm, including the base frame and the distal tip frame. The control and conversion processor 2902 sends tracking data received from each optimizer / controller to all optimizers / controllers, so that each optimizer / controller has data for the current Cartesian configuration of all arms in the system. In addition, the optimizer / controller of each arm receives optimization goals specific to the arm. Next, the optimizer / controller of each arm uses the remaining arm position as input and constraint when pursuing optimization goals. In one aspect, each optimization controller uses its built-in local optimizer to pursue its optimization goals. Each arm's optimizer / controller's optimization module can be turned on or off independently. For example, only the optimization module of the imaging system and the instrument arm can be turned on.

분산된 제어 구조는 집중 구조보다 더 많은 유연성을 제공하지만, 성능이 감소될 가능성이 있다. 그러나, 이런 분산된 구조에서는 최적화가 단일 모듈이 전체 시스템의 상태를 인식하는 집중 구조에서 수행될 수 있는 전체적인 최적화에 비해 국소적이다.Distributed control structures offer more flexibility than centralized structures, but there is a potential for reduced performance. However, in this distributed architecture the optimization is local compared to the overall optimization that can be performed in a centralized structure where a single module is aware of the state of the entire system.

링크 평형추Link Counterweight

이제 근위 링크에서 평형추 메커니즘의 구체예가 도 30a-37c를 참조하여 더 상세히 설명된다. 도 30a는 상기 설명된 암 조립체와 실질적으로 유사한 조작기 암 조립체(3001)를 예시하는데, 상기 설명된 암 조립체의 특징들이 조립체(3001)와 관련해서도 적용될 수 있으며, 도 30b는 암 조립체(3001)의 평형추 근위 링크의 근접도를 예시한다. 도 31-37c는 근위 링크 하우징의 벽이 없는 평형추 시스템의 상이한 양태들 및 도면을 예시한다. 특히, 도 31은 평형추 시스템의 투시도를 예시하고, 도 32a-36c는 조정 핀, 직선 가이드, 및 직선 가이드에 대해 단부 플러그를 움직이기 위한 조정 동작 범위의 도면들을 예시하고, 도 37a-37c는 본 개시의 다양한 양태에 따른 락커 암과 세트 스크류를 도시하는 평형추 근위 링크의 원단부로부터의 상세도를 예시한다.An embodiment of the counterweight mechanism in the proximal link is now described in more detail with reference to FIGS. 30A-37C. 30A illustrates a manipulator arm assembly 3001 that is substantially similar to the arm assembly described above, wherein the features of the arm assembly described above may also be applied in connection with assembly 3001, and FIG. 30B illustrates arm assembly 3001. Illustrates the proximity of the counterweight proximal link of. 31-37C illustrate different aspects and views of a wallless counterweight system of the proximal link housing. In particular, FIG. 31 illustrates a perspective view of a counterweight system, FIGS. 32A-36C illustrate diagrams of an adjustment operating range for moving an end plug relative to an adjustment pin, a straight guide, and a straight guide, and FIGS. 37A-37C Details from the distal end of the counterweight proximal link showing the rocker arm and set screw in accordance with various aspects of the present disclosure are illustrated.

이제 도 30a-30b에 관해서, 조작기 암 조립체(3001)는 요우 조인트에 의해서 셋업 링크에 작동 가능하게 연결되어 조작기 조립체 요우 축(3023)을 형성할 수 있는 근위 링크(3026)를 포함한다. 근위 링크(3026)는 선회 축(3070)을 중심으로 원위 링크(3028)에 회전 가능하게 연결된다. 한 예에서, 모터(3073)를 제어하여 선회 축(3070)을 중심으로 원위 링크(3028)를 선회시킬 수 있다. 한 구체예에서, 원위 링크(3028)는 원위 링크의 원단부에 기구 조작기 조립체 플랫폼(3040)을 포함한다. 캐뉼라 장착부(3050)는 원위 링크(3028)에 움직일 수 있게 연결된다. 한 구체예에서, 플랫폼(3040)은 회전 가능한 베이스 플레이트를 제공하며, 이 위에 기구 조작기가 장착되어 기구 조작기 조립체 롤 축(3041)을 중심으로 회전될 수 있다. 요우 축(3023), 롤 축(3041) 및 기구 조작기 조립체 피치 축(3039)의 교차가 상기 이미 설명된 대로 원격 동작 중심(3046)을 형성한다.Referring now to FIGS. 30A-30B, the manipulator arm assembly 3001 includes a proximal link 3026 that can be operatively connected to the setup link by a yaw joint to form the manipulator assembly yaw axis 3023. Proximal link 3026 is rotatably connected to distal link 3028 about pivot axis 3070. In one example, motor 3073 may be controlled to pivot distal link 3028 about pivot axis 3070. In one embodiment, distal link 3028 includes instrument manipulator assembly platform 3040 at the distal end of the distal link. Cannula mount 3050 is movably connected to distal link 3028. In one embodiment, the platform 3040 provides a rotatable base plate on which the instrument manipulator can be mounted and rotated about the instrument manipulator assembly roll axis 3041. The intersection of the yaw axis 3023, the roll axis 3041 and the instrument manipulator assembly pitch axis 3039 forms a remote center of motion 3046 as already described above.

이제 특히 도 30b 및 31에 관하여, 평형추 링크(3026)는 하우징 근단부 또는 제1 단부(3084a)와 하우징 원단부 또는 제2 단부(3084b) 사이에 이어진 중심 종축(3084c)을 가진 하우징(3084)을 포함한다. 압축 스프링(3080)이 종축(3084c)을 따라 배치되며, 이것은 스프링 근단부 또는 제1 단부(3080a)와 스프링 원단부 또는 제2 단부(3080b)를 가진다. 한 구체예에서, 압축 스프링은 실리콘 크롬 합금으로 이루어지지만, 다른 재료들로 이루어질 수도 있다. 베이스(3092)가 하우징의 제1 단부에 배치되고, 그 사이의 정렬 링(3090)에 의해서 압축 스프링(3080)의 제1 단부(3080a)와 연결된다. 플러그(3074)가 하우징의 제2 단부에 배치되고, 압축 스프링(3080)의 제2 단부(3080b)에 연결된다. 한 구체예에서, 정렬 링(3090)은 압축 스프링(3080)의 제1 단부(3080a)에 고정 연결되며, 플러그(3074)는 스프링 제2 단부(3080b)가 집어 넣어지는 외부 스크류 스레드(예를 들어, 스크류 스레드(3074a))를 포함한다.30B and 31, the counterweight link 3026 now has a housing 3084 with a central longitudinal axis 3084c extending between the housing proximal end or first end 3084a and the housing distal end or second end 3084b. It includes. A compression spring 3080 is disposed along the longitudinal axis 3084c, which has a spring proximal end or first end 3080a and a spring distal end or second end 3080b. In one embodiment, the compression spring is made of a silicon chromium alloy, but may be made of other materials. A base 3092 is disposed at the first end of the housing and is connected with the first end 3080a of the compression spring 3080 by an alignment ring 3090 therebetween. A plug 3074 is disposed at the second end of the housing and is connected to the second end 3080b of the compression spring 3080. In one embodiment, the alignment ring 3090 is fixedly connected to the first end 3080a of the compression spring 3080, and the plug 3094 is connected to an external screw thread (e.g., the spring second end 3080b is retracted). Screw thread 3074a).

케이블의 제1 단부에 커플러(3071)를 가진 케이블(3088)이 원위 링크(3028)로부터의 로드에 연결되고, 케이블(3088)의 제2 단부는 플러그(3074)에 작동 가능하게 연결된다. 커플러(3071)에 있는 케이블(3088)의 로드 베어링 단부로부터 케이블(3088)이 하우징(3084) 바깥쪽의 복수의 도르래(3076 및 3078)를 통과하고, 이어서 베이스(3092)에 있는 도르래(3094)를 통과한 후에 플러그(3074)에 연결된다. 원위 링크(3028)로부터의 로드가 케이블(3088)을 도르래(3094)(도 31)를 중심으로 방향 E1 및 E2로 당겨서 플러그(3074)가 스프링(3080)을 E2 방향으로 압축하며, E2 방향은 선회 축(3070)을 중심으로 원위 링크로부터 로드의 적어도 일부를 평형을 맞출 수 있도록 설정된다.A cable 3088 having a coupler 3071 at the first end of the cable is connected to the rod from the distal link 3028, and the second end of the cable 3088 is operatively connected to the plug 3094. From the rod bearing end of the cable 3088 in the coupler 3081, the cable 3088 passes through a plurality of pulleys 3076 and 3078 outside the housing 3084, and then the pulley 3094 in the base 3092. After passing through, it is connected to plug 3074. The rod from the distal link 3028 pulls the cable 3088 in the direction E1 and E2 about the pulley 3094 (FIG. 31) so that the plug 3094 compresses the spring 3080 in the E2 direction, with the E2 direction being It is configured to balance at least a portion of the rod from the distal link about the pivot axis 3070.

안전성을 증가시키기 위해 케이블(3088)은 여분의 케이블을 포함할 수 있으며, 이들은 여분의 케이블을 가로지른 장력을 대등하게 하는 케이블 장력 이퀄라이저(3082)에 연결된다. 케이블 트위스터(3095)를 선택적으로 사용해서 도르래(3094)와 커플러(3071) 사이에서 여분의 케이블들을 서로 작동 가능하게 연결한다. 복수의 캡 스크류(3075)가 케이블 장력 이퀄라이저(3082)와 플러그(3074) 사이에 배치될 수 있고, 이것을 사용해서 평형추 링크의 힘 분기를 조정할 수 있다. 한 구체예에서, 3개의 캡 스크류(3075)가 케이블 장력 이퀄라이저(3082)와 플러그(3074)를 연결하며, 1개의 캡 스크류는 실질적으로 모든 장력을 지탱하고, 나머지 2개의 캡 스크류는 여분성과 안전성을 위해 제공된다.To increase safety, the cable 3088 may include extra cables, which are coupled to a cable tension equalizer 3082 that equalizes the tension across the extra cable. The cable twister 3095 is optionally used to operatively connect the extra cables between the pulley 3094 and the coupler 3071. A plurality of cap screws 3075 may be disposed between the cable tension equalizer 3082 and the plug 3074, which may be used to adjust the force divergence of the counterweight link. In one embodiment, three cap screws 3075 connect the cable tension equalizer 3082 and the plugs 3074, one cap screw bears substantially all tension, and the other two cap screws are redundant and safe. Is provided for.

한 양태에서, 도르래(3094)와 플러그(3074) 사이의 케이블(3088) 부분은 실질적으로 근위 링크 하우징의 중심 종축(3084c)을 따라 이어진다. 다른 양태에서, 스프링(3080)은 실질적으로 근위 링크 하우징의 중심 종축(3084c)을 따라 압축된다. 그러나, 스프링 압축은 하우징의 종축을 따라 스프링의 "보잉" 또는 비-직선 압축을 일으킬 수 있고, 이것은 연삭 및 근위 링크 하우징의 내면과 스프링의 접촉을 일으킬 수 있다. 보잉을 줄이거나 실질적으로 제거하기 위해서 제1 및 제2 단부(3080a 및 3080b) 모두에서 스프링(3080)의 방향은 본 개시의 다양한 양태에 따라서 조정될 수 있다. 또한, 한 구체예에서, 하우징은 하우징(3084c)의 종축과 평행하게 배치된 직선 가이드 트랙(3096)을 포함한다. 직선 가이드 트랙(3096)에 움직일 수 있고 슬라이드 가능하게 이어진 직선 가이드(3086)가 압축 스프링(3080)의 코일에 고정 연결된다. 직선 가이드 트랙(3096)에 또한 움직일 수 있게 또는 슬라이드 가능하게 이어진 직선 가이드(3072)가 플러그(3074)에 작동 가능하게 연결된다. 직선 가이드 트랙(3096)과 직선 가이드(3086 및 3072)는 더 나아가 압축 스프링(3080)의 보잉을 줄이거나 실질적으로 제거한다. 일부 구체예에서, 평형추 시스템은 직선 가이드와 직선 가이드 트랙 없이 작동될 수 있다는 것이 주지되어야 한다.In one aspect, the portion of the cable 3088 between the pulley 3094 and the plug 3074 substantially runs along the central longitudinal axis 3084c of the proximal link housing. In another aspect, the spring 3080 is compressed substantially along the central longitudinal axis 3084c of the proximal link housing. However, spring compression may cause "boeing" or non-linear compression of the spring along the longitudinal axis of the housing, which may cause contact of the spring with the inner surface of the grinding and proximal link housing. In order to reduce or substantially eliminate bowing, the orientation of the spring 3080 at both the first and second ends 3080a and 3080b can be adjusted in accordance with various aspects of the present disclosure. In addition, in one embodiment, the housing includes a straight guide track 3096 disposed parallel to the longitudinal axis of the housing 3084c. A linear guide 3086 movable and slidably connected to the straight guide track 3096 is fixedly connected to the coil of the compression spring 3080. A linear guide 3062, movably or slidably connected to the straight guide track 3096, is operatively connected to the plug 3094. The straight guide track 3096 and the straight guides 3086 and 3072 further reduce or substantially eliminate the bowing of the compression spring 3080. It should be noted that in some embodiments, the counterweight system can be operated without a straight guide and a straight guide track.

이제 압축 스프링의 제1 단부 또는 근단부의 조정 가능한 정렬과 관련하여, 한 양태에서 정렬 링(3090)이 복수의 조정 스크류(3091)에 의해서 베이스(3092)에 움직일 수 있게 연결되며, 이로써 조정 스크류(3091)의 움직임이 정렬 링(3090)의 방향을 조정하고, 그에 따라 스프링(3080a)의 제1 단부의 방향이 정렬 링(3090)에 고정 연결된다. 한 예에서, 베이스(3092)는 정사각형 또는 직사각형 구성으로 서로 떨어져 있도록 설정된 4개의 조정 스크류(3091)에 의해서 정렬 링(3090)에 연결된다. 스크류의 다른 기하 구성들도 가능하다. 조정 스크류(3091)는 각각 정렬 링(3090)의 평면 상부면에 실질적으로 수직인 방향으로 움직이며(예를 들어, 내부 스크류 스레드를 가진 베이스 구멍을 통한 스크류 작용에 의해), 이로써 정렬 링의 방향은 조정 스크류와의 각 접촉 지점에서 조정될 수 있다. 따라서, 정렬 링(3090)의 방향과 스프링(3080)의 고정 연결된 제1 단부(3080a)는 정렬 링(3090)을 따라 여러 지점에서 조정될 수 있다. 더 많은 또는 더 적은 조정 스크류(3091)도 본 개시의 범위 내에 들어간다.With regard to the adjustable alignment of the first end or the proximal end of the compression spring, in one aspect the alignment ring 3090 is now movably connected to the base 3092 by means of a plurality of adjustment screws 3071, thereby adjusting the adjustment screw ( The movement of 3091 adjusts the direction of the alignment ring 3090 such that the direction of the first end of the spring 3080a is fixedly connected to the alignment ring 3090. In one example, the base 3092 is connected to the alignment ring 3090 by four adjustment screws 3091 set to be spaced apart from each other in a square or rectangular configuration. Other geometric configurations of the screw are also possible. The adjusting screw 3091 each moves in a direction substantially perpendicular to the planar top surface of the alignment ring 3090 (eg, by screw action through a base hole with an internal screw thread), thereby directing the alignment ring. Can be adjusted at each point of contact with the adjustment screw. Thus, the direction of the alignment ring 3090 and the fixedly connected first end 3080a of the spring 3080 can be adjusted at various points along the alignment ring 3090. More or fewer adjustment screws 3031 are also within the scope of the present disclosure.

이제 도 32a-37c에 관해서, 링크 하우징의 벽이 없는 평형추 근위 링크의 원단부로부터의 상세도가 예시된다. 특히, 이 도면들은 본 개시의 다양한 양태에 따른 조정 핀(3106), 락커 암(3108), 및 단부 플러그(3074)와 스프링(3080)의 고정 연결된 제2 단부(3080b)의 방향을 조정하기 위한 조정 핀과 락커 암의 동작 범위의 도면들을 예시한다.Referring now to FIGS. 32A-37C, a detailed view from the distal end of the counterweight proximal link without the wall of the link housing is illustrated. In particular, these figures are provided for adjusting the orientation of the adjustment pin 3106, the rocker arm 3108, and the fixedly connected second end 3080b of the end plug 3074 and the spring 3080 according to various aspects of the present disclosure. Illustrate diagrams of the operating range of the adjustment pin and the rocker arm.

도 32a는 평형추 시스템의 하부 투시도를 예시하고, 도 32b는 도 31, 32a 및 37a의 선 IV-IV를 따른 단면의 투시도를 예시한다. 상기 주지된 대로, 복수의 캡 스크류(3075a 및 3075b)가 케이블 장력 이퀄라이저(3082)와 플러그(3074) 사이에 배치되어 이들을 연결한다. 이 구체예에서, 캡 스크류(3075a)는 모든 장력을 지탱하고, 나머지 2개의 캡 스크류(3075b)는 여분성과 안전성을 위해서 제공된다. 상기 더 주지된 대로, 스프링(3080)의 원단부는 플러그(3074)의 외부 스크류 스레드(3074a) 상에서 스크류를 작용시킴으로써 플러그(3074)에 연결된다. 선택적으로 플러그(3074)는 플러그의 중량을 가볍게 하기 위해 형성된 복수의 홈(3200)을 포함한다. 또한, 직선 가이드(3072)는 직선 가이드 플랜지(3072a)에 의해 직선 가이드 트랙(3096)에 슬라이드 가능하게 연결될 수 있다.FIG. 32A illustrates a bottom perspective view of the counterweight system, and FIG. 32B illustrates a perspective view of the cross section along line IV-IV of FIGS. 31, 32A and 37A. As noted above, a plurality of cap screws 3075a and 3075b are disposed between and connect the cable tension equalizer 3062 and the plug 3074. In this embodiment, the cap screw 3075a bears all tension, and the remaining two cap screws 3075b are provided for redundancy and safety. As further noted above, the distal end of the spring 3080 is connected to the plug 3094 by acting a screw on the outer screw thread 3074a of the plug 3074. Optionally, plug 3074 includes a plurality of grooves 3200 formed to lighten the weight of the plug. In addition, the straight guide 3062 may be slidably connected to the straight guide track 3096 by the straight guide flange 3062a.

도 32a-32b에서 볼 수 있는 것처럼, 플러그(3074)는 조정 핀(3106), 조정 핀(3106)의 내부 채널을 통해 이어진 소켓 스크류(3104) 및 소켓 스크류(3104)의 자유 단부(3104a) 위에서 스크류되어 조정 핀(3106)과 직선 가이드(3072)의 위치를 서로에 대해 제자리에 고정시키는 너트(3102)에 의해 직선 가이드(3072)에 연결된다. 한 구체예에서, 소켓 스크류(3104)는 6-소켓 스크류이다. 소켓 스크류(3104)의 헤드(3104b)는 자유 단부(3104a)와 대향하여 있으며, 조정 핀(3106)의 맞물리는 트렌치(3105) 내부에 위치되어 너트(3102)가 소켓 스크류의 자유 단부(3104a)에서 완전히 맞물렸을 때 소켓 스크류의 헤드 부분을 조정 핀 안에 고정할 수 있고, 이로써 조정 핀(3106)과 직선 가이드(3072)의 위치가 서로에 대해 고정된다.As can be seen in FIGS. 32A-32B, the plug 3074 is positioned over the adjusting pin 3106, the socket screw 3104 leading through the inner channel of the adjusting pin 3106 and the free end 3104a of the socket screw 3104. It is screwed and connected to the straight guide 3062 by a nut 3102 that holds the position of the adjustment pin 3106 and the straight guide 3072 in place relative to each other. In one embodiment, the socket screw 3104 is a six-socket screw. The head 3104b of the socket screw 3104 is opposite the free end 3104a and is located inside the engaging trench 3105 of the adjusting pin 3106 so that the nut 3102 is free end 3104a of the socket screw. When fully engaged in, the head portion of the socket screw can be fixed in the adjustment pin, thereby fixing the position of the adjustment pin 3106 and the straight guide 3062 with respect to each other.

이제 도 33-36c에 관해서, 직선 가이드(3072)에 대한 조정 핀(3106)의 움직임을 조정하는 것이 더 상세히 설명된다. 도 33은 직선 가이드(3072)에 연결된 조정 핀(3106), 원(3114), 및 조정 핀이 직선 가이드(3072)에 대해 제자리에 완전히 고정되지 않았을 때 조정 핀(3106)이 선회할 수 있는 원 중심(3114a)의 측면도를 예시한다. 도 34는 조정 핀(3106)의 중심 종축(3107)이 직선 가이드(3072) 또는 가이드 트랙(3096)의 중심 종축(3097)과 수직일 때의 직선 가이드 마킹(3072b)과 조정 핀 마킹(3106c)을 예시한다. 평형추 시스템(및 특히 플러그 방향)의 조정장치에 의해서 직선 가이드 마킹(3072b)과 조정 핀 마킹(3106c)이 사용되어 조정핀과 직선 가이드의 상대적 위치가 결정될 수 있다. 도 35는 핀 샤프트(3106a)와 핀 헤드(3106b)를 포함하는 조정 핀(3106)의 투시도를 예시한다. 도 33-35에서 볼 수 있는 것처럼, 핀 헤드(3106b)는 직선 가이드(3072)의 곡선면과 작동 가능하게 짝을 이루는 곡선 상부면을 가진다.Referring now to FIGS. 33-36C, adjusting the movement of the adjustment pin 3106 relative to the straight guide 3072 is described in more detail. FIG. 33 shows a circle that can be pivoted when the adjustment pin 3106, circle 3114, and adjustment pin 3106 connected to the straight guide 3062 are not fully secured in place with respect to the straight guide 3072. A side view of the center 3114a is illustrated. 34 shows a linear guide marking 3062b and an adjustment pin marking 3106c when the central longitudinal axis 3107 of the adjustment pin 3106 is perpendicular to the central longitudinal axis 3097 of the straight guide 3072 or the guide track 3096. To illustrate. By means of the adjustment of the counterweight system (and in particular the plug direction) a linear guide marking 3062b and an adjustment pin marking 3106c can be used to determine the relative positions of the adjustment pin and the straight guide. 35 illustrates a perspective view of an adjustment pin 3106 that includes a pin shaft 3106a and a pin head 3106b. As can be seen in FIGS. 33-35, the pin head 3106b has a curved top surface operatively mating with the curved surface of the straight guide 3062.

도 36a-36c는 조정 핀(3106)과 직선 가이드(3072)와 이들의 각각의 중심 종축(3107 및 3097)의 측면도를 각각 예시한다. 도 36a는 직선 가이드(3072)의 중심 종축(3097)에 대한 조정 핀(3106)의 중심 종축(3107)의 수직 위치를 예시하고, 도 36b는 조정 핀(3106)의 중심 종축(3107)이 직선 가이드(3072)의 중심 종축(3097)과 둔각을 형성하는 위치를 예시하고, 도 36c는 조정 핀(3106)의 중심 종축(3107)이 직선 가이드(3072)의 중심 종축(3097)과 예각을 형성하는 위치를 예시한다. 따라서, 도 36a-36c는 직선 가이드(3072)에 대한 조정 핀(3106)의 선회 움직임과 그에 따라 플러그(3074)와 스프링(3080)의 고정 연결된 제2 단부(3080b)에 대해 이루어질 수 있는 방향 조정을 예시한다.36A-36C illustrate side views of the adjustment pins 3106 and straight guides 3072 and their respective central longitudinal axes 3107 and 3097, respectively. 36A illustrates the vertical position of the central longitudinal axis 3107 of the adjustment pin 3106 with respect to the central longitudinal axis 3097 of the straight guide 3062, and FIG. 36B shows that the central longitudinal axis 3107 of the adjustment pin 3106 is straight. 36C illustrates a position forming an obtuse angle with the central longitudinal axis 3097 of the guide 3062, and FIG. 36C shows that the central longitudinal axis 3107 of the adjusting pin 3106 forms an acute angle with the central longitudinal axis 3097 of the straight guide 3072. The position to illustrate is illustrated. 36A-36C thus illustrate the pivoting movement of the adjustment pin 3106 relative to the straight guide 3062 and thus the direction adjustments that may be made to the fixedly connected second end 3080b of the plug 3074 and the spring 3080. To illustrate.

도 37a는 락커 암(3108)과 세트 스크류(3110)를 도시하는 평형추 시스템의 또 다른 하부 투시도를 예시하고, 도 37b는 플러그(3074)가 제거된 도 37a를 예시하고, 도 37c는 락커 암(3108)이 제거된 도 37b를 예시한다. 락커 암(3108)은 핀 샤프트(3106a)의 자유 단부에 있는 조정 핀(3106)에 연결되고, 세트 스크류(3110)는 락커 암(3108)과 플러그(3074)를 연결한다. 크로스 디스크 핀(3112)은 락커 암(3108)을 조정 핀(3106)에 클램프한다. 락커 암(3108)과 연결된 플러그(3074)는 조정 핀(3106)의 중심 종축(3107)을 중심으로 선회할 수 있고, 종축(3107)에 실질적으로 수직인 방향으로 세트 스크류(3110)의 움직임에 의해서, 예를 들어 내부 스크류 스레드를 가진 락커 암 구멍을 통한 스크류 작용에 의해서 조정될 수 있다. 따라서, 플러그(3074)와 스프링(3080)의 고정 연결된 제2 단부(3080b)의 방향은 세트 스크류(3110)과 접촉하는 각 지점에서 조정될 수 있다. 더 많은 또는 더 적은 조정 스크류(3110)도 본 개시의 범위 내에 들어간다. 따라서, 플러그와 그에 따른 스프링(3080)의 제2 또는 원단부의 방향은 조정 핀(3106)과 락커 암(3108)을 선회시킴으로써 다양한 지점에서 조정될 수 있다. 한 양태에서, 조정 핀(3106)과 락커 암(3108)은 서로 수직인 축들을 중심으로 선회한다.FIG. 37A illustrates another bottom perspective view of the counterweight system showing the rocker arm 3108 and the set screw 3110, FIG. 37B illustrates FIG. 37A with the plug 3074 removed, and FIG. 37C the rocker arm 3108 illustrates the removal of FIG. 37B. The rocker arm 3108 is connected to an adjustment pin 3106 at the free end of the pin shaft 3106a and a set screw 3110 connects the rocker arm 3108 and the plug 3074. Cross disc pin 3112 clamps rocker arm 3108 to adjustment pin 3106. The plug 3074 connected with the rocker arm 3108 may pivot about the central longitudinal axis 3107 of the adjustment pin 3106 and may be adapted to the movement of the set screw 3110 in a direction substantially perpendicular to the longitudinal axis 3107. By means of screw action through a rocker arm hole with an internal screw thread, for example. Thus, the orientation of the fixedly connected second end 3080b of the plug 3074 and the spring 3080 can be adjusted at each point in contact with the set screw 3110. More or fewer adjustment screws 3110 are also within the scope of the present disclosure. Thus, the orientation of the second or distal end of the plug and thus of the spring 3080 can be adjusted at various points by pivoting the adjustment pin 3106 and the rocker arm 3108. In one aspect, the adjustment pin 3106 and the rocker arm 3108 pivot about axes perpendicular to each other.

또한, 본 개시의 평형추 링크는 플러그와 압축 스프링의 제2 단부 사이를 조정함으로써 압축 스프링에서 압축될 수 있는 능동적 코일의 수를 변화시킬 수 있다. 한 양태에서, 압축 스프링의 제2 단부는 플러그의 외부 스크류 스레드 위에서 더 멀리 또는 더 조금 스크류되어 압축될 수 있는 능동적 코일의 수를 변화시킬 수 있다.The counterweight link of the present disclosure can also change the number of active coils that can be compressed in the compression spring by adjusting between the plug and the second end of the compression spring. In one aspect, the second end of the compression spring can change the number of active coils that can be screwed further or less on the outer screw thread of the plug.

유익하게는, 증가된 유익한 로봇 암 구성 및 기구 조작을 위해 모터가 선회 축(3070)을 중심으로 원위 링크(3028)를 선회시킴에 따라, 평형추 근위 링크(3026)는 원위 링크의 더 용이한 움직임을 허용하고, 모터가 원위 링크를 선회시키는데 필요한 토크를 줄이면서 동시에 또한 어떤 모터 장애로부터도 증가된 안정성을 제공한다. 일부 구체예에서, 근위 링크의 평형추 메커니즘이 전체적으로 실패했더라도 원위 링크를 선회시키는 모터에 브레이크가 적용되어 원위 링크를 제자리에 고정할 수 있다.Advantageously, as the motor pivots the distal link 3028 about the pivot axis 3070 for increased beneficial robot arm configuration and instrument manipulation, the counterweight proximal link 3026 is easier to distal of the distal link. It allows movement and reduces the torque required for the motor to swing the distal link while at the same time providing increased stability from any motor failure. In some embodiments, even if the counterweight mechanism of the proximal link has failed in its entirety, a brake may be applied to the motor orbiting the distal link to secure the distal link in place.

상기 설명된 구체예들은 본 개시를 예시하며 제한하지 않는다. 또한, 다수의 변형와 변화가 본 개시의 원리를 따라서 가능하다는 것이 이해되어야 한다. 예를 들어, 많은 양태에서 본원에 설명된 장치는 단일 입구 장치로서 사용되는데, 즉 수술 과정을 완료하는데 필요한 모든 구성요소가 단일 진입구를 통해 몸안으로 들어간다. 그러나, 일부 양태에서 다수의 장치와 입구가 사용될 수 있다.
The embodiments described above illustrate and do not limit the present disclosure. In addition, it should be understood that many modifications and variations are possible in accordance with the principles of the present disclosure. For example, in many embodiments the device described herein is used as a single inlet device, ie all components necessary to complete the surgical procedure enter the body through a single entry port. However, in some embodiments multiple devices and inlets may be used.

Claims (20)

복수의 독립적인 가동장치 구동 모듈로서, 복수의 가동장치 구동 모듈은 각각 가동장치 출력을 포함하고, 가동장치 출력은 각각 또 다른 가동장치 출력으로부터의 힘 입력 없이 수술 기구의 상응하는 가동장치 입력을 독립적으로 가동시키도록 구성된 복수의 가동장치 구동 모듈; 및
복수의 독립적인 가동장치 구동 모듈을 수용하는 프레임으로서, 프레임은 원단부를 포함하며, 이 원단부로부터 각각의 가동장치 출력이 원위 쪽으로 돌출하여 수술 기구의 상응하는 가동장치 입력과 맞물리는 프레임
을 포함하는 기구 조작기.
A plurality of independent mover drive modules, the plurality of mover drive modules each including a mover output, each mover output independently of a corresponding mover input of a surgical instrument without force input from another mover output. A plurality of mover drive modules configured to be operated by means of: And
A frame containing a plurality of independent mover drive modules, the frame comprising a distal portion, from which the respective mover output protrudes distal to engage a corresponding mover input of the surgical instrument.
Instrument manipulator comprising a.
제 1 항에 있어서, 복수의 독립적인 가동장치 구동 모듈은 수술 기구의 롤 동작을 가동시키는 롤 출력을 가진 롤 가동장치 구동 모듈, 수술 기구의 그립 동작을 가동시키는 그립 출력을 가진 그립 가동장치 구동 모듈, 수술 기구의 리스트 동작을 가동시키는 리스트 출력을 가진 리스트 가동장치 구동 모듈, 및 수술 기구의 리스트 병진 동작을 가동시키는 조글 출력을 가진 조글 가동장치 구동 모듈을 포함하는 것을 특징으로 하는 기구 조작기.2. The roll mover drive module of claim 1, wherein the plurality of independent mover drive modules includes a roll mover drive module having a roll output for activating a roll operation of the surgical instrument, and a grip mover drive module having a grip output for activating a grip operation of the surgical instrument. And a joggle mover drive module having a list output device for driving a list operation of the surgical instrument and a joggle drive drive module having a joggle output for operating the list translation operation of the surgical instrument. 제 1 항에 있어서, 가동장치 출력은 2-축 짐볼, 디스크, 또는 레버 중 하나인 것을 특징으로 하는 기구 조작기. The instrument manipulator according to claim 1, wherein the mover output is one of a two-axis gym ball, a disc, or a lever. 제 1 항에 있어서, 가동장치 출력은 각각 스프링 로딩된 것을 특징으로 하는 기구 조작기.2. The instrument manipulator according to claim 1, wherein the actuator outputs are each spring loaded. 제 1 항에 있어서, 가동장치 출력은 각각 프레임 원위면의 단일 평면에 실질적으로 수직인 방향으로 스프링 로딩된 것을 특징으로 하는 기구 조작기.The instrument manipulator according to claim 1, wherein the actuator outputs are each spring loaded in a direction substantially perpendicular to a single plane of the frame distal surface. 제 1 항에 있어서, 가동장치 출력은 각각 기구 샤프트의 원위 종축에 실질적으로 평행한 방향으로 스프링 로딩된 것을 특징으로 하는 기구 조작기.2. The instrument manipulator according to claim 1, wherein the actuator outputs are each spring loaded in a direction substantially parallel to the distal longitudinal axis of the instrument shaft. 제 1 항에 있어서, 로봇 수술 시스템의 원위 링크에 작동 가능하게 연결된 베이스 링크와 기구 조작기의 프레임에 작동 가능하게 연결된 캐리지 링크를 가진 텔레스코핑 삽입 메커니즘을 더 포함하는 것을 특징으로 하는 기구 조작기.The instrument manipulator according to claim 1, further comprising a telescoping insertion mechanism having a base link operably connected to the distal link of the robotic surgical system and a carriage link operably connected to the frame of the instrument manipulator. 제 7 항에 있어서, 조작기 프레임은 베이스 링크의 근단부와 캐리어 링크의 원단부 사이에서 텔레스코핑 삽입 메커니즘을 따라 병진하는 것을 특징으로 하는 기구 조작기.8. The instrument manipulator of claim 7, wherein the manipulator frame translates along the telescoping insertion mechanism between the near end of the base link and the distal end of the carrier link. 제 1 항에 있어서, 프레임에 장착된 기구 지지 특징부 및 래치 메커니즘을 더 포함하며, 래치 메커니즘은 프레임의 원위면을 기구 지지 특징부의 원단부를 향해 가까워지거나 멀어지도록 가동시킴으로써 기구를 고정된 위치에 유지한 상태로 조작기의 가동장치 출력과 기구의 가동장치 입력을 작동 가능하게 맞물리거나 맞물림 해제하는 것을 특징으로 하는 기구 조작기.The apparatus of claim 1, further comprising an instrument support feature and a latch mechanism mounted to the frame, wherein the latch mechanism maintains the instrument in a fixed position by moving the distal surface of the frame toward or away from the distal end of the instrument support feature. And in such a state that the movable device output of the manipulator and the movable device input of the device are operatively engaged or disengaged. 제 1 항에 있어서, 멸균 어댑터와 연결하기 위한 복수의 포스트를 더 포함하는 것을 특징으로 하는 기구 조작기.2. The instrument manipulator according to claim 1, further comprising a plurality of posts for connecting with a sterile adapter. 로봇 수술 시스템의 원격 동작 중심을 위치시키기 위한 셋업 링크;
셋업 링크에 작동 가능하게 연결된 근위 링크;
근위 링크에 작동 가능하게 연결된 원위 링크;
원위 링크의 원단부에서 회전 가능한 요소와 작동 가능하게 연결된 복수의 기구 조작기로서, 각 기구 조작기는
복수의 독립적인 가동장치 구동 모듈로서, 복수의 가동장치 구동 모듈은 각각 가동장치 출력을 포함하며, 각각의 가동장치 출력은 또 다른 가동장치 출력으로부터의 힘 입력 없이 수술 기구의 상응하는 가동장치 출력을 독립적으로 가동시키도록 구성된 복수의 가동장치 구동 모듈; 및
복수의 독립적인 가동장치 구동 모듈을 수용하는 프레임으로서, 프레임은 원단부를 포함하며, 이 원단부로부터 각각의 가동장치 출력이 원위 쪽으로 돌출하여 수술 기구의 상응하는 가동장치 입력과 맞물리는 프레임을 포함하는 기구 조작기; 및
각 수술 기구가 상응하는 기구 조작기에 작동 가능하게 연결된 복수의 수술 기구
를 포함하는 로봇 수술 시스템.
A setup link for positioning the teleoperation center of the robotic surgical system;
A proximal link operably connected to the setup link;
A distal link operably connected to the proximal link;
A plurality of instrument manipulators operatively connected to a rotatable element at the distal end of the distal link, each instrument manipulator being
As a plurality of independent mover drive modules, each mover drive module includes a mover output, each mover output having a corresponding mover output of the surgical instrument without force input from another mover output. A plurality of mover drive modules configured to operate independently; And
A frame containing a plurality of independent mover drive modules, the frame comprising a distal portion, wherein each of the mover outputs protrude distal and engage a corresponding mover input of the surgical instrument. Instrument manipulators; And
A plurality of surgical instruments, each surgical instrument operatively connected to a corresponding instrument manipulator
Robotic surgical system comprising a.
제 11 항에 있어서, 복수의 독립적인 가동장치 구동 모듈은 수술 기구의 롤 동작을 가동시키는 롤 출력을 가진 롤 가동장치 구동 모듈, 수술 기구의 그립 동작을 가동시키는 그립 출력을 가진 그립 가동장치 구동 모듈, 수술 기구의 리스트 동작을 가동시키는 리스트 출력을 가진 리스트 가동장치 구동 모듈, 및 수술 기구의 리스트 병진 동작을 가동시키는 조글 출력을 가진 조글 가동장치 구동 모듈을 포함하는 것을 특징으로 하는 시스템.12. The roll mover drive module of claim 11, wherein the plurality of independent mover drive modules comprises a roll mover drive module having a roll output for activating a roll operation of the surgical instrument, and a grip mover drive module having a grip output for activating a grip operation of the surgical instrument. And a list mover drive module having a list output for activating the list operation of the surgical instrument, and a joggle mover drive module having a joggle output for activating the list translation operation of the surgical instrument. 제 11 항에 있어서, 가동장치 출력은 2-축 짐볼, 디스크, 또는 레버 중 하나인 것을 특징으로 하는 시스템.12. The system of claim 11, wherein the actuator output is one of a two-axis gym ball, a disk, or a lever. 제 11 항에 있어서, 가동장치 출력은 각각 프레임 원위면의 단일 평면에 실질적으로 수직인 방향으로 스프링 로딩된 것을 특징으로 하는 시스템.12. The system of claim 11, wherein the mover outputs are each spring loaded in a direction substantially perpendicular to a single plane of the frame distal surface. 제 11 항에 있어서, 가동장치 출력은 각각 기구 샤프트의 원위 종축에 실질적으로 평행한 방향으로 스프링 로딩된 것을 특징으로 하는 시스템.12. The system of claim 11, wherein the actuator outputs are each spring loaded in a direction substantially parallel to the distal longitudinal axis of the instrument shaft. 제 11 항에 있어서, 로봇 수술 시스템의 원위 링크에 작동 가능하게 연결된 베이스 링크와 기구 조작기의 프레임에 작동 가능하게 연결된 캐리지 링크를 가진 텔레스코핑 삽입 메커니즘을 더 포함하는 것을 특징으로 하는 시스템.12. The system of claim 11, further comprising a telescoping insertion mechanism having a base link operatively connected to the distal link of the robotic surgical system and a carriage link operatively connected to the frame of the instrument manipulator. 제 11 항에 있어서, 각 수술 기구는 기구 조작기의 원위면에 작동 가능하게 장착된 근위면을 갖는 것을 특징으로 하는 시스템.12. The system of claim 11, wherein each surgical instrument has a proximal surface operatively mounted to the distal surface of the instrument manipulator. 제 11 항에 있어서, 수술 기구는 쥬, 가위, 그래스퍼, 니들 홀더, 마이크로 디섹터, 스테이플 어플라이어, 트랙커 및 클립 어플라이어와 같은 단부 작동기를 지닌 관절화 도구, 및 커팅 블레이드, 소작 프로브, 자극장치, 카테테르 및 흡입구와 같은 비-관절화 도구로 구성되는 군으로부터 선택되는 것을 특징으로 하는 시스템.12. The surgical instrument of claim 11 wherein the surgical instrument comprises an articulation tool with end actuators such as juices, scissors, graspers, needle holders, micro-disectors, staple appliers, trackers and clip appliers, and cutting blades, cautery probes, stimuli And a non-articulation tool such as a device, catheter and inlet. 제 11 항에 있어서, 원위 링크의 원단부에서 회전 가능한 요소에 배치된 복수의 텔레스코핑 삽입 메커니즘을 더 포함하며, 각 텔레스코핑 삽입 메커니즘은 상응하는 기구 조작기 프레임에 연결되고, 각 기구 조작기 프레임은 나머지 기구 조작기 프레임에 독립적으로 각각의 텔레스코핑 삽입 메커니즘을 따라 병진할 수 있는 것을 특징으로 하는 시스템.12. The apparatus of claim 11, further comprising a plurality of telescoping insertion mechanisms disposed in the rotatable element at the distal end of the distal link, each telescoping insertion mechanism connected to a corresponding instrument manipulator frame, with each instrument manipulator frame remaining. And a system capable of translation along each telescoping insertion mechanism independent of the instrument manipulator frame. 제 11 항에 있어서, 각 기구 조작기는 프레임에 장착된 기구 지지 특징부 및 래치 메커니즘을 더 포함하며, 래치 메커니즘은 프레임의 원위면을 기구 지지 특징부의 원단부를 향해 가까워지거나 멀어지도록 가동시킴으로써 기구를 고정된 위치에 유지한 상태로 조작기의 가동장치 출력과 기구의 가동장치 입력을 작동 가능하게 맞물리거나 맞물림 해제하는 것을 특징으로 하는 시스템.

12. The instrument of claim 11, wherein each instrument manipulator further comprises an instrument support feature and a latch mechanism mounted to the frame, the latch mechanism securing the instrument by moving the distal surface of the frame closer or away from the distal end of the instrument support feature. And operatively engage or disengage the actuator output of the manipulator and the actuator input of the instrument while being held in the closed position.

KR1020127032773A 2010-05-14 2011-05-04 Surgical system instrument manipulator KR101812485B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US33497810P 2010-05-14 2010-05-14
US61/334,978 2010-05-14
US12/855,413 2010-08-12
US12/855,413 US8945148B2 (en) 2007-06-13 2010-08-12 Surgical system instrument manipulator
PCT/US2011/035117 WO2011143022A1 (en) 2010-05-14 2011-05-04 Surgical system instrument manipulator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020177036485A Division KR101911525B1 (en) 2010-05-14 2011-05-04 Surgical system instrument manipulator

Publications (2)

Publication Number Publication Date
KR20130108091A true KR20130108091A (en) 2013-10-02
KR101812485B1 KR101812485B1 (en) 2017-12-28

Family

ID=44121151

Family Applications (14)

Application Number Title Priority Date Filing Date
KR1020127032774A KR20130076825A (en) 2010-05-14 2011-05-04 Surgical system architecture
KR1020197007458A KR102076823B1 (en) 2010-05-14 2011-05-04 Surgical system instrument mounting
KR1020187013393A KR101894849B1 (en) 2010-05-14 2011-05-04 Surgical system sterile drape
KR1020187012564A KR101960345B1 (en) 2010-05-14 2011-05-04 Surgical system instrument mounting
KR1020187030154A KR101990357B1 (en) 2010-05-14 2011-05-04 Instrument manipulating system
KR1020127032773A KR101812485B1 (en) 2010-05-14 2011-05-04 Surgical system instrument manipulator
KR1020177036821A KR101856099B1 (en) 2010-05-14 2011-05-04 Surgical system instrument mounting
KR1020217029784A KR102455184B1 (en) 2010-05-14 2011-05-04 Surgical system instrument mounting
KR1020127032245A KR101812990B1 (en) 2010-05-14 2011-05-04 Surgical system instrument mounting
KR1020177025856A KR101859012B1 (en) 2010-05-14 2011-05-04 Surgical system sterile drape
KR1020207003642A KR102176624B1 (en) 2010-05-14 2011-05-04 Surgical system instrument mounting
KR1020177036485A KR101911525B1 (en) 2010-05-14 2011-05-04 Surgical system instrument manipulator
KR1020127032775A KR101780238B1 (en) 2010-05-14 2011-05-04 Surgical system sterile drape
KR1020207031744A KR102304696B1 (en) 2010-05-14 2011-05-04 Surgical system instrument mounting

Family Applications Before (5)

Application Number Title Priority Date Filing Date
KR1020127032774A KR20130076825A (en) 2010-05-14 2011-05-04 Surgical system architecture
KR1020197007458A KR102076823B1 (en) 2010-05-14 2011-05-04 Surgical system instrument mounting
KR1020187013393A KR101894849B1 (en) 2010-05-14 2011-05-04 Surgical system sterile drape
KR1020187012564A KR101960345B1 (en) 2010-05-14 2011-05-04 Surgical system instrument mounting
KR1020187030154A KR101990357B1 (en) 2010-05-14 2011-05-04 Instrument manipulating system

Family Applications After (8)

Application Number Title Priority Date Filing Date
KR1020177036821A KR101856099B1 (en) 2010-05-14 2011-05-04 Surgical system instrument mounting
KR1020217029784A KR102455184B1 (en) 2010-05-14 2011-05-04 Surgical system instrument mounting
KR1020127032245A KR101812990B1 (en) 2010-05-14 2011-05-04 Surgical system instrument mounting
KR1020177025856A KR101859012B1 (en) 2010-05-14 2011-05-04 Surgical system sterile drape
KR1020207003642A KR102176624B1 (en) 2010-05-14 2011-05-04 Surgical system instrument mounting
KR1020177036485A KR101911525B1 (en) 2010-05-14 2011-05-04 Surgical system instrument manipulator
KR1020127032775A KR101780238B1 (en) 2010-05-14 2011-05-04 Surgical system sterile drape
KR1020207031744A KR102304696B1 (en) 2010-05-14 2011-05-04 Surgical system instrument mounting

Country Status (7)

Country Link
US (25) US8784435B2 (en)
EP (7) EP3677209A1 (en)
JP (8) JP5775154B2 (en)
KR (14) KR20130076825A (en)
CN (9) CN105125263B (en)
BR (4) BR112012028375B1 (en)
WO (6) WO2011143022A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11266344B2 (en) 2016-09-21 2022-03-08 Samsung Electronics Co., Ltd. Method for measuring skin condition and electronic device therefor
US11534253B2 (en) 2016-10-18 2022-12-27 Korea Institute Of Machinery & Materials Interventional procedure handle unit, interventional procedure master device using same, and remote interventional procedure system using same

Families Citing this family (1014)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9259280B2 (en) 1999-09-17 2016-02-16 Intuitive Surgical Operations, Inc. Phantom degrees of freedom in joint estimation and control
US8414505B1 (en) 2001-02-15 2013-04-09 Hansen Medical, Inc. Catheter driver system
US9155544B2 (en) * 2002-03-20 2015-10-13 P Tech, Llc Robotic systems and methods
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US7763015B2 (en) * 2005-01-24 2010-07-27 Intuitive Surgical Operations, Inc. Modular manipulator support for robotic surgery
US7837674B2 (en) 2005-01-24 2010-11-23 Intuitive Surgical Operations, Inc. Compact counter balance for robotic surgical systems
US8496647B2 (en) 2007-12-18 2013-07-30 Intuitive Surgical Operations, Inc. Ribbed force sensor
US8465474B2 (en) 2009-05-19 2013-06-18 Intuitive Surgical Operations, Inc. Cleaning of a surgical instrument force sensor
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US20070194082A1 (en) 2005-08-31 2007-08-23 Morgan Jerome R Surgical stapling device with anvil having staple forming pockets of varying depths
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US8628518B2 (en) 2005-12-30 2014-01-14 Intuitive Surgical Operations, Inc. Wireless force sensor on a distal portion of a surgical instrument and method
US7930065B2 (en) 2005-12-30 2011-04-19 Intuitive Surgical Operations, Inc. Robotic surgery system including position sensors using fiber bragg gratings
US9962066B2 (en) 2005-12-30 2018-05-08 Intuitive Surgical Operations, Inc. Methods and apparatus to shape flexible entry guides for minimally invasive surgery
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US20110006101A1 (en) 2009-02-06 2011-01-13 EthiconEndo-Surgery, Inc. Motor driven surgical fastener device with cutting member lockout arrangements
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US20110295295A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument having recording capabilities
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US8219178B2 (en) 2007-02-16 2012-07-10 Catholic Healthcare West Method and system for performing invasive medical procedures using a surgical robot
US10653497B2 (en) 2006-02-16 2020-05-19 Globus Medical, Inc. Surgical tool systems and methods
US10357184B2 (en) 2012-06-21 2019-07-23 Globus Medical, Inc. Surgical tool systems and method
US10893912B2 (en) 2006-02-16 2021-01-19 Globus Medical Inc. Surgical tool systems and methods
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US20070225562A1 (en) 2006-03-23 2007-09-27 Ethicon Endo-Surgery, Inc. Articulating endoscopic accessory channel
US8784435B2 (en) 2006-06-13 2014-07-22 Intuitive Surgical Operations, Inc. Surgical system entry guide
EP2037794B1 (en) 2006-06-13 2021-10-27 Intuitive Surgical Operations, Inc. Minimally invasive surgical system
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US8720766B2 (en) 2006-09-29 2014-05-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments and staples
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US20080169332A1 (en) 2007-01-11 2008-07-17 Shelton Frederick E Surgical stapling device with a curved cutting member
US7673782B2 (en) 2007-03-15 2010-03-09 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a releasable buttress material
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US11564682B2 (en) 2007-06-04 2023-01-31 Cilag Gmbh International Surgical stapler device
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US8408439B2 (en) 2007-06-22 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US20130165945A9 (en) * 2007-08-14 2013-06-27 Hansen Medical, Inc. Methods and devices for controlling a shapeable instrument
US8561473B2 (en) 2007-12-18 2013-10-22 Intuitive Surgical Operations, Inc. Force sensor temperature compensation
US8400094B2 (en) 2007-12-21 2013-03-19 Intuitive Surgical Operations, Inc. Robotic surgical system with patient support
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US7905381B2 (en) 2008-09-19 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with cutting member arrangement
RU2493788C2 (en) 2008-02-14 2013-09-27 Этикон Эндо-Серджери, Инк. Surgical cutting and fixing instrument, which has radio-frequency electrodes
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US20130153641A1 (en) 2008-02-15 2013-06-20 Ethicon Endo-Surgery, Inc. Releasable layer of material and surgical end effector having the same
PL3476312T3 (en) 2008-09-19 2024-03-11 Ethicon Llc Surgical stapler with apparatus for adjusting staple height
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US9259274B2 (en) 2008-09-30 2016-02-16 Intuitive Surgical Operations, Inc. Passive preload and capstan drive for surgical instruments
US9339342B2 (en) * 2008-09-30 2016-05-17 Intuitive Surgical Operations, Inc. Instrument interface
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
EP2394799B1 (en) * 2009-02-03 2016-08-31 Olympus Corporation Manipulator
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
BRPI1008667A2 (en) 2009-02-06 2016-03-08 Ethicom Endo Surgery Inc improvement of the operated surgical stapler
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US9138207B2 (en) 2009-05-19 2015-09-22 Teleflex Medical Incorporated Methods and devices for laparoscopic surgery
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US20110161172A1 (en) * 2009-12-30 2011-06-30 Wei-Yeh Lee System and method for providing user control of the user's network usage data and personal profile information
US8721539B2 (en) 2010-01-20 2014-05-13 EON Surgical Ltd. Rapid laparoscopy exchange system and method of use thereof
US10052088B2 (en) 2010-01-20 2018-08-21 EON Surgical Ltd. System and method of deploying an elongate unit in a body cavity
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
FR2963693B1 (en) 2010-08-04 2013-05-03 Medtech PROCESS FOR AUTOMATED ACQUISITION AND ASSISTED ANATOMICAL SURFACES
JP5612971B2 (en) * 2010-09-07 2014-10-22 オリンパス株式会社 Master-slave manipulator
CA2811730C (en) 2010-09-19 2017-12-05 EON Surgical Ltd. Micro laparoscopy devices and deployments thereof
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US20120080336A1 (en) 2010-09-30 2012-04-05 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9700317B2 (en) 2010-09-30 2017-07-11 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasable tissue thickness compensator
CN103140178B (en) 2010-09-30 2015-09-23 伊西康内外科公司 Comprise the closure system keeping matrix and alignment matrix
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US9433419B2 (en) 2010-09-30 2016-09-06 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of layers
US9216019B2 (en) 2011-09-23 2015-12-22 Ethicon Endo-Surgery, Inc. Surgical stapler with stationary staple drivers
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US9301753B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Expandable tissue thickness compensator
US9517063B2 (en) 2012-03-28 2016-12-13 Ethicon Endo-Surgery, Llc Movable member for use with a tissue thickness compensator
US9211120B2 (en) 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US9101379B2 (en) 2010-11-12 2015-08-11 Intuitive Surgical Operations, Inc. Tension control in actuation of multi-joint medical instruments
US8979826B2 (en) 2010-12-29 2015-03-17 Boston Scientific Scimed, Inc. Instrument holder
WO2012131660A1 (en) 2011-04-01 2012-10-04 Ecole Polytechnique Federale De Lausanne (Epfl) Robotic system for spinal and other surgeries
AU2012250197B2 (en) 2011-04-29 2017-08-10 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US9259277B2 (en) * 2011-05-13 2016-02-16 Intuitive Surgical Operations, Inc. Instrument actuation interface
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
CN103596517B (en) 2011-06-07 2017-09-08 皇家飞利浦有限公司 Rotation position determines equipment
WO2013023150A1 (en) 2011-08-11 2013-02-14 The Board Of Trustees Of The Leland Stanford Junior University Remote center of motion mechanism and method of use
US8961537B2 (en) * 2011-08-24 2015-02-24 The Chinese University Of Hong Kong Surgical robot with hybrid passive/active control
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
US20130303944A1 (en) 2012-05-14 2013-11-14 Intuitive Surgical Operations, Inc. Off-axis electromagnetic sensor
US9452276B2 (en) 2011-10-14 2016-09-27 Intuitive Surgical Operations, Inc. Catheter with removable vision probe
US10238837B2 (en) 2011-10-14 2019-03-26 Intuitive Surgical Operations, Inc. Catheters with control modes for interchangeable probes
US9387048B2 (en) 2011-10-14 2016-07-12 Intuitive Surgical Operations, Inc. Catheter sensor systems
US9713500B2 (en) * 2011-10-25 2017-07-25 Snu R&Db Foundation Surgical robot control apparatus
US8912746B2 (en) 2011-10-26 2014-12-16 Intuitive Surgical Operations, Inc. Surgical instrument motor pack latch
WO2013063674A1 (en) 2011-11-04 2013-05-10 Titan Medical Inc. Apparatus and method for controlling an end-effector assembly
EP2773277B1 (en) 2011-11-04 2016-03-02 Titan Medical Inc. Apparatus for controlling an end-effector assembly
WO2013075205A1 (en) * 2011-11-25 2013-05-30 Titan Medical Inc. Apparatus and method for mounting a trocar
FR2983059B1 (en) * 2011-11-30 2014-11-28 Medtech ROBOTIC-ASSISTED METHOD OF POSITIONING A SURGICAL INSTRUMENT IN RELATION TO THE BODY OF A PATIENT AND DEVICE FOR CARRYING OUT SAID METHOD
US9636091B2 (en) * 2012-01-13 2017-05-02 Covidien Lp Hand-held electromechanical surgical system
US9241757B2 (en) 2012-01-13 2016-01-26 Covidien Lp System and method for performing surgical procedures with a reusable instrument module
EP2809245B1 (en) 2012-02-02 2020-04-29 Great Belief International Limited Mechanized multi-instrument surgical system
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
KR101917076B1 (en) * 2012-02-21 2018-11-09 삼성전자주식회사 Link unit, and arm module having the same
RU2014143258A (en) 2012-03-28 2016-05-20 Этикон Эндо-Серджери, Инк. FABRIC THICKNESS COMPENSATOR CONTAINING MANY LAYERS
BR112014024194B1 (en) 2012-03-28 2022-03-03 Ethicon Endo-Surgery, Inc STAPLER CARTRIDGE SET FOR A SURGICAL STAPLER
MX350846B (en) 2012-03-28 2017-09-22 Ethicon Endo Surgery Inc Tissue thickness compensator comprising capsules defining a low pressure environment.
US9254234B2 (en) * 2012-04-11 2016-02-09 University of Pittsburgh—of the Commonwealth System of Higher Education Robotic strong arm
DE102012015541A1 (en) * 2012-08-06 2014-02-06 Kuka Laboratories Gmbh Robotic surgery system for use with instrument assembly having sterilizable drive unit for surgical instrument and manual operation unit, has robot assembly with robot and instrument assembly with instrument that is guided by robot assembly
DE102012008535A1 (en) * 2012-04-27 2013-10-31 Kuka Laboratories Gmbh Surgical robot system has instrument arrangement with instrument that is guided by robot, where degree of freedom of instrument shaft is actuated by drive train of drive train arrangement that is actuated by drive unit
DE102012207060A1 (en) * 2012-04-27 2013-10-31 Deutsches Zentrum für Luft- und Raumfahrt e.V. Robot assembly for use in medical fields
CN104622577B (en) * 2012-04-27 2017-11-21 库卡实验仪器有限公司 Robotic surgical system
US20130317519A1 (en) 2012-05-25 2013-11-28 Hansen Medical, Inc. Low friction instrument driver interface for robotic systems
JP6368710B2 (en) * 2012-06-01 2018-08-01 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Collision avoidance between manipulator arm and patient using zero space
KR102184969B1 (en) 2012-06-01 2020-12-01 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Instrument carriage assembly for surgical system
KR102636293B1 (en) * 2012-06-01 2024-02-15 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Multi­port surgical robotic system architecture
CN107212922B (en) 2012-06-01 2020-06-02 直观外科手术操作公司 Redundant axes and degrees of freedom of hardware constrained remote center robotic manipulators
EP3915504A1 (en) 2012-06-01 2021-12-01 Intuitive Surgical Operations, Inc. Surgical instrument manipulator aspects
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US11045267B2 (en) 2012-06-21 2021-06-29 Globus Medical, Inc. Surgical robotic automation with tracking markers
US11253327B2 (en) 2012-06-21 2022-02-22 Globus Medical, Inc. Systems and methods for automatically changing an end-effector on a surgical robot
US11317971B2 (en) 2012-06-21 2022-05-03 Globus Medical, Inc. Systems and methods related to robotic guidance in surgery
US10350013B2 (en) 2012-06-21 2019-07-16 Globus Medical, Inc. Surgical tool systems and methods
US11857266B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. System for a surveillance marker in robotic-assisted surgery
JP2015528713A (en) 2012-06-21 2015-10-01 グローバス メディカル インコーポレイティッド Surgical robot platform
US11607149B2 (en) 2012-06-21 2023-03-21 Globus Medical Inc. Surgical tool systems and method
US11857149B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. Surgical robotic systems with target trajectory deviation monitoring and related methods
US11116576B2 (en) 2012-06-21 2021-09-14 Globus Medical Inc. Dynamic reference arrays and methods of use
US11793570B2 (en) 2012-06-21 2023-10-24 Globus Medical Inc. Surgical robotic automation with tracking markers
US11864839B2 (en) 2012-06-21 2024-01-09 Globus Medical Inc. Methods of adjusting a virtual implant and related surgical navigation systems
US11298196B2 (en) 2012-06-21 2022-04-12 Globus Medical Inc. Surgical robotic automation with tracking markers and controlled tool advancement
US11395706B2 (en) 2012-06-21 2022-07-26 Globus Medical Inc. Surgical robot platform
US10136954B2 (en) 2012-06-21 2018-11-27 Globus Medical, Inc. Surgical tool systems and method
US10624710B2 (en) 2012-06-21 2020-04-21 Globus Medical, Inc. System and method for measuring depth of instrumentation
US11864745B2 (en) 2012-06-21 2024-01-09 Globus Medical, Inc. Surgical robotic system with retractor
US10758315B2 (en) 2012-06-21 2020-09-01 Globus Medical Inc. Method and system for improving 2D-3D registration convergence
US10231791B2 (en) 2012-06-21 2019-03-19 Globus Medical, Inc. Infrared signal based position recognition system for use with a robot-assisted surgery
US11399900B2 (en) 2012-06-21 2022-08-02 Globus Medical, Inc. Robotic systems providing co-registration using natural fiducials and related methods
US11974822B2 (en) 2012-06-21 2024-05-07 Globus Medical Inc. Method for a surveillance marker in robotic-assisted surgery
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US11197671B2 (en) 2012-06-28 2021-12-14 Cilag Gmbh International Stapling assembly comprising a lockout
US9364230B2 (en) 2012-06-28 2016-06-14 Ethicon Endo-Surgery, Llc Surgical stapling instruments with rotary joint assemblies
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US20140005718A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Multi-functional powered surgical device with external dissection features
EP2866686A1 (en) 2012-06-28 2015-05-06 Ethicon Endo-Surgery, Inc. Empty clip cartridge lockout
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
DE102013007761A1 (en) 2013-05-06 2014-11-06 Kuka Laboratories Gmbh Surgical instrument
DE102013005493A1 (en) 2013-03-28 2014-10-02 Kuka Laboratories Gmbh Surgical instrument
CN104394793B (en) 2012-07-03 2018-08-10 库卡实验仪器有限公司 The driver group and surgical instrument of surgical instrument group, particularly the surgical instrument of robot guiding
CN104869912A (en) * 2012-07-27 2015-08-26 小利兰·斯坦福大学理事会 Manipulation of imaging probe during medical procedure
JP6195333B2 (en) * 2012-08-08 2017-09-13 キヤノン株式会社 Robot equipment
KR102189666B1 (en) 2012-08-15 2020-12-11 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Phantom degrees of freedom for manipulating the movement of mechanical bodies
WO2014028558A1 (en) 2012-08-15 2014-02-20 Intuitive Surgical Operations, Inc. Phantom degrees of freedom for manipulating the movement of surgical systems
US20140051934A1 (en) * 2012-08-16 2014-02-20 Covidien Lp Stabilizing Port for Surgery for Facilitating Concurrent Introduction of Multiple Instruments
US9050527B2 (en) 2012-08-23 2015-06-09 Wms Gaming Inc. Interactive tether using tension and feedback
US9301811B2 (en) 2012-09-17 2016-04-05 Intuitive Surgical Operations, Inc. Methods and systems for assigning input devices to teleoperated surgical instrument functions
US20150230697A1 (en) * 2012-09-19 2015-08-20 Nanyang Technological University Flexible master - slave robotic endoscopy system
KR102222960B1 (en) 2012-11-02 2021-03-05 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Flux transmission connectors and systems, flux disambiguation, and systems and methods for mapping flux supply paths
US20140130810A1 (en) * 2012-11-14 2014-05-15 Intuitive Surgical Operations, Inc. Smart drapes for collision avoidance
CN108523996B (en) 2012-11-14 2021-07-16 直观外科手术操作公司 System and method for dual control surgical instrument
US11284803B2 (en) 2012-11-15 2022-03-29 Intuitive Surgical Operations, Inc. Low capacitance endoscopic system
KR102189693B1 (en) 2012-11-15 2020-12-11 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Endoscopic systems with low capacitance and/or electromagnetic shielding, and related methods
US9993135B2 (en) 2012-11-15 2018-06-12 Intuitive Surgical Operations, Inc. Endoscopic system with electrogmagnetic interference shielding
US20150005784A2 (en) * 2012-12-20 2015-01-01 avateramedical GmBH Device for Supporting and Positioning of a Surgical Instrument and/or an Endoscope for Use in Minimal-Invasive Surgery and a Surgical Robotic System
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
BR112015021082B1 (en) 2013-03-01 2022-05-10 Ethicon Endo-Surgery, Inc surgical instrument
MX368026B (en) 2013-03-01 2019-09-12 Ethicon Endo Surgery Inc Articulatable surgical instruments with conductive pathways for signal communication.
US9700309B2 (en) 2013-03-01 2017-07-11 Ethicon Llc Articulatable surgical instruments with conductive pathways for signal communication
US9668814B2 (en) 2013-03-07 2017-06-06 Hansen Medical, Inc. Infinitely rotatable tool with finite rotating drive shafts
US9345481B2 (en) 2013-03-13 2016-05-24 Ethicon Endo-Surgery, Llc Staple cartridge tissue thickness sensor system
US9326822B2 (en) 2013-03-14 2016-05-03 Hansen Medical, Inc. Active drives for robotic catheter manipulators
US20140277334A1 (en) 2013-03-14 2014-09-18 Hansen Medical, Inc. Active drives for robotic catheter manipulators
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9498601B2 (en) 2013-03-14 2016-11-22 Hansen Medical, Inc. Catheter tension sensing
US10470762B2 (en) 2013-03-14 2019-11-12 Ethicon Llc Multi-function motor for a surgical instrument
US11213363B2 (en) 2013-03-14 2022-01-04 Auris Health, Inc. Catheter tension sensing
US9173713B2 (en) 2013-03-14 2015-11-03 Hansen Medical, Inc. Torque-based catheter articulation
WO2014151621A1 (en) 2013-03-15 2014-09-25 Sri International Hyperdexterous surgical system
US9888941B2 (en) 2013-03-15 2018-02-13 Intuitive Surgical Operations, Inc. Sealing multiple surgical instruments
US9408669B2 (en) 2013-03-15 2016-08-09 Hansen Medical, Inc. Active drive mechanism with finite range of motion
WO2014144233A1 (en) * 2013-03-15 2014-09-18 Intuitive Surgical Operations, Inc. Rotating assistant port
US9452018B2 (en) 2013-03-15 2016-09-27 Hansen Medical, Inc. Rotational support for an elongate member
JP2016512725A (en) 2013-03-15 2016-05-09 アプライド メディカル リソーシーズ コーポレイション Mechanical gel surgical access instrument
KR102597833B1 (en) 2013-03-15 2023-11-06 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Sealing multiple surgical instruments
US10070887B2 (en) 2013-03-15 2018-09-11 Intuitive Surgical Operations, Inc. Sealing multiple surgical instruments
KR102188100B1 (en) * 2013-03-15 2020-12-07 삼성전자주식회사 Robot and control method thereof
WO2014146090A1 (en) 2013-03-15 2014-09-18 Intuitive Surgical Operations, Inc. Inter-operative switching of tools in a robotic surgical system
US9629681B2 (en) 2013-03-15 2017-04-25 Intuitive Surgical Operations, Inc. Sealing multiple surgical instruments
US20140276647A1 (en) 2013-03-15 2014-09-18 Hansen Medical, Inc. Vascular remote catheter manipulator
US10292730B2 (en) 2013-03-15 2019-05-21 Intuitive Surgical Operations, Inc. Sealing multiple surgical instruments
US20140276936A1 (en) 2013-03-15 2014-09-18 Hansen Medical, Inc. Active drive mechanism for simultaneous rotation and translation
US9549783B2 (en) * 2013-03-15 2017-01-24 Corindus, Inc. Catheter system with magnetic coupling
US9101348B2 (en) * 2013-03-15 2015-08-11 Intuitive Surgical Operations, Inc. Surgical patient side cart with drive system and method of moving a patient side cart
US10492825B2 (en) 2013-03-15 2019-12-03 Intuitive Surgical Operations, Inc. Sealing multiple surgical instruments
JP6188787B2 (en) 2013-03-18 2017-08-30 オリンパス株式会社 manipulator
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
KR101994426B1 (en) * 2013-04-04 2019-07-02 큐렉소 주식회사 Medical Intervention Apparatus
ITMI20130516A1 (en) * 2013-04-05 2014-10-06 Sofar Spa SURGICAL SYSTEM WITH STERILE TOWELS
DE102013005982A1 (en) * 2013-04-08 2014-10-09 Kuka Laboratories Gmbh medical robots
US10149680B2 (en) 2013-04-16 2018-12-11 Ethicon Llc Surgical instrument comprising a gap setting system
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
DE102013007597A1 (en) * 2013-05-02 2014-11-06 Kuka Laboratories Gmbh Robot with tool
DE102013209122A1 (en) * 2013-05-16 2014-11-20 Deutsches Zentrum für Luft- und Raumfahrt e.V. Holding device for a surgical instrument
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
US9179051B1 (en) * 2013-06-13 2015-11-03 Clara Stoudt Voice-activated hands-free camera holder systems
KR102158499B1 (en) * 2013-06-24 2020-09-23 큐렉소 주식회사 End effector for intervention of inserting needle
CN114587606A (en) * 2013-08-15 2022-06-07 直观外科手术操作公司 Actuator interface to instrument sterile adapter
CN105611892B (en) 2013-08-15 2019-02-19 直观外科手术操作公司 Robotic tool driven element
KR102523090B1 (en) 2013-08-15 2023-04-19 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Preloaded surgical instrument interface
CN105611894B (en) 2013-08-15 2019-02-15 直观外科手术操作公司 Instrument sterile adaptor drives feature
US10076348B2 (en) 2013-08-15 2018-09-18 Intuitive Surgical Operations, Inc. Rotary input for lever actuation
US10550918B2 (en) 2013-08-15 2020-02-04 Intuitive Surgical Operations, Inc. Lever actuated gimbal plate
CN108784838B (en) 2013-08-15 2021-06-08 直观外科手术操作公司 Instrument sterile adapter drive interface
KR102312950B1 (en) * 2013-08-15 2021-10-15 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Variable instrument preload mechanism controller
US20150053746A1 (en) 2013-08-23 2015-02-26 Ethicon Endo-Surgery, Inc. Torque optimization for surgical instruments
JP6416260B2 (en) 2013-08-23 2018-10-31 エシコン エルエルシー Firing member retractor for a powered surgical instrument
SG11201601296UA (en) * 2013-08-28 2016-03-30 Inst Of Technical Education System and apparatus for guiding an instrument
EP3037222A4 (en) * 2013-09-24 2017-04-12 Sony Olympus Medical Solutions Inc. Medical robot arm device, medical robot arm control system, medical robot arm control method, and program
US9283048B2 (en) 2013-10-04 2016-03-15 KB Medical SA Apparatus and systems for precise guidance of surgical tools
CN106170266B (en) * 2013-10-07 2020-05-22 杭州术创机器人有限公司 Modular interface for robotic system
EP3060157B1 (en) 2013-10-24 2019-12-11 Auris Health, Inc. System for robotic-assisted endolumenal surgery
US9713509B2 (en) * 2013-10-24 2017-07-25 Auris Surgical Robotics, Inc. Instrument device manipulator with back-mounted tool attachment mechanism
EP3386403A1 (en) * 2013-11-22 2018-10-17 Srivastava, Sudhir Prem Motorized surgical instrument
US9937626B2 (en) 2013-12-11 2018-04-10 Covidien Lp Wrist and jaw assemblies for robotic surgical systems
US20150173756A1 (en) 2013-12-23 2015-06-25 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling methods
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US9968354B2 (en) 2013-12-23 2018-05-15 Ethicon Llc Surgical staples and methods for making the same
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
TWI548388B (en) * 2013-12-30 2016-09-11 國立臺灣大學 A handheld robot for orthopedic surgery and a control method thereof
WO2015107099A1 (en) 2014-01-15 2015-07-23 KB Medical SA Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery
US9314922B2 (en) 2014-02-07 2016-04-19 Control Interfaces LLC Remotely operated manipulator and ROV control systems and methods
US20150224639A1 (en) * 2014-02-07 2015-08-13 Control Interfaces LLC Remotely operated manipulator and rov control systems and methods
EP3104803B1 (en) 2014-02-11 2021-09-15 KB Medical SA Sterile handle for controlling a robotic surgical system from a sterile field
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
JP6165080B2 (en) * 2014-02-21 2017-07-19 オリンパス株式会社 Initialization method of manipulator system
US9839423B2 (en) 2014-02-24 2017-12-12 Ethicon Llc Implantable layers and methods for modifying the shape of the implantable layers for use with a surgical fastening instrument
JP6462004B2 (en) 2014-02-24 2019-01-30 エシコン エルエルシー Fastening system with launcher lockout
WO2015142958A1 (en) 2014-03-17 2015-09-24 Intuitive Surgical Operations, Inc. Systems and methods for confirming disc engagement
US10070931B2 (en) 2014-03-17 2018-09-11 Intuitive Surgical Operations, Inc. System and method for maintaining a tool pose
KR102510796B1 (en) 2014-03-17 2023-03-17 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Surgical drape and systems including surgical drape and attachment sensor
US10548459B2 (en) * 2014-03-17 2020-02-04 Intuitive Surgical Operations, Inc. Systems and methods for control of imaging instrument orientation
CN110811778B (en) * 2014-03-17 2024-03-15 直观外科手术操作公司 Surgical cannula and related systems and methods for identifying surgical cannula
EP3581138B1 (en) 2014-03-17 2022-10-05 Intuitive Surgical Operations, Inc. Latch to secure teleoperated surgical instrument to actuator
KR20230107708A (en) * 2014-03-17 2023-07-17 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Surgical cannula mounts and related systems and methods
US10201393B2 (en) * 2014-03-17 2019-02-12 Intuitive Surgical Operations, Inc. Constant force spring with active bias
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US10201364B2 (en) 2014-03-26 2019-02-12 Ethicon Llc Surgical instrument comprising a rotatable shaft
US9804618B2 (en) 2014-03-26 2017-10-31 Ethicon Llc Systems and methods for controlling a segmented circuit
WO2015153636A1 (en) 2014-04-01 2015-10-08 Intuitive Surgical Operations, Inc. Control input accuracy for teleoperated surgical instrument
CN110833382B (en) * 2014-04-02 2023-05-30 直观外科手术操作公司 Devices, systems, and methods using steerable stylet and flexible needle
CN103892922B (en) * 2014-04-08 2016-08-17 合肥德铭电子有限公司 Thing end quick pressure releasing adjusting means held by pneumatic arm for Minimally Invasive Surgery
US9801627B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Fastener cartridge for creating a flexible staple line
US20150297222A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
BR112016023825B1 (en) 2014-04-16 2022-08-02 Ethicon Endo-Surgery, Llc STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPLER AND STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
JP6636452B2 (en) 2014-04-16 2020-01-29 エシコン エルエルシーEthicon LLC Fastener cartridge including extension having different configurations
BR112016023807B1 (en) 2014-04-16 2022-07-12 Ethicon Endo-Surgery, Llc CARTRIDGE SET OF FASTENERS FOR USE WITH A SURGICAL INSTRUMENT
US9833241B2 (en) 2014-04-16 2017-12-05 Ethicon Llc Surgical fastener cartridges with driver stabilizing arrangements
US10080552B2 (en) * 2014-04-21 2018-09-25 Covidien Lp Adapter assembly with gimbal for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
US10046140B2 (en) 2014-04-21 2018-08-14 Hansen Medical, Inc. Devices, systems, and methods for controlling active drive systems
CN106659537B (en) 2014-04-24 2019-06-11 Kb医疗公司 The surgical instrument holder used in conjunction with robotic surgical system
JP6599894B2 (en) * 2014-04-28 2019-10-30 コヴィディエン リミテッド パートナーシップ Surgical assembly for storing a force transmitting member
CN106456145B (en) 2014-05-05 2020-08-18 维卡瑞斯外科手术股份有限公司 Virtual reality surgical device
WO2015175200A1 (en) * 2014-05-13 2015-11-19 Covidien Lp Robotic surgical systems and instrument drive units
US10569052B2 (en) 2014-05-15 2020-02-25 Auris Health, Inc. Anti-buckling mechanisms for catheters
US10046421B2 (en) * 2014-06-11 2018-08-14 Andersen Industries, Inc. Welding apparatus
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US9561083B2 (en) 2014-07-01 2017-02-07 Auris Surgical Robotics, Inc. Articulating flexible endoscopic tool with roll capabilities
US10792464B2 (en) 2014-07-01 2020-10-06 Auris Health, Inc. Tool and method for using surgical endoscope with spiral lumens
KR101630794B1 (en) * 2014-07-02 2016-06-15 (주)미래컴퍼니 Surgical robot system and active guide unit therewith
EP3169252A1 (en) 2014-07-14 2017-05-24 KB Medical SA Anti-skid surgical instrument for use in preparing holes in bone tissue
CN107072721B (en) * 2014-07-28 2020-03-20 直观外科手术操作公司 Guide apparatus for delivery of flexible instruments and methods of use
CN110063791B (en) 2014-08-13 2022-04-15 柯惠Lp公司 Robotically controlled clamping with mechanical advantage
CN106573373B (en) * 2014-08-14 2019-10-18 库卡罗伯特有限公司 Positioning to robot
CN111658180A (en) * 2014-08-15 2020-09-15 直观外科手术操作公司 Surgical system with variable entry guide configuration
JP6626110B2 (en) 2014-09-04 2019-12-25 メミック イノベーティブ サージェリー リミテッドMemic Innovative Surgery Ltd. Devices and systems including mechanical arms
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US9737301B2 (en) 2014-09-05 2017-08-22 Ethicon Llc Monitoring device degradation based on component evaluation
WO2016043845A1 (en) 2014-09-15 2016-03-24 Covidien Lp Robotically controlling surgical assemblies
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
JP6648119B2 (en) 2014-09-26 2020-02-14 エシコン エルエルシーEthicon LLC Surgical stapling buttress and accessory materials
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US10610314B2 (en) 2014-10-23 2020-04-07 Covidien Lp Drive unit and rack drape for robotic surgical instruments
JP6774404B2 (en) 2014-10-27 2020-10-21 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Systems and methods for integrated operating table icons
KR102480765B1 (en) 2014-10-27 2022-12-23 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Medical device with active brake release control
US10272569B2 (en) 2014-10-27 2019-04-30 Intuitive Surgical Operations, Inc. System and method for instrument disturbance compensation
CN110236853B (en) 2014-10-27 2021-06-04 直观外科手术操作公司 System and method for registration to an operating table
JP6682512B2 (en) 2014-10-27 2020-04-15 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Integrated operating table system and method
EP3212151B1 (en) * 2014-10-27 2020-07-29 Intuitive Surgical Operations, Inc. System for integrated surgical table motion
US10682190B2 (en) * 2014-10-27 2020-06-16 Intuitive Surgical Operations, Inc. System and method for monitoring control points during reactive motion
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
DE102014117407A1 (en) 2014-11-27 2016-06-02 avateramedical GmBH Device for robotic surgery
DE102014117408A1 (en) * 2014-11-27 2016-06-02 avateramedical GmBH Device for robotic surgery
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US9943309B2 (en) 2014-12-18 2018-04-17 Ethicon Llc Surgical instruments with articulatable end effectors and movable firing beam support arrangements
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
BR112017012996B1 (en) 2014-12-18 2022-11-08 Ethicon Llc SURGICAL INSTRUMENT WITH AN ANvil WHICH IS SELECTIVELY MOVABLE ABOUT AN IMMOVABLE GEOMETRIC AXIS DIFFERENT FROM A STAPLE CARTRIDGE
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10013808B2 (en) 2015-02-03 2018-07-03 Globus Medical, Inc. Surgeon head-mounted display apparatuses
WO2016131903A1 (en) 2015-02-18 2016-08-25 KB Medical SA Systems and methods for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique
EP3258874B1 (en) 2015-02-19 2024-01-17 Covidien LP Input device for robotic surgical system
JP6860490B2 (en) 2015-02-20 2021-04-14 ストライカー・コーポレイション How to connect sterile barrier assemblies, mounting systems, and surgical components
WO2016137611A1 (en) * 2015-02-26 2016-09-01 Covidien Lp Instrument drive unit including lead screw rails
CN112998861A (en) * 2015-02-26 2021-06-22 柯惠Lp公司 Robotically controlled remote center of motion using software and catheter
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US9993258B2 (en) 2015-02-27 2018-06-12 Ethicon Llc Adaptable surgical instrument handle
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US9931118B2 (en) 2015-02-27 2018-04-03 Ethicon Endo-Surgery, Llc Reinforced battery for a surgical instrument
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
CA2977413A1 (en) 2015-03-10 2016-09-15 Covidien Lp Measuring health of a connector member of a robotic surgical system
GB201504486D0 (en) * 2015-03-17 2015-04-29 Cambridge Medical Robotics Ltd Power supply for a robotic arm instrument
US9866035B2 (en) * 2015-03-27 2018-01-09 Irobot Corporation Rotatable coupling
US10433844B2 (en) 2015-03-31 2019-10-08 Ethicon Llc Surgical instrument with selectively disengageable threaded drive systems
WO2016164824A1 (en) * 2015-04-09 2016-10-13 Auris Surgical Robotics, Inc. Surgical system with configurable rail-mounted mechanical arms
US10226239B2 (en) * 2015-04-10 2019-03-12 Covidien Lp Adapter assembly with gimbal for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
WO2016168226A1 (en) * 2015-04-15 2016-10-20 Covidien Lp Methods for exchanging instruments using a surgical port assembly
WO2016172299A1 (en) * 2015-04-22 2016-10-27 Intuitive Surgical Operations, Inc. Tension regulator for actuation elements, and related remotely actuated instruments, systems, and methods
GB2538326B (en) * 2015-05-07 2019-06-05 Cmr Surgical Ltd A surgical drape for transferring drive
US10653489B2 (en) 2015-05-11 2020-05-19 Covidien Lp Coupling instrument drive unit and robotic surgical instrument
GB2538497B (en) 2015-05-14 2020-10-28 Cmr Surgical Ltd Torque sensing in a surgical robotic wrist
KR102623285B1 (en) 2015-05-19 2024-01-10 마코 서지컬 코포레이션 System and method for manipulating an anatomy
US11389258B2 (en) * 2015-06-01 2022-07-19 Covidien Lp Surgical drape including unrolling mechanism
WO2016196238A1 (en) 2015-06-03 2016-12-08 Covidien Lp Offset instrument drive unit
EP4190264A1 (en) * 2015-06-11 2023-06-07 Intuitive Surgical Operations, Inc. Systems and methods for instrument engagement
FR3037269B1 (en) * 2015-06-12 2017-07-14 Robocath MOVEMENT TRANSMISSION CHAIN BETWEEN ACTUATORS AND A DRIVE MEMBER BASE OF A MOBILE ELEMENT
KR20180040562A (en) 2015-06-15 2018-04-20 휴먼 엑스텐션스 리미티드 Adapter or adapter system for functionally sterilizing medical devices
CN112294439A (en) 2015-06-16 2021-02-02 柯惠Lp公司 Robotic surgical system torque sensing
US10052102B2 (en) 2015-06-18 2018-08-21 Ethicon Llc Surgical end effectors with dual cam actuated jaw closing features
CN107787207B (en) * 2015-06-19 2021-05-25 柯惠Lp公司 Controlling robotic surgical instruments with bidirectional coupling
CN107771063B (en) * 2015-06-19 2020-12-04 柯惠Lp公司 Robotic surgical assembly
CA2987643A1 (en) * 2015-06-19 2016-12-22 Covidien Lp Robotic surgical assemblies
US10779897B2 (en) 2015-06-23 2020-09-22 Covidien Lp Robotic surgical assemblies
KR102495549B1 (en) 2015-07-07 2023-02-06 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Control of multiple devices
KR101703114B1 (en) * 2015-07-08 2017-02-06 한국기계연구원 Master device and conroling method of the master device for interventional procedure, and remote control interventional procedure device using the master device
US10646298B2 (en) 2015-07-31 2020-05-12 Globus Medical, Inc. Robot arm and methods of use
US10058394B2 (en) 2015-07-31 2018-08-28 Globus Medical, Inc. Robot arm and methods of use
US10321963B2 (en) * 2015-08-04 2019-06-18 Vanderbilt University Apparatus and method for moving an elongate rod
US10080615B2 (en) 2015-08-12 2018-09-25 Globus Medical, Inc. Devices and methods for temporary mounting of parts to bone
US10835249B2 (en) 2015-08-17 2020-11-17 Ethicon Llc Implantable layers for a surgical instrument
US10098642B2 (en) 2015-08-26 2018-10-16 Ethicon Llc Surgical staples comprising features for improved fastening of tissue
MX2022009705A (en) 2015-08-26 2022-11-07 Ethicon Llc Surgical staples comprising hardness variations for improved fastening of tissue.
CN108348233B (en) 2015-08-26 2021-05-07 伊西康有限责任公司 Surgical staple strip for allowing changing staple characteristics and achieving easy cartridge loading
JP6894431B2 (en) 2015-08-31 2021-06-30 ケービー メディカル エスアー Robotic surgical system and method
MX2022006189A (en) 2015-09-02 2022-06-16 Ethicon Llc Surgical staple configurations with camming surfaces located between portions supporting surgical staples.
US10357252B2 (en) 2015-09-02 2019-07-23 Ethicon Llc Surgical staple configurations with camming surfaces located between portions supporting surgical staples
CA2957362A1 (en) 2015-09-04 2017-03-04 Memic Innovative Surgery Ltd. Actuation of a device comprising mechanical arms
CN105058373B (en) * 2015-09-07 2016-10-19 哈尔滨工业大学 A kind of submissive docking facilities of mechanical arm based on double hook joint mechanism
EP3346899B1 (en) * 2015-09-09 2022-11-09 Auris Health, Inc. Instrument device manipulator for a surgical robotics system
US10034716B2 (en) * 2015-09-14 2018-07-31 Globus Medical, Inc. Surgical robotic systems and methods thereof
ES2937400T3 (en) 2015-09-15 2023-03-28 Applied Med Resources Surgical Robotic Access System
DE102015115559A1 (en) * 2015-09-15 2017-03-16 Karl Storz Gmbh & Co. Kg Manipulation system and handling device for surgical instruments
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
EP3352700A4 (en) 2015-09-25 2019-07-03 Covidien LP Elastic surgical interface for robotic surgical systems
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10806454B2 (en) 2015-09-25 2020-10-20 Covidien Lp Robotic surgical assemblies and instrument drive connectors thereof
US10561420B2 (en) 2015-09-30 2020-02-18 Ethicon Llc Tubular absorbable constructs
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US9771092B2 (en) 2015-10-13 2017-09-26 Globus Medical, Inc. Stabilizer wheel assembly and methods of use
WO2017064580A1 (en) * 2015-10-13 2017-04-20 Reliance Industries Limited An electromechanical device for removing material from an enclosed space
CN108135670B (en) 2015-10-23 2021-02-26 柯惠Lp公司 Surgical system for detecting gradual changes in perfusion
US10231793B2 (en) 2015-10-30 2019-03-19 Auris Health, Inc. Object removal through a percutaneous suction tube
US9949749B2 (en) 2015-10-30 2018-04-24 Auris Surgical Robotics, Inc. Object capture with a basket
US9955986B2 (en) 2015-10-30 2018-05-01 Auris Surgical Robotics, Inc. Basket apparatus
KR102202403B1 (en) * 2015-11-12 2021-01-14 한국전자통신연구원 stand assembly for supporting hair implanter
US10660714B2 (en) 2015-11-19 2020-05-26 Covidien Lp Optical force sensor for robotic surgical system
US10292779B2 (en) * 2015-11-23 2019-05-21 Sina Robotics And Medical Innovators Co. Adapting manual laparoscopic surgical instruments for robotic telesurgery applications
US10219871B2 (en) * 2015-11-23 2019-03-05 Alireza Mirbagheri Robotic system for tele-surgery
GB201521808D0 (en) * 2015-12-10 2016-01-27 Cambridge Medical Robotics Ltd Interfacing a surgical robot and instrument
JP6654883B2 (en) * 2015-12-11 2020-02-26 川崎重工業株式会社 Surgical system, manipulator arm, and manipulator arm support
JP6654884B2 (en) * 2015-12-11 2020-02-26 川崎重工業株式会社 Surgery system
EP3397189A4 (en) * 2015-12-29 2019-09-04 Covidien LP Robotic surgical systems and instrument drive assemblies
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
EP3399935B1 (en) * 2016-01-07 2024-02-14 Intuitive Surgical Operations, Inc. Telescoping cannula arm
KR20180093015A (en) 2016-01-08 2018-08-20 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Sys for surgical instruments and related devices and methods
JP6110527B1 (en) * 2016-01-28 2017-04-05 上銀科技股▲分▼有限公司 Control mechanism for elastic medical devices
US10117632B2 (en) 2016-02-03 2018-11-06 Globus Medical, Inc. Portable medical imaging system with beam scanning collimator
US11883217B2 (en) 2016-02-03 2024-01-30 Globus Medical, Inc. Portable medical imaging system and method
US10448910B2 (en) 2016-02-03 2019-10-22 Globus Medical, Inc. Portable medical imaging system
US11058378B2 (en) 2016-02-03 2021-07-13 Globus Medical, Inc. Portable medical imaging system
US10842453B2 (en) 2016-02-03 2020-11-24 Globus Medical, Inc. Portable medical imaging system
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
CN108882932B (en) 2016-02-09 2021-07-23 伊西康有限责任公司 Surgical instrument with asymmetric articulation configuration
US10653413B2 (en) 2016-02-09 2020-05-19 Ethicon Llc Surgical instruments with an end effector that is highly articulatable relative to an elongate shaft assembly
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
EP3795110A1 (en) * 2016-03-09 2021-03-24 Memic Innovative Surgery Ltd. Modular device comprising mechanical arms
CN105686883B (en) * 2016-03-14 2018-11-30 昆山一邦泰汽车零部件制造有限公司 A kind of redundant degree of freedom holds mirror mechanical arm
US10866119B2 (en) 2016-03-14 2020-12-15 Globus Medical, Inc. Metal detector for detecting insertion of a surgical device into a hollow tube
US10973599B2 (en) 2016-03-25 2021-04-13 Intuitive Surgical Operations, Inc. Surgical platform supported by multiple arms
WO2017167754A1 (en) * 2016-03-31 2017-10-05 Koninklijke Philips N.V. Image guided robot for catheter placement
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US11064997B2 (en) 2016-04-01 2021-07-20 Cilag Gmbh International Surgical stapling instrument
WO2017173524A1 (en) 2016-04-07 2017-10-12 Titan Medical Inc. Camera positioning method and apparatus for capturing images during a medical procedure
EP3241518A3 (en) 2016-04-11 2018-01-24 Globus Medical, Inc Surgical tool systems and methods
WO2017181153A1 (en) 2016-04-14 2017-10-19 Transenterix Surgical, Inc. Electromechanical surgical system inlcuding linearly driven instrument roll
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US10363037B2 (en) 2016-04-18 2019-07-30 Ethicon Llc Surgical instrument system comprising a magnetic lockout
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US10454347B2 (en) 2016-04-29 2019-10-22 Auris Health, Inc. Compact height torque sensing articulation axis assembly
CN109152614B (en) 2016-05-26 2021-09-10 柯惠Lp公司 Instrument drive unit
CN109152617B (en) 2016-05-26 2021-11-02 柯惠Lp公司 Robotic surgical assembly
WO2017205467A1 (en) * 2016-05-26 2017-11-30 Covidien Lp Cannula assemblies for use with robotic surgical systems
EP3463162A4 (en) 2016-06-03 2020-06-24 Covidien LP Systems, methods, and computer-readable program products for controlling a robotically delivered manipulator
WO2017210499A1 (en) 2016-06-03 2017-12-07 Covidien Lp Control arm for robotic surgical systems
WO2017210500A1 (en) 2016-06-03 2017-12-07 Covidien Lp Robotic surgical system with an embedded imager
CN109195543A (en) 2016-06-03 2019-01-11 柯惠Lp公司 Passive axle system for robotic surgical system
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
US11000278B2 (en) 2016-06-24 2021-05-11 Ethicon Llc Staple cartridge comprising wire staples and stamped staples
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
USD826405S1 (en) 2016-06-24 2018-08-21 Ethicon Llc Surgical fastener
CN109310431B (en) 2016-06-24 2022-03-04 伊西康有限责任公司 Staple cartridge comprising wire staples and punch staples
CN106137396B (en) * 2016-06-27 2018-11-27 哈尔滨思哲睿智能医疗设备有限公司 A kind of bindiny mechanism for laparoscopic surgery robotic tool
EP3478355A4 (en) 2016-06-30 2020-03-04 Intuitive Surgical Operations Inc. Systems and methods of steerable elongate device
US10939973B2 (en) * 2016-07-01 2021-03-09 Intuitive Surgical Operations, Inc. Computer-assisted medical systems and methods
US11622672B2 (en) * 2016-07-01 2023-04-11 Intuitive Surgical Operations, Inc. Method for positioning an endoscope with flexible shaft
KR102533374B1 (en) 2016-07-14 2023-05-26 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Automatic manipulator assembly deployment for draping
WO2018013979A1 (en) 2016-07-14 2018-01-18 Intuitive Surgical Operations, Inc. Secondary instrument control in a computer-assisted teleoperated system
EP3484406B1 (en) 2016-07-14 2024-02-28 Intuitive Surgical Operations, Inc. Instrument flushing system
US20190231451A1 (en) 2016-07-14 2019-08-01 Intuitive Surgical Operations, Inc. Geared roll drive for medical instrument
US11464595B2 (en) 2016-07-14 2022-10-11 Intuitive Surgical Operations, Inc. Telescoping medical device assembly and sterile drape
US11007024B2 (en) 2016-07-14 2021-05-18 Intuitive Surgical Operations, Inc. Geared grip actuation for medical instruments
WO2018013187A1 (en) 2016-07-14 2018-01-18 Intuitive Surgical Operations, Inc. Instrument release
WO2018013300A1 (en) 2016-07-14 2018-01-18 Intuitive Surgical Operations, Inc. Mechanism for managing and retaining a surgical drape
WO2018013217A1 (en) 2016-07-14 2018-01-18 Intuitive Surgical Operations, Inc. Instruments with electrically isolated components, related systems and methods
US11207145B2 (en) 2016-07-14 2021-12-28 Intuitive Surgical Operations, Inc. Multi-cable medical instrument
US11020190B2 (en) * 2016-07-14 2021-06-01 Intuitive Surgical Operations, Inc. Automated instrument preload engage/disengage mechanism
JP6960986B2 (en) * 2016-07-14 2021-11-05 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Surgical drape installation aid
US20190290310A1 (en) 2016-07-14 2019-09-26 Intuitive Surgical Operations, Inc. Surgical instruments with electrically isolated actuation members, related devices, and related methods
US11026757B2 (en) 2016-07-20 2021-06-08 Intuitive Surgical Operations, Inc. Surgical cannulas, and related systems and methods
GB2600067B (en) 2016-07-29 2022-08-10 Cmr Surgical Ltd Motion feedthrough
US11925431B2 (en) 2016-07-29 2024-03-12 Cmr Surgical Limited Motion feedthrough
GB2552540B (en) 2016-07-29 2021-11-24 Cmr Surgical Ltd Interface structure
US11241559B2 (en) 2016-08-29 2022-02-08 Auris Health, Inc. Active drive for guidewire manipulation
CN109069138B (en) 2016-08-31 2021-07-20 奥瑞斯健康公司 Length-conservative surgical instrument
US10674896B2 (en) 2016-09-12 2020-06-09 Applied Medical Resources Corporation Surgical robotic access system for irregularly shaped robotic actuators and associated robotic surgical instruments
CN116158859A (en) * 2016-09-15 2023-05-26 直观外科手术操作公司 Computer-aided teleoperation surgical system and method
US11234784B2 (en) 2016-09-22 2022-02-01 Intuitive Surgical Operations, Inc. Tension regulation of remotely actuated instruments, and related devices, systems, and methods
CN106236276B (en) * 2016-09-28 2019-09-17 微创(上海)医疗机器人有限公司 Surgical robot system
GB2555654B (en) * 2016-11-08 2021-10-06 Cmr Surgical Ltd Attachment structure for securing a robot arm to a support structure
US11399886B2 (en) * 2016-11-11 2022-08-02 Intuitive Surgical Operations, Inc. Surgical instruments, related systems, and related methods
US11166744B2 (en) 2016-11-14 2021-11-09 Intuitive Surgical Operations, Inc. Electrically conductive reducer device, related systems, and related methods
US11241290B2 (en) 2016-11-21 2022-02-08 Intuitive Surgical Operations, Inc. Cable length conserving medical instrument
CN113349932A (en) 2016-12-20 2021-09-07 威博外科公司 Sterile adapter control system and communication interface for robotic surgical system
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US11191539B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system
CN110099619B (en) 2016-12-21 2022-07-15 爱惜康有限责任公司 Lockout device for surgical end effector and replaceable tool assembly
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US20180168608A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical instrument system comprising an end effector lockout and a firing assembly lockout
US10980536B2 (en) 2016-12-21 2021-04-20 Ethicon Llc No-cartridge and spent cartridge lockout arrangements for surgical staplers
US10888322B2 (en) 2016-12-21 2021-01-12 Ethicon Llc Surgical instrument comprising a cutting member
US10624671B2 (en) * 2016-12-21 2020-04-21 Ethicon Llc Trocar attachment devices and methods
US20180168618A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling systems
US10568626B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaw opening features for increasing a jaw opening distance
JP2020501779A (en) 2016-12-21 2020-01-23 エシコン エルエルシーEthicon LLC Surgical stapling system
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10779823B2 (en) 2016-12-21 2020-09-22 Ethicon Llc Firing member pin angle
US20180168633A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments and staple-forming anvils
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10537324B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Stepped staple cartridge with asymmetrical staples
US10973516B2 (en) 2016-12-21 2021-04-13 Ethicon Llc Surgical end effectors and adaptable firing members therefor
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
US11684367B2 (en) 2016-12-21 2023-06-27 Cilag Gmbh International Stepped assembly having and end-of-life indicator
US10244926B2 (en) 2016-12-28 2019-04-02 Auris Health, Inc. Detecting endolumenal buckling of flexible instruments
US10543048B2 (en) 2016-12-28 2020-01-28 Auris Health, Inc. Flexible instrument insertion using an adaptive insertion force threshold
CN106667579B (en) * 2016-12-30 2020-02-21 哈尔滨思哲睿智能医疗设备有限公司 Connecting mechanism for laparoscopic surgery robot instrument
WO2018132386A1 (en) 2017-01-10 2018-07-19 Intuitive Surgical Operations, Inc. Systems and methods for using a robotic medical system
JP7233841B2 (en) 2017-01-18 2023-03-07 ケービー メディカル エスアー Robotic Navigation for Robotic Surgical Systems
US10617858B2 (en) * 2017-01-24 2020-04-14 Intuitive Surgical Operations, Inc. Surgical port features with electrically conductive portions, related devices, and related methods
US11235133B2 (en) 2017-01-24 2022-02-01 Intuitive Surgical Operations, Inc. Surgical instrument ports configured for use with wound retractors, and related devices and methods
CN110650691B (en) 2017-01-31 2023-11-10 阿森塞斯(美国)手术公司 Hydraulic instrument driving system for minimally invasive surgery
KR102528164B1 (en) 2017-02-06 2023-05-04 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Systems and methods for coupling components of medical systems
WO2018147930A1 (en) * 2017-02-08 2018-08-16 Intuitive Surgical Operations, Inc. Repositioning system for a remotely controllable manipulator and related methods
US10799308B2 (en) 2017-02-09 2020-10-13 Vicarious Surgical Inc. Virtual reality surgical tools system
US11690691B2 (en) 2017-02-15 2023-07-04 Covidien Lp System and apparatus for crush prevention for medical robot applications
EP3363401A1 (en) * 2017-02-16 2018-08-22 Microsure B.V. Robotic manipulator interface for hinged surgical tools
US10357321B2 (en) 2017-02-24 2019-07-23 Intuitive Surgical Operations, Inc. Splayed cable guide for a medical instrument
US11779410B2 (en) 2017-03-09 2023-10-10 Momentis Surgical Ltd Control console including an input arm for control of a surgical mechanical arm
US10973592B2 (en) 2017-03-09 2021-04-13 Memie Innovative Surgery Ltd. Control console for surgical device with mechanical arms
GB2560384B (en) * 2017-03-10 2022-07-20 Cmr Surgical Ltd Controlling a surgical instrument
US11071594B2 (en) 2017-03-16 2021-07-27 KB Medical SA Robotic navigation of robotic surgical systems
CN108618845B (en) * 2017-03-20 2022-07-29 新加坡国立大学 Parallel brain surgery minimally invasive surgery robot capable of being fixed on skull
US11076926B2 (en) 2017-03-21 2021-08-03 Intuitive Surgical Operations, Inc. Manual release for medical device drive system
IT201700042116A1 (en) * 2017-04-14 2018-10-14 Medical Microinstruments Spa ROBOTIC ASSEMBLY FOR SURGERY
JP6836649B2 (en) * 2017-05-01 2021-03-03 株式会社メディカロイド Medical treatment tools and surgical systems
CN106983513B (en) * 2017-05-02 2023-03-21 内蒙古智牧溯源技术开发有限公司 Livestock sign detection device based on RFID and Internet of things
WO2018209518A1 (en) * 2017-05-15 2018-11-22 Bio-Medical Engineering (HK) Limited Systems, devices, and methods for performing surgical actions via externally driven driving assemblies
US11717361B2 (en) 2017-05-24 2023-08-08 Covidien Lp Electrosurgical robotic system having tool presence detection
CN110177518B (en) 2017-05-25 2023-01-31 柯惠Lp公司 System and method for detecting objects within a field of view of an image capture device
EP3629983B1 (en) 2017-05-25 2023-06-28 Covidien LP Robotic surgical systems and drapes for covering components of robotic surgical systems
JP2020520745A (en) 2017-05-25 2020-07-16 コヴィディエン リミテッド パートナーシップ Robotic surgical system with automatic guidance
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US11484310B2 (en) 2017-06-28 2022-11-01 Cilag Gmbh International Surgical instrument comprising a shaft including a closure tube profile
EP4070740A1 (en) 2017-06-28 2022-10-12 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US11026758B2 (en) 2017-06-28 2021-06-08 Auris Health, Inc. Medical robotics systems implementing axis constraints during actuation of one or more motorized joints
US10695057B2 (en) 2017-06-28 2020-06-30 Ethicon Llc Surgical instrument lockout arrangement
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US11058508B2 (en) * 2017-06-29 2021-07-13 Verb Surgical Inc. Sterile adapter for a linearly-actuating instrument driver
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10426559B2 (en) * 2017-06-30 2019-10-01 Auris Health, Inc. Systems and methods for medical instrument compression compensation
US10675094B2 (en) 2017-07-21 2020-06-09 Globus Medical Inc. Robot surgical platform
CN107361849B (en) 2017-07-31 2023-11-21 成都博恩思医学机器人有限公司 Console for actuating an actuator
CN107334536B (en) * 2017-07-31 2023-05-30 成都博恩思医学机器人有限公司 Internal supporting mechanism and control console
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11974742B2 (en) 2017-08-03 2024-05-07 Cilag Gmbh International Surgical system comprising an articulation bailout
US11510694B2 (en) 2017-08-11 2022-11-29 Intuitive Surgical Operations, Inc. Medical apparatus with optical sensing, and related devices and methods
CN111031955A (en) * 2017-08-16 2020-04-17 柯惠Lp公司 Robotic surgical system and curtain for covering components of robotic surgical system
CN115068075A (en) * 2017-08-23 2022-09-20 麦米克创新外科有限公司 Means and methods for vaginal route
EP3476355A4 (en) 2017-09-01 2019-10-16 Koh Young Technology Inc Medical arm assembly
CN110177516B (en) 2017-09-05 2023-10-24 柯惠Lp公司 Collision handling algorithm for robotic surgical systems
US11583358B2 (en) 2017-09-06 2023-02-21 Covidien Lp Boundary scaling of surgical robots
JP7387588B2 (en) 2017-09-14 2023-11-28 ヴィカリアス・サージカル・インコーポレイテッド Virtual reality surgical camera system
US10857347B2 (en) 2017-09-19 2020-12-08 Pulse Biosciences, Inc. Treatment instrument and high-voltage connectors for robotic surgical system
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US11096754B2 (en) 2017-10-04 2021-08-24 Mako Surgical Corp. Sterile drape assembly for surgical robot
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US11357548B2 (en) 2017-11-09 2022-06-14 Globus Medical, Inc. Robotic rod benders and related mechanical and motor housings
EP3492032B1 (en) 2017-11-09 2023-01-04 Globus Medical, Inc. Surgical robotic systems for bending surgical rods
US11794338B2 (en) 2017-11-09 2023-10-24 Globus Medical Inc. Robotic rod benders and related mechanical and motor housings
US11134862B2 (en) 2017-11-10 2021-10-05 Globus Medical, Inc. Methods of selecting surgical implants and related devices
EP3710800A4 (en) 2017-11-14 2021-08-04 Intuitive Surgical Operations, Inc. Split bridge circuit force sensor
US10675107B2 (en) 2017-11-15 2020-06-09 Intuitive Surgical Operations, Inc. Surgical instrument end effector with integral FBG
US11576735B2 (en) 2017-11-15 2023-02-14 Steerable Instruments N.V. Controllable steerable instrument
US11160621B2 (en) * 2017-11-17 2021-11-02 Intuitive Surgical Operations, Inc. Surgical instrument sterile adapter with optical coupler
EP3716880A4 (en) 2017-11-29 2021-12-22 Covidien LP Robotic surgical systems, instrument drive assemblies, and drive assemblies
EP3723655A4 (en) 2017-12-11 2021-09-08 Auris Health, Inc. Systems and methods for instrument based insertion architectures
EP3684562A4 (en) 2017-12-14 2021-06-30 Auris Health, Inc. System and method for estimating instrument location
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11369368B2 (en) 2017-12-21 2022-06-28 Cilag Gmbh International Surgical instrument comprising synchronized drive systems
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
CN108175506A (en) * 2017-12-25 2018-06-19 宁波杨古诚文化传播有限公司 A kind of medical mechanism arm for assisting operation
EP3735199A4 (en) 2018-01-04 2021-10-13 Covidien LP Systems and assemblies for mounting a surgical accessory to robotic surgical systems, and providing access therethrough
JP7463277B2 (en) * 2018-01-17 2024-04-08 オーリス ヘルス インコーポレイテッド Surgical robotic system having improved robotic arm
WO2019143459A1 (en) 2018-01-17 2019-07-25 Auris Health, Inc. Surgical platform with adjustable arm supports
GB2570520B8 (en) * 2018-01-30 2023-05-24 Cmr Surgical Ltd Interfacing a surgical robotic arm and instrument
GB2570518B8 (en) * 2018-01-30 2023-05-24 Cmr Surgical Ltd Interfacing a surgical robotic arm and instrument
GB2570514B8 (en) * 2018-01-30 2023-06-07 Cmr Surgical Ltd Surgical drape
US11497567B2 (en) 2018-02-08 2022-11-15 Intuitive Surgical Operations, Inc. Jointed control platform
US11118661B2 (en) 2018-02-12 2021-09-14 Intuitive Surgical Operations, Inc. Instrument transmission converting roll to linear actuation
CN111712174A (en) 2018-02-15 2020-09-25 柯惠Lp公司 Sheath assembly for rigid endoscope
US20190254753A1 (en) 2018-02-19 2019-08-22 Globus Medical, Inc. Augmented reality navigation systems for use with robotic surgical systems and methods of their use
US11189379B2 (en) 2018-03-06 2021-11-30 Digital Surgery Limited Methods and systems for using multiple data structures to process surgical data
CA3090181A1 (en) * 2018-03-08 2019-09-12 Covidien Lp Surgical robotic systems
CN108567489B (en) * 2018-03-23 2022-05-13 深圳市精锋医疗科技股份有限公司 Operation arm, slave operation device and surgical robot
CN108852515B (en) * 2018-03-23 2022-06-24 深圳市精锋医疗科技股份有限公司 Slave operation device for single incision surgery and surgical robot
US10573023B2 (en) 2018-04-09 2020-02-25 Globus Medical, Inc. Predictive visualization of medical imaging scanner component movement
AU2018419295B2 (en) * 2018-04-17 2023-04-13 Chengdu Borns Medical Robotics Inc. Laparoscope-holding robot system for laparoscopic surgery
CN111989065A (en) 2018-04-20 2020-11-24 柯惠Lp公司 Compensation of observer movement in a robotic surgical system with a stereoscopic display
CN110384556B (en) * 2018-04-20 2021-04-02 赛诺微医疗科技(浙江)有限公司 Quick change mechanism, instrument clamping hand adopting same and surgical operation robot
CN110384557B (en) * 2018-04-20 2021-03-30 赛诺微医疗科技(浙江)有限公司 Combined positioning mechanism, instrument clamping hand adopting same and surgical operation robot
KR102452566B1 (en) 2018-04-27 2022-10-06 주식회사 엘지화학 Super absorbent polymer composition
CN108324384A (en) * 2018-05-04 2018-07-27 傅丽秋 A kind of modified form medical operating equipment
CN108338845A (en) * 2018-05-04 2018-07-31 吕丹丹 A kind of advanced medical operating equipment
CN108324385A (en) * 2018-05-04 2018-07-27 吕丹丹 A kind of medical operating equipment
CN109009449B (en) * 2018-06-22 2020-08-11 深圳市精锋医疗科技有限公司 Operation arm and slave operation device
CN110623746B (en) * 2018-06-22 2021-05-11 深圳市精锋医疗科技有限公司 Surgical robot
CN109124773A (en) * 2018-06-25 2019-01-04 深圳市精锋医疗科技有限公司 mechanical arm
US10667875B2 (en) * 2018-06-27 2020-06-02 Auris Health, Inc. Systems and techniques for providing multiple perspectives during medical procedures
EP3813632A4 (en) 2018-06-27 2022-03-09 Auris Health, Inc. Alignment and attachment systems for medical instruments
CN112105312A (en) 2018-07-03 2020-12-18 柯惠Lp公司 Systems, methods, and computer-readable media for detecting image degradation during a surgical procedure
US20210322042A1 (en) 2018-07-17 2021-10-21 Intuitive Surgical Operations, Inc. Surgical instruments with reduced capacitance, related devices, and related methods
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
CN113143353B (en) * 2018-08-24 2023-03-17 上海微创医疗机器人(集团)股份有限公司 Snake-shaped surgical instrument
JP6777694B2 (en) * 2018-08-28 2020-10-28 株式会社メディカロイド Endoscope adapter
CN112739283A (en) 2018-09-17 2021-04-30 奥瑞斯健康公司 System and method for accompanying medical procedure
CN109223181A (en) * 2018-09-19 2019-01-18 中国科学院苏州生物医学工程技术研究所 The puncture needle robot for the treatment of is felt for pain
CN109091234A (en) * 2018-09-19 2018-12-28 中国科学院苏州生物医学工程技术研究所 Minimally Invasive Surgery puncture needle robot system
US11369449B2 (en) 2018-09-20 2022-06-28 Board Of Regents Of The University Of Nebraska Modular cable-driven surgical robots
WO2020069080A1 (en) 2018-09-28 2020-04-02 Auris Health, Inc. Devices, systems, and methods for manually and robotically driving medical instruments
CN113164220A (en) 2018-10-05 2021-07-23 直观外科手术操作公司 System and method for positioning a medical instrument
US11109746B2 (en) 2018-10-10 2021-09-07 Titan Medical Inc. Instrument insertion system, method, and apparatus for performing medical procedures
EP3639983A1 (en) * 2018-10-18 2020-04-22 Technische Universität München Anti-collision safety measures for a reconfigurable modular robot
WO2020081963A1 (en) 2018-10-19 2020-04-23 Intuitive Surgical Operations, Inc. Cleaning devices for imaging instruments, devices, and methods
JP6469304B1 (en) 2018-10-23 2019-02-13 株式会社A−Traction Surgery support apparatus, control method thereof, and program
US11337742B2 (en) 2018-11-05 2022-05-24 Globus Medical Inc Compliant orthopedic driver
US11815412B2 (en) 2018-11-15 2023-11-14 Intuitive Surgical Operations, Inc. Strain sensor with contoured deflection surface
US11278360B2 (en) 2018-11-16 2022-03-22 Globus Medical, Inc. End-effectors for surgical robotic systems having sealed optical components
CN111249007B (en) * 2018-11-30 2021-09-07 上海微创医疗机器人(集团)股份有限公司 Medical robot and mechanical arm for clamping medical instrument
DE102018220758B4 (en) * 2018-11-30 2023-02-16 Siemens Healthcare Gmbh Device and method for controlling an X-ray machine
US11602402B2 (en) 2018-12-04 2023-03-14 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
EP3890643A2 (en) 2018-12-04 2021-10-13 Mako Surgical Corporation Mounting system with sterile barrier assembly for use in coupling surgical components
US11744655B2 (en) 2018-12-04 2023-09-05 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
WO2020117908A1 (en) 2018-12-05 2020-06-11 Intuitive Surgical Operations, Inc. Cannulas with non-circular cross-sections, systems, and methods
EP3866718A4 (en) 2018-12-20 2022-07-20 Auris Health, Inc. Systems and methods for robotic arm alignment and docking
JP6827518B2 (en) * 2018-12-26 2021-02-10 川崎重工業株式会社 Manipulator arm and patient side system used in surgical system
US11586106B2 (en) 2018-12-28 2023-02-21 Titan Medical Inc. Imaging apparatus having configurable stereoscopic perspective
CN113453643A (en) * 2018-12-30 2021-09-28 迈米克创新手术有限公司 Surgical drape for robotic device
WO2020142340A1 (en) * 2018-12-31 2020-07-09 Xact Medical, Inc. Subcutaneous delivery system
US11730556B2 (en) 2018-12-31 2023-08-22 Asensus Surgical Us, Inc. Compact actuation configuration and expandable instrument receiver for robotically controlled surgical instruments
US11690688B2 (en) 2018-12-31 2023-07-04 Asensus Surgical Us, Inc. Compact actuation configuration and expandable instrument receiver for robotically controlled surgical instruments
JP6870010B2 (en) * 2019-01-21 2021-05-12 株式会社メディカロイド Surgical system and support device
JP7153335B2 (en) * 2019-01-29 2022-10-14 リバーフィールド株式会社 Surgery support device
US11717355B2 (en) 2019-01-29 2023-08-08 Covidien Lp Drive mechanisms for surgical instruments such as for use in robotic surgical systems
CN109620368A (en) * 2019-01-30 2019-04-16 珠海市人民医院 It is a kind of based on CT guidance under intervening of intelligence sting device
US11576733B2 (en) 2019-02-06 2023-02-14 Covidien Lp Robotic surgical assemblies including electrosurgical instruments having articulatable wrist assemblies
US11857277B2 (en) 2019-02-08 2024-01-02 Auris Health, Inc. Robotically controlled clot manipulation and removal
US11484372B2 (en) 2019-02-15 2022-11-01 Covidien Lp Articulation mechanisms for surgical instruments such as for use in robotic surgical systems
US11571569B2 (en) 2019-02-15 2023-02-07 Pulse Biosciences, Inc. High-voltage catheters for sub-microsecond pulsing
US11202683B2 (en) 2019-02-22 2021-12-21 Auris Health, Inc. Surgical platform with motorized arms for adjustable arm supports
KR102269772B1 (en) * 2019-03-13 2021-06-28 큐렉소 주식회사 End effector for surgical robot
US11918313B2 (en) 2019-03-15 2024-03-05 Globus Medical Inc. Active end effectors for surgical robots
US11419616B2 (en) 2019-03-22 2022-08-23 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
CN113613580A (en) 2019-03-22 2021-11-05 奥瑞斯健康公司 System and method for aligning inputs on a medical instrument
WO2020198027A1 (en) * 2019-03-22 2020-10-01 Intuitive Surgical Operations, Inc. Systems and methods for maintaining sterility of a component using a movable, sterile volume
US11382549B2 (en) 2019-03-22 2022-07-12 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US20200297357A1 (en) 2019-03-22 2020-09-24 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11317978B2 (en) 2019-03-22 2022-05-03 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11806084B2 (en) 2019-03-22 2023-11-07 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US11571265B2 (en) 2019-03-22 2023-02-07 Globus Medical Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US20220117461A1 (en) * 2019-03-25 2022-04-21 W Endoluminal Robotics Ltd. Manipulator with serial actuation
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
JP6866417B2 (en) * 2019-03-28 2021-04-28 株式会社メディカロイド Adapter and how to install the adapter
AT16885U1 (en) 2019-03-28 2020-11-15 Palfinger Ag Crane with crane control
KR20210149805A (en) 2019-04-08 2021-12-09 아우리스 헬스, 인코포레이티드 Systems, Methods, and Workflows for Concurrent Procedures
CN110251234A (en) * 2019-07-10 2019-09-20 苏州点合医疗科技有限公司 A kind of planer-type, which can be removed, receives mechanical arm spinal operation robot
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
JP6562174B1 (en) * 2019-05-10 2019-08-21 株式会社A−Traction Surgery support device
US11045179B2 (en) 2019-05-20 2021-06-29 Global Medical Inc Robot-mounted retractor system
US11123146B2 (en) * 2019-05-30 2021-09-21 Titan Medical Inc. Surgical instrument apparatus, actuator, and drive
WO2020263870A1 (en) * 2019-06-24 2020-12-30 Vicarious Surgical Inc. Devices and methods for robotic assemblies
US10881477B1 (en) * 2019-06-26 2021-01-05 Titan Medical Inc. Sterile barrier systems for robotic surgery systems
US10881478B1 (en) * 2019-06-26 2021-01-05 Titan Medical Inc. Methods for protecting robotic surgery systems with sterile barriers
US11625107B2 (en) * 2019-06-27 2023-04-11 Intuitive Surgical Operations, Inc. System and method for motion mode management
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11350938B2 (en) 2019-06-28 2022-06-07 Cilag Gmbh International Surgical instrument comprising an aligned rfid sensor
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11628023B2 (en) 2019-07-10 2023-04-18 Globus Medical, Inc. Robotic navigational system for interbody implants
WO2021011924A1 (en) * 2019-07-17 2021-01-21 Transenterix Surgical, Inc. Compact actuation configuration and expandable instrument receiver for robotically controlled surgical instruments
KR20220050151A (en) * 2019-08-15 2022-04-22 아우리스 헬스, 인코포레이티드 Medical device having multiple bend sections
US11896330B2 (en) 2019-08-15 2024-02-13 Auris Health, Inc. Robotic medical system having multiple medical instruments
WO2021048707A1 (en) 2019-09-10 2021-03-18 Auris Health, Inc. Systems and methods for kinematic optimization with shared robotic degrees-of-freedom
US11571171B2 (en) 2019-09-24 2023-02-07 Globus Medical, Inc. Compound curve cable chain
WO2021059099A1 (en) 2019-09-26 2021-04-01 Auris Health, Inc. Systems and methods for collision detection and avoidance
US11864857B2 (en) 2019-09-27 2024-01-09 Globus Medical, Inc. Surgical robot with passive end effector
US11426178B2 (en) 2019-09-27 2022-08-30 Globus Medical Inc. Systems and methods for navigating a pin guide driver
US11890066B2 (en) 2019-09-30 2024-02-06 Globus Medical, Inc Surgical robot with passive end effector
WO2021064536A1 (en) 2019-09-30 2021-04-08 Auris Health, Inc. Medical instrument with capstan
WO2021067467A1 (en) 2019-09-30 2021-04-08 Intuitive Surgical Operations, Inc. Single port instrument access device
US20220338901A1 (en) 2019-09-30 2022-10-27 Intuitive Surgical Operations, Inc. Instrument entry guide
CN114521129A (en) 2019-09-30 2022-05-20 直观外科手术操作公司 Single-port instrument access equipment
KR102343395B1 (en) * 2019-10-04 2021-12-27 한국기계연구원 Positioning apparatus for stimulation and treatment and method for positioning using the same
KR20220078592A (en) * 2019-10-11 2022-06-10 콜루브리스엠엑스 인코포레이티드 7 degree of freedom positioning device for robotic surgery
US11510684B2 (en) 2019-10-14 2022-11-29 Globus Medical, Inc. Rotary motion passive end effector for surgical robots in orthopedic surgeries
US11529734B2 (en) * 2019-10-31 2022-12-20 Verb Surgical Inc. Systems and methods for visual sensing of and docking with a trocar
US11375965B2 (en) 2019-11-01 2022-07-05 Turner Imaging Systems, Inc. Sterile barriers for medical devices
CN110811838B (en) * 2019-11-01 2020-10-20 山东大学 Double-operation mode surgical robot capable of realizing multi-hole single-hole interchange
US11071601B2 (en) * 2019-11-11 2021-07-27 Procept Biorobotics Corporation Surgical probes for tissue resection with robotic arms
EP4061238A1 (en) * 2019-11-21 2022-09-28 Auris Health, Inc. Systems and methods for draping a surgical system
GB2589380B (en) * 2019-11-29 2024-02-21 Cmr Surgical Ltd Controlling a surgical instrument
CN110897659B (en) * 2019-12-11 2021-03-16 山东大学 Modular surgical robot capable of realizing conversion between single hole and multiple holes
US11653912B2 (en) 2019-12-12 2023-05-23 Intuitive Surgical Operations, Inc. Needle driver devices and related systems and methods
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
KR20220123269A (en) 2019-12-31 2022-09-06 아우리스 헬스, 인코포레이티드 Advanced basket drive mode
KR20220123076A (en) 2019-12-31 2022-09-05 아우리스 헬스, 인코포레이티드 Alignment Techniques for Transdermal Access
US11950872B2 (en) 2019-12-31 2024-04-09 Auris Health, Inc. Dynamic pulley system
US11602372B2 (en) 2019-12-31 2023-03-14 Auris Health, Inc. Alignment interfaces for percutaneous access
EP4084721A4 (en) 2019-12-31 2024-01-03 Auris Health Inc Anatomical feature identification and targeting
CN111134740B (en) * 2020-01-07 2022-02-22 深圳市精锋医疗科技股份有限公司 Method for connecting surgical instrument and driving device, slave operation device, and surgical robot
CN111166471B (en) * 2020-01-09 2020-12-22 浙江理工大学 Three-axis intersection type active and passive hybrid surgical endoscope holding arm
WO2021147270A1 (en) * 2020-01-23 2021-07-29 诺创智能医疗科技(杭州)有限公司 Surgical robot arm and surgical robot
CN111227940B (en) * 2020-01-23 2021-11-30 诺创智能医疗科技(杭州)有限公司 Operation arm and operation robot
CN111214291A (en) * 2020-01-23 2020-06-02 诺创智能医疗科技(杭州)有限公司 Operation arm and operation robot
CN111227944B (en) * 2020-01-23 2021-11-30 诺创智能医疗科技(杭州)有限公司 Operation arm and operation robot
CN111134847B (en) * 2020-01-23 2021-10-22 诺创智能医疗科技(杭州)有限公司 Operation assembly and surgical robot
CN111249008B (en) * 2020-01-23 2021-07-27 诺创智能医疗科技(杭州)有限公司 Operation arm and operation robot
WO2021150334A1 (en) * 2020-01-24 2021-07-29 Covidien Lp Surgical robotic systems
IT202000002548A1 (en) * 2020-02-10 2021-08-10 Medical Microinstruments Spa ASSEMBLY OF ROBOTIC SURGERY, OPERATIVE ARENA AND METHOD
US11382699B2 (en) 2020-02-10 2022-07-12 Globus Medical Inc. Extended reality visualization of optical tool tracking volume for computer assisted navigation in surgery
CA3166575A1 (en) 2020-02-10 2021-08-19 Massimiliano Simi Sterile barrier assembly and robotic surgery system
IT202000002545A1 (en) 2020-02-10 2021-08-10 Medical Microinstruments Spa ASSEMBLY OF STERILE BARRIER AND ROBOTIC SURGERY SYSTEM
IT202000002536A1 (en) 2020-02-10 2021-08-10 Medical Microinstruments Spa STERILE ADAPTER FOR A ROBOTIC SURGERY SYSTEM, ASSEMBLY, SYSTEM AND METHOD
US11207150B2 (en) 2020-02-19 2021-12-28 Globus Medical, Inc. Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment
JP6892707B1 (en) * 2020-02-20 2021-06-23 リバーフィールド株式会社 Surgical support device
WO2021202869A1 (en) 2020-04-02 2021-10-07 Intuitive Surgical Operations, Inc. Devices for instrument use recording, devices for recording instrument reprocessing events, and related systems and methods
US11253216B2 (en) 2020-04-28 2022-02-22 Globus Medical Inc. Fixtures for fluoroscopic imaging systems and related navigation systems and methods
US11510750B2 (en) 2020-05-08 2022-11-29 Globus Medical, Inc. Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications
US11153555B1 (en) 2020-05-08 2021-10-19 Globus Medical Inc. Extended reality headset camera system for computer assisted navigation in surgery
US11382700B2 (en) 2020-05-08 2022-07-12 Globus Medical Inc. Extended reality headset tool tracking and control
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
US11317973B2 (en) 2020-06-09 2022-05-03 Globus Medical, Inc. Camera tracking bar for computer assisted navigation during surgery
US11382713B2 (en) 2020-06-16 2022-07-12 Globus Medical, Inc. Navigated surgical system with eye to XR headset display calibration
WO2021258113A1 (en) 2020-06-19 2021-12-23 Remedy Robotics, Inc. Systems and methods for guidance of intraluminal devices within the vasculature
CN115802975A (en) 2020-06-29 2023-03-14 奥瑞斯健康公司 System and method for detecting contact between a connecting rod and an external object
EP4171428A1 (en) 2020-06-30 2023-05-03 Auris Health, Inc. Robotic medical system with collision proximity indicators
US11357586B2 (en) 2020-06-30 2022-06-14 Auris Health, Inc. Systems and methods for saturated robotic movement
JP6998620B1 (en) 2020-07-01 2022-01-24 株式会社マスダック Firing plate cleaning device and cleaning method
USD963851S1 (en) 2020-07-10 2022-09-13 Covidien Lp Port apparatus
US11877807B2 (en) 2020-07-10 2024-01-23 Globus Medical, Inc Instruments for navigated orthopedic surgeries
US11793588B2 (en) 2020-07-23 2023-10-24 Globus Medical, Inc. Sterile draping of robotic arms
US11660090B2 (en) 2020-07-28 2023-05-30 Cllag GmbH International Surgical instruments with segmented flexible drive arrangements
CN114098845B (en) * 2020-08-28 2023-07-25 中国科学院沈阳自动化研究所 Modularized surgical robot driving device
US11737831B2 (en) 2020-09-02 2023-08-29 Globus Medical Inc. Surgical object tracking template generation for computer assisted navigation during surgical procedure
US11523785B2 (en) 2020-09-24 2022-12-13 Globus Medical, Inc. Increased cone beam computed tomography volume length without requiring stitching or longitudinal C-arm movement
US11793597B2 (en) 2020-09-30 2023-10-24 Verb Surgical Inc. Attachment mechanism for docking cannulas to surgical robotic arms
US11793500B2 (en) 2020-09-30 2023-10-24 Verb Surgical Inc. Adjustable force and ball bearing attachment mechanism for docking cannulas to surgical robotic arms
JP2022061812A (en) * 2020-10-07 2022-04-19 株式会社メディカロイド Surgical instrument
EP4225133A1 (en) 2020-10-07 2023-08-16 Canary Medical Switzerland AG Providing medical devices with sensing functionality
US11919153B2 (en) 2020-10-15 2024-03-05 Intuitive Surgical Operations, Inc. Counterbalance mechanism including drive ratio
CN113967071B (en) 2020-10-23 2023-09-29 成都博恩思医学机器人有限公司 Control method and device for movement of mechanical arm of surgical robot along with operation bed
KR102495396B1 (en) * 2020-10-26 2023-02-06 주식회사 피치랩 Medical multi-dof robot
US11911112B2 (en) 2020-10-27 2024-02-27 Globus Medical, Inc. Robotic navigational system
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11941814B2 (en) 2020-11-04 2024-03-26 Globus Medical Inc. Auto segmentation using 2-D images taken during 3-D imaging spin
US11717350B2 (en) 2020-11-24 2023-08-08 Globus Medical Inc. Methods for robotic assistance and navigation in spinal surgery and related systems
CN116782962A (en) 2020-11-30 2023-09-19 直观外科手术操作公司 Medical gas conduits for medical gas evacuation devices and related systems and methods
CN112353496A (en) * 2020-11-30 2021-02-12 中国科学院沈阳自动化研究所 Soft endoscope operation and control robot
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
CN116940287A (en) * 2020-12-28 2023-10-24 波士顿科学国际有限公司 Control mechanism for end effector
CN112618023B (en) * 2020-12-30 2022-05-10 上海微创医疗机器人(集团)股份有限公司 Sterile isolation device and surgical robot system
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
EP4301270A1 (en) * 2021-03-01 2024-01-10 Mazor Robotics Ltd. Shrink sterile drape and related systems and methods
KR20230160306A (en) * 2021-03-18 2023-11-23 버츄오쏘 써지컬, 아이엔씨. System for performing minimally invasive surgery
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
WO2022212261A1 (en) 2021-03-29 2022-10-06 Intuitive Surgical Operations, Inc. Devices, systems, and methods for performing suturing procedures
EP4322882A1 (en) * 2021-04-14 2024-02-21 Covidien LP Robotic remote center of motion with active portal/trocar manipulation
US11426886B1 (en) * 2021-05-25 2022-08-30 Rj Hanlon Company, Inc. Protective robot wrap
CN115383787A (en) * 2021-05-25 2022-11-25 敏捷医疗科技(苏州)有限公司 Mechanical arm and control method thereof
US11826047B2 (en) 2021-05-28 2023-11-28 Cilag Gmbh International Stapling instrument comprising jaw mounts
US11948226B2 (en) 2021-05-28 2024-04-02 Covidien Lp Systems and methods for clinical workspace simulation
US20220401161A1 (en) * 2021-06-21 2022-12-22 Globus Medical, Inc. Gravity compensation of end effector arm for robotic surgical system
EP4358891A1 (en) * 2021-06-21 2024-05-01 Covidien LP Robotic surgical instruments with diverging form factors
CN113331952B (en) * 2021-06-28 2023-02-17 上海交通大学 Surgical robot based on fiber choledochoscope
US11707332B2 (en) 2021-07-01 2023-07-25 Remedy Robotics, Inc. Image space control for endovascular tools
AU2022305235A1 (en) 2021-07-01 2024-01-18 Remedy Robotics, Inc. Vision-based position and orientation determination for endovascular tools
US11857273B2 (en) 2021-07-06 2024-01-02 Globus Medical, Inc. Ultrasonic robotic surgical navigation
US11439444B1 (en) 2021-07-22 2022-09-13 Globus Medical, Inc. Screw tower and rod reduction tool
CN113440291B (en) * 2021-07-26 2023-05-16 河南医学高等专科学校 Multifunctional medicine feeding, cleaning and integrating device in oral surgery
CA3227145A1 (en) * 2021-08-20 2023-02-23 Titan Medical Inc. Robotic surgery system
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11957337B2 (en) 2021-10-18 2024-04-16 Cilag Gmbh International Surgical stapling assembly with offset ramped drive surfaces
WO2023069404A1 (en) 2021-10-19 2023-04-27 Intuitive Surgical Operations, Inc. Force transmission systems using planetary gear assembly, and related devices and methods
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments
CN114098952A (en) * 2021-11-11 2022-03-01 深圳市精锋医疗科技股份有限公司 Mechanical arm, slave operation device and surgical robot
CN114098951A (en) * 2021-11-11 2022-03-01 深圳市精锋医疗科技股份有限公司 Mechanical arm, slave operation device and surgical robot
CN114098992A (en) * 2021-11-11 2022-03-01 深圳市精锋医疗科技股份有限公司 Mechanical arm, slave operation device and surgical robot
CN114098957A (en) * 2021-11-11 2022-03-01 深圳市精锋医疗科技股份有限公司 Mechanical arm, slave operation device and surgical robot
CN114098977A (en) * 2021-11-12 2022-03-01 艺柏湾医疗科技(上海)有限公司 End mechanism of surgical robot, control method thereof and related equipment
WO2023101974A1 (en) * 2021-11-30 2023-06-08 Endoquest Robotics, Inc. Force transmission systems for robotically controlled medical devices
WO2023101968A1 (en) 2021-11-30 2023-06-08 Endoquest Robotics, Inc. Steerable overtube assemblies for robotic surgical systems
US11963733B2 (en) 2021-12-01 2024-04-23 Nuvasive Inc. Connector assemblies for connecting a robotic arm with a medical end effector
CN114209369A (en) * 2021-12-10 2022-03-22 江苏集萃微纳自动化系统与装备技术研究所有限公司 Axial power system suitable for flexible bending
US11911115B2 (en) 2021-12-20 2024-02-27 Globus Medical Inc. Flat panel registration fixture and method of using same
CN114521967B (en) * 2022-02-22 2024-01-23 上海微创医疗机器人(集团)股份有限公司 Mechanical arm and medical trolley
CN114533275B (en) * 2022-02-22 2024-02-23 上海微创医疗机器人(集团)股份有限公司 Terminal articulated arm, mechanical arm and medical trolley
CN114587603B (en) * 2022-02-25 2023-04-25 上海奥朋医疗科技有限公司 Sterile isolation device for laparoscopic surgical robot and laparoscopic surgical robot thereof
WO2023170546A1 (en) * 2022-03-07 2023-09-14 Cilag Gmbh International Reuseable stowage cover for robotic surgical system
CN114642486B (en) * 2022-03-23 2023-04-07 哈尔滨工业大学 Puncture needle clamping driving device and tail end operating device of prostate puncture robot
WO2023212275A1 (en) 2022-04-29 2023-11-02 Intuitive Surgical Operations, Inc. Rail assembly for table-mounted manipulator system, and related devices, systems and methods
WO2023212344A1 (en) 2022-04-29 2023-11-02 Intuitive Surgical Operations, Inc. Table-mounted manipulator system, and related devices, systems and methods
WO2023212277A1 (en) 2022-04-29 2023-11-02 Intuitive Surgical Operations, Inc. Nesting proximal links for table mounted manipulator system, and related devices, systems and methods
WO2023250307A1 (en) 2022-06-21 2023-12-28 Intuitive Surgical Operations, Inc. Force transmission systems for instruments, and related devices
US20240021105A1 (en) 2022-07-13 2024-01-18 Intuitive Surgical Operations, Inc. Surgical training model including a simulated human prostate and associated methods

Family Cites Families (280)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2941776A (en) * 1957-05-13 1960-06-21 Ritter Co Inc Counterbalancing mechanism
NL106631C (en) 1960-02-04 1963-11-15 Pieter Johannes Meijs SUPPORT AND LOCKING DEVICE, IN PARTICULAR FOR A TIMER
DE1212789B (en) * 1963-05-30 1966-03-17 Zikesch Carl Herbert Clamping device for a helical compression spring
US3546961A (en) 1967-12-22 1970-12-15 Gen Electric Variable flexibility tether
US3640140A (en) * 1969-06-02 1972-02-08 Res Engineering Co Actuator
US3796477A (en) * 1972-09-25 1974-03-12 Xomox Corp Lens housing and lens cover for objective lens ring of an operating microscope
US4160536A (en) * 1976-10-27 1979-07-10 Jac. Jacobsen A/S Counterbalanced arm
US4107769A (en) * 1977-03-21 1978-08-15 American Sterilizer Company Balanced single horizontal suspension arm
JPS57190549A (en) 1981-05-19 1982-11-24 Olympus Optical Co Ultrasonic diagnostic apparatus
US4437114A (en) 1982-06-07 1984-03-13 Farrand Optical Co., Inc. Robotic vision system
US4518307A (en) * 1982-09-29 1985-05-21 The Boeing Company Compliant robot arm adapter assembly
US4673988A (en) 1985-04-22 1987-06-16 E.I. Du Pont De Nemours And Company Electronic mosaic imaging process
US4742817A (en) 1985-05-15 1988-05-10 Olympus Optical Co., Ltd. Endoscopic apparatus having a bendable insertion section
US4721097A (en) 1986-10-31 1988-01-26 Circon Corporation Endoscope sheaths and method and apparatus for installation and removal
US4809191A (en) 1987-04-28 1989-02-28 Barry Wright Corporation Robotic position sensor
US4792715A (en) 1987-11-16 1988-12-20 Barsky Michael F Robot gripper control system using PVDF piezoelectric sensors
GB2226245A (en) 1988-11-18 1990-06-27 Alan Crockard Endoscope, remote actuator and aneurysm clip applicator.
US5114403A (en) * 1989-09-15 1992-05-19 Eclipse Surgical Technologies, Inc. Catheter torque mechanism
US4949927A (en) 1989-10-17 1990-08-21 John Madocks Articulable column
FR2674639A1 (en) 1991-03-29 1992-10-02 Gaz De France BRAGG NETWORK OPTIC FIBER AND ITS APPLICATIONS.
US5251611A (en) 1991-05-07 1993-10-12 Zehel Wendell E Method and apparatus for conducting exploratory procedures
FI93607C (en) * 1991-05-24 1995-05-10 John Koivukangas Cutting Remedy
US5417210A (en) * 1992-05-27 1995-05-23 International Business Machines Corporation System and method for augmentation of endoscopic surgery
ATE215430T1 (en) 1992-01-21 2002-04-15 Stanford Res Inst Int ENDOSCOPIC SURGICAL INSTRUMENT
US6963792B1 (en) 1992-01-21 2005-11-08 Sri International Surgical method
US5631973A (en) 1994-05-05 1997-05-20 Sri International Method for telemanipulation with telepresence
US5624380A (en) 1992-03-12 1997-04-29 Olympus Optical Co., Ltd. Multi-degree of freedom manipulator
EP0587859A4 (en) * 1992-03-18 1995-02-22 Spectranetics Corp Fiber optic catheter with twistable tip.
US5395367A (en) * 1992-07-29 1995-03-07 Wilk; Peter J. Laparoscopic instrument with bendable shaft and removable actuator
US5762458A (en) 1996-02-20 1998-06-09 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US5524180A (en) 1992-08-10 1996-06-04 Computer Motion, Inc. Automated endoscope system for optimal positioning
US5297536A (en) 1992-08-25 1994-03-29 Wilk Peter J Method for use in intra-abdominal surgery
US5397323A (en) 1992-10-30 1995-03-14 International Business Machines Corporation Remote center-of-motion robot for surgery
US6450950B2 (en) 1992-11-12 2002-09-17 Karl Storz Gmbh & Co. Kg Endoscope having stereo-lateral-view optics
JP3250759B2 (en) 1993-04-02 2002-01-28 オリンパス光学工業株式会社 Flexible tubular insert bending device
EP0699053B1 (en) 1993-05-14 1999-03-17 Sri International Surgical apparatus
US6406472B1 (en) 1993-05-14 2002-06-18 Sri International, Inc. Remote center positioner
US5487757A (en) 1993-07-20 1996-01-30 Medtronic Cardiorhythm Multicurve deflectable catheter
US5876325A (en) 1993-11-02 1999-03-02 Olympus Optical Co., Ltd. Surgical manipulation system
US6010408A (en) 1994-05-02 2000-01-04 Eaton Corporation Torsion isolator with active counterweight
US5617515A (en) 1994-07-11 1997-04-01 Dynetics, Inc. Method and apparatus for controlling and programming a robot or other moveable object
US6120433A (en) 1994-09-01 2000-09-19 Olympus Optical Co., Ltd. Surgical manipulator system
US6597941B2 (en) 1994-09-15 2003-07-22 Stryker Corporation Transillumination of body members for protection during body invasive procedures
US5649032A (en) 1994-11-14 1997-07-15 David Sarnoff Research Center, Inc. System for automatically aligning images to form a mosaic image
US5868760A (en) 1994-12-07 1999-02-09 Mcguckin, Jr.; James F. Method and apparatus for endolumenally resectioning tissue
US5662581A (en) 1995-01-05 1997-09-02 Delaware Capital Formation, Inc. Easily sterilizable glove system
US5759151A (en) 1995-06-07 1998-06-02 Carnegie Mellon University Flexible steerable device for conducting exploratory procedures
CN1155833A (en) 1995-06-20 1997-07-30 伍云升 Articulated arm for medical procedures
IL115477A0 (en) * 1995-10-01 1996-01-19 Kaplan Harel Holdings Ltd Scanner
WO1997029709A1 (en) 1996-02-15 1997-08-21 Biosense, Inc. Medical procedures and apparatus using intrabody probes
US5855583A (en) * 1996-02-20 1999-01-05 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US6063095A (en) 1996-02-20 2000-05-16 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US6436107B1 (en) 1996-02-20 2002-08-20 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
JP3225835B2 (en) 1996-03-14 2001-11-05 富士写真光機株式会社 Endoscope treatment instrument fixing mechanism
US5792044A (en) * 1996-03-22 1998-08-11 Danek Medical, Inc. Devices and methods for percutaneous surgery
US5797900A (en) 1996-05-20 1998-08-25 Intuitive Surgical, Inc. Wrist mechanism for surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US5792135A (en) 1996-05-20 1998-08-11 Intuitive Surgical, Inc. Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US5755713A (en) * 1996-06-03 1998-05-26 Bilof; Michael L. Laparoscopic instrument assembly including a plurality of instruments
US6364888B1 (en) 1996-09-09 2002-04-02 Intuitive Surgical, Inc. Alignment of master and slave in a minimally invasive surgical apparatus
US5752112A (en) 1996-11-06 1998-05-12 George Paddock, Inc. Mounting system for body mounted camera equipment
US6331181B1 (en) * 1998-12-08 2001-12-18 Intuitive Surgical, Inc. Surgical robotic tools, data architecture, and use
US7727244B2 (en) * 1997-11-21 2010-06-01 Intuitive Surgical Operation, Inc. Sterile surgical drape
US7666191B2 (en) 1996-12-12 2010-02-23 Intuitive Surgical, Inc. Robotic surgical system with sterile surgical adaptor
US8182469B2 (en) * 1997-11-21 2012-05-22 Intuitive Surgical Operations, Inc. Surgical accessory clamp and method
US8206406B2 (en) * 1996-12-12 2012-06-26 Intuitive Surgical Operations, Inc. Disposable sterile surgical adaptor
US7699855B2 (en) 1996-12-12 2010-04-20 Intuitive Surgical Operations, Inc. Sterile surgical adaptor
US6132368A (en) 1996-12-12 2000-10-17 Intuitive Surgical, Inc. Multi-component telepresence system and method
US5892860A (en) 1997-01-21 1999-04-06 Cidra Corporation Multi-parameter fiber optic sensor for use in harsh environments
AUPO478397A0 (en) * 1997-01-31 1997-02-20 Fairmont Medical Products Pty Ltd Endoscopic drape
AU7175398A (en) 1997-05-02 1998-11-27 Medtronic, Inc. Adjustable supporting bracket having plural ball and socket joints
US6066090A (en) 1997-06-19 2000-05-23 Yoon; Inbae Branched endoscope system
GB9713018D0 (en) 1997-06-20 1997-08-27 Secr Defence Optical fibre bend sensor
US6030130A (en) 1997-07-07 2000-02-29 George Paddock Ii, Inc. Body mounted camera support system
EP2362285B1 (en) 1997-09-19 2015-03-25 Massachusetts Institute of Technology Robotic apparatus
JPH11123675A (en) * 1997-10-22 1999-05-11 Sankyo Seiki Mfg Co Ltd Vertical shaft up and down mechanism or robot
US6171277B1 (en) 1997-12-01 2001-01-09 Cordis Webster, Inc. Bi-directional control handle for steerable catheter
US5982791A (en) 1998-01-14 1999-11-09 Hewlett-Packard Company Wavelength tracking in adjustable optical systems
US7169141B2 (en) 1998-02-24 2007-01-30 Hansen Medical, Inc. Surgical instrument
US6860878B2 (en) 1998-02-24 2005-03-01 Endovia Medical Inc. Interchangeable instrument
US7297142B2 (en) * 1998-02-24 2007-11-20 Hansen Medical, Inc. Interchangeable surgical instrument
US7758569B2 (en) * 1998-02-24 2010-07-20 Hansen Medical, Inc. Interchangeable surgical instrument
US7214230B2 (en) 1998-02-24 2007-05-08 Hansen Medical, Inc. Flexible instrument
US7090683B2 (en) 1998-02-24 2006-08-15 Hansen Medical, Inc. Flexible instrument
US6843793B2 (en) * 1998-02-24 2005-01-18 Endovia Medical, Inc. Surgical instrument
DE19815598B4 (en) 1998-04-07 2007-01-18 Stm Medizintechnik Starnberg Gmbh Flexible access tube with everting tube system
US6191414B1 (en) 1998-06-05 2001-02-20 Cidra Corporation Composite form as a component for a pressure transducer
US6629630B2 (en) 1998-06-19 2003-10-07 Scimed Life Systems, Inc. Non-circular resection device and endoscope
US6352503B1 (en) 1998-07-17 2002-03-05 Olympus Optical Co., Ltd. Endoscopic surgery apparatus
WO2000007503A1 (en) 1998-08-04 2000-02-17 Intuitive Surgical, Inc. Manipulator positioning linkage for robotic surgery
US6490490B1 (en) * 1998-11-09 2002-12-03 Olympus Optical Co., Ltd. Remote operation support system and method
US6620173B2 (en) * 1998-12-08 2003-09-16 Intuitive Surgical, Inc. Method for introducing an end effector to a surgical site in minimally invasive surgery
US6309397B1 (en) * 1999-12-02 2001-10-30 Sri International Accessories for minimally invasive robotic surgery and methods
JP4242491B2 (en) 1998-12-09 2009-03-25 オリンパス株式会社 Endoscopic treatment device
US6275628B1 (en) 1998-12-10 2001-08-14 Luna Innovations, Inc. Single-ended long period grating optical device
US6451027B1 (en) * 1998-12-16 2002-09-17 Intuitive Surgical, Inc. Devices and methods for moving an image capture device in telesurgical systems
CA2261488A1 (en) 1999-01-21 2000-07-21 Anthony Paolitto Transabdominal device for performing closed-chest cardiac surgery
US6394998B1 (en) 1999-01-22 2002-05-28 Intuitive Surgical, Inc. Surgical tools for use in minimally invasive telesurgical applications
US6571639B1 (en) 1999-03-01 2003-06-03 Luna Innovations, Inc. Fiber optic system
US6366722B1 (en) 1999-03-04 2002-04-02 Luna Innovations, Inc. Optical waveguide sensors having high refractive index sensitivity
US6396574B1 (en) 1999-03-15 2002-05-28 Korea Advanced Institute Science And Technology Apparatus for measuring the wavelength, optical power and optical signal-to-noise ratio of each optical signal in wavelength-division multiplexing optical communication
US6569084B1 (en) 1999-03-31 2003-05-27 Olympus Optical Co., Ltd. Endoscope holder and endoscope device
US6424885B1 (en) 1999-04-07 2002-07-23 Intuitive Surgical, Inc. Camera referenced control in a minimally invasive surgical apparatus
US7637905B2 (en) 2003-01-15 2009-12-29 Usgi Medical, Inc. Endoluminal tool deployment system
US6788018B1 (en) * 1999-08-03 2004-09-07 Intuitive Surgical, Inc. Ceiling and floor mounted surgical robot set-up arms
WO2001013060A1 (en) 1999-08-13 2001-02-22 Advanced Sensor Technologies Llc Probe position sensing system for use in a coordinate measuring machine
DE19938549A1 (en) * 1999-08-18 2001-02-22 Uwe Thomas Microprobe system used in neurophysiology and neurosurgery comprises a self-bearing device, a microfiber electrode and a macro-therapy electrode
US7594912B2 (en) 2004-09-30 2009-09-29 Intuitive Surgical, Inc. Offset remote center manipulator for robotic surgery
US8004229B2 (en) 2005-05-19 2011-08-23 Intuitive Surgical Operations, Inc. Software center and highly configurable robotic systems for surgery and other uses
US8768516B2 (en) 2009-06-30 2014-07-01 Intuitive Surgical Operations, Inc. Control of medical robotic system manipulator about kinematic singularities
SE514693C2 (en) * 1999-09-23 2001-04-02 Elekta Ab Stereotactic apparatus
US6537205B1 (en) 1999-10-14 2003-03-25 Scimed Life Systems, Inc. Endoscopic instrument system having reduced backlash control wire action
DE10004264C2 (en) 2000-02-01 2002-06-13 Storz Karl Gmbh & Co Kg Device for the intracorporeal, minimally invasive treatment of a patient
US6487352B1 (en) 2000-02-18 2002-11-26 Corning Incorporated Electrical detector for adaptive control of chromatic dispersion in optical systems
US6527753B2 (en) 2000-02-29 2003-03-04 Olympus Optical Co., Ltd. Endoscopic treatment system
DE10011790B4 (en) 2000-03-13 2005-07-14 Siemens Ag Medical instrument for insertion into an examination subject, and medical examination or treatment device
US6984203B2 (en) 2000-04-03 2006-01-10 Neoguide Systems, Inc. Endoscope with adjacently positioned guiding apparatus
US6671055B1 (en) 2000-04-13 2003-12-30 Luna Innovations, Inc. Interferometric sensors utilizing bulk sensing mediums extrinsic to the input/output optical fiber
JP2001327460A (en) 2000-05-18 2001-11-27 Olympus Optical Co Ltd Endoscope device
US6743239B1 (en) * 2000-05-25 2004-06-01 St. Jude Medical, Inc. Devices with a bendable tip for medical procedures
US6645196B1 (en) 2000-06-16 2003-11-11 Intuitive Surgical, Inc. Guided tool change
US6975898B2 (en) 2000-06-19 2005-12-13 University Of Washington Medical imaging, diagnosis, and therapy using a scanning single optical fiber system
DE10032203A1 (en) 2000-07-01 2002-01-17 Deutsches Krebsforsch stereotactic
EP1303222A1 (en) 2000-07-21 2003-04-23 Atropos Limited A cannula
US6746443B1 (en) * 2000-07-27 2004-06-08 Intuitive Surgical Inc. Roll-pitch-roll surgical tool
US6902560B1 (en) 2000-07-27 2005-06-07 Intuitive Surgical, Inc. Roll-pitch-roll surgical tool
US6572629B2 (en) 2000-08-17 2003-06-03 Johns Hopkins University Gastric reduction endoscopy
US7194118B1 (en) 2000-11-10 2007-03-20 Lucid, Inc. System for optically sectioning and mapping surgically excised tissue
US6468226B1 (en) * 2000-11-22 2002-10-22 Mcintyre, Iv John J. Remote tissue biopsy apparatus and associated methods
US6856400B1 (en) 2000-12-14 2005-02-15 Luna Technologies Apparatus and method for the complete characterization of optical devices including loss, birefringence and dispersion effects
US7699835B2 (en) 2001-02-15 2010-04-20 Hansen Medical, Inc. Robotically controlled surgical instruments
US20030135204A1 (en) * 2001-02-15 2003-07-17 Endo Via Medical, Inc. Robotically controlled medical instrument with a flexible section
US6578967B1 (en) 2001-03-15 2003-06-17 George Paddock Ii, Inc. Mounting system for body mounted camera equipment and connector assemblies therefor
US20020165524A1 (en) * 2001-05-01 2002-11-07 Dan Sanchez Pivot point arm for a robotic system used to perform a surgical procedure
US6808491B2 (en) 2001-05-21 2004-10-26 Syntheon, Llc Methods and apparatus for on-endoscope instruments having end effectors and combinations of on-endoscope and through-endoscope instruments
US20040054355A1 (en) 2001-05-31 2004-03-18 Intuitive Surgical, Inc. Tool guide and method for introducing an end effector to a surgical site in minimally invasive surgery
US6699235B2 (en) * 2001-06-29 2004-03-02 Intuitive Surgical, Inc. Platform link wrist mechanism
US6817974B2 (en) 2001-06-29 2004-11-16 Intuitive Surgical, Inc. Surgical tool having positively positionable tendon-actuated multi-disk wrist joint
JP2003024336A (en) * 2001-07-16 2003-01-28 Hitachi Ltd Operation instrument
US6676684B1 (en) * 2001-09-04 2004-01-13 Intuitive Surgical, Inc. Roll-pitch-roll-yaw surgical tool
DE10147145C2 (en) * 2001-09-25 2003-12-18 Kunz Reiner Multi-function instrument for micro-invasive surgery
JP2003204920A (en) 2002-01-11 2003-07-22 Olympus Optical Co Ltd Insertion assisting tool
JP2003230565A (en) 2002-02-12 2003-08-19 Univ Tokyo Active trocar
JP4073249B2 (en) * 2002-05-17 2008-04-09 オリンパス株式会社 Surgery system
US7041052B2 (en) 2002-06-13 2006-05-09 Usgi Medical Inc. Shape lockable apparatus and method for advancing an instrument through unsupported anatomy
US6837847B2 (en) 2002-06-13 2005-01-04 Usgi Medical, Inc. Shape lockable apparatus and method for advancing an instrument through unsupported anatomy
US6679836B2 (en) 2002-06-21 2004-01-20 Scimed Life Systems, Inc. Universal programmable guide catheter
US7331967B2 (en) * 2002-09-09 2008-02-19 Hansen Medical, Inc. Surgical instrument coupling mechanism
US7947000B2 (en) 2003-09-12 2011-05-24 Intuitive Surgical Operations, Inc. Cannula system for free-space navigation and method of use
JP3680050B2 (en) * 2002-09-18 2005-08-10 株式会社東芝 Medical manipulator and control method thereof
US6854327B2 (en) 2002-11-06 2005-02-15 Shell Oil Company Apparatus and method for monitoring compaction
US6899672B2 (en) 2002-11-08 2005-05-31 Scimed Life Systems, Inc. Endoscopic imaging system including removable deflection device
CN1486667A (en) 2002-11-22 2004-04-07 Endoscope system with disposable sheath
KR101118049B1 (en) 2002-12-06 2012-02-24 인튜어티브 서지컬 인코포레이티드 Medical instrument
US20040186350A1 (en) 2003-01-13 2004-09-23 Usgi Medical Corp. Apparatus and methods for guiding an endoscope via a rigidizable wire guide
US20040249367A1 (en) 2003-01-15 2004-12-09 Usgi Medical Corp. Endoluminal tool deployment system
US6925339B2 (en) 2003-02-04 2005-08-02 Zimmer Technology, Inc. Implant registration device for surgical navigation system
US6836578B2 (en) 2003-04-14 2004-12-28 Lake Shore Cryotronics, Inc. System and method for measuring physical stimuli using vertical cavity surface emitting lasers with integrated tuning means
JP2003275223A (en) 2003-04-21 2003-09-30 Olympus Optical Co Ltd Surgical instrument unit
US7371028B2 (en) 2003-05-01 2008-05-13 George Paddock Ii, Inc. Post mounting system
JP4791967B2 (en) 2003-05-21 2011-10-12 ザ・ジョンズ・ホプキンス・ユニバーシティー Devices, systems and methods for minimally invasive surgery of mammalian throat and other parts of body
US7090637B2 (en) 2003-05-23 2006-08-15 Novare Surgical Systems, Inc. Articulating mechanism for remote manipulation of a surgical or diagnostic tool
JP4460857B2 (en) 2003-06-23 2010-05-12 オリンパス株式会社 Surgical system
JP4559093B2 (en) 2003-10-03 2010-10-06 オリンパス株式会社 Medical device support device
US20050096502A1 (en) 2003-10-29 2005-05-05 Khalili Theodore M. Robotic surgical device
US7481793B2 (en) 2003-12-10 2009-01-27 Boston Scientic Scimed, Inc. Modular steerable sheath catheters
US8052636B2 (en) 2004-03-05 2011-11-08 Hansen Medical, Inc. Robotic catheter system and methods
US7972298B2 (en) 2004-03-05 2011-07-05 Hansen Medical, Inc. Robotic catheter system
JP3922284B2 (en) 2004-03-31 2007-05-30 有限会社エスアールジェイ Holding device
US20050272977A1 (en) 2004-04-14 2005-12-08 Usgi Medical Inc. Methods and apparatus for performing endoluminal procedures
US7379790B2 (en) * 2004-05-04 2008-05-27 Intuitive Surgical, Inc. Tool memory-based software upgrades for robotic surgery
US20050251176A1 (en) 2004-05-07 2005-11-10 Usgi Medical Inc. System for treating gastroesophageal reflux disease
US7837615B2 (en) 2004-05-10 2010-11-23 Usgi Medical, Inc. Shape lockable apparatus and method for advancing an instrument through unsupported anatomy
EP1744696A1 (en) * 2004-05-14 2007-01-24 Cardima, Inc. Ablation probe with stabilizing member
JP2007537832A (en) 2004-05-17 2007-12-27 シー・アール・バード・インコーポレーテッド Mapping and ablation methods for treating ventricular tachycardia
CA2747236C (en) 2004-06-25 2013-08-20 059312 N.B. Inc. Shape-acceleration measurement device and method
US7781724B2 (en) 2004-07-16 2010-08-24 Luna Innovations Incorporated Fiber optic position and shape sensing device and method relating thereto
US7772541B2 (en) 2004-07-16 2010-08-10 Luna Innnovations Incorporated Fiber optic position and/or shape sensing based on rayleigh scatter
US20060013523A1 (en) 2004-07-16 2006-01-19 Luna Innovations Incorporated Fiber optic position and shape sensing device and method relating thereto
CN2710567Y (en) * 2004-07-22 2005-07-20 上海英迈吉东影图像设备有限公司 Guiding system mechanical arm for operation
CA2513202C (en) 2004-07-23 2015-03-31 Mehran Anvari Multi-purpose robotic operating system and method
US8075476B2 (en) 2004-07-27 2011-12-13 Intuitive Surgical Operations, Inc. Cannula system and method of use
US8016835B2 (en) * 2004-08-06 2011-09-13 Depuy Spine, Inc. Rigidly guided implant placement with control assist
US9261172B2 (en) 2004-09-30 2016-02-16 Intuitive Surgical Operations, Inc. Multi-ply strap drive trains for surgical robotic arms
JP3993886B2 (en) * 2004-11-22 2007-10-17 松下電器産業株式会社 Robot arm
JP4588432B2 (en) 2004-12-15 2010-12-01 富士重工業株式会社 Method for manufacturing modular sensor for damage detection
US7837674B2 (en) 2005-01-24 2010-11-23 Intuitive Surgical Operations, Inc. Compact counter balance for robotic surgical systems
US7763015B2 (en) 2005-01-24 2010-07-27 Intuitive Surgical Operations, Inc. Modular manipulator support for robotic surgery
CN100336640C (en) * 2005-02-01 2007-09-12 天津大学 Secondary manipulator of surgery operation robot
US20060184161A1 (en) * 2005-02-16 2006-08-17 Usgi Medical Inc. Flexible shaft system having interchangeable end effectors
US7175456B2 (en) * 2005-02-28 2007-02-13 Robert Bosch Gmbh Anti-disengagement connect system for a power tool
US8075498B2 (en) 2005-03-04 2011-12-13 Endosense Sa Medical apparatus system having optical fiber load sensing capability
US8182433B2 (en) 2005-03-04 2012-05-22 Endosense Sa Medical apparatus system having optical fiber load sensing capability
US8463439B2 (en) * 2009-03-31 2013-06-11 Intuitive Surgical Operations, Inc. Optic fiber connection for a force sensing instrument
US7752920B2 (en) 2005-12-30 2010-07-13 Intuitive Surgical Operations, Inc. Modular force sensor
CN2824867Y (en) * 2005-04-22 2006-10-11 董永华 Operation isolation sheet
US9789608B2 (en) * 2006-06-29 2017-10-17 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical robot
US10555775B2 (en) 2005-05-16 2020-02-11 Intuitive Surgical Operations, Inc. Methods and system for performing 3-D tool tracking by fusion of sensor and/or camera derived data during minimally invasive robotic surgery
EP1887961B1 (en) * 2005-06-06 2012-01-11 Intuitive Surgical Operations, Inc. Laparoscopic ultrasound robotic surgical system
KR101274595B1 (en) 2005-06-30 2013-06-13 인튜어티브 서지컬 인코포레이티드 Indicator for tool state and communication in multiarm robotic telesurgery
US20070005002A1 (en) 2005-06-30 2007-01-04 Intuitive Surgical Inc. Robotic surgical instruments for irrigation, aspiration, and blowing
JP2007029274A (en) * 2005-07-25 2007-02-08 Hitachi Ltd Operation tool device
JP2009507617A (en) 2005-09-14 2009-02-26 ネオガイド システムズ, インコーポレイテッド Method and apparatus for performing transluminal and other operations
GB0521281D0 (en) * 2005-10-19 2005-11-30 Acrobat Company The Ltd hybrid constrant mechanism
WO2007052354A1 (en) 2005-11-04 2007-05-10 Olympus Medical Systems Corp. Endoscope system, endoscope, supporting member and method of using endoscope system
US8190238B2 (en) 2005-12-09 2012-05-29 Hansen Medical, Inc. Robotic catheter system and methods
JP5043414B2 (en) * 2005-12-20 2012-10-10 インテュイティブ サージカル インコーポレイテッド Aseptic surgical adapter
US8672922B2 (en) * 2005-12-20 2014-03-18 Intuitive Surgical Operations, Inc. Wireless communication in a robotic surgical system
CN101340852B (en) * 2005-12-20 2011-12-28 直观外科手术操作公司 Instrument interface of a robotic surgical system
US8182470B2 (en) 2005-12-20 2012-05-22 Intuitive Surgical Operations, Inc. Telescoping insertion axis of a robotic surgical system
WO2007075844A1 (en) 2005-12-20 2007-07-05 Intuitive Surgical, Inc. Telescoping insertion axis of a robotic surgical system
US9962066B2 (en) * 2005-12-30 2018-05-08 Intuitive Surgical Operations, Inc. Methods and apparatus to shape flexible entry guides for minimally invasive surgery
EP2289455B1 (en) 2005-12-30 2019-11-13 Intuitive Surgical Operations, Inc. Modular force sensor
US7930065B2 (en) 2005-12-30 2011-04-19 Intuitive Surgical Operations, Inc. Robotic surgery system including position sensors using fiber bragg gratings
US8142420B2 (en) 2006-01-25 2012-03-27 Intuitive Surgical Operations Inc. Robotic arm with five-bar spherical linkage
US8469945B2 (en) 2006-01-25 2013-06-25 Intuitive Surgical Operations, Inc. Center robotic arm with five-bar spherical linkage for endoscopic camera
EP1815949A1 (en) * 2006-02-03 2007-08-08 The European Atomic Energy Community (EURATOM), represented by the European Commission Medical robotic system with manipulator arm of the cylindrical coordinate type
EP1815950A1 (en) * 2006-02-03 2007-08-08 The European Atomic Energy Community (EURATOM), represented by the European Commission Robotic surgical system for performing minimally invasive medical procedures
US20070265503A1 (en) 2006-03-22 2007-11-15 Hansen Medical, Inc. Fiber optic instrument sensing system
US7918783B2 (en) * 2006-03-22 2011-04-05 Boston Scientific Scimed, Inc. Endoscope working channel with multiple functionality
WO2007146984A2 (en) 2006-06-13 2007-12-21 Intuitive Surgical, Inc. Control system configured to compensate for non-ideal actuator-to-joint linkage characteristics in a medical robotic system
US8029516B2 (en) 2006-06-13 2011-10-04 Intuitive Surgical Operations, Inc. Bracing of bundled medical devices for single port entry, robotically assisted medical procedures
US8517933B2 (en) 2006-06-13 2013-08-27 Intuitive Surgical Operations, Inc. Retraction of tissue for single port entry, robotically assisted medical procedures
US8377045B2 (en) * 2006-06-13 2013-02-19 Intuitive Surgical Operations, Inc. Extendable suction surface for bracing medial devices during robotically assisted medical procedures
US8597280B2 (en) 2006-06-13 2013-12-03 Intuitive Surgical Operations, Inc. Surgical instrument actuator
EP2037794B1 (en) 2006-06-13 2021-10-27 Intuitive Surgical Operations, Inc. Minimally invasive surgical system
US8784435B2 (en) 2006-06-13 2014-07-22 Intuitive Surgical Operations, Inc. Surgical system entry guide
US8834488B2 (en) 2006-06-22 2014-09-16 Board Of Regents Of The University Of Nebraska Magnetically coupleable robotic surgical devices and related methods
US10258425B2 (en) 2008-06-27 2019-04-16 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide
DE602006002384D1 (en) * 2006-07-05 2008-10-02 Haldex Brake Prod Ab Disc brake and spacer
US7690222B2 (en) * 2006-08-02 2010-04-06 Owens-Brockway Glass Container Inc. Glass gob distribution
TWM306883U (en) 2006-08-28 2007-03-01 Taiwan Sakurai Mfg Co Ltd Glove for baseball or softball
WO2008028149A2 (en) 2006-09-01 2008-03-06 Voyage Medical, Inc. Electrophysiology mapping and visualization system
US8157793B2 (en) * 2006-10-25 2012-04-17 Terumo Kabushiki Kaisha Manipulator for medical use
US8814779B2 (en) 2006-12-21 2014-08-26 Intuitive Surgical Operations, Inc. Stereoscopic endoscope
US7918785B2 (en) 2007-01-17 2011-04-05 Olympus Medical Systems Corp. Medical apparatus, treatment instrument for endoscope and endoscope apparatus
CN100479776C (en) * 2007-02-02 2009-04-22 天津大学 Multi-freedom micro-mechanical arm for minimally invasive operation
US20080221590A1 (en) * 2007-03-05 2008-09-11 Intuitive Surgical, Inc. Apparatus for positioning and holding in place a manually manipulated medical device during the performance of a robotically assisted medical procedure
US20080235436A1 (en) * 2007-03-23 2008-09-25 Zimmer Vincent J Storage access control
US8377044B2 (en) * 2007-03-30 2013-02-19 Ethicon Endo-Surgery, Inc. Detachable end effectors
US8409234B2 (en) * 2007-05-25 2013-04-02 Hansen Medical, Inc. Rotational apparatus system and method for a robotic instrument system
US8620473B2 (en) 2007-06-13 2013-12-31 Intuitive Surgical Operations, Inc. Medical robotic system with coupled control modes
US8903546B2 (en) 2009-08-15 2014-12-02 Intuitive Surgical Operations, Inc. Smooth control of an articulated instrument across areas with different work space conditions
US9084623B2 (en) 2009-08-15 2015-07-21 Intuitive Surgical Operations, Inc. Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide
US8444631B2 (en) * 2007-06-14 2013-05-21 Macdonald Dettwiler & Associates Inc Surgical manipulator
US8264777B2 (en) 2007-06-26 2012-09-11 Qd Vision, Inc. Portable electronic device having an electro wetting display illuminated by quantum dots
US20090054728A1 (en) 2007-08-21 2009-02-26 Trusty Robert M Manipulatable guide system and methods for natural orifice translumenal endoscopic surgery
EP2234549A2 (en) * 2007-12-20 2010-10-06 Cavanaugh Medical Devices, LLC Multi-purpose tool for minor surgery
JP5017076B2 (en) 2007-12-21 2012-09-05 テルモ株式会社 Manipulator system and manipulator control method
DE102008005901B4 (en) * 2008-01-24 2018-08-09 Deutsches Zentrum für Luft- und Raumfahrt e.V. Sterile barrier for a surgical robot with torque sensors
KR100975047B1 (en) * 2008-02-15 2010-08-11 (주)미래컴퍼니 Coupling structure of surgical instrument
US8333755B2 (en) 2008-03-31 2012-12-18 Intuitive Surgical Operations, Inc. Coupler to transfer controller motion from a robotic manipulator to an attached instrument
US7886743B2 (en) 2008-03-31 2011-02-15 Intuitive Surgical Operations, Inc. Sterile drape interface for robotic surgical instrument
US9895813B2 (en) * 2008-03-31 2018-02-20 Intuitive Surgical Operations, Inc. Force and torque sensing in a surgical robot setup arm
CA2721495C (en) 2008-04-14 2017-12-12 Carnegie Mellon University Articulated device with visualization system
US8945096B2 (en) 2008-06-05 2015-02-03 Carnegie Mellon University Extendable articulated probe device
US20110015650A1 (en) * 2008-06-11 2011-01-20 Seung Wook Choi Instrument of robot arm for surgery
US8220765B2 (en) 2008-06-23 2012-07-17 Intuitive Surgical Operations, Inc. Spring counterbalance for rotating load
US9179832B2 (en) 2008-06-27 2015-11-10 Intuitive Surgical Operations, Inc. Medical robotic system with image referenced camera control using partitionable orientational and translational modes
US8414469B2 (en) 2008-06-27 2013-04-09 Intuitive Surgical Operations, Inc. Medical robotic system having entry guide controller with instrument tip velocity limiting
US8490953B2 (en) 2008-06-30 2013-07-23 Intuitive Surgical Operations, Inc. Spring counterbalance with failure detection
US20100111645A1 (en) 2008-11-04 2010-05-06 Mayez Al-Mouhamed Anthropomorphic force-reflective master arm
US8720448B2 (en) * 2008-11-07 2014-05-13 Hansen Medical, Inc. Sterile interface apparatus
CN101474090B (en) * 2009-02-17 2010-12-08 哈尔滨工业大学 Six-freedom degree wearing type auxiliary bone-knitting parallel-connected robot
CN101548904B (en) * 2009-05-22 2010-11-17 四川大学 Robot arm for operation
US8918212B2 (en) 2009-06-24 2014-12-23 Intuitive Surgical Operations, Inc. Arm with a combined shape and force sensor
US8918211B2 (en) 2010-02-12 2014-12-23 Intuitive Surgical Operations, Inc. Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument
US8504134B2 (en) 2009-10-01 2013-08-06 Intuitive Surgical Operations, Inc. Laterally fenestrated cannula
US8887595B2 (en) 2009-12-22 2014-11-18 Intuitive Surgical Operations, Inc. Instrument wrist with cycloidal surfaces
US9339341B2 (en) 2010-02-08 2016-05-17 Intuitive Surgical Operations, Inc. Direct pull surgical gripper
US10376331B2 (en) 2010-02-12 2019-08-13 Intuitive Surgical Operations, Inc. Sheaths for jointed instruments
US9877744B2 (en) 2010-02-12 2018-01-30 Intuitive Surgical Operations, Inc. Entry guide for multiple instruments in a single port surgical system
US8991278B2 (en) 2010-05-14 2015-03-31 Intuitive Surgical Operations, Inc. Overforce protection mechanism
US8603077B2 (en) 2010-05-14 2013-12-10 Intuitive Surgical Operations, Inc. Force transmission for robotic surgical instrument
US8661927B2 (en) 2010-05-14 2014-03-04 Intuitive Surgical Operations, Inc. Cable re-ordering device
JP6785656B2 (en) 2013-08-15 2020-11-18 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Graphical user interface for catheter positioning and insertion
US10912523B2 (en) 2014-03-24 2021-02-09 Intuitive Surgical Operations, Inc. Systems and methods for anatomic motion compensation
CN106714724B (en) 2014-07-28 2019-10-25 直观外科手术操作公司 System and method for planning multiple intervention programs
AU2018346790A1 (en) 2017-10-05 2020-04-30 Mobius Imaging, Llc Methods and systems for performing computer assisted surgery
US11069012B2 (en) 2017-12-28 2021-07-20 Cilag Gmbh International Interactive surgical systems with condition handling of devices and data capabilities
US11592657B2 (en) 2018-12-18 2023-02-28 Hemotech Cognition, LLC Method and system for identifying objects in a blood sample

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11266344B2 (en) 2016-09-21 2022-03-08 Samsung Electronics Co., Ltd. Method for measuring skin condition and electronic device therefor
US11534253B2 (en) 2016-10-18 2022-12-27 Korea Institute Of Machinery & Materials Interventional procedure handle unit, interventional procedure master device using same, and remote interventional procedure system using same

Also Published As

Publication number Publication date
KR20130085952A (en) 2013-07-30
US11278364B2 (en) 2022-03-22
CN105852976B (en) 2019-11-05
CN104958111B (en) 2017-10-03
WO2011143020A1 (en) 2011-11-17
CN110604619B (en) 2023-01-24
US9955996B2 (en) 2018-05-01
CN105125263B (en) 2018-02-02
US20200106937A1 (en) 2020-04-02
US20220296322A1 (en) 2022-09-22
US20110282359A1 (en) 2011-11-17
US8746252B2 (en) 2014-06-10
JP2013526337A (en) 2013-06-24
US20140296872A1 (en) 2014-10-02
KR20180116482A (en) 2018-10-24
WO2011143022A1 (en) 2011-11-17
US20110282356A1 (en) 2011-11-17
WO2011143024A1 (en) 2011-11-17
EP3677209A1 (en) 2020-07-08
CN105125263A (en) 2015-12-09
EP2568913B1 (en) 2020-02-12
KR101960345B1 (en) 2019-03-20
US10624672B2 (en) 2020-04-21
US20130079794A9 (en) 2013-03-28
CN102892374B (en) 2015-06-24
US20140326254A1 (en) 2014-11-06
US20180014852A1 (en) 2018-01-18
CN102892376B (en) 2016-04-20
US10869730B2 (en) 2020-12-22
KR20180049252A (en) 2018-05-10
US20110282351A1 (en) 2011-11-17
CN110604619A (en) 2019-12-24
US20150164597A1 (en) 2015-06-18
JP2013528064A (en) 2013-07-08
EP3281752B1 (en) 2020-08-05
US9096033B2 (en) 2015-08-04
JP2015154956A (en) 2015-08-27
US20180214176A1 (en) 2018-08-02
EP2568913A1 (en) 2013-03-20
EP3281752A1 (en) 2018-02-14
JP6113787B2 (en) 2017-04-12
JP5782114B2 (en) 2015-09-24
US8852208B2 (en) 2014-10-07
CN105852976A (en) 2016-08-17
EP2568908A1 (en) 2013-03-20
US20110277775A1 (en) 2011-11-17
JP6130428B2 (en) 2017-05-17
CN102892376A (en) 2013-01-23
KR20210118956A (en) 2021-10-01
EP2568909B1 (en) 2017-11-08
CN102892375A (en) 2013-01-23
KR20180008795A (en) 2018-01-24
US11596488B2 (en) 2023-03-07
EP3673857A1 (en) 2020-07-01
WO2011143016A1 (en) 2011-11-17
US20150305815A1 (en) 2015-10-29
CN102892374A (en) 2013-01-23
US20200268465A1 (en) 2020-08-27
US10537358B2 (en) 2020-01-21
EP2568908B1 (en) 2020-03-11
KR101856099B1 (en) 2018-05-09
JP2016052577A (en) 2016-04-14
KR20170107587A (en) 2017-09-25
US20240000532A1 (en) 2024-01-04
WO2011143023A1 (en) 2011-11-17
US10456166B2 (en) 2019-10-29
KR102076823B1 (en) 2020-02-12
KR102455184B1 (en) 2022-10-18
US11684439B2 (en) 2023-06-27
JP5775154B2 (en) 2015-09-09
US20110282358A1 (en) 2011-11-17
US20200000490A1 (en) 2020-01-02
US20110282357A1 (en) 2011-11-17
EP2568894A1 (en) 2013-03-20
KR20130076825A (en) 2013-07-08
KR20130069662A (en) 2013-06-26
BR112012028374A2 (en) 2017-03-21
BR112012028465B1 (en) 2020-04-07
KR101812990B1 (en) 2017-12-28
JP2017153973A (en) 2017-09-07
CN104958111A (en) 2015-10-07
US10918449B2 (en) 2021-02-16
US10856946B2 (en) 2020-12-08
KR102176624B1 (en) 2020-11-09
JP2015211865A (en) 2015-11-26
CN104958085A (en) 2015-10-07
KR101812485B1 (en) 2017-12-28
KR101911525B1 (en) 2018-10-25
KR20180008764A (en) 2018-01-24
CN104958085B (en) 2017-09-26
JP5849090B2 (en) 2016-01-27
JP6285064B2 (en) 2018-02-28
US9801654B2 (en) 2017-10-31
US20220183780A1 (en) 2022-06-16
EP2568909A1 (en) 2013-03-20
KR20200128204A (en) 2020-11-11
US20170071628A1 (en) 2017-03-16
US20210220066A1 (en) 2021-07-22
JP2013530738A (en) 2013-08-01
KR101859012B1 (en) 2018-05-17
JP6104353B2 (en) 2017-03-29
JP2013528065A (en) 2013-07-08
BR112012029169A2 (en) 2017-07-18
CN102892375B (en) 2015-08-19
US11376086B2 (en) 2022-07-05
CN102892363A (en) 2013-01-23
BR112012028465A2 (en) 2016-07-19
KR102304696B1 (en) 2021-09-27
KR20190029792A (en) 2019-03-20
US9301807B2 (en) 2016-04-05
US9757149B2 (en) 2017-09-12
US20180353204A1 (en) 2018-12-13
BR112012028375A2 (en) 2017-03-21
US8784435B2 (en) 2014-07-22
WO2011143021A1 (en) 2011-11-17
KR20180054907A (en) 2018-05-24
US20110277776A1 (en) 2011-11-17
US8945148B2 (en) 2015-02-03
US20160058512A1 (en) 2016-03-03
KR101894849B1 (en) 2018-09-05
KR101780238B1 (en) 2017-09-21
BR112012029169B1 (en) 2020-05-05
KR101990357B1 (en) 2019-06-18
US20200246096A1 (en) 2020-08-06
US20210085411A1 (en) 2021-03-25
BR112012028375B1 (en) 2021-01-12
KR20200017545A (en) 2020-02-18

Similar Documents

Publication Publication Date Title
US11376086B2 (en) Surgical system sterile drape

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant