JPWO2017204299A1 - パルス光源及びパルス光を発生させる方法 - Google Patents

パルス光源及びパルス光を発生させる方法 Download PDF

Info

Publication number
JPWO2017204299A1
JPWO2017204299A1 JP2018519609A JP2018519609A JPWO2017204299A1 JP WO2017204299 A1 JPWO2017204299 A1 JP WO2017204299A1 JP 2018519609 A JP2018519609 A JP 2018519609A JP 2018519609 A JP2018519609 A JP 2018519609A JP WO2017204299 A1 JPWO2017204299 A1 JP WO2017204299A1
Authority
JP
Japan
Prior art keywords
light source
resonator
pulse light
pulse
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018519609A
Other languages
English (en)
Other versions
JP7043073B2 (ja
Inventor
ジイヨン セット
ジイヨン セット
山下 真司
真司 山下
宇 王
宇 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Publication of JPWO2017204299A1 publication Critical patent/JPWO2017204299A1/ja
Application granted granted Critical
Publication of JP7043073B2 publication Critical patent/JP7043073B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/083Ring lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/131Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation

Abstract

パルス光源(10)は、ポンプ光源(100)及び共振器(200)を備えている。共振器(200)は、希土類ドープファイバ増幅器(REDFA)(220)を有している。ポンプ光源(100)は、REDFA(220)にポンプ光を供給している。ポンプ光は、共振器(200)の基本共振周波数fの整数倍とほぼ等しい変調周波数fmodを有する変調信号によって変調されている。具体的には、変調周波数fmodは、共振器(200)の基本共振周波数fの整数倍の95%以上105%以下の周波数である。

Description

本発明は、パルス光源及びパルス光を発生させる方法に関する。
レーザの利得媒体として希土類ドープファイバ増幅器(REDFA)が用いられることがある。REDFAは、例えば、プラセオジムイオン(Pr3+)、ネオジムイオン(Nd3+)、ホルミウムイオン(Ho3+)、エルビウムイオン(Er3+)、ツリウムイオン(Tm3+)又はイッテルビウムイオン(Yb3+)を含んでいる。特にツリウムイオン(Tm3+)を含むREDFA、すなわちツリウムドープファイバ増幅器(TDFA)を有するレーザは、波長2μm帯の光を発することができる。波長2μm帯の光は、例えば、レーザ加工、LIDAR(Laser Imaging Detection And Ranging)又はガスセンシングへの応用が期待されている。
REDFAを有するレーザでは、パルス光を発生させることがある。パルス光を発生させるための方法の一つとして、モード同期がある。さらに、モード同期には、受動モード同期及び能動モード同期の2種類の方法がある。
受動モード同期において、パルス光源は、共振器、利得媒体及び可飽和吸収体を備えている。利得媒体及び可飽和吸収体は、共振器の2枚のミラー間にある。可飽和吸収体の光損失は、可飽和吸収体に入力される光の強度によって変調し、具体的には、光の強度が高くなるほど光損失が低くなる。受動モード同期では、可飽和吸収体のこの損失変調によって、パルス光を発生させることができる。
能動モード同期の一例において、パルス光源は、共振器、利得媒体及び強度変調器を備えている。利得媒体及び強度変調器は、共振器の2枚のミラー間にある。強度変調器の損失は、共振器の外部からの信号によって変調する。能動モード同期のこの例では、強度変調器のこの損失変調によって、パルス光を発生させることができる。
非特許文献1,2に記載されているように、能動モード同期の他の例において、パルス光源は、ポンプ光源、共振器及び利得媒体を有している。ポンプ光源は、共振器の外部にある。利得媒体は、共振器の2枚のミラー間にあり、非特許文献1,2ではTDFAである。ポンプ光源からは、パルス光が供給される。非特許文献1,2の能動モード同期では、ポンプ光からのパルス光によって、共振器からパルス光が発生する。
Min Jiang and Parviz Tayebati. Optics letters 32.13 (2007): 1797-1799. Jacek Swiderski, Maria Michalska, and Gwenael Maze. Optics express 21.7 (2013): 7851-7857.
REDFAを有するパルス光源では、非特許文献1,2に記載の能動モード同期のように、ポンプ光源から共振器にパルス光を供給することがある。これに対して、本発明者は、非特許文献1,2に記載の能動モード同期とは異なる新規な能動モード同期によってパルス光を発生させることを検討した。
本発明の目的は、REDFAを有するパルス光源において新規な能動モード同期によってパルス光を発生させることにある。
本発明によれば、
希土類ドープファイバ増幅器を有する共振器と、
前記希土類ドープファイバ増幅器にポンプ光を供給するポンプ光源と、
を備え、
前記ポンプ光は、前記共振器の基本共振周波数の整数倍の95%以上105%以下の変調周波数を有する変調信号によって変調されているパルス光源が提供される。
本発明によれば、以下の方法が提供される。
パルス光を発生させる方法であって、以下を含む:
希土類ドープファイバ増幅器を有する共振器と、前記共振器の基本共振周波数の整数倍の95%以上105%以下の変調周波数を有する変調信号で変調されたポンプ光を供給可能なポンプ光源と、を準備すること;
前記ポンプ光源から前記希土類ドープファイバ増幅器に前記ポンプ光を供給すること;
前記ポンプ光源から前記希土類ドープファイバ増幅器に前記ポンプ光を供給した後、前記共振器から光を出力すること。
本発明によれば、REDFAを有するパルス光源において新規な能動モード同期によってパルス光を発生させることができる。
上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
第1の実施形態に係るパルス光源を示す図である。 図1に示したポンプ光源の第1例を示す図である。 図1に示したポンプ光源の第2例を示す図である。 図1に示したポンプ光源の第3例を示す図である。 図1の変形例を示す図である。 第2の実施形態に係るパルス光源を示す図である。 図6の第1の変形例を示す図である。 図6の第2の変形例を示す図である。 第3の実施形態に係るパルス光源を示す図である。 第4の実施形態に係るパルス光源を示す図である。 第5の実施形態に係るパルス光源を示す図である。 第6の実施形態に係るパルス光源を示す図である。 第7の実施形態に係るレーザ加工装置を示す図である。 第8の実施形態に係る光センサを示す図である。 第9の実施形態に係る医療機器を示す図である。 第10の実施形態に係るガスセンサを示す図である。 実施例1に係るパルス光源から出力されたパルス光の光スペクトルの測定結果を示す図である。 実施例1に係るパルス光源から出力されたパルス光の測定結果を示す図である。 実施例1に係るパルス光源から出力されたパルス光のRFスペクトルの測定結果を示す図である。 実施例1に係るパルス光源から出力されたパルス光の自己相関の測定結果を示す図である。 実施例2に係るパルス光源から出力されたパルス光の測定結果を示す図である。 実施例3に係るパルス光源から出力されたパルス光の光スペクトルの測定結果を示す図である。 実施例3に係るパルス光源から出力されたパルス光の自己相関の測定結果を示す図である。 実施例3に係るパルス光源から出力されたパルス光のRFスペクトルの測定結果を示す図である。
以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
(第1の実施形態)
図1は、第1の実施形態に係るパルス光源10を示す図である。パルス光源10は、ポンプ光源100、共振器200及び出力部300を備えている。共振器200は、希土類ドープファイバ増幅器(REDFA)220を有している。ポンプ光源100は、REDFA220にポンプ光を供給している。ポンプ光は、共振器200の基本共振周波数fの整数倍とほぼ等しい変調周波数fmodを有する変調信号によって変調されている。具体的には、変調周波数fmodは、共振器200の基本共振周波数fの整数倍の95%以上105%以下、好ましくは99%以上101%以下、より好ましくは100±0.1%の周波数である。パルス光源10の出力部300からは、変調周波数fmodと等しい繰り返し周波数でパルス光が出力される。このように、パルス光源10では、変調周波数fmodと等しい繰り返し周波数の能動モード同期が実現されている。以下、詳細に説明する。
図2は、図1に示したポンプ光源100の第1例を示す図である。ポンプ光源100は、ポンプレーザ110、光増幅器120、電気信号発生器130及びレーザドライバ140を有している。
ポンプレーザ110は、REDFA220(図1)に含まれる希土類イオンを励起させる波長のシード光を発する。ポンプレーザ110からのシード光は、光増幅器120によって増幅される。例えば、REDFA220(図1)がツリウムイオン(Tm3+)を含んでいる場合、ポンプレーザ110のシード光の波長は1570nmであり、光増幅器120はC−バンドエルビウムドープファイバ増幅器(EDFA)である。
一例において、電気信号発生器130は、変調周波数fmodで振動する正弦波によってポンプレーザ110のシード光を変調している。本図に示す例では、電気信号発生器130は、レーザドライバ140を介してポンプレーザ110のシード光を変調している。このようにして、ポンプ光源100からのポンプ光は、変調周波数fmodの変調信号によって変調されている。
その他の例において、電気信号発生器130は、変調周波数fmodで振動する矩形波によってポンプレーザ110のシード光を変調していてもよい。この例において、電気信号発生器130からの矩形波は、繰り返し周期Tmod(Tmod=1/fmod)及びオン時間Tonを有している。この矩形波のデューティ比Ton/Tmodは、0.50であってもよいし、又は0.50とは異なっていてもよい。このようにして、ポンプ光源100からのポンプ光は、変調周波数fmodの変調信号によって変調されている。
なお、電気信号発生器130による変調度は、ある程度高いことが好ましく、例えば、10%以上であることが好ましい。電気信号発生器130による変調度がある程度高い場合、ポンプ光が充分に変調される。ただし、電気信号発生器130による変調度は、上記した例(10%以上)に限定されるものではない。
図3は、図1に示したポンプ光源100の第2例を示す図である。本図に示すように、ポンプ光源100は、光増幅器120(図2)を有していなくてもよい。本図に示す例では、ポンプレーザ110からのシード光(ポンプ光)が光増幅器120(図2)を介さず共振器200に直接供給される。
図4は、図1に示したポンプ光源100の第3例を示す図である。本図に示すように、ポンプレーザ110からのシード光は、光強度変調器150及び電気信号発生器130によって変調されていてもよい。具体的には、本図に示す例において、レーザドライバ140は、例えば直流レーザドライバであり、ポンプレーザ110からのシード光を変調していない。光強度変調器150は、ポンプレーザ110と光増幅器120の間にあって、電気信号発生器130からの信号(例えば、正弦波又は矩形波)によってポンプレーザ110からのシード光を変調している。
図1に戻る。パルス光源10は、ポンプ光源100及び共振器200を備えている。共振器200は、光合波器210、REDFA220、アイソレータ(ISO)230及び光分波器240を有している。光合波器210、REDFA220、アイソレータ230及び光分波器240は、光ファイバを介して互いに光学的に結合している。ポンプ光源100は、光ファイバを介して共振器200の光合波器210に光学的に結合している。出力部300は、光ファイバを介して光分波器240に光学的に結合している。
本図に示す例において、共振器200は、前方励起のリング共振器である。具体的には、ポンプ光源100からのポンプ光は、アイソレータ230の順方向(共振器200内での光の伝搬方向)においてアイソレータ230の前方とREDFA220の後方の間で光合波器210を介して供給されている。
より具体的には、ポンプ光源100からのポンプ光は、光合波器210を介してREDFA220に入力される。光合波器210は、ポンプ光源100からのポンプ光及び光分波器240からの光を合波しており、具体的にはWDM(Wavelength Division Multiplexing)カプラである。ポンプ光によってREDFA220に含まれる希土類イオンが励起する。さらに、励起した希土類イオンが低エネルギー準位に遷移することで、REDFA220から光が放出される。REDFA220からの光は、アイソレータ230を介して光分波器240に入力される。アイソレータ230からの光の一部は、光分波器240を介して光合波器210に入力され、さらに光合波器210を介してREDFA220に入力される。アイソレータ230からの光の他の一部は、光分波器240を介して出力部300に入力され、さらに出力部300を介してパルス光源10の外部に出力される。光分波器240は、アイソレータ230からの光を2つの同一波長の光に例えば50:50で分波しており、具体的には光カプラである。
REDFA220は、共振器200の利得媒体として機能している。例えば、REDFA220は、ガラスファイバ及びガラスファイバにドープされた希土類イオンを含んでいる。REDFA220に含まれる希土類イオンは、例えば、プラセオジムイオン(Pr3+)、ネオジムイオン(Nd3+)、ホルミウムイオン(Ho3+)、エルビウムイオン(Er3+)、ツリウムイオン(Tm3+)及びイッテルビウムイオン(Yb3+)からなる群から選択される少なくとも1つである。
なお、出力部300は、例えばアイソレータである。この場合、出力部300(アイソレータ)は、共振器200からパルス光源10の外側に向かう光が出力部300を透過し、パルス光源10の外側から共振器200に向かう光が出力部300によって遮断されるように配置されている。
共振器200のq次の共振周波数fは、以下の式(1)によって表される。
=qc/(nL) (1)
ただし、cは光速、nは共振器200の光ファイバの屈折率、Lは共振器200の長さである。特にq=1のとき、共振周波数fは、基本共振周波数fとなる。
次に、パルス光源10の出力部300からパルス光を出力する方法について説明する。まず、ポンプ光源100から共振器200のREDFA220にポンプ光を供給する。上記したように、ポンプ光は、共振器200の基本共振周波数fの整数倍とほぼ等しい変調周波数fmodを有する変調信号によって変調されている。
本発明者が検討したところ、REDFA220に含まれる希土類イオンの上準位()の寿命τが変調信号の繰り返し周期Tmod(Tmod=1/fmod)に対してある程度短い場合、具体的には、繰り返し周期Tmodに対する寿命τの比τ/Tmodが例えば1×10以下である場合、出力部300からの信号のRadio−Frequency(RF)スペクトルにおいて変調周波数fmodと等しい周波数にピークが出現するようになることが明らかとなった(例えば、後述する図19を参照)。さらに、寿命τが一定の場合に繰り返し周期Tmodが長くなる(すなわち、変調周波数fmodが低くなる)ほど、当該ピークの強度は大きくなることが明らかとなった。この結果は、当該ピークが電気信号発生器130の変調に起因していることを示している。
なお、寿命τは、エルビウムイオン(Er3+)については、おおよそ8ms以上10ms以下であり、イッテルビウムイオン(Yb3+)については、おおよそ1ms以上2ms以下であり、ツリウムイオン(Tm3+)については、エルビウムイオン(Er3+)の寿命及びイッテルビウムイオン(Yb3+)の寿命よりも短く、具体的にはおおよそ400μs以上500μs以下である。
本図に示す例において、変調周波数fmodは、共振器200の基本共振周波数fの整数倍とほぼ等しい。このため、変調周波数fmodと等しい繰り返し周波数のモード同期、具体的にはContinuous Wave(CW)能動モード同期が実現される。このため、パルス光源10の出力部300からは、変調周波数fmodと等しい繰り返し周波数でパルス光が出力される。
なお、本発明者が検討したところ、変調周波数fmodと共振器200の基本共振周波数fの整数倍の差が小さいほど、より良好なCWモード同期が実現されることが明らかとなった。このため、変調周波数fmodは、共振器200の基本共振周波数fの整数倍の95%以上105%以下、好ましくは99%以上101%以下、より好ましくは100±0.1%の周波数である。
以上、本実施形態によれば、ポンプ光源100からのポンプ光は、共振器200の基本共振周波数fの整数倍とほぼ等しい変調周波数fmodを有する変調信号によって変調されている。これにより、パルス光源10の出力部300からは、変調周波数fmodと等しい繰り返し周波数でパルス光が出力される。
さらに、本実施形態によれば、例えば後述する図20に示すように、ピコ秒(10−12秒)オーダのパルス幅を有するパルス光、すなわち超短パルス光を発生させることができる。
さらに、本実施形態によれば、パルス光源10から発生するパルス光の波長を近赤外の波長にすることができる。具体的には、REDFA220がツリウムイオン(Tm3+)を含んでいる場合、パルス光の波長は2μm帯にすることができ、REDFA220がエルビウムイオン(Er3+)を含んでいる場合、パルス光の波長は1.5μm帯にすることができ、REDFA220がイッテルビウムイオン(Yb3+)を含んでいる場合、パルス光の波長は1μm帯にすることができる。
図5は、図1の変形例を示す図である。本図に示すように、共振器200は、後方励起のリング共振器であってもよい。具体的には、本図に示す例では、ポンプ光源100からのポンプ光は、アイソレータ230の順方向(共振器200内での光の伝搬方向)においてREDFA220の前方とアイソレータ230の後方の間で光合波器210を介して供給されている。
(第2の実施形態)
図6は、第2の実施形態に係るパルス光源10を示す図であり、第1の実施形態の図1に対応する。本実施形態に係るパルス光源10は、以下の点を除いて、第1の実施形態に係るパルス光源10と同様である。
本図に示す例において、共振器200は、リニア共振器である。共振器200は、REDFA220、第1反射素子252及び第2反射素子254を有している。REDFA220は、第1反射素子252と第2反射素子254の間にある。第1反射素子252及び第2反射素子254は、共振器200のミラーとして機能している。第1反射素子252は、ミラー又はFBG(Fiber Bragg Grating)である。第2反射素子254は、REDFA220からの光の一部を反射し、REDFA220からの光の他の一部を透過させる。より具体的には、第2反射素子254は、例えば、ミラー又はFBGである。ポンプ光源100からのポンプ光は、第1反射素子252とREDFA220の間の光合波器210を介してREDFA220に供給されている。共振器200からの光は、第2反射素子254、アイソレータ230及び出力部300を介してパルス光源10の外部に出力される。
共振器200のq次の共振周波数fは、以下の式(2)によって表される。
=qc/(2nL) (2)
ただし、cは光速、nは共振器200の光ファイバの屈折率、Lは共振器200の長さである。特にq=1のとき、共振周波数fは、基本共振周波数fとなる。
本実施形態においても、ポンプ光源100からのポンプ光は、共振器200の基本共振周波数fの整数倍とほぼ等しい変調周波数fmodを有する変調信号によって変調されている。これにより、第1の実施形態と同様にして、パルス光源10の出力部300からは、変調周波数fmodと等しい繰り返し周波数でパルス光が出力される。
図7は、図6の第1の変形例を示す図である。本図に示す例において、共振器200は、リニア共振器である。本図に示すように、ポンプ光源100からのポンプ光は、REDFA220と第2反射素子254の間の光合波器210を介して供給されていてもよい。
図8は、図6の第2の変形例を示す図である。本図に示す例において、共振器200は、リニア共振器である。本図に示すように、ポンプ光源100からのポンプ光は、第1反射素子252を介してREDFA220に供給されていてもよい。第1反射素子252は、特定の波長の光を反射する素子として機能しており、具体的には、ポンプ光源100からのポンプ光を透過させ、REDFA220から放出された光を反射する。より具体的には、第1反射素子252は、例えば、多層膜ミラー又はFBG(Fiber Bragg Grating)である。
(第3の実施形態)
図9は、第3の実施形態に係るパルス光源10を示す図であり、第1の実施形態の図1に対応する。本実施形態に係るパルス光源10は、以下の点を除いて、第1の実施形態に係るパルス光源10と同様である。
本図に示す例において、共振器200は、8の字型共振器である。具体的には、共振器200は、第1ループ202及び第2ループ204を有している。第1ループ202と第2ループ204は、光分波器242(具体的には、光カプラ)を介して互いに光学的に結合している。第1ループ202は、REDFA220及び非線形ファイバ260を有している。ポンプ光源100からのポンプ光は、REDFA220に供給されている。第2ループ204は、アイソレータ230及び光分波器240を有している。光分波器240は、光ファイバを介して出力部300に光学的に結合している。
本図に示す例では、第2ループ204からの光が光分波器242に入力されると、この光は、第1ループ202のREDFA220側に向かう光と第1ループ202の非線形ファイバ260側に向かう光に分離される。これら2つの光には、非線形ファイバ260において位相シフトが生じる。一方、光の伝搬方向に基づいて、これら2つの光では位相シフト差が生じる。これら2つの光が光分波器242において結合すると、位相シフト差に基づいて干渉が生じる。特定の干渉が生じている場合、光分波器242から第2ループ204に向かう光は、アイソレータ230の順方向に第2ループ204内を伝搬するようになる。
本実施形態においても、ポンプ光源100からのポンプ光は、共振器200の基本共振周波数fの整数倍とほぼ等しい変調周波数fmodを有する変調信号によって変調されている。これにより、第1の実施形態と同様にして、パルス光源10の出力部300からは、変調周波数fmodと等しい繰り返し周波数でパルス光が出力される。
(第4の実施形態)
図10は、第4の実施形態に係るパルス光源10を示す図であり、第1の実施形態の図1に対応する。本実施形態に係るパルス光源10は、以下の点を除いて、第1の実施形態に係るパルス光源10と同様である。
本図に示す例において、共振器200は、シグマ型共振器である。共振器200は、REDFA220、アイソレータ230、光分波器240、反射素子256及びPBS(Polarizing Beam Splitter)270を有している。
REDFA220は、反射素子256とPBS270の間にある。ポンプレーザ110からのポンプ光は、REDFA220に供給される。反射素子256は、ファラデーミラーであり、反射光の偏光方向が入射光の偏光方向から90°回転するように光を反射する。
PBS270、アイソレータ230及び光分波器240は、偏波保持ファイバを介して光学的に結合している。アイソレータ230は、PBS270と光分波器240の間にあり、アイソレータ230の順方向がPBS270から光分波器240に向かう方向になるように設けられている。光分波器240側の偏光保持ファイバとPBS270側の偏光保持ファイバは、融着部280において融着している。具体的には、光分波器240側の偏光方向とPBS270側の偏光方向が90°回転するようにこれらの偏光保持ファイバは、融着部280において融着している。
本実施形態においても、ポンプ光源100からのポンプ光は、共振器200の基本共振周波数fの整数倍とほぼ等しい変調周波数fmodを有する変調信号によって変調されている。これにより、第1の実施形態と同様にして、パルス光源10の出力部300からは、変調周波数fmodと等しい繰り返し周波数でパルス光が出力される。
(第5の実施形態)
図11は、第5の実施形態に係るパルス光源10を示す図であり、第1の実施形態の図5に対応する。本実施形態に係るパルス光源10は、以下の点を除いて、第1の実施形態に係るパルス光源10と同様である。
本図に示す例において、共振器200は、リング共振器である。本図に示すように、共振器200は、可飽和吸収体292を有していてもよい。本図に示す例において、可飽和吸収体292は、光合波器210とアイソレータ230の間にある。なお、本図に示す例では、ポンプ光源100からのポンプ光は、アイソレータ230の順方向(共振器200内での光の伝搬方向)においてREDFA220の前方とアイソレータ230の後方の間で光合波器210を介して供給されている。
(第6の実施形態)
図12は、第6の実施形態に係るパルス光源10を示す図であり、第2の実施形態の図6に対応する。本実施形態に係るパルス光源10は、以下の点を除いて、第2の実施形態に係るパルス光源10と同様である。
本図に示す例において、共振器200は、リニア共振器である。本図に示すように、共振器200は、第1反射素子252(図6)に代えて可飽和吸収ミラー294を有していてもよい。なお、本図に示す例では、ポンプ光源100からのポンプ光は、可飽和吸収ミラー294とREDFA220の間で光合波器210を介して供給されている。
(第7の実施形態)
図13は、第7の実施形態に係るレーザ加工装置を示す図である。レーザ加工装置は、パルス光源10、ミラー12、レンズ14及びノズル16を備えている。レーザ加工装置は、対象物Wを加工するために用いられる。対象物Wは、例えば、鉄板、ガラス板又はプラスチック板である。本実施形態に係るパルス光源10は、第1の実施形態〜第6の実施形態のいずれかに係るパルス光源10である。パルス光源10からはパルス光が出力される。パルス光は、ミラー12で反射し、レンズ14に入射する。パルス光は、レンズ14によって集光され、その後、ノズル16を通過して対象物Wに照射される。
本実施形態において、パルス光源10から対象物Wに照射されるパルス光のパルス幅は、ピコ秒(10−12秒)オーダにすることができ、非常に狭くすることができる。このため、パルス光が照射された領域は短時間で除去される。このため、パルス光によって除去された領域の周辺に熱が拡散することが抑制される。
さらに、本実施形態において、パルス光源10から対象物Wに照射されるパルス光のピーク強度は、非常に大きい。このため、対象物Wにおいて多光子光学吸収過程が発生する確率が高くなる。このため、本実施形態では、対象物Wがガラスのような透光性材料からなる場合であっても、対象物Wを加工することができる。
(第8の実施形態)
図14は、第8の実施形態に係る光センサを示す図である。本図に示す例において、光センサは、Laser Imaging Detection And Ranging(LIDAR)であり、パルス光源10及び検出器20を備えている。本実施形態に係るパルス光源10は、第1の実施形態〜第6の実施形態のいずれかに係るパルス光源10である。検出器20は、具体的にはCCD(Charge−Coupled Device)イメージセンサである。本図に示す例では、パルス光源10から対象物Wに向かってパルス光が出力される。検出器20は、対象物Wから反射したパルス光を検出する。光センサは、パルス光源10からパルス光が出力されてから検出器20でパルス光が検出されるまでの時間に基づいて、パルス光源10から対象物Wまでの距離を算出することができる。
一例において、光センサは、車両(例えば、自動車又はモータサイクル)に搭載される。この例においては、光センサを用いることにより、車両の例えば前方又は後方の対象物Wを検出することができる。
他の例において、光センサは、マッピングに用いられる。より具体的には、例えば、光センサを飛行機に搭載した場合、マッピングを空から行うことにより地球表面の形状を測定することができる。
(第9の実施形態)
図15は、第9の実施形態に係る医療機器を示す図である。医療機器は、図13に示したレーザ加工装置と同様にして、パルス光源10、ミラー12、レンズ14及びノズル16を備えている。本実施形態に係るパルス光源10は、第1の実施形態〜第6の実施形態のいずれかに係るパルス光源10である。対象物Wは、生体組織であり、具体的には例えば皮膚である。本図に示す例において、パルス光源10からのパルス光は、図13に示した例と同様にして、対象物Wに照射される。
本実施形態において、パルス光源10から対象物Wに照射されるパルス光のパルス幅は、ピコ秒(10−12秒)オーダにすることができ、非常に狭くすることができる。このため、パルス光が照射された領域は短時間で除去される。このため、パルス光によって除去された領域の周辺に熱が拡散することが抑制される。
(第10の実施形態)
図16は、第10の実施形態に係るガスセンサを示す図である。本図に示す例において、ガスセンサは、ガスGを分析するために用いられている。ガスセンサは、パルス光源10及び検出器20を備えている。本実施形態に係るパルス光源10は、第1の実施形態〜第6の実施形態のいずれかに係るパルス光源10である。パルス光源10からのパルス光は、ガスGを通過し、その後、検出器20に到達する。検出器20は、パルス光源10からのパルス光を検出する。検出器20の検出結果に基づいて、ガスGに含まれるガスの種類を分析する。具体的には、ガスG中においてパルス光の一部の波長の光が吸収される。この波長に基づいて、ガスGに含まれるガスの種類を分析する。
(実施例1)
図1に示したパルス光源10を作製した。ポンプ光源100は、図2に示すようにした。ポンプレーザ110は、波長1.57μmレーザとした。電気信号発生器130は、変調周波数fmod:6.69850MHzを有する正弦波によってシードレーザを変調した。電気信号発生器130による変調度は、30%とした。光増幅器120は、EDFAとした。光合波器210は、WDMカップラとした。REDFA220は、ツリウムドープファイバ増幅器(TDFA)(OFS、TmDF200)とした。光分波器240は、50:50光カプラとした。
共振器200の長さLは、30.5mとし、共振器200の基本共振周波数が6.7MHzとなるようにした。共振器200の総分散は、−1.67psであった。
図17は、本実施例に係るパルス光源10から出力されたパルス光の光スペクトルの測定結果を示す図である。本図に示す例において、光スペクトルは、分解能0.05nmの光スペクトルアナライザ(OSA)(ANDO AQ6375)で測定した。本図に示すように、光スペクトルは、複数のKellyサイドバンドを有している。このことは、パルス光源10がソリトンパルスを発生させていることを示している。本図に示すように、スペクトル幅は0.9nmである。
図18は、本実施例に係るパルス光源10から出力されたパルス光の測定結果を示す図である。本図に示す例において、パルス光源10からのパルス光は、InGaAsフォトディテクタ(EOT ET−5000、10GHz)で検知し、オシロスコープ(Agilent DSO1024A)で測定した。本図に示すように、パルス光源10からは、パルス光が繰り返し周波数6.69850MHz(すなわち、変調周波数fmodと等しい周波数)で出力されている。このように、本実施例に係るパルス光源10では、Continuous Wave(CW)能動モード同期が確認された。
図19は、本実施例に係るパルス光源10から出力されたパルス光のRFスペクトルの測定結果を示す図である。本図に示す例において、RFスペクトルは、分解能1kHzのRFスペクトルアナライザ(Agilent E4440A)で測定した。本図に示すように、周波数6.69850MHz(すなわち、変調周波数fmodと等しい周波数)でSN比70dBのピークが測定された。
図20は、本実施例に係るパルス光源10から出力されたパルス光の自己相関の測定結果を示す図である。本図に示す例において、自己相関は、バックグラウンドフリーのオートコリレータ(Femtochrome FR−103HP)で測定した。本図に示すように、自己相関の半値全幅は8psであった。パルス光の波形は双曲線正割分布と仮定して、パルス幅は5psとなる。
以上、本実施例によれば、CW能動モード同期によってパルス幅5ps及びスペクトル幅0.9nmパルス光を得た。
(実施例2)
実施例2に係るパルス光源10は、変調周波数fmodが13.3970MHz(すなわち、実施例1の変調周波数fmod:6.69850MHzの2倍)である点を除いて、実施例1に係るパルス光源10と同様である。
図21は、本実施例に係るパルス光源10から出力されたパルス光の測定結果を示す図である。本図に示すように、パルス光源10からは、パルス光が繰り返し周波数13.3970MHz(すなわち、変調周波数fmodと等しい周波数)で出力されている。このように、本実施例に係るパルス光源10では、第二次高調波モード同期が確認された。
(実施例3)
実施例3に係るパルス光源10は、以下の点を除いて、実施例1に係るパルス光源10と同様である。
ポンプレーザ110は、波長980nmレーザとした。変調周波数fmod:99.021MHzでシードレーザを変調させた。REDFA220は、エルビウムドープファイバ増幅器(EDFA)とした。
共振器200の長さLは、2kmとし、共振器200の基本共振周波数が99.021kHzとなるようにした。共振器200の総分散は、−0.31psであった。
図22は、本実施例に係るパルス光源10から出力されたパルス光の光スペクトルの測定結果を示す図である。ガウシアンフィッティングを用いると、スペクトル幅は2.26nmであった。
図23は、本実施例に係るパルス光源10から出力されたパルス光の自己相関の測定結果を示す図である。パルス光の波形は双曲線正割分布と仮定して、自己相関の半値全幅は1.18psであった。
図24は、本実施例に係るパルス光源10から出力されたパルス光のRFスペクトルの測定結果を示す図である。周波数99.250MHz(すなわち、変調周波数fmodとほぼ等しい周波数)でSN比53dBのピークが測定された。
以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
この出願は、2016年5月27日に出願された日本出願特願2016−106828号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (12)

  1. 希土類ドープファイバ増幅器を有する共振器と、
    前記希土類ドープファイバ増幅器にポンプ光を供給するポンプ光源と、
    を備え、
    前記ポンプ光は、前記共振器の基本共振周波数の整数倍の95%以上105%以下の変調周波数を有する変調信号によって変調されているパルス光源。
  2. 請求項1に記載のパルス光源において、
    前記共振器は、リング共振器であるパルス光源。
  3. 請求項1に記載のパルス光源において、
    前記共振器は、リニア共振器であるパルス光源。
  4. 請求項1に記載のパルス光源において、
    前記共振器は、8の字型共振器であるパルス光源。
  5. 請求項1に記載のパルス光源において、
    前記共振器は、シグマ型共振器であるパルス光源。
  6. 請求項1〜5のいずれか一項に記載のパルス光源において、
    前記希土類ドープファイバ増幅器に含まれる希土類イオンは、プラセオジムイオン、ネオジムイオン、ホルミウムイオン、エルビウムイオン、ツリウムイオン及びイッテルビウムイオンからなる群から選択される少なくとも1つであるパルス光源。
  7. 請求項6に記載のパルス光源において、
    前記希土類イオンは、ツリウムイオンであるパルス光源。
  8. 請求項1〜7のいずれか一項に記載のパルス光源において、
    前記変調信号は、前記変調周波数で振動する正弦波であるパルス光源。
  9. 請求項1〜7のいずれか一項に記載のパルス光源において、
    前記変調信号は、前記変調周波数で振動する基本波を含む矩形波であるパルス光源。
  10. 請求項9に記載のパルス光源において、
    前記矩形波のデューティ比は、0.50であるパルス光源。
  11. 請求項9に記載のパルス光源において、
    前記矩形波のデューティ比は、0.50とは異なるパルス光源。
  12. パルス光を発生させる方法であって、以下を含む:
    希土類ドープファイバ増幅器を有する共振器と、前記共振器の基本共振周波数の整数倍の95%以上105%以下の変調周波数を有する変調信号で変調されたポンプ光を供給可能なポンプ光源と、を準備すること;
    前記ポンプ光源から前記希土類ドープファイバ増幅器に前記ポンプ光を供給すること;
    前記ポンプ光源から前記希土類ドープファイバ増幅器に前記ポンプ光を供給した後、前記共振器から光を出力すること。
JP2018519609A 2016-05-27 2017-05-25 パルス光源及びパルス光を発生させる方法 Active JP7043073B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016106828 2016-05-27
JP2016106828 2016-05-27
PCT/JP2017/019559 WO2017204299A1 (ja) 2016-05-27 2017-05-25 パルス光源及びパルス光を発生させる方法

Publications (2)

Publication Number Publication Date
JPWO2017204299A1 true JPWO2017204299A1 (ja) 2019-03-22
JP7043073B2 JP7043073B2 (ja) 2022-03-29

Family

ID=60411337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018519609A Active JP7043073B2 (ja) 2016-05-27 2017-05-25 パルス光源及びパルス光を発生させる方法

Country Status (2)

Country Link
JP (1) JP7043073B2 (ja)
WO (1) WO2017204299A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10424895B2 (en) 2017-12-13 2019-09-24 Industrial Technology Research Institute Mode-locked fiber laser device
CN109586148B (zh) * 2018-12-25 2024-04-30 武汉孚晟科技有限公司 一种基于主振荡功率放大器结构的脉冲光纤激光器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09246638A (ja) * 1996-03-01 1997-09-19 Nippon Telegr & Teleph Corp <Ntt> モード同期ファイバレーザ動作安定化法
US20050163170A1 (en) * 2002-03-13 2005-07-28 Oleg Okhotnikov Method for organizing a mode-locked pulse train by pump modulation
US20060187537A1 (en) * 2005-01-20 2006-08-24 Robert Huber Mode locking methods and apparatus
JP2007527840A (ja) * 2004-03-11 2007-10-04 エリクソン テレコムニカソンイス ソシエダット アノニマ 多成分テルライトガラス組成物、光増幅器及びレーザ機器
JP2010238865A (ja) * 2009-03-31 2010-10-21 Furukawa Electric Co Ltd:The モード同期レーザ装置
JP2011204834A (ja) * 2010-03-25 2011-10-13 Panasonic Corp ファイバレーザ光源とそれを用いた波長変換レーザ装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09246638A (ja) * 1996-03-01 1997-09-19 Nippon Telegr & Teleph Corp <Ntt> モード同期ファイバレーザ動作安定化法
US20050163170A1 (en) * 2002-03-13 2005-07-28 Oleg Okhotnikov Method for organizing a mode-locked pulse train by pump modulation
JP2007527840A (ja) * 2004-03-11 2007-10-04 エリクソン テレコムニカソンイス ソシエダット アノニマ 多成分テルライトガラス組成物、光増幅器及びレーザ機器
US20060187537A1 (en) * 2005-01-20 2006-08-24 Robert Huber Mode locking methods and apparatus
JP2010238865A (ja) * 2009-03-31 2010-10-21 Furukawa Electric Co Ltd:The モード同期レーザ装置
JP2011204834A (ja) * 2010-03-25 2011-10-13 Panasonic Corp ファイバレーザ光源とそれを用いた波長変換レーザ装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MARTINEZ ET AL: "Passive mode-locked lasing by injecting a carbon nanotube-solution in the core of an optical fiber", OPTICS EXPRESS, vol. 18, no. 11, JPN6017031121, 24 May 2010 (2010-05-24), US, pages 11008 - 11014, XP055311354, ISSN: 0004594021, DOI: 10.1364/OE.18.011008 *
YOSHIDA, E. AND NAKAZAWA, M.: "80-200 GHz erbium doped fibre laser using a rational harmonic mode-locking technique", ELECTRONICS LETTERS, vol. 32, no. 15, JPN6017031117, 18 July 1996 (1996-07-18), US, pages 1370 - 1372, XP006005411, ISSN: 0004594020, DOI: 10.1049/el:19960896 *

Also Published As

Publication number Publication date
WO2017204299A1 (ja) 2017-11-30
JP7043073B2 (ja) 2022-03-29

Similar Documents

Publication Publication Date Title
JP5063647B2 (ja) 誘導ラマン分光を対比機構として利用する顕微撮像システム及び方法
US8964803B2 (en) Wavelength sweeping light source and imaging apparatus using the same
JP5203063B2 (ja) 多光子励起測定装置
JP6071203B2 (ja) 光源装置及びこれを用いた光干渉断層撮像装置、及び光発振方法
CN106716246B (zh) 用于rbg显示的宽带红光发生器
JP5517818B2 (ja) 光源装置及びこれを用いた撮像装置
JP5096543B2 (ja) テラヘルツ波装置
JP5489730B2 (ja) 波長可変光源装置
CN104737390A (zh) 宽频带超连续光发射器件及其用途
US20150131145A1 (en) Generation of narrow line width high power optical pulses
JP7007667B2 (ja) パルス電磁波発生装置および計測装置
JP7043073B2 (ja) パルス光源及びパルス光を発生させる方法
JP2012129514A (ja) 光源装置
EP2608327B1 (en) System for generating a beat signal
JP2015175677A (ja) 計測装置
Park et al. Wavelength-switchable ns-pulsed active mode locking fiber laser for photoacoustic signal generation
JP2017108017A (ja) レーザ装置、及びこれを用いた計測装置
JP2012156187A (ja) 光源装置及びこれを用いた撮像装置
JP2017083508A (ja) 光源装置、波長変換装置及び情報取得装置
JP2015175846A (ja) ラマン散乱計測装置
Cheung et al. Phase locking of a pulsed fiber amplifier
US9590385B2 (en) Compact laser source
Yang et al. Fiber optical parametric oscillator based on highly nonlinear dispersion-shifted fiber
RU122208U1 (ru) Субпикосекундный гольмиевый волоконный лазер с накачкой полупроводниковым дисковым лазером
Zhang et al. Recent progress in Raman fiber amplifier based 589 nm laser

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220309

R150 Certificate of patent or registration of utility model

Ref document number: 7043073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150