JPS6362220B2 - - Google Patents

Info

Publication number
JPS6362220B2
JPS6362220B2 JP57043619A JP4361982A JPS6362220B2 JP S6362220 B2 JPS6362220 B2 JP S6362220B2 JP 57043619 A JP57043619 A JP 57043619A JP 4361982 A JP4361982 A JP 4361982A JP S6362220 B2 JPS6362220 B2 JP S6362220B2
Authority
JP
Japan
Prior art keywords
low
porous glass
pore diameter
density lipoprotein
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57043619A
Other languages
Japanese (ja)
Other versions
JPS5826819A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57043619A priority Critical patent/JPS5826819A/en
Priority to CA000418834A priority patent/CA1189004A/en
Publication of JPS5826819A publication Critical patent/JPS5826819A/en
Publication of JPS6362220B2 publication Critical patent/JPS6362220B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高コレステロール血症患者血液中の
コレステロールを大量に含んだ低密度リポ蛋白質
を除去できる吸着剤に関する。 高コレステロール血症、特に家族性高コレステ
ロール血症は遺伝的に細胞膜の低密度リポ蛋白質
リセプターの欠損により、血中コレステロール濃
度が高く、血管壁へのコレステロールの沈着によ
り動脈硬化を引き起こし、さらには心筋梗塞や狭
心症により死亡する率の高い疾患である。そこで
これらの患者の血液中のコレステロールを大量に
含んだ低密度リポ蛋白質を除去する必要がある。
従来、血漿交換法等が施行されていたが、毎日補
充する血漿が高価で品不足であるという問題点が
ある。 吸着法は、選択的にコレステロール、あるいは
低密度リポ蛋白質を除去できれば補液が要らない
という長所があるが、このような吸着剤としては
パリンを固定化したアガロース(S.Moorjaniら、
Clin.Chim.Acta77(1977)21−30.)が使われ、効
果があることが報告されているだけである。しか
しながら担体であるアガロースが機械的に弱く、
又血液凝固因子をも同時に吸着するという問題点
があつた。また、血液中の老廃物や毒性物質を吸
着除去するために従来から使用されている活性炭
や有機多孔性樹脂あるいはイオン交換樹脂を用い
たのでは、低密度リポ蛋白質はほとんど吸着され
ない。 本発明者らはこれらの事情に鑑み鋭意研究を重
ねた結果、特定の平均細孔直径を持つ多孔性ガラ
スが血漿中の低密度リポ蛋白質(したがつてコレ
ステロール)を選択的に減少させることを見出
し、本発明を完成させるに到つた。即ち本発明
は、平均細孔直径が700〜2000Åの範囲内にある
多孔性ガラス(ただし表面にスルホン酸基を有さ
ない)からなることを特徴とする低密度リポ蛋白
質吸着剤である。本発明の吸着剤が低密度リポ蛋
白質を選択的に吸着する理由は明らかではない
が、多孔性ガラスの表面に存在するシラノール基
が蛋白質と何らかの相互作用をするためと推定さ
れる。 低密度リポ蛋白質は分子量が数百万の求状蛋白
質であるので、多孔性ガラスの平均細孔直径は
700Å以上であることが必要であり、900Å以上で
あることが、さらに好ましい。700Å以下の細孔
には低密度リポ蛋白質は吸着され難く、またγ−
グロブリン等の他の蛋白質も吸着されるので好ま
しくない。平均細孔直径が2000Å以上になると物
理的強度が低下して微細片を生じ易くなるので好
ましくない。平均細孔直径は1600Å以下であるこ
とがさらに好ましい。 蛋白質を選択的に吸着するためには多孔性ガラ
スの細孔径分布が狭いことが好ましく、平均細孔
直径をDとするとき、細孔直径が0.8D〜1.2Dの
範囲内にある細孔の容積の割合が全細孔容積の80
%以上を占めることが好ましい。 また、多孔性ガラスの細孔容積は0.3c.c./g〜
2.0c.c./gの範囲内にあることが好ましい。0.3
c.c./g以下では蛋白質の吸着容量が低く、発明の
目的に適さなくなる。2.0c.c./g以上では骨格が
脆弱化して、微細破片が生じやすくなる。 本発明において使用される多孔性ガラスは血液
あるいは血漿等の体液と接触させるため、粒子の
直径が0.1mm〜5mmの範囲内にあることが好まし
く、0.2mm〜2mmの範囲にあることがさらに好ま
しい。粒径が0.1mmより小さくなると吸着体層の
圧損が大きくなり、溶血等の問題が生じる。粒径
が5mmより大きいと粒子間の空隙が大きくなり、
吸着性能が低下し好ましくない。 また本吸着剤は血液と接触させるため血球成分
に対する安全性を高め、また凝血等を防ぐため球
状の外形のものが好ましい。 多孔性ガラスはそのまま用いても良いが、血液
との親和性を向上させるために表面を親水性重合
体で被覆処理して使用することもできる。親水性
重合体の被覆方法としては、多孔性ガラスを親水
性重合体溶液に浸漬した後、溶媒を除去する方法
が好ましい。このような方法によれば、親水性重
合体は多孔性ガラスの細孔内にほとんど侵入しな
いので、細孔内表面に存在するシラノール基が親
水性重合体により被覆されて機能が低下すること
はほとんどない。また、親水性重合体としては架
橋成分を含む重合体が好ましく、被覆処理後、加
熱して架橋させることがさらに好ましい。親水性
重合体の例としては、アクリル酸エステル系重合
体、メタクリル酸エステル系重合体、アクリルア
ミド系重合体、ポリビニルアルコール系重合体、
ポリビニルピロリドン、硝酸セルロース及びゼラ
チン等をあげることができる。 本発明の多孔性ガラスからなる低密度リポ蛋白
質吸着剤は通常カラムに充填して使用される。カ
ラムは吸着剤層の両側に血液回路と容易に接続し
得る形状の入口部と出口部を有する本体と、吸着
剤層と出入口部との間に、血液等は通過するが吸
着剤は通過しない80〜180メツシユの網目を持つ
フイルターを備えているものが好ましいが、他の
形状であつても実質的に同様の機能を持つカラム
であれば本目的に使用し得る。カラムの材質はガ
ラス、ポリエチレン、ポリプロピレン、ポリカー
ボネート、ポリスチレン、ポリメチルメタクリレ
ート等が使用できるがオートクレーブ滅菌が可能
なポリプロピレンやポリカーボネート等が好まし
い。フイルターは生理学的に不活性で強度の高い
ものであれば良いが、特にポリエステル製のもの
が好ましい。 本発明の吸着剤は、水又は生理食塩水と共にカ
ラムに充填するのが好ましく、充填したカラムは
通常滅菌して使用されるが、オートクレーブ滅
菌、γ線滅菌が好ましい。 本発明の吸着剤は、全血をそのまま接触させる
こともできるが、あらかじめ血漿分離装置等で分
離した血漿だけを接触させても良い。 以下実施例により本発明をさらに具体的に説明
するが、本発明はかかる実施例に限定されるもの
ではない。 実施例1〜2、比較例1 平均細孔直径が720Åの多孔性ガラス(D=720
Å、細孔直径が0.8D〜1.2Dにある細孔容積の割
合99%、細孔容積0.95c.c./g、粒径0.2mm〜0.5mm)
を実施例1として使用し、平均細孔径が1060Åの
多孔性ガラス(D=1060Å、細孔直径が0.8D〜
1.2Dにある細孔容積の割合81%、細孔容積
0.92cc/g、粒径0.2mm〜0.5mm)を実施例2とし
て使用した。また、平均細孔直径が560Åの多孔
性ガラス(D=560Å、細孔直径が0.8D〜1.2Dに
ある細孔容積の割合91%、細孔容積0.76c.c./g、
粒径0.2mm〜0.5mm)を比較例1として使用した。
上記の多孔性ガラス各2gをポリプロピレン製の
カラム(両端に180メツシユのポリエステル製フ
イルター付)に充填し、ウサギ血漿20mlを37℃で
3時間循環した。循環前後の総蛋白質濃度をビウ
レツト法で、コレステロール濃度をオルトーフタ
ルアルデヒド法でそれぞれ定量し除去率を計算し
た(除去率(%)=(1−循環後濃度/循環前濃
度)×100)。コレステロールは血液中に単独で存
在することはほとんど無く、大部分が低密度リポ
蛋白質と結合して存在している。従つてコレステ
ロールの除去率と低密度リポ蛋白質の除去率は実
質上等しいと考えられるので、コレステロールの
濃度を分析した。 第1表に示すように実施例の吸着剤による総蛋
白の減少は少なく、コレステロールは30〜40%前
後が除去されるが、平均細孔直径が700Åより小
さい比較例1では、コレステロールの除去率は大
きいが、総蛋白質の除去率も大きくなり選択性の
低いものであつた。
The present invention relates to an adsorbent capable of removing low-density lipoproteins containing a large amount of cholesterol from the blood of hypercholesterolemic patients. Hypercholesterolemia, especially familial hypercholesterolemia, is caused by a genetic defect in low-density lipoprotein receptors in cell membranes, resulting in high blood cholesterol levels, deposition of cholesterol on blood vessel walls, which causes arteriosclerosis, and even myocardial It is a disease with a high mortality rate due to infarction and angina pectoris. Therefore, it is necessary to remove low-density lipoproteins that contain large amounts of cholesterol from the blood of these patients.
Conventionally, methods such as plasma exchange have been implemented, but there are problems in that plasma, which must be replenished daily, is expensive and in short supply. Adsorption methods have the advantage of not requiring fluid replacement if they can selectively remove cholesterol or low-density lipoproteins, but such adsorbents include agarose with immobilized parin (S. Moorjani et al.
Clin.Chim.Acta77 (1977) 21-30.) has been used and has only been reported to be effective. However, the carrier agarose is mechanically weak,
Another problem was that blood coagulation factors were also adsorbed at the same time. Further, when activated carbon, organic porous resin, or ion exchange resin, which have been conventionally used to adsorb and remove waste products and toxic substances in blood, are used, low-density lipoproteins are hardly adsorbed. In view of these circumstances, the present inventors have conducted extensive research and have found that porous glass with a specific average pore diameter selectively reduces low-density lipoproteins (and therefore cholesterol) in plasma. This led to the completion of the present invention. That is, the present invention is a low-density lipoprotein adsorbent characterized by being made of porous glass having an average pore diameter within the range of 700 to 2000 Å (but not having sulfonic acid groups on the surface). The reason why the adsorbent of the present invention selectively adsorbs low-density lipoproteins is not clear, but it is presumed that the silanol groups present on the surface of the porous glass have some kind of interaction with the protein. Since low-density lipoprotein is a seeking protein with a molecular weight of several million, the average pore diameter of porous glass is
It is necessary that the thickness is 700 Å or more, and more preferably 900 Å or more. Low-density lipoproteins are difficult to adsorb to pores smaller than 700 Å, and γ-
Other proteins such as globulin are also adsorbed, which is not preferable. If the average pore diameter exceeds 2000 Å, the physical strength decreases and fine pieces are likely to be formed, which is not preferable. More preferably, the average pore diameter is 1600 Å or less. In order to selectively adsorb proteins, it is preferable that the pore size distribution of the porous glass is narrow, and when the average pore diameter is D, the pore diameter is within the range of 0.8D to 1.2D. Volume ratio is 80% of total pore volume
% or more. In addition, the pore volume of porous glass is 0.3cc/g ~
It is preferably within the range of 2.0cc/g. 0.3
If it is less than cc/g, the protein adsorption capacity will be low and it will not be suitable for the purpose of the invention. If it exceeds 2.0 cc/g, the skeleton becomes weak and minute fragments are likely to occur. Since the porous glass used in the present invention is brought into contact with body fluids such as blood or plasma, the diameter of the particles is preferably within the range of 0.1 mm to 5 mm, and more preferably within the range of 0.2 mm to 2 mm. . If the particle size is smaller than 0.1 mm, the pressure drop in the adsorbent layer will increase, causing problems such as hemolysis. If the particle size is larger than 5 mm, the voids between the particles will become large.
This is not preferable because the adsorption performance decreases. Further, since the present adsorbent is brought into contact with blood, it is preferable to have a spherical external shape in order to increase the safety against blood cell components and to prevent blood clots and the like. Porous glass may be used as it is, but its surface may be coated with a hydrophilic polymer to improve its affinity with blood. A preferred method for coating with the hydrophilic polymer is a method in which porous glass is immersed in a hydrophilic polymer solution and then the solvent is removed. According to this method, the hydrophilic polymer hardly penetrates into the pores of the porous glass, so the silanol groups present on the inner surface of the pores are not covered with the hydrophilic polymer and the functionality is reduced. rare. Further, as the hydrophilic polymer, a polymer containing a crosslinking component is preferable, and it is more preferable to crosslink it by heating after the coating treatment. Examples of hydrophilic polymers include acrylic ester polymers, methacrylic ester polymers, acrylamide polymers, polyvinyl alcohol polymers,
Examples include polyvinylpyrrolidone, cellulose nitrate, and gelatin. The low-density lipoprotein adsorbent made of porous glass of the present invention is usually used by filling a column. The column has a main body having an inlet and an outlet shaped to be easily connected to a blood circuit on both sides of an adsorbent layer, and a space between the adsorbent layer and the inlet and outlet, through which blood, etc. passes, but the adsorbent does not pass through. A column having a filter having a mesh size of 80 to 180 meshes is preferable, but columns having other shapes having substantially the same function can be used for this purpose. As the material of the column, glass, polyethylene, polypropylene, polycarbonate, polystyrene, polymethyl methacrylate, etc. can be used, but polypropylene, polycarbonate, etc., which can be sterilized by autoclaving, are preferable. The filter may be anything as long as it is physiologically inert and has high strength, but one made of polyester is particularly preferred. The adsorbent of the present invention is preferably packed into a column together with water or physiological saline, and the filled column is usually sterilized before use, but autoclave sterilization and gamma ray sterilization are preferred. The adsorbent of the present invention can be brought into contact with whole blood as it is, but it may also be brought into contact with only plasma that has been separated in advance using a plasma separator or the like. The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to these Examples. Examples 1 to 2, Comparative Example 1 Porous glass with an average pore diameter of 720 Å (D = 720
Å, 99% of the pore volume with a pore diameter of 0.8D to 1.2D, pore volume of 0.95cc/g, particle size of 0.2mm to 0.5mm)
was used as Example 1, and porous glass with an average pore diameter of 1060 Å (D = 1060 Å, pore diameter 0.8D ~
Percentage of pore volume in 1.2D 81%, pore volume
0.92 cc/g, particle size 0.2 mm to 0.5 mm) was used as Example 2. In addition, porous glass with an average pore diameter of 560 Å (D = 560 Å, 91% of the pore volume with a pore diameter of 0.8 D to 1.2 D, pore volume 0.76 cc/g,
A particle size of 0.2 mm to 0.5 mm) was used as Comparative Example 1.
2 g of each of the above porous glasses was packed into a polypropylene column (with 180 mesh polyester filters at both ends), and 20 ml of rabbit plasma was circulated at 37° C. for 3 hours. The total protein concentration before and after circulation was determined by the Biuret method, and the cholesterol concentration was determined by the ortho-phthalaldehyde method, and the removal rate was calculated (removal rate (%) = (1 - concentration after circulation/concentration before circulation) x 100). Cholesterol rarely exists alone in the blood; most of it exists bound to low-density lipoproteins. Therefore, since the removal rate of cholesterol and the removal rate of low-density lipoprotein are considered to be substantially equal, the concentration of cholesterol was analyzed. As shown in Table 1, the decrease in total protein by the adsorbent of Examples is small, and around 30 to 40% of cholesterol is removed, but in Comparative Example 1, where the average pore diameter is smaller than 700 Å, was large, but the total protein removal rate was also large and the selectivity was low.

【表】 実施例3、比較例2〜5 実施例2で使用したのと同じ多孔性ガラスを実
施例3として使用し、ローム・アンド・ハース社
の有機多孔性樹脂であるXAD−4(D=280Å、
細孔直径が0.8D〜1.2Dにある細孔容積の割合16
%、細孔容積0.65c.c./g、平均粒径0.6mm)を比
較例2として使用し、XAD−7(D=360Å、細
孔直径が0.8D〜1.2Dにある細孔容積の割合22%、
細孔容積0.66c.c./g、平均粒径0.8mm)を比較例
3とし、XAD−8(D=360Å、細孔直径が0.8D
〜1.2Dにある細孔容積の割合22%、細孔容積0.57
c.c./g、平均粒径0.8mm)を比較例4として使用
した。また、ダウ・ケミカル社製のイオン交換樹
脂Dowex1×4(CI型)を比較例5として使用し
た。 上記の多孔体各1gをポリプロピレン製のカラ
ムに充填し、人血漿10mlを37℃で90分間循環し、
前述の方法で総蛋白質除去率とコレステロール除
去率(すなわち低密度リポ蛋白質除去率)を測定
した。第2表に示すように有機多孔性樹脂やイオ
ン交換樹脂を用いたのではコレステロールはほと
んど除去されない。
[Table] Example 3, Comparative Examples 2 to 5 The same porous glass used in Example 2 was used as Example 3, and XAD-4 (D =280Å,
Percentage of pore volume with pore diameter between 0.8D and 1.2D16
%, pore volume 0.65 cc/g, average particle size 0.6 mm) was used as Comparative Example 2, and ,
Comparative Example 3 was XAD-8 (D = 360 Å, pore diameter 0.8 D).
~1.2% of pore volume at D, pore volume 0.57
cc/g, average particle size 0.8 mm) was used as Comparative Example 4. In addition, an ion exchange resin Dowex 1×4 (CI type) manufactured by Dow Chemical Company was used as Comparative Example 5. 1 g of each of the above porous materials was packed into a polypropylene column, and 10 ml of human plasma was circulated at 37°C for 90 minutes.
Total protein removal rate and cholesterol removal rate (ie, low-density lipoprotein removal rate) were measured using the methods described above. As shown in Table 2, cholesterol is hardly removed when organic porous resins or ion exchange resins are used.

【表】【table】

Claims (1)

【特許請求の範囲】 1 平均細孔直径が700Å〜2000Åの範囲内にあ
る多孔性ガラス(ただし表面にスルホン酸基を有
さない)からなることを特徴とする低密度リポ蛋
白質吸着剤。 2 平均細孔直径が900Å〜1600Åの範囲内にあ
る特許請求の範囲第1項記載の低密度リポ蛋白質
吸着剤。 3 多孔性ガラスの細孔容積が0.3c.c./g以上、
2.0c.c./g以下である特許請求の範囲第1項、第
2項のいずれかに記載の低密度リポ蛋白質吸着
剤。 4 多孔性ガラスの粒子直径が0.1mm〜5mmの範
囲内にある特許請求の範囲第1項〜第3項のいず
れかに記載の低密度リポ蛋白質吸着剤。 5 多孔性ガラスが、平均細孔直径をDとすると
き細孔直径が0.8D〜1.2Dの範囲内にある細孔の
容積の割合が全細孔容積の80%以上を占める多孔
性ガラスである特許請求の範囲第1項〜第4項の
いずれかに記載の低密度リポ蛋白質吸着剤。
[Claims] 1. A low-density lipoprotein adsorbent characterized by being made of porous glass having an average pore diameter within the range of 700 Å to 2000 Å (but not having sulfonic acid groups on the surface). 2. The low-density lipoprotein adsorbent according to claim 1, wherein the average pore diameter is within the range of 900 Å to 1600 Å. 3 The pore volume of the porous glass is 0.3cc/g or more,
The low-density lipoprotein adsorbent according to any one of claims 1 and 2, which has a content of 2.0 cc/g or less. 4. The low-density lipoprotein adsorbent according to any one of claims 1 to 3, wherein the particle diameter of the porous glass is within the range of 0.1 mm to 5 mm. 5 The porous glass is a porous glass in which the volume of pores with a pore diameter within the range of 0.8D to 1.2D accounts for 80% or more of the total pore volume, where the average pore diameter is D. A low-density lipoprotein adsorbent according to any one of claims 1 to 4.
JP57043619A 1982-01-05 1982-03-17 Porous glass adsorbent for low-density lipoprotein particles Granted JPS5826819A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57043619A JPS5826819A (en) 1982-03-17 1982-03-17 Porous glass adsorbent for low-density lipoprotein particles
CA000418834A CA1189004A (en) 1982-01-05 1983-01-04 Vessel with a handle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57043619A JPS5826819A (en) 1982-03-17 1982-03-17 Porous glass adsorbent for low-density lipoprotein particles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56126443A Division JPS5827559A (en) 1981-08-11 1981-08-11 Low density lipoprotein adsorbent

Publications (2)

Publication Number Publication Date
JPS5826819A JPS5826819A (en) 1983-02-17
JPS6362220B2 true JPS6362220B2 (en) 1988-12-01

Family

ID=12668852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57043619A Granted JPS5826819A (en) 1982-01-05 1982-03-17 Porous glass adsorbent for low-density lipoprotein particles

Country Status (1)

Country Link
JP (1) JPS5826819A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6884228B2 (en) 2001-03-06 2005-04-26 Baxter International Inc. Automated system adaptable for use with different fluid circuits
US6582386B2 (en) 2001-03-06 2003-06-24 Baxter International Inc. Multi-purpose, automated blood and fluid processing systems and methods
JP4226050B1 (en) * 2007-09-12 2009-02-18 株式会社Reiメディカル Absorption column for body fluid purification treatment

Also Published As

Publication number Publication date
JPS5826819A (en) 1983-02-17

Similar Documents

Publication Publication Date Title
US4472303A (en) Blood purification method
US7311845B2 (en) Adsorbing material for blood and plasma cleaning method and for albumin purification
EP1621220B1 (en) Low density lipoprotein/fibrinogen adsorbent and adsorption apparatus capable of whole blood treatment
JPS5827559A (en) Low density lipoprotein adsorbent
JPS6362220B2 (en)
JPH0977790A (en) Adsorbent for antibody to glycolipid
JPS6319214B2 (en)
JPS63160669A (en) Low density lipoprotein adsorber
JPS59139936A (en) Immunoglobulin g adsorbent
JPH08173803A (en) Endotoxin adsorbent, adsorbing and removing method and adsorbing unit
JPS63209663A (en) Method for sterilizing body fluid treatment apparatus and sterilized body fluid treatment apparatus
JPS6222659A (en) Method and apparatus for regenerating low specific gravity lipoprotein adsorbing material
JPS59156431A (en) Adsorbent
US7348294B2 (en) Adsorbent and method for adsorbing cardiac glycoside
JP2584261B2 (en) Hemoglobin adsorbent
JPH043988B2 (en)
JPS5838562A (en) Method and apparatus for regenerating protein adsorbent for body liquid treatment
JPH0611324B2 (en) Porous hollow fiber membrane
JPH09220281A (en) Sterilizing method for body fluid treating device and sterilized body fluid treating device
JPS62244442A (en) Low specific gravity lipoprotein adsorbing material and its preparation
JPH088928B2 (en) Device for producing plasma from which low-density lipoprotein has been removed
JPS59139935A (en) Adsorbing agent of lipoprotein with low specific gravity
JPS59141524A (en) Antibody adsorbent
JPH0640899B2 (en) Adsorbent manufacturing method
JPH0622624B2 (en) Regeneration method of low density lipoprotein adsorbent