JPS59156431A - Adsorbent - Google Patents

Adsorbent

Info

Publication number
JPS59156431A
JPS59156431A JP58031194A JP3119483A JPS59156431A JP S59156431 A JPS59156431 A JP S59156431A JP 58031194 A JP58031194 A JP 58031194A JP 3119483 A JP3119483 A JP 3119483A JP S59156431 A JPS59156431 A JP S59156431A
Authority
JP
Japan
Prior art keywords
sulfate
adsorbent
immobilized
blood
polyanion compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58031194A
Other languages
Japanese (ja)
Other versions
JPH0339736B2 (en
Inventor
Nobutaka Tani
敍孝 谷
Tsuneo Hayashi
林 恒夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP58031194A priority Critical patent/JPS59156431A/en
Priority to CA000442312A priority patent/CA1221307A/en
Priority to AU21832/83A priority patent/AU571855B2/en
Priority to US06/557,061 priority patent/US4576928A/en
Priority to AT91115793T priority patent/ATE195891T1/en
Priority to EP91115793A priority patent/EP0464872B2/en
Priority to EP87100215A priority patent/EP0225867B1/en
Priority to DE87100215T priority patent/DE3382723T2/en
Priority to DE3382834T priority patent/DE3382834T3/en
Priority to EP83112042A priority patent/EP0110409B2/en
Priority to AT87100215T priority patent/ATE97832T1/en
Priority to DE8383112042T priority patent/DE3379644D1/en
Priority to AT83112042T priority patent/ATE42222T1/en
Publication of JPS59156431A publication Critical patent/JPS59156431A/en
Priority to US06/737,880 priority patent/US4637994A/en
Priority to AU12621/88A priority patent/AU598643B2/en
Publication of JPH0339736B2 publication Critical patent/JPH0339736B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To selectively adsorb and remove lipoprotein, by immobilizing a polyanion compound by an inorg. porous substance with an average pore size of 700-4,000Angstrom . CONSTITUTION:A polyanion compound having affinity to lipoprotein such as heparin, dextrane sulfate, chondroitin sulfate, chondroitin polysulfate, heparanic acid or keratanic acid is immobilized by an inorg. porous substance having an averate pore size of 700-4,000Angstrom , a void volume of 20% and a specific surface area of 3m<2>/g or more such as silica gel, alumina, porous glass, silica-alumina, hydroxyapatite or calcium silicate according to a physical adsorbing method, an ion bonding method or a covalent bonding method. The amount polyanion compound to be immobilized is pref. 0.5-20mg per milli-liter of a column volume.

Description

【発明の詳細な説明】 本発明は、血液中の有害成分の除去用の吸着体に関する
。さらに詳しくは、血液あるいは血漿、血清中からリポ
蛋白、特に低密度リポ蛋白(L D ’L )を選択的
に吸着除去するだめの吸着体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an adsorbent for the removal of harmful components in blood. More specifically, the present invention relates to an adsorbent that selectively adsorbs and removes lipoproteins, particularly low-density lipoproteins (LD'L), from blood, plasma, or serum.

血液中に存在するリポ蛋白のうちLDLは、コレステロ
ールを多く含み動脈硬化の原因となることが知られてい
る。とシわけ家族性高脂血症等の高コレステロール症で
は正常値の数倍のLDL値を示し、冠動脈の硬化等をひ
きおこす。
Among lipoproteins present in the blood, LDL contains a large amount of cholesterol and is known to cause arteriosclerosis. In particular, in cases of hypercholesterolemia such as familial hyperlipidemia, the LDL level is several times higher than the normal value, leading to hardening of the coronary arteries.

この治療のため、血中LDLの低下を目的として食事療
法、プロプコール、コレスチラミン等の薬物療法が行な
われているが効果に限度があシ、副作用も懸念される。
To treat this problem, dietary therapy and drug treatments such as propcol and cholestyramine have been used to lower blood LDL, but their effectiveness is limited and there are concerns about side effects.

特に家族性高脂血症に対しては、患者の血漿を分離して
正常血漿あるいはアルブミン等を成分とする補液と交換
する、いわゆる血幡交換療法が現在のところほぼ唯一の
効果的な治療法である。しかしながら周知のごとく血便
交換療法は、(1)高価な新鮮面dJあるいは血便製剤
を用いる必要がある。(2)肝炎ビールス等の感染の恐
れがある。(3)有害成分のみでなく有用成分も同時に
除去してしまう等の欠点を有する。
Particularly for familial hyperlipidemia, so-called blood exchange therapy, in which the patient's plasma is separated and replaced with normal plasma or replacement fluid containing albumin, etc., is currently almost the only effective treatment. It is. However, as is well known, blood stool exchange therapy requires (1) the use of expensive fresh dJ or blood stool preparations; (2) There is a risk of infection with hepatitis virus, etc. (3) It has the disadvantage that not only harmful components but also useful components are removed at the same time.

これらの欠点を解消する目的で膜による有害成分の除去
が試みられているが、選択性の点で満足できるものはい
まだ得られていない。
In order to overcome these drawbacks, attempts have been made to remove harmful components using membranes, but no membranes have been found that are satisfactory in terms of selectivity.

また同じ目的で抗原、抗体等を固定したいわゆる免疫吸
着体を用いる試みがなされておシ、これは選択性の点で
はほぼ満足できるものの、用いる抗原、抗体の入手が困
難かつ高価であるという致命的な欠点を有する。さらに
は有害成分に親和性を有する化合物(いわゆるリガンド
)を固定した、アフイニテイクロマトグラフイーの原理
による吸着体も試みられている。これに用いるリガンド
は、抗原、抗体に比べれば安価で剋択性本比較的よく好
都合であるが、担体にアガロースに代表されるソフトゲ
ルを用いているため、カラムに充填した場合に十分な流
量を得るのが困難であった。すなわち近年発達した体外
循環回路を用いた血液、血つ之がん流療法(いわゆるプ
ラズマフエレーシヌ)に、こレラの吸着体を用いようと
すれば、高流量を得るためにカラム形状に特別の工夫を
要し、またしばしば詰シを生じるため予備のカラムを用
意しておく必要があるなど問題点が多く、安定して治療
を行なえる状況には到っていない。
For the same purpose, attempts have been made to use so-called immunoadsorbents on which antigens, antibodies, etc. are immobilized.Although these are mostly satisfactory in terms of selectivity, they have the disadvantage that the antigens and antibodies used are difficult and expensive to obtain. It has some disadvantages. Furthermore, adsorbents based on the principle of affinity chromatography, in which compounds having an affinity for harmful components (so-called ligands) are immobilized, have also been attempted. The ligand used for this is cheap and relatively selective compared to antigens and antibodies, but since the carrier is a soft gel such as agarose, it has a sufficient flow rate when packed in a column. was difficult to obtain. In other words, if an adsorbent of Cholera is to be used for blood and blood cancer flow therapy (so-called plasmapheresis) using an extracorporeal circulation circuit that has been developed in recent years, it is necessary to use a special column shape to obtain a high flow rate. There are many problems, such as the need to devise a new method and the need to prepare a spare column because clogging often occurs, and the situation has not reached a point where stable treatment can be performed.

吸着体の流れ特性を向上させるためには機械強度の大き
い担体を用いればよいのは明白であるが、これらの担体
を用いると7ガローヌ等のソフトゲルに比べて吸着能力
が低下するといわれている。
Although it is obvious that a carrier with high mechanical strength should be used to improve the flow characteristics of the adsorbent, it is said that the use of these carriers lowers the adsorption capacity compared to soft gels such as 7 Gallone. .

一方、硫酸化多糖等のポリアニオン化合物がリボ蛋白と
親和性(アフィニティ)をもち、金属イオンの共存下で
沈殿を形成することが知られており(例えばM−Bur
nstej−n and H,R,5choコn1−c
k。
On the other hand, it is known that polyanionic compounds such as sulfated polysaccharides have an affinity for riboproteins and form precipitates in the coexistence of metal ions (for example, M-Bur
nstej-n and H,R,5cho conn1-c
k.

Adv−j−n Lj−pidRes−、11,67、
1973)、臨床分析等に用いられている。しかしなが
ら、この方法で患者の血中からLDLを除去しようとす
れは、処理しようとする血ツ毘に対し少くとも005%
のポリアニオン化合物および002M以上の金属イオン
を添加しなければならず、また生じた沈殿を遠心分離等
の方法で分離する必要があシ操作が煩雑で危険性が高く
事実上適用不可能であった。
Adv-j-n Lj-pidRes-, 11,67,
(1973) and is used for clinical analysis. However, when attempting to remove LDL from a patient's blood using this method, it is difficult to remove LDL from the patient's blood by at least 0.005% of the blood volume being treated.
It was necessary to add a polyanion compound of 0.02M or more and a metal ion of 0.02M or more, and it was necessary to separate the resulting precipitate by a method such as centrifugation, which was a complicated and highly dangerous operation and was practically impossible to apply. .

本発明者らは鋭意研究の結果、特定の構造を持つ無機多
孔体を用い、これにリボ蛋白に親和性を有するポリアニ
オン化合物を固定することにより、安価で流れ特性がよ
く、か、つ除去能力に優れたリポ蛋白吸着体を得、本発
明に到達した。
As a result of extensive research, the present inventors found that by using an inorganic porous material with a specific structure and fixing a polyanion compound that has an affinity for riboproteins, it is possible to achieve a method that is inexpensive, has good flow characteristics, and has high removal ability. The present invention was achieved by obtaining a lipoprotein adsorbent with excellent properties.

すなわち本発明は、平均細孔径が700X以上4ooo
Z以下の無機多孔体に、リボ蛋白に親和性を有するポリ
アニオン化合物を固定してなるリボ蛋白吸着体である。
That is, in the present invention, the average pore diameter is 700X or more and 4ooo
This is a riboprotein adsorbent formed by immobilizing a polyanion compound having an affinity for riboproteins on an inorganic porous material having a size of Z or less.

以下詳細に本発明を説明する。The present invention will be explained in detail below.

本発明に用いる担体には、(1)耐圧性であること、(
2)比較的大きな径の細孔を有すること、が要求され、
無機多孔体は最も適した担体の−っである。
The carrier used in the present invention has (1) pressure resistance, (
2) It is required to have pores with a relatively large diameter,
Inorganic porous materials are the most suitable carrier.

無機多孔体は水によシ膨潤せず、水中で十分な機械的強
度を保持する。従ってアガロース等のソフトゲルのよう
に詰まシを生じる恐れが少なく、また圧力損失も小さい
。また圧力、浸透圧によりゲルが変形あるいは膨潤する
ことが少なく、カラム体積が一定であるという利点を有
する。
Inorganic porous materials do not swell with water and maintain sufficient mechanical strength in water. Therefore, unlike soft gels such as agarose, there is less risk of clogging, and the pressure loss is also small. It also has the advantage that the gel is less likely to be deformed or swelled by pressure or osmotic pressure, and the column volume is constant.

次に細孔の大きさであるが、まず第1に除去しようとす
るLDLが細孔内゛に自由に侵入できることが必要であ
る。LDLは分子量が少くとも100万以上、粒子の直
径が約2001という巨大粒子である。この巨大粒子が
自由に、高い確率で細孔内に゛侵入するだめには、細孔
径が大きければ大きい程よいと考えられるが、一方、細
孔径の増加に伴い、表面積と細孔容積が一般には低下す
る。従って最適な細孔径が存在する。
Next, regarding the size of the pores, first of all, it is necessary that the LDL to be removed can freely enter the pores. LDL is a huge particle with a molecular weight of at least 1,000,000 or more and a particle diameter of about 2,001. In order for these giant particles to freely and with a high probability of entering the pores, it is thought that the larger the pore diameter, the better.However, as the pore diameter increases, the surface area and pore volume generally decrease. descend. Therefore, an optimum pore size exists.

細孔径の測定法には種々あるが、本発明においては水銀
圧入法を採用した。
There are various methods for measuring the pore diameter, but in the present invention, the mercury intrusion method was adopted.

本発明者らは、種々の細孔径をもつ無機多孔体を用いて
検討した結果、平均細孔径が700X以上、4000大
以下の無機多孔体を用いると良好なLDLの吸着能力が
得られ、1000X以上、3000、に以下の平均細孔
径の多孔体を用いた場合、最も高いLDL吸着能を示す
ことを見出した。
As a result of studies using inorganic porous materials with various pore sizes, the present inventors found that good LDL adsorption ability was obtained when using an inorganic porous material with an average pore size of 700X or more and 4000X or less; As described above, it has been found that when a porous body having an average pore diameter of 3000 or less is used, the highest LDL adsorption ability is exhibited.

次に担体の多孔構造については、表面多孔性よりも全多
孔性が好ましく、空孔容積が20%以上あることが望ま
しい。又、比表面積は3m2711以上である事が望ま
しい。
Next, regarding the porous structure of the carrier, total porosity is preferable to surface porosity, and it is desirable that the pore volume is 20% or more. Further, it is desirable that the specific surface area is 3 m2711 or more.

担体の形状は粒状、繊維状、膜状、ホロファイバー状等
任意の形状を選ぶことができる。粒子状の担体を用いる
場合、その粒子径は1μm以上5000μm以下である
のが望ましい。
The shape of the carrier can be selected from any shape such as granules, fibers, membranes, and holofibers. When using a particulate carrier, the particle size is preferably 1 μm or more and 5000 μm or less.

本発明に適した無機多孔体の代表例としては、シリカゲ
ル、アルミナ、多孔質ガラス、シリカアルミナ、ヒドロ
キシアパタイト、ケイ酸カルシウム、ジルコニア、ゼオ
ライ1゛等があケラれるが、これらに限定されない。さ
らには、これらの表面に多糖類、合成高分子等をコーテ
ィングしたものを用いてもよい。これらの無機多孔体は
単独で用いてもよいし、2種類以上混合して用いてもよ
い。
Typical examples of inorganic porous materials suitable for the present invention include, but are not limited to, silica gel, alumina, porous glass, silica alumina, hydroxyapatite, calcium silicate, zirconia, and zeolite 1. Furthermore, those whose surfaces are coated with polysaccharides, synthetic polymers, etc. may also be used. These inorganic porous bodies may be used alone or in combination of two or more types.

本発明に用いるに適したリポ蛋白に親和性を有するポリ
アニオン化合物の代表例としては、ヘパリン、デキスト
ラン硫酸、コンドロイチン硫酸、コンドロイチンポリ硫
酸、ヘパラン酸、グラタン硫酸、ヘパリチン硫酸、キシ
ラン硫酸、カロニン硫酸、セルロース硫酸、キチン硫酸
、キトサン硫酸、ペクチン硫酸、イヌリン硫酸、アルギ
ン酸硫酸、グリコーゲン硫酸、ボリラク、トーヌ硫酸、
カラゲニン硫酸、デンプン硫酸、ポリグルコース硫酸、
ラミナリン硫酸、ガラクタン硫酸、レバン硫酸、メベサ
ルフエート等の硫酸化多糖類、リンタングステン酸、ポ
リ硫酸化アネトール、ポリビニルアルコール硫酸、ポリ
リン酸等があげられるが、これらに限定されない。
Representative examples of polyanionic compounds with affinity for lipoproteins suitable for use in the present invention include heparin, dextran sulfate, chondroitin sulfate, chondroitin polysulfate, heparanic acid, gratan sulfate, heparitin sulfate, xylan sulfate, caronine sulfate, and cellulose. Sulfuric acid, chitin sulfate, chitosan sulfate, pectin sulfate, inulin sulfate, alginate sulfate, glycogen sulfate, Vorilac, Thone sulfate,
carrageenan sulfate, starch sulfate, polyglucose sulfate,
Examples include, but are not limited to, sulfated polysaccharides such as laminarin sulfate, galactan sulfate, levan sulfate, and mebesulfate, phosphotungstic acid, polysulfated anethole, polyvinyl alcohol sulfate, and polyphosphoric acid.

リポ蛋白に親和性を有する化合物(リガンド)を担体に
固定する方法としては既知の種々の方法を用いることが
できる。す々わち物理的吸着法、イオン結合法、共有結
合法等である。本発明による吸着体を治療に用いるに際
し、滅菌時あるいは治療中にリガンドが脱離しないこと
が重要であるので、結合の強固な共有結合法が望ましく
、イオン結合法を用いるにしてもリガンドを共有結合的
に架橋しておくことが望ましい。
Various known methods can be used to immobilize a compound (ligand) that has affinity for lipoproteins on a carrier. These include physical adsorption methods, ionic bonding methods, covalent bonding methods, etc. When using the adsorbent of the present invention for treatment, it is important that the ligand does not detach during sterilization or treatment, so a strong covalent bonding method is preferable, and even if an ionic bonding method is used, the ligand is It is desirable to form a bond in a cross-linked manner.

1だ必要によりスペーサーを担体とリガンドの間に導入
してもよい。
1. If necessary, a spacer may be introduced between the carrier and the ligand.

リガンドの固定化量については、リガンドの性状、活性
により異なるが、有意のリボ蛋白吸着量を得るにはカラ
ム体積1 mlあたり0.02 m9以上が好ましく、
また経済性を考慮すると100m!i+以下が望ましい
。さらに好ましくはカラ゛ム体積1 mlあたり05m
2以上20m1i1以下である。
The amount of immobilized ligand varies depending on the properties and activity of the ligand, but in order to obtain a significant amount of riboprotein adsorption, it is preferably 0.02 m9 or more per 1 ml column volume.
Also, considering economic efficiency, it is 100m! i+ or less is desirable. More preferably 05 m/ml column volume
2 or more and 20m1i1 or less.

本発明による吸着体を治療に用いるには種々の方法があ
る。最も簡便な方法としては患者の血液を体外に導出し
て血液バッグ等に貯め、これに本発明の吸着体を混合し
てLDLを除去した後、フィルターを通して吸着体を除
去し、血液を患者に戻す方法がある。この方法は複雑な
装置を必要としないが、1回の処理量が少く治療に時間
を要し、操作が煩雑になるという難点を有する。次の方
法は吸着体をカラムに充填し、体外循環回路に組みこん
でオンラインで吸着除去を行なうものである。処理方法
には全血を直接がん流する方法と、血液から血tを分離
した後、血漿をカラムに通す方法がある。本発明による
吸着体は、いずれの方法にも用いることができるが、前
述のごとくオンライン処理に最も適している。
There are various ways in which the adsorbent according to the invention can be used therapeutically. The simplest method is to draw the patient's blood outside the body and store it in a blood bag, etc., mix it with the adsorbent of the present invention to remove LDL, then pass it through a filter to remove the adsorbent, and transfer the blood to the patient. There is a way to get it back. Although this method does not require complicated equipment, it has the disadvantages that the amount of treatment per treatment is small, the treatment takes time, and the operation is complicated. The next method is to pack the adsorbent into a column, incorporate it into an extracorporeal circulation circuit, and perform online adsorption and removal. Treatment methods include a method in which whole blood is directly passed through the tumor, and a method in which blood is separated from the blood and then the plasma is passed through a column. The adsorbent according to the invention can be used in either method, but is most suitable for on-line processing as mentioned above.

本発明による吸着体を用いてLDLを除去する際、処理
しようとする血液、あるいは血放に多価金属イオンを添
加することにより除去効率、選択性を向上させることが
可能である。この目的に用いる多価金属イオンとしては
、カルシウム、マグネシウム、バリウム、ヌ、トロンチ
ウム等のアルカリ土類金属イオン、アルミニウム等の■
属元素イオン、マンガン等の■属元素イオン、コバルト
等の■属元素イオン等があげられる。
When removing LDL using the adsorbent according to the present invention, it is possible to improve the removal efficiency and selectivity by adding polyvalent metal ions to the blood or blood sample to be treated. Polyvalent metal ions used for this purpose include alkaline earth metal ions such as calcium, magnesium, barium, nitrogen, trontium, etc.
Examples include ions of genus elements, ions of genus elements such as manganese, ions of genus elements such as cobalt, and the like.

以下実施例により本発明をさらに詳しく説明する。The present invention will be explained in more detail with reference to Examples below.

参考例 両端に孔径ろ5μmのフィルターを装着したガラス製円
筒カラム(内径9mm、カラム長150in)に、無機
多孔体の代表例として多孔質ガラス(和光紬薬(摺装i
 FPG 2000.粒径80〜120メツシユ)とソ
フトゲルの代表例としてアガロースゲル(Bj、ora
d社製; Bj−ogel、 A 5 M 。
Reference Example A glass cylindrical column (inner diameter 9 mm, column length 150 inches) equipped with filters with a pore size of 5 μm at both ends was coated with porous glass (Wako Tsumugi Co., Ltd.) as a representative example of the inorganic porous material.
FPG 2000. As a typical example of soft gel, agarose gel (Bj, ora) is a representative example of soft gel.
Manufactured by d company; Bj-ogel, A5M.

粒径50〜100メツシユ)とを各々均一に充填し、そ
れぞれについてベリスタティックポンプにより水を流し
、流速と圧力損失の関係を求めた。結果を図1に示す。
(particle size: 50 to 100 mesh) were uniformly filled in each container, water was flowed through each container using a veristatic pump, and the relationship between flow rate and pressure loss was determined. The results are shown in Figure 1.

無機多孔体が圧力の増加するのに対し、ソフトケルは圧
密化をひきおこし圧力を増加させても流量が増加しない
In contrast to inorganic porous materials whose pressure increases, soft-kels cause compaction and do not increase flow rate even if the pressure increases.

実施例1 多孔質ガラスFPG2000 (平均孔径19soA。Example 1 Porous glass FPG2000 (average pore diameter 19soA.

比表面積1.3m2/f/、粒径80〜120メツシユ
)を希硝酸中で6時間加熱し、水洗乾燥後500℃でろ
時間加熱した。これをr−アミノプロピルトリエトキシ
シランの10%トルエン溶液中で3時間還流し、メタノ
ールで洗浄して、γ−アミノピロビル化ガラヌヲ得り。
(Specific surface area: 1.3 m2/f/, particle size: 80-120 mesh) was heated in dilute nitric acid for 6 hours, washed with water, dried, and filtered at 500°C for a period of time. This was refluxed for 3 hours in a 10% toluene solution of r-aminopropyltriethoxysilane and washed with methanol to obtain γ-aminopyrobylated galanuo.

次にヘパリン200■を10’ccの水に溶解し、pH
4,5に調整した後、これに2FIのγ−アミノプロピ
ル化ガラスを加えた。1−エチル−乙÷ジメチルアミノ
プロピル÷カルボジイミド200m2をpH4,5に保
ちながら添加し、4 ’Cで24時間振とうした。反応
終了後、2モル食塩溶液、05モル食塩溶液、水で洗浄
し、ヘパリン固定化多孔質ガラスを得、た。固定化され
たヘパリンは12■/ mlであった。
Next, dissolve 200μ of heparin in 10cc of water and adjust the pH
After adjusting to 4.5, 2FI γ-aminopropylated glass was added thereto. 200 m2 of 1-ethyl-O ÷ dimethylaminopropyl ÷ carbodiimide was added while maintaining the pH at 4.5, and the mixture was shaken at 4'C for 24 hours. After the reaction was completed, the glass was washed with a 2M salt solution, a 0.5M salt solution, and water to obtain a heparin-immobilized porous glass. Immobilized heparin was 12 μ/ml.

実施例2 多孔質ガラスFPG2000をFPG700(平均孔径
7ooffi、比表面積37 m2/ g+粒径80〜
120メツシュ)、FPG 100 o、(平均孔径1
o9;X、比表面積21m2/L粒径80〜120メツ
シュ)、FPG3000(平均孔径3010λ。
Example 2 Porous glass FPG2000 was replaced with FPG700 (average pore diameter 7 ooffi, specific surface area 37 m2/g + particle size 80~
120 mesh), FPG 100 o, (average pore size 1
o9;

比表面積6.8m2/fj 、粒径80〜120メツシ
ユ)、多孔質シリカ(MERK製Li、chrosph
er 5i4000 。
Specific surface area 6.8 m2/fj, particle size 80-120 mesh), porous silica (MERK Li, chrosph
er5i4000.

平均孔径4oooX、 粒径10μm)にかえた他は実
施例1と同じ方法でヘパリンを固定化した。
Heparin was immobilized in the same manner as in Example 1, except that the average pore size was 400X and the particle size was 10 μm.

ヘパリンの固定化量はそれぞれ5..2 、2.2.0
.8゜0、5 m? / mlで6つだ。
The amount of heparin immobilized was 5. .. 2, 2.2.0
.. 8゜0.5 m? / 6 in ml.

実施例6 ヘパリンをコンドロイチンポリ硫酸にかえた他は実施例
1と同じ方法でコンドロイチンポリ硫酸固定化FPG2
000を得だ。固定化されたコンドロイチンポリ硫酸の
量は1.0■/ゴであった。
Example 6 Chondroitin polysulfate-immobilized FPG2 was produced in the same manner as in Example 1 except that heparin was changed to chondroitin polysulfate.
I got 000. The amount of immobilized chondroitin polysulfate was 1.0 μ/g.

実施例4 デキストラン硫酸800■ヲ0.25モルNa工04溶
液10ynlに溶解し、室温で4時間攪拌後、エチレン
グリコール200■を加えて1時間攪拌する。この溶液
をpH8に調整した後、実施例1と同じ方法で得られた
γ−アミノプロピル化F、PG2000 4mlを加え
24時間振とうした。
Example 4 800 ml of dextran sulfate was dissolved in 10 ml of 0.25 mol Na-04 solution and stirred at room temperature for 4 hours, then 200 ml of ethylene glycol was added and stirred for 1 hour. After adjusting the pH of this solution to 8, 4 ml of γ-aminopropylated F, PG2000 obtained in the same manner as in Example 1 was added and shaken for 24 hours.

反応終了後、ゲルを炉集、水洗し、これを1%NaBH
4溶液101R1に懸濁して15分藺還元し、濾過、水
洗してデキストラン硫酸固定化FPG2000を得た。
After the reaction was completed, the gel was collected in a furnace, washed with water, and added with 1% NaBH.
4 solution 101R1 and reduced for 15 minutes, filtered and washed with water to obtain dextran sulfate-immobilized FPG2000.

固定化量はo、 s tq /g/であった。The amount of immobilization was o, stq/g/.

実施例5 実施例1〜4で合成した吸着体各1 mlを試験管にと
シ、これに人血is zt (0a01重0.02M含
有)を加えて播拌し、20℃で15分間静置後、上澄ミ
のコレステロールおよびI、DL濃度を測定した。結果
を表1に示す。
Example 5 1 ml of each of the adsorbents synthesized in Examples 1 to 4 was placed in a test tube, human blood is zt (containing 0.02 M of 0a01 weight) was added thereto, stirred, and allowed to stand still for 15 minutes at 20°C. After incubation, the cholesterol, I, and DL concentrations of the supernatant were measured. The results are shown in Table 1.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は、参考例に示すガラス製円筒カラムに、多孔質ガ
ラスFPG2000を充填したものと、ソフトゲル(B
j−ogel A 5 m )を充填したものについて
夫々水の流速と圧力損失の関係を示すグラフである。 特許出願人 鐘淵化学工業株式会社 代理人弁理士浅野真− jc O,C :zd A !;7n O,8/、θ
Figure 1 shows a glass cylindrical column filled with porous glass FPG2000 and a soft gel (B
5 is a graph showing the relationship between the flow rate of water and the pressure loss for each case filled with J-Ogel A 5 m ). Patent applicant Makoto Asano, patent attorney representing Kanekabuchi Chemical Industry Co., Ltd. jc O,C:zd A! ;7n O,8/,θ

Claims (1)

【特許請求の範囲】 1 平均細孔径が700X以上4000A:以下の無機
多孔体に、リポ蛋白に親和性を有するポリアニオン化合
物を固定してなるリポ蛋白吸着体。 2 無機多孔体が多孔質ガラス、多孔質シリカゲル、多
孔質アルミナからなる群から選ばれる少くとも一つであ
る特許請求の範囲第1項記載の吸着体。 ろ ポリアニオン化合物が硫酸化多糖である特許請求の
範囲第1項記載の吸着体。 4、硫酸化多糖がヘパリン、デキヌトラン硫酸、コンド
ロイチンポリ硫酸から選ばれる少くとも1種である特許
請求の範囲第3項記載の吸着体。 5 比表面積が3m2/g以上の無機多孔体を用いる特
許請求の範囲第1項記載の吸着体。 6 ポリアニオン化合物の固定化量がカラム体積1πt
あたp O,’02■以上1oom9以下である特許請
求の範囲第1項記載の吸着体。
[Scope of Claims] 1. A lipoprotein adsorbent comprising a polyanionic compound having an affinity for lipoproteins fixed to an inorganic porous material having an average pore diameter of 700X or more and 4000A or less. 2. The adsorbent according to claim 1, wherein the inorganic porous material is at least one selected from the group consisting of porous glass, porous silica gel, and porous alumina. The adsorbent according to claim 1, wherein the polyanion compound is a sulfated polysaccharide. 4. The adsorbent according to claim 3, wherein the sulfated polysaccharide is at least one selected from heparin, dequinutran sulfate, and chondroitin polysulfate. 5. The adsorbent according to claim 1, which uses an inorganic porous material having a specific surface area of 3 m2/g or more. 6 The amount of immobilized polyanion compound is column volume 1πt
The adsorbent according to claim 1, wherein the adsorbent has a p O,'02■ or more and 1oom9 or less.
JP58031194A 1982-12-02 1983-02-25 Adsorbent Granted JPS59156431A (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP58031194A JPS59156431A (en) 1983-02-25 1983-02-25 Adsorbent
CA000442312A CA1221307A (en) 1982-12-02 1983-11-30 Adsorbent and process for preparing the same
AU21832/83A AU571855B2 (en) 1982-12-02 1983-11-30 Adsorbent for removing harmful substances from blood
DE87100215T DE3382723T2 (en) 1982-12-02 1983-12-01 Adsorbent and process for its manufacture.
AT87100215T ATE97832T1 (en) 1982-12-02 1983-12-01 ADSORBENT AND PROCESS FOR PRODUCTION.
EP91115793A EP0464872B2 (en) 1982-12-02 1983-12-01 Adsorbent and process for preparing the same
EP87100215A EP0225867B1 (en) 1982-12-02 1983-12-01 Adsorbent and process for preparing the same
US06/557,061 US4576928A (en) 1982-12-02 1983-12-01 Adsorbent and process for preparing the same
DE3382834T DE3382834T3 (en) 1982-12-02 1983-12-01 Sorbent and its production process
EP83112042A EP0110409B2 (en) 1982-12-02 1983-12-01 Adsorbent and process for preparing the same
AT91115793T ATE195891T1 (en) 1982-12-02 1983-12-01 SORBENT AGENT AND PRODUCTION PROCESS THEREOF
DE8383112042T DE3379644D1 (en) 1982-12-02 1983-12-01 Adsorbent and process for preparing the same
AT83112042T ATE42222T1 (en) 1982-12-02 1983-12-01 ADSORBENT AND PROCESS FOR PRODUCTION.
US06/737,880 US4637994A (en) 1982-12-02 1985-05-28 Adsorbent and process for preparing the same
AU12621/88A AU598643B2 (en) 1982-12-02 1988-03-01 Adsorbent and process for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58031194A JPS59156431A (en) 1983-02-25 1983-02-25 Adsorbent

Publications (2)

Publication Number Publication Date
JPS59156431A true JPS59156431A (en) 1984-09-05
JPH0339736B2 JPH0339736B2 (en) 1991-06-14

Family

ID=12324610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58031194A Granted JPS59156431A (en) 1982-12-02 1983-02-25 Adsorbent

Country Status (1)

Country Link
JP (1) JPS59156431A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004098680A1 (en) * 2003-05-08 2006-07-13 株式会社カネカ Adsorbent and adsorber for low density lipoprotein and fibrinogen capable of whole blood treatment
CN108398495A (en) * 2018-02-08 2018-08-14 兰州大学 A kind of metal affinity adsorbent is for removing the albumen in serum and detecting the nucleosides in serum

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4226050B1 (en) 2007-09-12 2009-02-18 株式会社Reiメディカル Absorption column for body fluid purification treatment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004098680A1 (en) * 2003-05-08 2006-07-13 株式会社カネカ Adsorbent and adsorber for low density lipoprotein and fibrinogen capable of whole blood treatment
JP4578405B2 (en) * 2003-05-08 2010-11-10 株式会社カネカ Adsorbent and adsorber for low density lipoprotein and fibrinogen capable of whole blood treatment
CN108398495A (en) * 2018-02-08 2018-08-14 兰州大学 A kind of metal affinity adsorbent is for removing the albumen in serum and detecting the nucleosides in serum
CN108398495B (en) * 2018-02-08 2020-07-03 兰州大学 A metal affinity adsorbent for removing protein and detecting nucleoside in serum

Also Published As

Publication number Publication date
JPH0339736B2 (en) 1991-06-14

Similar Documents

Publication Publication Date Title
JP4908216B2 (en) Adsorber for direct blood perfusion filled with adsorbent from which water-insoluble fine particles have been removed, and method for obtaining adsorbent for direct blood perfusion from which water-insoluble fine particles have been removed
EP0464872B2 (en) Adsorbent and process for preparing the same
EP1621220B1 (en) Low density lipoprotein/fibrinogen adsorbent and adsorption apparatus capable of whole blood treatment
JPS59156431A (en) Adsorbent
JPS6319214B2 (en)
NZ213860A (en) Sterilisation of absorbent and column having improved storability including sterilised adsorbent for use in extracorporeal circulation treatment
JPH0611333B2 (en) Immune complex adsorbent and immune complex removing apparatus using the same
JPS59102436A (en) Adsorbent body
JP2649224B2 (en) Sterilization method for body fluid treatment device and sterilized body fluid treatment device
JP3157026B2 (en) Adsorbent for blood purification
CA1256846A (en) Process for recovering adsorbent for use in extracorporeal circulation treatment
CA1266855A (en) Adsorbent and process for preparing the same
JPH01145071A (en) Removal of lipoprotein from blood
JPS59197255A (en) Removing apparatus
JPS6362220B2 (en)
JP4141224B2 (en) Low density lipoprotein and fibrinogen adsorbent and adsorber thereof
JPH0771632B2 (en) Adsorbent and removal device using the same
JPH043988B2 (en)
JPH05269203A (en) Method of manufacturing plasma from which low specific weight lipoprotein
JPS6077769A (en) Production of adsorbing body
JPH10248927A (en) Adsorbent for purifying humor
JPH035822B2 (en)
JPS63160669A (en) Low density lipoprotein adsorber
JPS59168858A (en) Adsorptive cleaner of sugar-containing substance
JPS6282973A (en) Material and apparatus for adsorbing beta-lipoprotein