JPH035822B2 - - Google Patents

Info

Publication number
JPH035822B2
JPH035822B2 JP1058223A JP5822389A JPH035822B2 JP H035822 B2 JPH035822 B2 JP H035822B2 JP 1058223 A JP1058223 A JP 1058223A JP 5822389 A JP5822389 A JP 5822389A JP H035822 B2 JPH035822 B2 JP H035822B2
Authority
JP
Japan
Prior art keywords
dextran sulfate
water
weight
adsorbent
insoluble porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1058223A
Other languages
Japanese (ja)
Other versions
JPH01280469A (en
Inventor
Nobutaka Tani
Tsuneo Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP1058223A priority Critical patent/JPH01280469A/en
Publication of JPH01280469A publication Critical patent/JPH01280469A/en
Publication of JPH035822B2 publication Critical patent/JPH035822B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は血液中の有害成分を除去するための吸
着体に関する。さらに詳しくは血液あるいは血
漿、血清中からリポ蛋白、とくに極低密度リポ蛋
白(VLDL)および(または)低密度リポ蛋白
(LDL)を選択的に吸着除去するための吸着体に
関する。 [従来の技術・発明が解決しようとする課題] 血液中に存在するリポ蛋白のうちVLDL、
LDLはコレステロールを多く含み、動脈硬化の
原因となることが知られている。とりわけ家族性
高脂血症などの高脂血症、高コレステロール症に
おいては正常値の数倍のJLDLおよび(または)
LDL値を示し、冠動脈の硬化などをひきおこす。
これらの疾患の治療には食事療法、薬物療法が行
なわれているが効果に限度があり、副作用も懸念
されている。とくに家族性高脂血症に対しては
VLDL、LDLを多くんだ患者の血漿を分離した
のち、正常血漿またはアルブミンなどを成分とす
る補液と交換してVLDL値、LDL値を低下させ
る、いわゆる血漿交換療法が現在のところほぼ唯
一の効果的な治療法である。 しかしながら血漿交換療法は周知のごとく、(1)
高価な新鮮血漿あるいは血漿製剤を用いる必要が
ある。(2)肝炎ウイルスなどの感染の惧れがある、
(3)有害成分のみでなく有用成分も同時に除去して
しまう、すなわちリポ蛋白のばあい有用である高
密度リポ蛋白(HDL)も同時に除去してしまう
などの欠点を有する。 叙上の欠点を解消する目的で膜による有害成分
の選択的除去が試みられているが、選択性の点で
満足できるものはいまだえられていない。 また同じ目的で抗原、抗体などを固定した、い
わゆる免疫吸着体を用いる試みがなされており、
該方法は選択性の点ではほぼ満足できるものの、
用いる抗原、抗体の入手が困難かつ高価であると
いう欠点を有する。 さらには、除去対象物質に特異的な親和性(ア
フイニテイー)を有する物質(以下、リガンドと
いう)を担体に固定した、いわゆるアフイニテイ
ークロマトグラフイーの原理による吸着体も試み
られている。該方法に用いられるリガンは抗原、
抗体などに比べれば入手しやすい物質が多いが、
生体に由来する物質が多いため体外循環治療に用
いるには滅菌操作などに対する安定性、価格、安
全性などの点で満足しうるものはほとんどない。 [課題を解決するための手段] 本発明者らは叙上のごとき欠点を克服すべくさ
らに鋭意研究を重ねた結果、特定の粘度と硫黄量
を有するデキストラン硫酸および(または)その
塩を水不溶性多孔体に共有結合を介して固定する
ことによつて、高効率でかつ安全に、しかも選択
性よくリポ蛋白を吸着除去しうる体外循環治療用
吸着体がえられることを見出し、本発明を完成す
るに至つた。 すなわち、本発明は極限粘度(1M食塩水溶液
中、25℃で測定、以下同様)が0.12dl/g以下で
かつ硫黄含量が15〜22重量%のデキストラン硫酸
および(または)その塩が水不溶性多孔体に式: (式中、OAはデキストラン硫酸および(または)
その塩の水酸基に由来する酸素原子、OBは水不
溶性多孔体の表面水酸基に由来する酸素原子であ
る)で示される共有結合を介して固定されたカラ
ム体積1mlあたり0.2〜100mgである体外循環治療
用リポ蛋白吸着体に関する。 [実施例・発明の効果] デキストラン硫酸および(または)その塩とは
ロイコノストツク・メセンテロイデス
(Leuconostoc mesenteroides)などにより生産
される多糖であるデキストランの硫酸エステルお
よび(または)その塩である。 デキストラン硫酸および(または)その塩がカ
ルシウムなどの2価カチオンの存在下にリポ蛋白
と沈殿を形成することが知られており、通常該目
的には分子量が50万(極限粘度が約0.20dl/g)
程度のデキストラン硫酸および(または)その塩
が使用される。しかしながら、比較例に示すよう
に叙上のごときデキストラン硫酸および(また
は)その塩を水不溶性多孔体に固定してもLDL
および(または)VLDLの吸着能力は低く、実用
に耐えない。本発明者らは種々検討を重ねた結
果、極限粘度が0.12dl/g以下、より好ましくは
0.08dl/g以下でかつ硫黄含量が15〜22重量%以
上のデキストラン硫酸および(または)その塩が
高いLDLおよび(または)VLDL吸着能力と選
択性を示すことを見出した。さらに驚くべきこと
に、叙上のごとき沈殿法では10〜40mMの2価カ
チオンを必要とするのに対し、本発明の吸着体で
は2価カチオンの添加を必ずしも行なわなくとも
高い吸着能力と選択性を示すことを見出した。ま
たデキストラン硫酸および(または)その塩の毒
性は低いが、分子量がある程度以上大きくなると
毒性が増加することが知られており、この点から
も極限粘度が0.12dl/g以下、より好ましくは
0.08dl/g以下の比較的低分子量のデキストラン
硫酸および(または)その塩を用いることによつ
て、固定されたデキストラン硫酸および(また
は)その塩が万一脱離した際の危険を防止でき
る。さらには、デキストラン硫酸および(また
は)その塩は大部分がα−1,6−グリコシド結
合であるので高圧蒸気滅菌などの操作を施しても
変化が少ない。 デキストラン硫酸および(または)その塩の分
子量の測定法には種々あるが、粘度測定によるの
が一般的である。しかしながら、デキストラン硫
酸および(または)その塩は高分子電解質である
ため溶液のイオン強度、PH、さらにデキストラン
硫酸および(または)その塩の硫黄含量(すなわ
ち、スルホン酸基の量)などによつて同じ分子量
のものでも粘度が異なる。本発明でいう極限粘度
とは、デキストラン硫酸および(または)その塩
をナトリウム塩とし、中性の1M食塩水溶液中、
25℃で測定したものである。 本発明に用いるデキストラン硫酸および(また
は)その塩は直鎖状でも分岐鎖状でもよく、塩と
してはナトリウム、カリウムなどの水溶性塩が好
ましい。 本発明に用いる担体の水不溶性多孔体としては
つぎの性質を備えていることが好ましい。 (1) 機械的強度が比較的高く、カラムなどに充填
して、血液、血漿などの体液を流したばあいの
圧力損失が小さく、目詰りなどをおこさない。 (2) 充分な大きさの細孔が多数存在すること、す
なわち吸着除去対象物質が細孔内に侵入できる
ことが必要であり、球状蛋白質およびウイルス
を用いて測定した排除限界分子量が100万〜1
億の範囲である(ただし排除限界分子量とは細
孔内に侵入できない(排除される)分子のうち
最も小さい分子量をもつものの分子量をいう)。 (3) 表面に固定化反応に用いうる官能基または容
易に活性化しうる官能基、たとえばアミノ基、
カルボキシル基、ヒドロキシル基、チオール
基、酸無水物基、サクシニルイミド基、塩素
基、アルデヒド基、アミド基、エポキシ基など
が存在する。 (4) 高圧蒸気滅菌などの滅菌操作による変化が少
ない。 なお、(2)の球状蛋白質およびウイルスを用いて
測定した排除限界分子量(以下、排除限界分子量
という)に関しては、排除限界分子量100万未満
の担体を用いたばあいはVLDL、LDLの除去量
は小さく実用に耐えないが、排除限界分子量が
100万〜数百万とVLDL、LDLの分子量に近い担
体でもある程度実用に供しうるものがえられる。
一方、排除限界分子量が1億を超えると、リガン
ドの固定量が減少して結果的に吸着量が減り、ま
たゲルの強度も低下するため好ましくない。かか
る理由のため本発明に用いる水不溶性多孔体は排
除限界分子量が100万〜1億の範囲であることが
適当である。 叙上のごとき性質を備えた水不溶性多孔体の代
表例としては、スチレン−ジビニルベンゼン共重
合体、架橋ポリビニルアルコール、架橋ポリアク
リレート、架橋されたビニルエーテル−無水マレ
イン酸共重合体、架橋されたスチレン−無水マレ
イン酸共重合体、架橋ポリアミドなどの合成高分
子の多孔体や多孔質セルロースゲル、さらにはシ
リカゲル多孔質ガラス、多孔質アルミテ、多孔質
シリカアルミナ、多孔質ヒドロキシアパタイト、
多孔質ケイ酸カルシウム、多孔質ジルコニア、ゼ
オライトなどの無機多孔体があげられるが、これ
らに限定されるわけではない。また水不溶性多孔
体の表面は多糖類、合成高分子などでコーテイン
グされていてもよい。 水不溶性多孔体の粒子径は一般的には小さい方
が吸着能力の点では好ましいが、粒子径があまり
に小さくなるとカラムに充填したばあいの圧力損
失が大きくなり好ましくなく、1〜5000μの範囲
であることが好ましい。また水不溶性多孔体は単
独で用いてもよいし2種類以上混合して用いても
よい。 叙上の代表例の中でも多孔質セルロースゲルは
前記(1)〜(4)の性質を備えているばかりでなく、デ
キストラン硫酸および(または)その塩を効率よ
く固定することができるため本発明に最も適した
水不溶性多孔体のひとつである。 デキストラン硫酸および(または)その塩を水
不溶性多孔体に固定する方法には種々あるが、体
外循環治療に用いるリガンドが脱離しないことが
重要であるので、リガンド結合の強固な共有結合
を介して水不溶性多孔体に固定されていることが
望ましい。 固定化方法としては、ハロゲン化シアン法、エ
ピクロルヒドリン法、ビスエポキサイド法、ハロ
ゲン化トリアジン法などがあげられるが、結合が
強固でリガンドの脱離の危険性が少ないエピクロ
ルヒドリン法が最も本発明に適している。しかし
ながら、該エピクロルヒドリン法は反応性が低
く、とくにデキストラン硫酸および(または)そ
の塩を固定するばあいにはリガンドの官能基が水
酸基であるためさらに反応性が低く、通常の方法
では充分なリガンド固定量をうることは難しい。 本発明者らは種々検討の結果、エピクロルヒド
リンで活性化されたエポキシ化水不溶性多孔体と
デキストラン硫酸および(または)その塩を反応
させる工程において、デキストラン硫酸および
(または)その塩の濃度(水不溶性多孔体(乾燥
重量)を除く全反応系重量に対する濃度、以下同
様)を3重量%以上、より好ましくは10重量%以
上に保つことによつて充分な量のデキストラン硫
酸および(または)その塩が固定されることを見
出した。デキストラン硫酸および(または)その
塩の固定化量については、有意なリポ蛋白吸着量
をうるにはカラム体積1mlあたり0.2mg以上が好
ましく、また経済性を考慮すると100mg以下が望
ましい。 また、多孔質セルロースゲルを用いると他の水
不溶性多孔体に比べ、同じ条件でもデキストラン
硫酸および(または)その塩の固定量が多く、好
都合である。 エピクロルヒドリンにより活性化さた水不溶性
多孔体とデキストラン硫酸および(または)その
塩との反応でえられる吸着体は、デキストラン硫
酸および(または)その塩が式: (式中、OAはデキストラン硫酸および(または)
その塩の水酸基に由来する酸素原子、OBは水不
溶性多孔体の表面水酸基に由来する酸素原子)で
示される結合を介して水不溶性多孔体に固定され
ている。 なお、固定化反応終了後、未反応のデキストラ
ン硫酸および(または)その塩は回収して精製な
どの工程を経て再使用することもできる。 デキストラン硫酸を固定したのち、未反応の活
性基(エピクロルヒドリンを用いたばあいはエポ
キシ基)はモノエタノールアミンなどで封止して
おくのが望ましい。 本発明による吸着体を体外循環治療に用いるに
は種々の方法があるが、入口と出口に体液成分
(血球、蛋白質など)は通過するが吸着体は通過
できないフイルター、メツシユなどを装着したカ
ラムに充填し、該カラムを体外循環回路に組み込
み、血液、血漿などの体液をカラムに通して行な
う方法が代表的である。 つぎに実施例をあげて本発明をさらに詳しく説
明するが、本発明はかかる実施例のみに限定され
るわけではない。 比較例 1 セルロフアインA−3(チツソ(株)製の多孔質セ
ルロースゲル、排除限界分子量50000000、粒子径
45〜105μm)10mlに20%、NaOH4g、ヘプタン
12gおよびノニオン系界面活性剤トウイーン
(Tween)20を1滴加え、40℃で2時間撹拌後エ
ピクロルヒドリン5gを加えて2時間撹拌した。
静置後上澄みを捨て、ゲルを水洗濾過してエポキ
シ化セルロースゲルをえた。 つぎにLDL沈殿用として市販されている極限
粘度0.20dl/g、平均重合度(原料デキストラン
の平均重合度、以下平均重合度という)3500、硫
黄含量17.7重量%のデキストラン硫酸ナトリウム
0.5gを水2mlに溶解し、これに叙上のごとくし
てえられたエポキシ化セルロースゲル2mlを加
え、PH12に調整した(デキストラン硫酸ナトリウ
ムの濃度は約10重量%)。これを40℃で16時間振
盪後ゲルを別し、2M食塩水、0.5M食塩水、水
で洗浄し、デキストラン硫酸ナトリウムが固定化
されたセルロースゲルをえた。未反応のエポキシ
基はモノエタノールアミンを用いて封止した。固
定されたデキストラン硫酸ナトリウムの量はカラ
ム体積1mlあたり4.2mgであつた。 比較例 2 デキストラン硫酸ナトリウムを極限粘度0.124
dl/g、平均重合度140、硫黄含量5.7重量%のも
のにかえたほかは比較例1と同様にしてデキスト
ラン硫酸ナトリウムが固定されたセルロースゲル
をえた。固定されたデキストラン硫酸ナトリウム
の量はカラム体積1mlあたり2.5mgであつた。 実施例 1 デキストラン硫酸ナトリウムとして (1) 極限粘度0.027dl/g、平均重合度12、硫黄
含量17.7重量% (2) 極限粘度0.055dl/g、平均重合度40、硫黄
含量19重量% (3) 極限粘度0.083dl/g、平均重合度140、硫黄
含量19.2重量% (4) 極限粘度0.118dl/g、平均重合度270、硫黄
含量17.7重量% の4種類を用い、比較例1と同様にしてデキスト
ラン硫酸ナトリウムが固定されたセルロースゲル
をた。固定されたデキストラン硫酸ナトリウムの
量はカラム体積1mlあたりそれぞれ2.0mg、1.5
mg、4.0mg、4.3mgであつた。 実施例 2 架橋ポリアクリレートゲルであるトヨパール
HW65(東洋曹達(株)製、排除限界分子量5000000、
粒子径50〜100μm)10mlに飽和NaOH水溶液6
ml、エピクロルヒドリン15mlを加え、撹拌しなが
ら50℃で2時間反応させたのち、ゲルをアルコー
ル、水で洗浄してエポキシ化されたゲルをえた。 えられたゲル2mlに極限粘度0.55dl/g、平均
重合度40、硫黄含量19重量%のデキストラン硫酸
ナトリウム0.5gおよび水2mlを加えた(デキス
トラン硫酸ナトリウムの濃度は約13重量%)。つ
いでPH12に調整し、40℃で16時間振盪し、ゲルを
別し、2M食塩水、0.5M食塩水、水で洗浄して
デキストラン硫酸ナトリウムが固定されたゲルを
えた。未反応のエポキシ基はモノエタノールアミ
ンを用いて封止した。固定されたデキストラン硫
酸ナトリウムの量はカラム体積1mlあたり0.4mg
であつた。 実施例 3 極限粘度0.55dl/g、平均重合度40、硫黄含量
19重量%のデキストラン硫酸ナトリウムを用い、
固定化反応におけるデキストラン硫酸ナトリウム
の濃度を2.5重量%にかえたほかは比較例1と同
様にしてデキストラン硫酸ナトリウムが固定され
たゲルを得た。固定されたデキストラン硫酸ナト
リウムの量はカラム体積1mlあたり0.15mgであつ
た。 試験例 比較例1〜2、実施例1〜3でえられたデキス
トラン硫酸ナトリウムが固定されたゲルのそれぞ
れ1mlをカラムに充填し、高脂血症患者の血漿
(総コレステロール濃度300dl/g)6mlを流し、
吸着されたLDLの量を総コレステロールを指標
として測定した(用いた血漿中のコレステロール
はほとんどがLDLに由来するため)。 結果を第1表に示す。
[Industrial Application Field] The present invention relates to an adsorbent for removing harmful components from blood. More specifically, the present invention relates to an adsorbent for selectively adsorbing and removing lipoproteins, particularly very low density lipoproteins (VLDL) and/or low density lipoproteins (LDL), from blood, plasma, or serum. [Problems to be solved by conventional technology/invention] Of the lipoproteins present in the blood, VLDL,
LDL contains a lot of cholesterol and is known to cause arteriosclerosis. Especially in cases of hyperlipidemia such as familial hyperlipidemia and hypercholesterolemia, JLDL and/or
It shows LDL level and causes hardening of coronary arteries.
Dietary therapy and drug therapy are used to treat these diseases, but their effectiveness is limited and there are concerns about side effects. Especially for familial hyperlipidemia
Plasma exchange therapy, in which the plasma of a patient with high VLDL and LDL levels is separated and replaced with normal plasma or replacement fluid containing albumin as a component to lower VLDL and LDL levels, is currently almost the only effective treatment. It is a treatment method. However, as is well known, plasma exchange therapy (1)
It is necessary to use expensive fresh plasma or plasma preparations. (2) There is a risk of infection with hepatitis viruses, etc.
(3) It has the disadvantage that not only harmful components but also useful components are removed at the same time, that is, in the case of lipoproteins, high-density lipoproteins (HDL), which are useful, are also removed at the same time. Attempts have been made to selectively remove harmful components using membranes in order to overcome the above-mentioned drawbacks, but no membrane has been found to be satisfactory in terms of selectivity. For the same purpose, attempts have been made to use so-called immunoadsorbents to which antigens, antibodies, etc. are immobilized.
Although this method is almost satisfactory in terms of selectivity,
It has the disadvantage that the antigens and antibodies used are difficult and expensive to obtain. Furthermore, adsorbents based on the principle of so-called affinity chromatography, in which a substance (hereinafter referred to as a ligand) having a specific affinity for the substance to be removed is immobilized on a carrier, have also been attempted. The ligand used in the method is an antigen,
There are many substances that are easier to obtain than antibodies, etc.
Since many of the substances are derived from living organisms, there are almost no substances that can be used in extracorporeal circulation therapy that are satisfactory in terms of stability against sterilization, cost, safety, etc. [Means for Solving the Problems] As a result of further intensive research in order to overcome the above-mentioned drawbacks, the present inventors found that dextran sulfate and/or its salts having a specific viscosity and sulfur content were made water-insoluble. The present invention was completed based on the discovery that an adsorbent for extracorporeal circulation therapy that can adsorb and remove lipoproteins with high efficiency, safety, and selectivity can be obtained by immobilizing it on a porous material through covalent bonds. I came to the conclusion. That is, the present invention provides water-insoluble porous dextran sulfate and/or its salts having an intrinsic viscosity (measured at 25°C in a 1M saline solution, the same shall apply hereinafter) of 0.12 dl/g or less and a sulfur content of 15 to 22% by weight. Formula in body: (where O A is dextran sulfate and/or
The oxygen atom derived from the hydroxyl group of the salt, O B is the oxygen atom derived from the surface hydroxyl group of the water-insoluble porous body) is fixed via a covalent bond of 0.2 to 100 mg per ml of column volume. The present invention relates to a therapeutic lipoprotein adsorbent. [Examples/Effects of the Invention] Dextran sulfate and/or its salt are the sulfate ester of dextran, which is a polysaccharide produced by Leuconostoc mesenteroides, and/or its salt. Dextran sulfate and/or its salts are known to form precipitates with lipoproteins in the presence of divalent cations such as calcium, and are usually used for this purpose with a molecular weight of 500,000 (intrinsic viscosity of about 0.20 dl/ g)
Dextran sulfate and/or its salts are used. However, as shown in the comparative example, even if dextran sulfate and/or its salts are immobilized on a water-insoluble porous material, LDL
and/or the adsorption capacity of VLDL is low and cannot be put to practical use. As a result of various studies, the present inventors found that the intrinsic viscosity is 0.12 dl/g or less, more preferably
It has been found that dextran sulfate and/or its salts with a sulfur content of 0.08 dl/g or less and a sulfur content of 15 to 22% by weight or more exhibit high LDL and/or VLDL adsorption ability and selectivity. Furthermore, surprisingly, whereas the precipitation method described above requires 10-40mM of divalent cations, the adsorbent of the present invention has high adsorption capacity and selectivity without necessarily adding divalent cations. We found that this shows that Furthermore, although the toxicity of dextran sulfate and/or its salts is low, it is known that the toxicity increases when the molecular weight increases beyond a certain level, and from this point of view, it is preferable that the intrinsic viscosity is 0.12 dl/g or less.
By using dextran sulfate and/or its salt having a relatively low molecular weight of 0.08 dl/g or less, it is possible to prevent the danger in the event that the fixed dextran sulfate and/or its salt should detach. Furthermore, since most of dextran sulfate and/or its salts are α-1,6-glycosidic bonds, there is little change even when operations such as high-pressure steam sterilization are performed. There are various methods for measuring the molecular weight of dextran sulfate and/or its salts, but viscosity measurement is generally used. However, since dextran sulfate and/or its salts are polyelectrolytes, they may vary depending on the ionic strength of the solution, pH, and the sulfur content (i.e., the amount of sulfonic acid groups) of dextran sulfate and/or its salts. Viscosity also differs depending on the molecular weight. In the present invention, the intrinsic viscosity refers to dextran sulfate and/or its salt as a sodium salt in a neutral 1M saline solution.
Measured at 25℃. Dextran sulfate and/or its salt used in the present invention may be linear or branched, and the salt is preferably a water-soluble salt such as sodium or potassium. The water-insoluble porous carrier used in the present invention preferably has the following properties. (1) It has relatively high mechanical strength, and when it is packed into a column and body fluids such as blood and plasma are passed through it, the pressure loss is small and it does not cause clogging. (2) There must be a large number of pores of sufficient size, that is, the substance to be adsorbed and removed must be able to enter the pores, and the exclusion limit molecular weight measured using globular proteins and viruses must be 1 million to 1
(However, the exclusion limit molecular weight refers to the molecular weight of the smallest molecular weight of molecules that cannot enter (exclude) the pores). (3) A functional group that can be used for immobilization reaction or a functional group that can be easily activated on the surface, such as an amino group,
There are carboxyl groups, hydroxyl groups, thiol groups, acid anhydride groups, succinylimide groups, chlorine groups, aldehyde groups, amide groups, epoxy groups, etc. (4) Little change due to sterilization operations such as high-pressure steam sterilization. Regarding the exclusion limit molecular weight (hereinafter referred to as exclusion limit molecular weight) measured using the globular protein and virus in (2), if a carrier with an exclusion limit molecular weight of less than 1 million is used, the amount of VLDL and LDL removed will be Although it is too small to withstand practical use, the exclusion limit molecular weight is
Even carriers with a molecular weight of 1 million to several million, which is close to that of VLDL and LDL, can be used to some extent for practical use.
On the other hand, when the exclusion limit molecular weight exceeds 100 million, the amount of immobilized ligand decreases, resulting in a decrease in the amount of adsorption, and the strength of the gel also decreases, which is not preferable. For this reason, it is appropriate that the water-insoluble porous material used in the present invention has an exclusion limit molecular weight in the range of 1 million to 100 million. Typical examples of water-insoluble porous materials with the above-mentioned properties include styrene-divinylbenzene copolymer, cross-linked polyvinyl alcohol, cross-linked polyacrylate, cross-linked vinyl ether-maleic anhydride copolymer, and cross-linked styrene. -Porous bodies of synthetic polymers such as maleic anhydride copolymers and crosslinked polyamides, porous cellulose gels, porous silica gel glass, porous alumite, porous silica alumina, porous hydroxyapatite,
Examples include, but are not limited to, inorganic porous materials such as porous calcium silicate, porous zirconia, and zeolite. Further, the surface of the water-insoluble porous body may be coated with polysaccharides, synthetic polymers, or the like. Generally speaking, the smaller the particle size of the water-insoluble porous material, the better in terms of adsorption capacity, but if the particle size is too small, the pressure drop will increase when packed in a column, which is undesirable, and it is in the range of 1 to 5000μ. It is preferable. Further, the water-insoluble porous material may be used alone or in combination of two or more types. Among the representative examples mentioned above, porous cellulose gel not only has the properties (1) to (4) above, but also can efficiently fix dextran sulfate and/or its salts, so it is suitable for the present invention. It is one of the most suitable water-insoluble porous materials. There are various methods for fixing dextran sulfate and/or its salts to a water-insoluble porous material, but since it is important that the ligand used for extracorporeal circulation therapy does not detach, Preferably, it is fixed to a water-insoluble porous body. Examples of immobilization methods include the cyanogen halide method, epichlorohydrin method, bisepoxide method, and triazine halide method, but the epichlorohydrin method is most suitable for the present invention because of its strong binding and low risk of detachment of the ligand. There is. However, the epichlorohydrin method has low reactivity, and in particular when immobilizing dextran sulfate and/or its salts, the reactivity is even lower because the functional group of the ligand is a hydroxyl group. It is difficult to quantify. As a result of various studies, the present inventors found that the concentration of dextran sulfate and/or its salt (water-insoluble A sufficient amount of dextran sulfate and/or its salt can be obtained by keeping the concentration (based on the total weight of the reaction system excluding the porous body (dry weight)) at 3% by weight or more, more preferably 10% by weight or more. I found that it is fixed. The amount of dextran sulfate and/or its salt immobilized is preferably 0.2 mg or more per ml of column volume in order to obtain a significant adsorption amount of lipoproteins, and desirably 100 mg or less in consideration of economic efficiency. Furthermore, when using a porous cellulose gel, the amount of dextran sulfate and/or its salts is fixed even under the same conditions, which is advantageous compared to other water-insoluble porous materials. The adsorbent obtained by the reaction of a water-insoluble porous material activated by epichlorohydrin with dextran sulfate and/or its salt has the formula: (where O A is dextran sulfate and/or
The oxygen atom derived from the hydroxyl group of the salt (O B is the oxygen atom derived from the surface hydroxyl group of the water-insoluble porous body) is fixed to the water-insoluble porous body through a bond. Incidentally, after the immobilization reaction is completed, unreacted dextran sulfate and/or its salt can be recovered and reused through steps such as purification. After fixing dextran sulfate, it is desirable to seal unreacted active groups (epoxy groups when epichlorohydrin is used) with monoethanolamine or the like. There are various methods for using the adsorbent according to the present invention in extracorporeal circulation therapy, but one method is to use a column equipped with a filter, mesh, etc. at the inlet and outlet through which body fluid components (blood cells, proteins, etc.) can pass, but not the adsorbent. A typical method is to fill the column, incorporate the column into an extracorporeal circulation circuit, and pass body fluids such as blood and plasma through the column. Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples. Comparative Example 1 Cellulofine A-3 (porous cellulose gel manufactured by Chitsuso Co., Ltd., exclusion limit molecular weight 50000000, particle size
45-105μm) 20%, 4g NaOH, heptane in 10ml
12 g and 1 drop of the nonionic surfactant Tween 20 were added, and the mixture was stirred at 40° C. for 2 hours, and then 5 g of epichlorohydrin was added and stirred for 2 hours.
After standing still, the supernatant was discarded, and the gel was washed with water and filtered to obtain an epoxidized cellulose gel. Next, dextran sulfate sodium, which is commercially available for LDL precipitation, has an intrinsic viscosity of 0.20 dl/g, an average degree of polymerization (average degree of polymerization of raw material dextran, hereinafter referred to as average degree of polymerization) of 3500, and a sulfur content of 17.7% by weight.
0.5 g was dissolved in 2 ml of water, 2 ml of the epoxidized cellulose gel obtained as described above was added, and the pH was adjusted to 12 (the concentration of sodium dextran sulfate was approximately 10% by weight). After shaking this at 40°C for 16 hours, the gel was separated and washed with 2M saline, 0.5M saline, and water to obtain a cellulose gel on which dextran sodium sulfate was immobilized. Unreacted epoxy groups were sealed using monoethanolamine. The amount of immobilized sodium dextran sulfate was 4.2 mg per ml column volume. Comparative Example 2 Sodium dextran sulfate with intrinsic viscosity 0.124
dl/g, an average degree of polymerization of 140, and a sulfur content of 5.7% by weight, in the same manner as in Comparative Example 1 to obtain a cellulose gel on which dextran sodium sulfate was fixed. The amount of immobilized sodium dextran sulfate was 2.5 mg per ml column volume. Example 1 As sodium dextran sulfate (1) Intrinsic viscosity 0.027 dl/g, average degree of polymerization 12, sulfur content 17.7% by weight (2) Intrinsic viscosity 0.055 dl/g, average degree of polymerization 40, sulfur content 19% by weight (3) (4) In the same manner as in Comparative Example 1, using four types with an intrinsic viscosity of 0.083 dl/g, an average degree of polymerization of 140, and a sulfur content of 19.2% by weight. A cellulose gel with immobilized sodium dextran sulfate was prepared. The amount of immobilized sodium dextran sulfate was 2.0 mg and 1.5 mg per ml column volume, respectively.
mg, 4.0 mg, and 4.3 mg. Example 2 Toyopearl, a cross-linked polyacrylate gel
HW65 (manufactured by Toyo Soda Co., Ltd., exclusion limit molecular weight 5,000,000,
Particle size: 50-100 μm) 10 ml of saturated NaOH aqueous solution 6
After adding 15 ml of epichlorohydrin and stirring at 50° C. for 2 hours, the gel was washed with alcohol and water to obtain an epoxidized gel. To 2 ml of the resulting gel were added 0.5 g of sodium dextran sulfate having an intrinsic viscosity of 0.55 dl/g, an average degree of polymerization of 40, and a sulfur content of 19% by weight, and 2 ml of water (the concentration of sodium dextran sulfate was approximately 13% by weight). The pH was then adjusted to 12, shaken at 40°C for 16 hours, and the gel was separated and washed with 2M saline, 0.5M saline, and water to obtain a gel on which dextran sodium sulfate was immobilized. Unreacted epoxy groups were sealed using monoethanolamine. The amount of immobilized sodium dextran sulfate is 0.4 mg per ml column volume.
It was hot. Example 3 Intrinsic viscosity 0.55 dl/g, average degree of polymerization 40, sulfur content
Using 19% by weight sodium dextran sulfate,
A gel on which dextran sodium sulfate was immobilized was obtained in the same manner as in Comparative Example 1, except that the concentration of dextran sodium sulfate in the immobilization reaction was changed to 2.5% by weight. The amount of immobilized sodium dextran sulfate was 0.15 mg per ml column volume. Test Example 1 ml of each of the dextran sodium sulfate-immobilized gels obtained in Comparative Examples 1 to 2 and Examples 1 to 3 was packed into a column, and 6 ml of plasma from a hyperlipidemic patient (total cholesterol concentration 300 dl/g) was charged. flowing,
The amount of adsorbed LDL was measured using total cholesterol as an index (because most of the cholesterol in the plasma used is derived from LDL). The results are shown in Table 1.

【表】 実施例 4 実施例1でえられた吸着体のうち、極限粘度
0.027dl/g、平均重合度12、硫黄含量17.7重量
%のデキストラン硫酸ナトリウムを固定したもの
を生理食塩水中に分散させた状態で120℃20分間
高圧蒸気滅菌を施し、実施例3と同様にして
LDLの吸着量を測定したところ、該滅菌操作に
よる吸着量の減少はわずかであつた。 実施例 5 実施例1でえられた吸着体のうち、極限粘度
0.027dl/g、平均重合度12、硫黄含量17.7重量
%のデキストラン硫酸ナトリウムを固定したもの
1mlをカラムに充填し、これに正常ヒト血漿
(LDLコレステロールとHDLコレステロールの比
が約1:1)6mlを通しところ、LDLは大幅に
減少したが、HDLはほとんど吸着されなかつた。 実施例 6 実施例5で用いた吸着体1mlをカラムに充填
し、これにVLDL、LDL、HDLを含む正常ウサ
ギの血漿6mlを通し、カラム通過前後での血漿中
のリポ蛋白をポリアクリルアミドゲルを用いたデ
イスク電気泳動法で調べた。第1図はその結果を
示すチヤートである。第1図中、曲線AおよびB
はそれぞれカラム通過前、通過後の電気泳動の結
果であり、縦軸は570nmにおける吸光度、↑はそ
れぞれVLDL、LDL、HDLのバンドが出現した
位置を示す。 第1図に示すごとく、VLDL、LDLは吸着さ
れたが、HDLはほとんど吸着されなかつた。
[Table] Example 4 Among the adsorbents obtained in Example 1, the intrinsic viscosity
Dextran sulfate sodium fixed at 0.027 dl/g, average degree of polymerization 12, and sulfur content 17.7% by weight was dispersed in physiological saline and subjected to high-pressure steam sterilization at 120°C for 20 minutes.
When the amount of adsorbed LDL was measured, it was found that there was only a slight decrease in the amount of adsorbed due to the sterilization procedure. Example 5 Of the adsorbents obtained in Example 1, the intrinsic viscosity
Fill the column with 1 ml of fixed dextran sodium sulfate with 0.027 dl/g, average polymerization degree of 12, and sulfur content of 17.7% by weight, and add 6 ml of normal human plasma (the ratio of LDL cholesterol to HDL cholesterol is approximately 1:1) to this column. As a result, LDL was significantly reduced, but HDL was hardly adsorbed. Example 6 A column was filled with 1 ml of the adsorbent used in Example 5, and 6 ml of normal rabbit plasma containing VLDL, LDL, and HDL was passed through the column. The results were investigated using disk electrophoresis. FIG. 1 is a chart showing the results. In Figure 1, curves A and B
are the results of electrophoresis before and after passing through the column, respectively, the vertical axis is the absorbance at 570 nm, and ↑ indicates the position where the VLDL, LDL, and HDL bands appeared, respectively. As shown in Figure 1, VLDL and LDL were adsorbed, but HDL was hardly adsorbed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はポリアクリルアミドゲルを用いたデイ
スク電気泳動の結果を示すチヤートである。
FIG. 1 is a chart showing the results of disk electrophoresis using polyacrylamide gel.

Claims (1)

【特許請求の範囲】 1 極限粘度が0.12dl/g以下でかつ硫黄含量が
15〜22重量%であるデキストラン硫酸および(ま
たは)その塩が水不溶性多孔体に式: (式中、OAはデキストラン硫酸および(または)
その塩の水酸基に由来する酸素原子、OBは水不
溶性多孔体の表面水酸基に由来する酸素原子であ
る)で示される共有結合を介して固定された量が
カラム体積1mlあたり0.2〜100mgである体外循環
治療用リポ蛋白吸着体。 2 水不溶性多孔体の排除限界分子量が100万〜
1億の範囲である特許請求の範囲第1項記載の吸
着体。 3 水不溶性多孔体が多孔質セルロースゲルであ
る特許請求の範囲第1項または第2項記載の吸着
体。
[Claims] 1. The intrinsic viscosity is 0.12 dl/g or less and the sulfur content is
15-22% by weight of dextran sulfate and/or its salts are formulated into a water-insoluble porous body: (where O A is dextran sulfate and/or
The amount fixed via a covalent bond represented by the oxygen atom derived from the hydroxyl group of the salt (O B is the oxygen atom derived from the surface hydroxyl group of the water-insoluble porous material) is 0.2 to 100 mg per ml of column volume. Lipoprotein adsorbent for extracorporeal circulation treatment. 2 Exclusion limit molecular weight of water-insoluble porous material is 1 million or more
10. The adsorbent according to claim 1, wherein the adsorbent is in the range of 100 million. 3. The adsorbent according to claim 1 or 2, wherein the water-insoluble porous body is a porous cellulose gel.
JP1058223A 1989-03-10 1989-03-10 Absorbent Granted JPH01280469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1058223A JPH01280469A (en) 1989-03-10 1989-03-10 Absorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1058223A JPH01280469A (en) 1989-03-10 1989-03-10 Absorbent

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58070967A Division JPS59196738A (en) 1982-12-02 1983-04-21 Adsorbent and preparation thereof

Publications (2)

Publication Number Publication Date
JPH01280469A JPH01280469A (en) 1989-11-10
JPH035822B2 true JPH035822B2 (en) 1991-01-28

Family

ID=13078081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1058223A Granted JPH01280469A (en) 1989-03-10 1989-03-10 Absorbent

Country Status (1)

Country Link
JP (1) JPH01280469A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57212379A (en) * 1981-06-18 1982-12-27 Uraka Punpenfuaburiiku Gmbh Piston motor
JPS5812656A (en) * 1981-07-17 1983-01-24 旭化成株式会社 Adsorbing material for treating recirculation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57212379A (en) * 1981-06-18 1982-12-27 Uraka Punpenfuaburiiku Gmbh Piston motor
JPS5812656A (en) * 1981-07-17 1983-01-24 旭化成株式会社 Adsorbing material for treating recirculation

Also Published As

Publication number Publication date
JPH01280469A (en) 1989-11-10

Similar Documents

Publication Publication Date Title
EP0321703B1 (en) Absorbent for serum amyloid protein
JP4578405B2 (en) Adsorbent and adsorber for low density lipoprotein and fibrinogen capable of whole blood treatment
JPS6319214B2 (en)
JP2928589B2 (en) Adsorbent for modified LDL and apparatus for removing modified LDL using the same
JPH0518625B2 (en)
JPH0667472B2 (en) Adsorbent for serum amyloid P protein
JP2732252B2 (en) Hemoglobin selective adsorbent
JPH035822B2 (en)
JPH0611333B2 (en) Immune complex adsorbent and immune complex removing apparatus using the same
JP2649224B2 (en) Sterilization method for body fluid treatment device and sterilized body fluid treatment device
JPS6256782B2 (en)
JP3157026B2 (en) Adsorbent for blood purification
JPH0258939B2 (en)
JPH0640899B2 (en) Adsorbent manufacturing method
JPH0771632B2 (en) Adsorbent and removal device using the same
JPS6077769A (en) Production of adsorbing body
JPH0339736B2 (en)
JP2726662B2 (en) Adsorbent and removal device using the same
JPS59139937A (en) Adsorbent for lipoprotein with low specific gravity
JPH02286173A (en) Adsorbent and adsorbing device for bilirubin
JPS62244442A (en) Low specific gravity lipoprotein adsorbing material and its preparation
JPH0362433B2 (en)
JP2009240491A (en) Operation method of body fluid purification system
JPH05146509A (en) Hemoglobin adsorbent
JPH0534024B2 (en)