JPH0362433B2 - - Google Patents

Info

Publication number
JPH0362433B2
JPH0362433B2 JP63249652A JP24965288A JPH0362433B2 JP H0362433 B2 JPH0362433 B2 JP H0362433B2 JP 63249652 A JP63249652 A JP 63249652A JP 24965288 A JP24965288 A JP 24965288A JP H0362433 B2 JPH0362433 B2 JP H0362433B2
Authority
JP
Japan
Prior art keywords
plasma
gel
molecular weight
ldl
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63249652A
Other languages
Japanese (ja)
Other versions
JPH01145071A (en
Inventor
Nobutaka Tani
Tsuneo Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP63249652A priority Critical patent/JPH01145071A/en
Publication of JPH01145071A publication Critical patent/JPH01145071A/en
Publication of JPH0362433B2 publication Critical patent/JPH0362433B2/ja
Priority to JP4253998A priority patent/JPH0611330B2/en
Granted legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、血液中の有害成分を除去した血漿の
製造方法、さらに詳しくは、リポ蛋白、特に低密
度リポ蛋白(LDL)を選択的に吸着除去した血
漿の製造方法に関する。 (従来の技術と課題) 血液中に存在するリポ蛋白のうちLDLはコレ
ステロールを多く含み、動脈硬化の原因となるこ
とが知られている。とりわけ家族性高脂血症等の
高コレステロール症では正常値の数倍のLDL値
を示し、冠動脈の硬化等をひきおこす。この治療
のため、血中LDLの低下を目的として食事療法、
プロブコール、コレスチラミン等の薬物療法が行
なわれているが効果に限界があり、副作用も懸念
されている。特に家族性高脂血症に対しては患者
の血漿を分離した後、正常血漿あるいはアルブミ
ン等を成分とする補液と交換する、いわゆる血漿
交換療法が現在のところほぼ唯一の効果的な治療
法である。しかしながら周知のごとく血漿交換療
法は、(1)高価な新鮮血漿あるいは血漿製剤を用い
る必要がある、(2)肝炎ビールス等の感染のおそれ
がある、(3)有害成分のみでなく有用成分も同時に
除去してしまう等の欠点を有する。これらの欠点
を解消する目的で膜による有害成分の除去が試み
られているが、選択性の点で満足できるものはい
まだ得られていない。また同じ目的で抗原、抗体
等を固定した、いわゆる免疫吸着体を用いる試み
がなされており、これは選択性の点ではほぼ満足
できるものの、用いる抗原、抗体の入手が困難か
つ高価であるという致命的な欠点を有する。 さらには有害成分に親和性を有する化合物(い
わゆるリガンド)を固定した、いわゆるアフイニ
テイークロマトグラフの原理による吸着体も試み
られている。これに用いるリガンドは比較的安価
で、選択性も比較的よく好都合であるが、担体に
アガロースに代表されるソフトゲルを用いている
ため、カラムに充填した場合に十分な流量を得る
のが困難であつた。すなわち近年発達した体外循
環回路を用いた血液、血漿かん流療法(いわゆる
プラズマフエレーシス等)にこれらの吸着体を用
いようとすれば、高流量を得るためにカラム形状
に特別の工夫を要し、またしばしば詰りを生ずる
ため予備のカラムを用意しておく必要があるなど
問題点が多く、安定して治療を行なえる状況には
到つていない。吸着体の流れ特性を向上させるた
めには機械強度の大きい担体を用いればよいのは
明白であるが、これらの担体を用いるとアガロー
ス等のソフトゲルに比べて吸着能力が低下するこ
とが知られている。 一方、硫酸化多糖等のポリアニオン化合物がリ
ポ蛋白と親和性を持ち、金属イオンの共存下で沈
殿を形成することが知られており〔例えばM.
Burnstein and H.R.Scholnick.Adv.in Lipid、
Res.、11、67(1973)〕、臨床分析等に用いられて
いる。しかしながらこの方法で患者の血中から
LDLを除去しようとすれば、処理しようとする
血漿に対し少くとも0.05%のポリアニオン化合物
および0.02M以上の金属イオンを添加しなければ
ならず、また生じた沈殿を遠心分離等の方法で分
離する必要が生じ、操作が煩雑で危険性が高く、
事実上適用不可能であつた。 (課題解決のための手段) 本発明者らは鋭意研究の結果、特定のポーラス
ポリマーハードゲルを用い、これにリポ蛋白に親
和性を有するポリアニオン化合物を固定すること
により、安価で流れ特性がよく、かつソフトゲル
を担体に用いた場合に比し吸着能力が低下しな
い、除去能力に優れたリポ蛋白吸着体を得、これ
を用いてリポ蛋白を除去した血漿を製造し、本発
明に到達した。 すなわち本発明は、球状蛋白質の排除限界分子
量が100万以上1億以下のポーラスポリマーハー
ドゲルにリポ蛋白に親和性を有するポリアニオン
化合物を固定してなるリポ蛋白吸着体をカラムに
充填し、血液から分離した血漿を該カラムに通す
ことを特徴とするリポ蛋白を除去した血漿の製造
方法を要旨とする。 以下詳細に本発明を説明する。 本発明に用いるに適した吸着体の担体は、(1)耐
圧性であること、(2)比較的大きな径の細孔を有す
ることが必要であり、ポリマーハードゲルは本発
明に最も適した担体である。 ここでいうハードゲルとは、デキストラン、ア
ガロース、アクリルアミド等のソフトゲルに比べ
溶媒による膨潤が少なく、また圧力により変形し
にくいゲルのことをいう。ハードゲルとソフトゲ
ルは次の方法により区別することができる。すな
わち後記参考例に示したごとくゲルを円筒状カラ
ムに均一に充填し、水性液体を流した際の圧力損
失と流量の関係が、ハードゲルではほぼ直線とな
るのに対し、ソフトゲルでは圧力がある点を越え
るとゲルが変形し圧密化して流量が増加しなくな
る。本発明では後記参考例に示したカラムを用い
た場合、少くとも0.3Kg/cm2まで上記直線関係の
あるものをハードゲルと称する。 次に要求される性質は比較的大きな径の細孔を
有することである。すなわちLDLは分子量が少
くとも100万以上といわれる巨大分子であり、こ
れを吸着除去するためにはLDLが細孔内に侵入
できることが必要である。 次にLDLが細孔内に侵入できても、細孔内に
侵入する確率がある程度大きくなければ吸着体と
しての性能は低い、すなわち移動相と固定相(細
孔内)間の分配比(固定相の濃度/移動相の濃
度)が大きいほど好ましいと考えられる。従つて
細孔径が大きい程有利と思われる。 細孔径の測定法には種々あり、水銀圧入法が最
もよく用いられているが、ポリマーハードゲルの
場合には適用できないことがある。したがつて細
孔径の目安として排除限界分子量を用いるのが適
当である。排除限界分子量とは成書(例えば波多
野博行、花井俊彦著、実験高速液体クロマトグラ
フ、化学同人)等に述べられているごとく、ゲル
浸透クロマトグラフイーにおいて細孔内に侵入で
きない(排除される)分子のうち最も小さい分子
量をもつものの分子量をいう。現象的には、排除
限界分子量以上の分子は移動相体積Vo近傍に溶
出されることから、種々の分子量の化合物を用い
て溶出体積との関係を調べれば排除限界分子量を
求めることができる。排除限界分子量は対象とす
る化合物の種類により異なることが知られてお
り、一般に球状蛋白質、デキストラン、ポリエチ
レングリコール等についてよく調べられている
が、リポ蛋白についてはほとんど調べられていな
い。従つて最も類似している球状蛋白質(ビール
スを含む)を用いて得られた値を用いるのが適当
である。 排除限界の異なる種々の担体を用いて検討した
結果、予想に反し排除限界分子量がLDLの分子
量より小さい100万程度のものである程度のLDL
吸着能を示し、また細孔径の大きいもの程能力が
大きいわけではなく、むしろLDL以外の蛋白が
除去されることから最適な細孔径の範囲が存在す
ることが明らかになつた。すなわち100万未満の
排除限界分子量を持つ担体を用いた場合はLDL
の除去量は小さく実用に耐えないが、排除限界分
子量が100万乃至数百万とLDLの分子量に近い担
体でも、ある程度実用に供しうる吸着体が得られ
る。一方排除限界分子量とLDLの吸着量、およ
びLDL以外の蛋白質の吸着(いわゆる非特異吸
着)との関係を調べると、排除限界分子量が大き
くなるにつれLDLの吸着量が増加するが、この
増加は排除限界が1000万を越えると頭打ちとな
り、一方LDL以外の蛋白、例えばLGG、IGM等
の吸着が目立つようになることがわかつた。さら
に排除限界分子量が1億をこえるとリガンドの固
定化量が減少して結果的にLDLの吸着量が減り、
非特異吸着が無視できなくなる。従つて本発明に
用いる担体の好ましい排除限界分子量は100万以
上1億以下であり、最も好ましくは300万以上
7000万以上である。 次に担体の多孔構造については表面多孔性より
も全多孔性が好ましく、空孔容積が20%以上であ
ることが好ましい。担体の形状は、粒状、繊維
状、膜状、ホローフアイバー状等任意の形状を選
ぶことができる。粒子状の担体を用いる場合、そ
の粒子径は1μ以上5000μ以下であるのが望まし
い。 さらに担体表面には固定化反応に用い得る官能
基あるいは容易に活性化し得る官能基が存在して
いると好都合である。これらの官能基の代表例と
しては、アミノ基、カルボキシル基、ヒドロキシ
ル基、チオール基、酸無水物基、サクシニルイミ
ド基、塩素基、アルデヒド基、アミド基、エポキ
シ基等があげられる。 本発明に適したポリマーハードゲルの代表例と
しては、スチレン−ジビニルベンゼン共重合体、
架橋ポリビニルアルコール、架橋ポリアクリレー
ト、架橋されたビニルエーテル−無水マレイン酸
共重合体、架橋されたスチレン−無水マレイン酸
共重合体、架橋ポリアミド等の合成高分子の硬質
多孔体、およびこれらの表面に多糖類、合成高分
子等をコーテイングしたもの等があげられるが、
これらに限定されるわけではない。これらのポリ
マーハードゲルは単独で用いてもよいし2種類以
上混合して用いてもよい。 本発明に用いるに適したリポ蛋白に親和性を有
するポリアニオン化合物の代表例としては、ヘパ
リン、デキストラン硫酸、コンドロイチン硫酸、
コンドロイチンポリ硫酸、ヘパラン酸、ケラタン
硫酸、ヘパリチン硫酸、キシラン硫酸、カロニン
硫酸、セルロース硫酸、キチン硫酸、キトサン硫
酸、ペクチン硫酸、イヌリン硫酸、アルギン酸硫
酸、グリコーゲン硫酸、ポリラクトース硫酸、カ
ラゲニン硫酸、デンプン硫酸、ポリグルコース硫
酸、ラミナリン硫酸、ガラクタン硫酸、レバン硫
酸、メペサルフエート等の硫酸化多糖、リンタン
グステン酸、ポリ硫酸化アネトール、ポリビニル
アルコール硫酸、ポリリン酸等があげられる。最
も好ましい例としては、ヘパリン、デキストラン
硫酸、コンドロイチンポリ硫酸があげられる。 リポ蛋白に親和性を有する化合物(リガンド)
を担体に固定する方法としては既知の種々の方法
を用いることができる。すなわち物理的吸着法、
イオン結合性、共有結合法等である。本発明に用
いる吸着体は、滅菌時等にリガンドが脱離しない
ことが重要であるので結合の強固な共有結合法が
望ましく、イオン結合法を用いるにしてもリガン
ドを共有結合的に架橋しておくことが望ましい。
また必要によりスペーサーを担体とリガンドの間
に導入してもよい。 リガンドの固定化量については、リガンドの性
状、活性により異なるが、有意のリポ蛋白吸着量
を得るにはカラム体積1mlあたり0.02mg以上が好
ましく、また経済性を考慮すると100mg以下が望
ましい。さらに好ましくはカラム体積1mlあたり
0.5mg以上20mg以下である。 本発明において、リポ蛋白を除去した血漿の製
造を行うには、先ず血液から血漿を分離した後、
血漿をカラムに通すのがよい。 本発明の如く吸着体を用いてLDLを除去する
際、処理しようとする血漿に多価金属イオンを添
加することにより除去効率、選択性を向上させる
ことが可能である。この目的に用いる多価金属イ
オンとしては、カルシウム、マグネシウム、バリ
ウム、ストロチウム等のアルカリ土類金属イオ
ン、アルミニウム等の属元素イオン、マンガン
等の属元素イオン、コバルト等の元素イオン
等があげられる。 (実施例) 以下実施例により本発明をさらに詳しく説明す
る。 参考例 両端に孔径15μmのフイルターを装着したガラ
ス製円筒カラム(内径9mm、カラム長150mm)に、
ソフトゲルとしてアガロースゲル(Biorad社製
Biogel A5m、粒径50〜100メツシユ)、ポリマー
ハードゲルとして東洋曹達工業(株)製トヨパール
HW65(粒径50〜100μm)を、それぞれ均一に充
填し、ペリスタテイツクポンプにより水を流し、
流量と圧力損失の関係を求めた。結果を図1に示
す。それによるとポリマーハードゲルが圧力の増
加にほぼ比例して流量が増加するのに対し、アガ
ロースゲルは圧密化をひきおこし圧力を増加させ
ても流量が増加しないことを示している。 実施例 1 架橋アクリレートゲル(全多孔性のハードゲ
ル)であるトヨパールHW55〔球状蛋白質の排除
限界分子量(以下、蛋白質の排除限界と略称す
る)700000、粒径50〜100μm〕、同HW60(蛋白質
の排除限界1000000、粒径50〜100μm)、同HW65
(蛋白質の排除限界5000000、粒径50〜100μm)、
同HW75(蛋白質の排除限界50000000、粒径50〜
100μm)各10mlに飽和NaOH水溶液6ml、エピ
クロルヒドリン15mlを加え攪拌しながら50℃で2
時間反応しエポキシ化ゲルを得た。このゲルに濃
アンモニア水20mlを加え50℃で2時間攪拌しアミ
ノ基を導入した。 次にヘパリン200mgを10mlの水に溶解しPH4.5に
調整した後、これに3mlの上記アミノ基含有ゲル
を加えた。これに1−エチル−3−(ジメチルア
ミノプロピル)−カルボジイミド200mgをPHを4.5
に保ちながら添加し4℃で24時間振とうした。反
応終了後、2モル食塩溶液、0.5モル食塩溶液、
水で洗浄しヘパリン固定化ゲルを得た。固定化さ
れたヘパリンの量はそれぞれ2.2mg/ml、1.8mg/
ml、1.4mg/ml、0.8mg/mlであつた。 実施例 2 ヘパリンをコンドロイチンポリ硫酸にかえた他
は実施例1と同じ方法でコンドロイチンポリ硫酸
固定化トヨパールゲルHW65を得た。固定化量は
1.2mg/mlであつた。 実施例 3 実施例1〜2で合成した吸着体各1mlを試験管
にとり、これに人血漿3ml(CaCl20.02M含有)
を加えて攪拌し、20℃で15分間静置後、上澄みの
コレステロール濃度およびLDL(β−リポ蛋白)
量を測定した。結果を表1に示す。 表−1から分かる通り、本発明に使用する吸着
体を用いた場合、リポ蛋白の吸着が良好であり、
従つて上澄みのコレステロール濃度およびLDL
(β−リポ蛋白)が比較例より減少している。 【表】
Detailed Description of the Invention (Industrial Application Field) The present invention provides a method for producing plasma from which harmful components in blood have been removed, and more specifically, a method for selectively removing lipoproteins, particularly low-density lipoproteins (LDL). The present invention relates to a method for producing adsorbed plasma. (Prior Art and Problems) Among the lipoproteins present in the blood, LDL contains a large amount of cholesterol and is known to cause arteriosclerosis. In particular, in cases of hypercholesterolemia such as familial hyperlipidemia, the LDL value is several times higher than the normal value, leading to hardening of the coronary arteries. For this treatment, dietary therapy, aimed at lowering blood LDL,
Drug treatments such as probucol and cholestyramine have been used, but their effectiveness is limited and there are concerns about side effects. Particularly for familial hyperlipidemia, so-called plasma exchange therapy, in which the patient's plasma is separated and replaced with normal plasma or a replacement fluid containing albumin, etc., is currently almost the only effective treatment. be. However, as is well known, plasma exchange therapy (1) requires the use of expensive fresh plasma or plasma preparations, (2) there is a risk of infection with hepatitis viruses, etc., and (3) it contains not only harmful components but also useful components at the same time. It has disadvantages such as being removed. In order to overcome these drawbacks, attempts have been made to remove harmful components using membranes, but no membranes have been found that are satisfactory in terms of selectivity. For the same purpose, attempts have been made to use so-called immunoadsorbents on which antigens, antibodies, etc. are immobilized.Although these are mostly satisfactory in terms of selectivity, they have the disadvantage that the antigens and antibodies used are difficult and expensive to obtain. It has some disadvantages. Furthermore, adsorbents based on the principle of so-called affinity chromatography, in which compounds having an affinity for harmful components (so-called ligands) are immobilized, have also been attempted. The ligands used for this are relatively inexpensive and have relatively good selectivity, but because the carrier is a soft gel such as agarose, it is difficult to obtain a sufficient flow rate when packed in a column. It was hot. In other words, if these adsorbents are to be used in blood or plasma perfusion therapy (so-called plasmapheresis, etc.) using the recently developed extracorporeal circulation circuit, special ingenuity is required in the column shape in order to obtain a high flow rate. However, there are many problems, such as the need to prepare spare columns because they often clog, and the situation has not been reached in which stable treatment can be performed. Although it is obvious that a carrier with high mechanical strength can be used to improve the flow characteristics of an adsorbent, it is known that the use of these carriers lowers the adsorption capacity compared to soft gels such as agarose. ing. On the other hand, it is known that polyanionic compounds such as sulfated polysaccharides have an affinity for lipoproteins and form precipitates in the presence of metal ions [for example, M.
Burnstein and HRScholnick.Adv.in Lipid,
Res., 11 , 67 (1973)] and is used for clinical analysis, etc. However, with this method, the
In order to remove LDL, it is necessary to add at least 0.05% of a polyanionic compound and 0.02M or more of metal ions to the plasma to be processed, and the resulting precipitate is separated by a method such as centrifugation. It is necessary, the operation is complicated, and the risk is high.
It was virtually impossible to apply. (Means for Solving the Problems) As a result of intensive research, the present inventors have found that by using a specific porous polymer hard gel and fixing a polyanionic compound that has an affinity for lipoproteins, the gel can be inexpensive and have good flow characteristics. The present invention has been achieved by obtaining a lipoprotein adsorbent with excellent removal ability, and with no decrease in adsorption ability compared to when a soft gel is used as a carrier, and by using this to produce plasma from which lipoproteins have been removed. . That is, in the present invention, a column is filled with a lipoprotein adsorbent made by immobilizing a polyanion compound having an affinity for lipoproteins on a porous polymer hard gel having an exclusion limit molecular weight of 1 million to 100 million for globular proteins. The gist of the present invention is a method for producing plasma from which lipoproteins have been removed, which is characterized by passing the separated plasma through the column. The present invention will be explained in detail below. The adsorbent carrier suitable for use in the present invention needs to (1) be pressure resistant and (2) have pores with a relatively large diameter, and polymer hard gel is most suitable for the present invention. It is a carrier. The term "hard gel" as used herein refers to a gel that swells less with solvents than soft gels such as dextran, agarose, acrylamide, etc., and is less likely to deform under pressure. Hard gels and soft gels can be distinguished by the following method. In other words, as shown in the reference example below, when gel is uniformly packed into a cylindrical column and an aqueous liquid is flowed, the relationship between pressure loss and flow rate is almost a straight line for hard gel, but for soft gel there is a pressure drop. Beyond this point, the gel deforms and becomes compacted, and the flow rate no longer increases. In the present invention, when a column shown in the reference example below is used, a gel having the above linear relationship up to at least 0.3 Kg/cm 2 is referred to as a hard gel. The next required property is to have pores with a relatively large diameter. That is, LDL is a large molecule with a molecular weight of at least 1 million or more, and in order to adsorb and remove it, it is necessary for LDL to be able to enter the pores. Next, even if LDL can enter the pores, its performance as an adsorbent will be low unless the probability of LDL entering the pores is high to some extent.In other words, the distribution ratio between the mobile phase and the stationary phase (inside the pores) is It is considered that a higher ratio (phase concentration/mobile phase concentration) is more preferable. Therefore, it seems that the larger the pore diameter is, the more advantageous it is. There are various methods for measuring pore diameter, and mercury intrusion method is the most commonly used, but it may not be applicable to polymer hard gels. Therefore, it is appropriate to use the exclusion limit molecular weight as a measure of the pore diameter. What is the exclusion limit molecular weight?As stated in books (for example, Hiroyuki Hatano and Toshihiko Hanai, Experimental High Performance Liquid Chromatography, Kagaku Doujin), the molecular weight cannot enter the pores (is excluded) in gel permeation chromatography. It refers to the molecular weight of the one with the smallest molecular weight among molecules. Phenomenologically, molecules with a molecular weight above the exclusion limit are eluted near the mobile phase volume Vo, so the exclusion limit molecular weight can be determined by examining the relationship with the elution volume using compounds of various molecular weights. It is known that the exclusion limit molecular weight varies depending on the type of target compound, and in general, it has been well investigated for globular proteins, dextran, polyethylene glycol, etc., but it has hardly been investigated for lipoproteins. Therefore, it is appropriate to use the values obtained using the most similar globular proteins (including viruses). As a result of studies using various carriers with different exclusion limits, we found that, contrary to expectations, the exclusion limit molecular weight was about 1 million, which is smaller than the molecular weight of LDL.
It has become clear that there is an optimal pore size range because it shows adsorption ability, and it is not that the larger the pore size, the greater the ability, but rather that proteins other than LDL are removed. In other words, if a carrier with an exclusion limit molecular weight of less than 1 million is used, LDL
Although the removal amount of LDL is too small to be practical, even a support with an exclusion limit molecular weight of 1 million to several million, which is close to the molecular weight of LDL, can provide an adsorbent that can be used practically to some extent. On the other hand, when examining the relationship between the exclusion limit molecular weight, the adsorption amount of LDL, and the adsorption of proteins other than LDL (so-called non-specific adsorption), we find that as the exclusion limit molecular weight increases, the adsorption amount of LDL increases, but this increase is excluded. It was found that when the limit exceeds 10 million, it reaches a plateau, and on the other hand, adsorption of proteins other than LDL, such as LGG and IGM, becomes noticeable. Furthermore, when the exclusion limit molecular weight exceeds 100 million, the amount of immobilized ligand decreases, resulting in a decrease in the amount of LDL adsorbed.
Non-specific adsorption can no longer be ignored. Therefore, the exclusion limit molecular weight of the carrier used in the present invention is preferably 1 million or more and 100 million or less, most preferably 3 million or more.
More than 70 million. Next, regarding the porous structure of the carrier, total porosity is preferable to surface porosity, and it is preferable that the pore volume is 20% or more. The shape of the carrier can be selected from any shape such as granules, fibers, membranes, and hollow fibers. When using a particulate carrier, the particle size is desirably 1 μm or more and 5000 μm or less. Furthermore, it is advantageous if a functional group that can be used in an immobilization reaction or a functional group that can be easily activated is present on the surface of the carrier. Representative examples of these functional groups include amino groups, carboxyl groups, hydroxyl groups, thiol groups, acid anhydride groups, succinylimide groups, chlorine groups, aldehyde groups, amide groups, and epoxy groups. Typical examples of polymer hard gels suitable for the present invention include styrene-divinylbenzene copolymer,
Hard porous bodies of synthetic polymers such as cross-linked polyvinyl alcohol, cross-linked polyacrylate, cross-linked vinyl ether-maleic anhydride copolymer, cross-linked styrene-maleic anhydride copolymer, cross-linked polyamide, etc., and porous materials on their surfaces. Examples include those coated with sugars, synthetic polymers, etc.
It is not limited to these. These polymer hard gels may be used alone or in combination of two or more. Representative examples of polyanionic compounds with affinity for lipoproteins suitable for use in the present invention include heparin, dextran sulfate, chondroitin sulfate,
Chondroitin polysulfate, heparanic acid, keratan sulfate, heparitin sulfate, xylan sulfate, caronine sulfate, cellulose sulfate, chitin sulfate, chitosan sulfate, pectin sulfate, inulin sulfate, alginate sulfate, glycogen sulfate, polylactose sulfate, carrageenan sulfate, starch sulfate, Examples include sulfated polysaccharides such as polyglucose sulfate, laminarin sulfate, galactan sulfate, levan sulfate, and mepesulfate, phosphotungstic acid, polysulfated anethole, polyvinyl alcohol sulfate, and polyphosphoric acid. The most preferred examples include heparin, dextran sulfate, and chondroitin polysulfate. Compounds (ligands) that have affinity for lipoproteins
Various known methods can be used for immobilizing on a carrier. i.e. physical adsorption method,
These include ionic bonding, covalent bonding, etc. Since it is important that the adsorbent used in the present invention does not detach from the ligand during sterilization, it is preferable to use a strong covalent bonding method. Even if an ionic bonding method is used, the ligand is not covalently cross-linked. It is desirable to leave it there.
Furthermore, a spacer may be introduced between the carrier and the ligand if necessary. The amount of immobilized ligand varies depending on the properties and activity of the ligand, but is preferably 0.02 mg or more per ml of column volume in order to obtain a significant amount of lipoprotein adsorption, and desirably 100 mg or less in consideration of economic efficiency. More preferably, per ml of column volume
The amount is 0.5mg or more and 20mg or less. In the present invention, in order to produce plasma from which lipoproteins have been removed, plasma is first separated from blood, and then
It is better to pass the plasma through the column. When removing LDL using an adsorbent as in the present invention, it is possible to improve the removal efficiency and selectivity by adding polyvalent metal ions to the plasma to be treated. Examples of polyvalent metal ions used for this purpose include alkaline earth metal ions such as calcium, magnesium, barium, and strotium, ions of genus elements such as aluminum, ions of genus elements such as manganese, and element ions such as cobalt. (Example) The present invention will be explained in more detail with reference to Examples below. Reference example: In a glass cylindrical column (inner diameter 9 mm, column length 150 mm) equipped with a filter with a pore size of 15 μm at both ends,
Agarose gel (manufactured by Biorad) as a soft gel
Biogel A5m, particle size 50-100 mesh), Toyo Pearl manufactured by Toyo Soda Kogyo Co., Ltd. as a polymer hard gel
HW65 (particle size 50 to 100 μm) was uniformly filled, and water was poured using a peristaltic pump.
The relationship between flow rate and pressure loss was determined. The results are shown in Figure 1. According to the results, the flow rate of polymer hard gel increases almost in proportion to the increase in pressure, whereas the flow rate of agarose gel does not increase even if the pressure is increased due to compaction. Example 1 Cross-linked acrylate gel (fully porous hard gel) Toyopearl HW55 [molecular weight of globular protein exclusion limit (hereinafter abbreviated as protein exclusion limit) 700,000, particle size 50 to 100 μm], Toyopearl HW60 (protein exclusion limit) Limit 1000000, particle size 50-100μm), same HW65
(Protein exclusion limit 5000000, particle size 50-100μm),
Same HW75 (protein exclusion limit 50000000, particle size 50~
100 μm) Add 6 ml of saturated NaOH aqueous solution and 15 ml of epichlorohydrin to each 10 ml, and heat at 50°C while stirring.
After a time reaction, an epoxidized gel was obtained. 20 ml of concentrated ammonia water was added to this gel and stirred at 50°C for 2 hours to introduce amino groups. Next, 200 mg of heparin was dissolved in 10 ml of water and the pH was adjusted to 4.5, and then 3 ml of the above amino group-containing gel was added thereto. Add 200 mg of 1-ethyl-3-(dimethylaminopropyl)-carbodiimide to this and adjust the pH to 4.5.
The mixture was added while maintaining the temperature at 4°C, and the mixture was shaken at 4°C for 24 hours. After the reaction, 2 molar salt solution, 0.5 molar salt solution,
A heparin-immobilized gel was obtained by washing with water. The amount of immobilized heparin was 2.2 mg/ml and 1.8 mg/ml, respectively.
ml, 1.4 mg/ml, and 0.8 mg/ml. Example 2 Chondroitin polysulfate-immobilized Toyopearl gel HW65 was obtained in the same manner as in Example 1 except that chondroitin polysulfate was used instead of heparin. The amount of immobilization is
It was 1.2 mg/ml. Example 3 1 ml of each of the adsorbents synthesized in Examples 1 and 2 was placed in a test tube, and 3 ml of human plasma (containing 0.02M CaCl 2 ) was added to this.
After stirring and leaving at 20℃ for 15 minutes, the cholesterol concentration and LDL (β-lipoprotein) in the supernatant were determined.
The amount was measured. The results are shown in Table 1. As can be seen from Table 1, when the adsorbent used in the present invention is used, lipoprotein adsorption is good;
Therefore, the supernatant cholesterol concentration and LDL
(β-lipoprotein) is decreased compared to the comparative example. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

図1は、参考例の各種ゲルを用いて流速と圧力
損失の関係を調べたグラフである。
FIG. 1 is a graph showing the relationship between flow rate and pressure loss using various reference example gels.

Claims (1)

【特許請求の範囲】 1 球状蛋白質の排除限界分子量が100万以上1
億以下のポーラスポリマーハードゲルにリポ蛋白
に親和性を有するポリアニオン化合物を固定して
なるリポ蛋白吸着体をカラムに充填し、血液から
分離した血漿を該カラムに通すことを特徴とする
リポ蛋白を除去した血漿の製造方法。 2 ポーラスポリマーハードゲルが合成高分子か
らなる特許請求の範囲第1項記載のリポ蛋白を除
去した血漿の製造方法。 3 ポリアニオン化合物が硫酸化多糖である特許
請求の範囲第1項記載のリポ蛋白を除去した血漿
の製造方法。 4 硫酸化多糖が、ヘパリン、デキストラン硫酸
およびコンドロイチンポリ硫酸から選ばれる少な
くとも1種である特許請求の範囲第3項記載のリ
ポ蛋白を除去した血漿の製造方法。 5 ポリアニオン化合物の固定化量がカラム体積
1mlあたり0.02mg以上100mg以下である特許請求
の範囲第1項記載のリポ蛋白を除去した血漿の製
造方法。
[Claims] 1. Exclusion limit molecular weight of globular protein is 1 million or more. 1
A lipoprotein adsorbent made by fixing a polyanion compound having an affinity for lipoproteins to a porous polymer hard gel of 100 million yen or less is packed in a column, and plasma separated from blood is passed through the column. Method for producing removed plasma. 2. The method for producing plasma from which lipoproteins have been removed according to claim 1, wherein the porous polymer hard gel is made of a synthetic polymer. 3. The method for producing lipoprotein-free plasma according to claim 1, wherein the polyanion compound is a sulfated polysaccharide. 4. The method for producing lipoprotein-free plasma according to claim 3, wherein the sulfated polysaccharide is at least one selected from heparin, dextran sulfate, and chondroitin polysulfate. 5. The method for producing lipoprotein-free plasma according to claim 1, wherein the amount of the polyanion compound immobilized is 0.02 mg or more and 100 mg or less per ml of column volume.
JP63249652A 1988-10-03 1988-10-03 Removal of lipoprotein from blood Granted JPH01145071A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63249652A JPH01145071A (en) 1988-10-03 1988-10-03 Removal of lipoprotein from blood
JP4253998A JPH0611330B2 (en) 1988-10-03 1992-08-28 Lipoprotein removal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63249652A JPH01145071A (en) 1988-10-03 1988-10-03 Removal of lipoprotein from blood
JP4253998A JPH0611330B2 (en) 1988-10-03 1992-08-28 Lipoprotein removal device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57212379A Division JPS59102436A (en) 1982-12-02 1982-12-02 Adsorbent body

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4253998A Division JPH0611330B2 (en) 1988-10-03 1992-08-28 Lipoprotein removal device

Publications (2)

Publication Number Publication Date
JPH01145071A JPH01145071A (en) 1989-06-07
JPH0362433B2 true JPH0362433B2 (en) 1991-09-25

Family

ID=26539415

Family Applications (2)

Application Number Title Priority Date Filing Date
JP63249652A Granted JPH01145071A (en) 1988-10-03 1988-10-03 Removal of lipoprotein from blood
JP4253998A Expired - Lifetime JPH0611330B2 (en) 1988-10-03 1992-08-28 Lipoprotein removal device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP4253998A Expired - Lifetime JPH0611330B2 (en) 1988-10-03 1992-08-28 Lipoprotein removal device

Country Status (1)

Country Link
JP (2) JPH01145071A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2937728B2 (en) * 1993-12-13 1999-08-23 日本圧着端子製造 株式会社 Printed wiring board connector
CN102247810B (en) * 2011-04-26 2013-01-30 浙江大学 Method for surface modification of chitosan and application of chitosan subjected to surface modification

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756038A (en) * 1980-09-22 1982-04-03 Kuraray Co Ltd Low molecular weight protein adsorbent
JPS57134164A (en) * 1981-02-13 1982-08-19 Asahi Chemical Ind Self-antibody adsorbing material and apparatus
JPS57190003A (en) * 1981-05-18 1982-11-22 Asahi Chem Ind Co Ltd Wholly porous activated gel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756038A (en) * 1980-09-22 1982-04-03 Kuraray Co Ltd Low molecular weight protein adsorbent
JPS57134164A (en) * 1981-02-13 1982-08-19 Asahi Chemical Ind Self-antibody adsorbing material and apparatus
JPS57190003A (en) * 1981-05-18 1982-11-22 Asahi Chem Ind Co Ltd Wholly porous activated gel

Also Published As

Publication number Publication date
JPH0611330B2 (en) 1994-02-16
JPH05200111A (en) 1993-08-10
JPH01145071A (en) 1989-06-07

Similar Documents

Publication Publication Date Title
US4637994A (en) Adsorbent and process for preparing the same
JPH0434451B2 (en)
EP1621220B1 (en) Low density lipoprotein/fibrinogen adsorbent and adsorption apparatus capable of whole blood treatment
CA2026717C (en) Absorbent for the removal of biomacromolecules such as ldl and endotoxins from whole blood in extracorporeal circuits
JP3901216B2 (en) Tumor necrosis factor-α adsorbent, adsorption removal method, and adsorber using the adsorbent
JPS6256782B2 (en)
JPH0518625B2 (en)
JPH0362433B2 (en)
JPS59193135A (en) Adsorbing body
JPS62192172A (en) Adsorbing body
JPS6319214B2 (en)
JPH0667472B2 (en) Adsorbent for serum amyloid P protein
JPH0611333B2 (en) Immune complex adsorbent and immune complex removing apparatus using the same
JPH0339736B2 (en)
JP3157026B2 (en) Adsorbent for blood purification
JP2578588B2 (en) Method for improving storage stability of adsorption column for extracorporeal circulation treatment
JPH0622632B2 (en) Adsorbent and removal device
JP4141224B2 (en) Low density lipoprotein and fibrinogen adsorbent and adsorber thereof
JPH0513697B2 (en)
CA1266855A (en) Adsorbent and process for preparing the same
JPH11332981A (en) Method for removing low-density lipoprotein in blood
JP2726662B2 (en) Adsorbent and removal device using the same
JPH0547224B2 (en)
JPH035822B2 (en)
JPS62244442A (en) Low specific gravity lipoprotein adsorbing material and its preparation