JPS63110973A - Piezoelectric driver - Google Patents

Piezoelectric driver

Info

Publication number
JPS63110973A
JPS63110973A JP61256166A JP25616686A JPS63110973A JP S63110973 A JPS63110973 A JP S63110973A JP 61256166 A JP61256166 A JP 61256166A JP 25616686 A JP25616686 A JP 25616686A JP S63110973 A JPS63110973 A JP S63110973A
Authority
JP
Japan
Prior art keywords
vibrator
contact member
piezoelectric
piezoelectric element
vibrating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61256166A
Other languages
Japanese (ja)
Other versions
JPH0697863B2 (en
Inventor
Hiroshi Shimizu
洋 清水
Takashi Takada
高田 孝
Masateru Ishibashi
誠輝 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP61256166A priority Critical patent/JPH0697863B2/en
Publication of JPS63110973A publication Critical patent/JPS63110973A/en
Publication of JPH0697863B2 publication Critical patent/JPH0697863B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • H02N2/0015Driving devices, e.g. vibrators using only bending modes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/026Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors by pressing one or more vibrators against the driven body
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2041Beam type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2041Beam type
    • H10N30/2042Cantilevers, i.e. having one fixed end

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To convert a high frequency voltage into a driving force efficiently by applying said high frequency voltage with a phase difference to piezoelectric elements in two adjacent sides of respective opposed sides of each oscillator. CONSTITUTION:A piezoelectric driver is composed of an oscillator 2 having a square shape in cross section formed into a quadrilateral body of piezoelectric material, and said oscillator 2 is equipped with a piezoelectric element part 4 having electrodes 8a-8b and bas an oscillator 1 for resonant oscillation, a power unit 5 and a contact member 6. Thus, a given high frequency voltage with a phase difference (90 degrees) from the power unit 5 is applied to respective piezoelectric element parts 41-44 of the oscillating body 2 for excitation, respective opposed sides 3 oscillate in longitudinal and lateral directions, respectively. As a result, the tip part of the oscillator 1 moves circularly or elliptically and the contact member 6 moves linearly in the direction of the arrow P as shown in the drawing.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、圧電素子を用いた往復動型または回転型等
の圧電駆動装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a piezoelectric drive device, such as a reciprocating type or a rotary type, using a piezoelectric element.

〔前景技術〕[Foreground technology]

従来、圧電素子を用いた超音波モータとして、特公昭5
9−037672号公報に示されるものがある。
Conventionally, as an ultrasonic motor using piezoelectric elements,
There is one shown in Publication No. 9-037672.

これは、圧電素子を振動体に貼りつけて縦振動を発生さ
せ、振動体の先端部に傾きを持った駆動片を形成し、そ
の先端部が前記縦振動によって楕円運動を行い、円板と
接触することにより、摩擦力により円板を回転させるも
のである。
This involves attaching a piezoelectric element to a vibrating body to generate longitudinal vibration, forming a tilted drive piece at the tip of the vibrating body, and causing the tip to move in an ellipse due to the longitudinal vibration, and connecting it to a disk. Upon contact, the disc is rotated by frictional force.

しかし、この従来構造であると、回転方向が駆動片の傾
き方向によって決まってしまい、また駆動片の先端部は
細く、摩擦のために摩耗も大きく、寿命的にも問題があ
る。
However, with this conventional structure, the direction of rotation is determined by the direction of inclination of the drive piece, and the tip of the drive piece is thin, so wear is large due to friction, and there are problems in terms of service life.

また、他の従来例として、特開昭58〜148682号
公報に示されるものがある。この例は、圧電素ネの全体
振動を振動体に伝え、一方の波形をもう一方の波形と9
0”位相をずらせて振動させることにより、振動体表面
に進行波を発生させ、その上にロータを接触させること
により、摩擦でロータを回転させるものである。
Further, as another conventional example, there is one shown in Japanese Unexamined Patent Publication No. 58-148682. In this example, the entire vibration of the piezoelectric element is transmitted to the vibrating body, and one waveform is 99 times larger than the other waveform.
By vibrating with a 0" phase shift, a traveling wave is generated on the surface of the vibrating body, and by bringing the rotor into contact with the traveling wave, the rotor is rotated by friction.

この例によると、逆転も可能であるが、常に振動子全体
にエネルギを与える必要があり、しかも圧電素子の反対
側への振動は吸収してやる必要がある。このためエネル
ギロスが大きく、効率向上に難がある。また、リニアモ
ータの形成には進行波を循環させる方策を取らなければ
、エネルギロスが大きすぎて問題に成らず、その循環方
法も極めて難しい。
According to this example, reversal is also possible, but it is necessary to always apply energy to the entire vibrator, and moreover, it is necessary to absorb vibrations to the opposite side of the piezoelectric element. Therefore, energy loss is large and it is difficult to improve efficiency. In addition, in forming a linear motor, unless a measure is taken to circulate the traveling waves, the energy loss is too large to be a problem, and the circulation method is also extremely difficult.

これら従来例の問題点を解消した圧電駆動装置として、
金属弾性材料にて口字状または口字状の振動子を形成し
、この振動子の一対の対向辺の隣合う2面に圧電素子を
貼着し、前記対向辺に最大振幅点が円または楕円運動と
なる共振振動を行わせるものを提案した。前記対向辺に
は接触部材を弾接させ、接触部材または振動子のいずれ
かが駆動されるようにする。
As a piezoelectric drive device that eliminates these conventional problems,
A mouth-shaped or mouth-shaped vibrator is formed from a metal elastic material, piezoelectric elements are pasted on two adjacent sides of a pair of opposite sides of the vibrator, and the maximum amplitude point is a circle or a circle on the opposite sides. We proposed a system that generates resonant vibration that results in elliptical motion. A contact member is brought into elastic contact with the opposing sides, so that either the contact member or the vibrator is driven.

しかし、圧電素子を貼付けているため、特性のばらつき
が大きく、また貼付けのために工数が増えて生産性が悪
いという問題点があった。
However, since the piezoelectric element is pasted, there are large variations in characteristics, and the number of man-hours required for pasting increases, resulting in poor productivity.

〔発明の目的〕[Purpose of the invention]

この発明は、振動子と接触部材とが最大振動振幅の位置
で確実に接触し安定な駆動力が得られ、これにより低消
費電力で高効率が得られまた特性のばらつきも少なく、
かつ生産性の良い圧電駆動装置を提供することを目的と
する。
In this invention, the vibrator and the contact member reliably contact each other at the position of maximum vibration amplitude to obtain stable driving force, thereby achieving high efficiency with low power consumption, and less variation in characteristics.
It is an object of the present invention to provide a piezoelectric drive device with good productivity.

〔発明の開示〕[Disclosure of the invention]

この発明の圧電駆動装置は、圧電材料にて口字状または
口字状に形成されしかも一対の対向辺の断面形状が各々
ほぼ方形である振動体を少なくとも1個有し、この振動
体は前記各対向辺の少なくとも隣合う2面に電極を形成
して圧電素子部を構成し、この圧電素子部に所定の高周
波電圧が印加されて前記対向辺が共振振動する振動子と
、前記各対向辺の隣合う圧電素子に位相差を持たせて高
周波電圧を印加する電源装置と、前記振動子の対向辺の
各一面に接触される接触部材と、 この接触部材と前記振動子の少なくとも一方に前記振動
子の振幅最大部付近に位置して設けられて前記接触部材
と前記振動子との接触部分となる突部とを備え、 前記振動子の対向辺の最大振幅部が円または楕円運動を
することにより、前記接触部材または振動子のいずれか
が駆動されるものである。
The piezoelectric drive device of the present invention has at least one vibrating body formed of a piezoelectric material in a mouth shape or a mouth shape and having a pair of opposing sides each having a substantially rectangular cross-sectional shape. A piezoelectric element section is formed by forming electrodes on at least two adjacent surfaces of each opposing side, and a vibrator whose opposing sides vibrate resonantly when a predetermined high frequency voltage is applied to the piezoelectric element section; a power supply device that applies a high frequency voltage to adjacent piezoelectric elements with a phase difference; a contact member that contacts one side of each opposing side of the vibrator; and at least one of the contact member and the vibrator. A protrusion is provided near the maximum amplitude part of the vibrator and serves as a contact part between the contact member and the vibrator, and the maximum amplitude part of the opposite side of the vibrator moves in a circle or an ellipse. Accordingly, either the contact member or the vibrator is driven.

この発明の構成によると、各振動体の各対向辺の隣り合
う2面の圧電素子部に位相差を持たせた高周波電圧を印
加するので、各対向辺は最大振幅点が円または楕円運動
をする。この対向辺の1面に接触部材が接触するので、
この接触部材または振動子のいずれかが駆動され、機械
的駆動力が得られる。
According to the configuration of the present invention, a high frequency voltage with a phase difference is applied to the piezoelectric element portions on two adjacent sides of each opposing side of each vibrating body, so that the maximum amplitude point of each opposing side exhibits circular or elliptical motion. do. Since the contact member contacts one side of this opposing side,
Either the contact member or the vibrator is driven to obtain mechanical driving force.

この場合に、各振動体は口字状または口字状としである
ので、その側対向辺が互いに共振し、大きな振幅が得ら
れる。そのため、電気的エネルギを効率良く機械的駆動
力に変換できる。また、振動子を圧電材料にて形成し、
その圧電材料に直接に電極を形成して圧電素子部を構成
したので、圧電素子を貼付けるものと異なり、貼付は誤
差等による特性のばらつきが少なく、かつ工数が削減さ
れて生産性が向上する。
In this case, since each vibrating body is in the shape of a mouth or a mouth, the opposite sides thereof resonate with each other, and a large amplitude can be obtained. Therefore, electrical energy can be efficiently converted into mechanical driving force. In addition, the vibrator is made of piezoelectric material,
Since the piezoelectric element part is constructed by forming electrodes directly on the piezoelectric material, unlike pasting the piezoelectric element, pasting has less variation in characteristics due to errors, etc., and reduces man-hours and improves productivity. .

振動体の共振は、2本の対向辺が連続した基端部におい
て非振動状態となるように行われるので、基端部を支持
部とすることにより、支持によって振動を妨げることが
なく、このことからも高効率が得られる。また、このよ
うに振動体に振動しない箇所があることから、振動子と
接触部材のいずれを固定側としても可動側としても用い
ることができる。さらに、振動体は2本の対向辺を有し
、この両方が接触部材に接触し、両方の振動により振動
力が相加的に働き、接触点が多点化される。
Resonance of the vibrating body occurs in a non-vibrating state at the base end where the two opposing sides are continuous, so by using the base end as the support part, the vibration is not hindered by the support, and this This also results in high efficiency. Furthermore, since there are parts of the vibrating body that do not vibrate, either the vibrator or the contact member can be used as either a fixed side or a movable side. Further, the vibrating body has two opposing sides, both of which are in contact with the contact member, and the vibrations of both sides produce an additive vibration force, thereby increasing the number of contact points.

そのため、摩耗が軽減され、かつ安定した駆動が可能と
なる。
Therefore, wear is reduced and stable driving is possible.

また、接触部材と振動子との少なくとも一方に、振動子
の最大振幅部付近に位置して互いの接触部分となる突部
を設けたので、振動子あるいは接触部材の面精度に左右
されずに、振動子と接触部材が確実に最大振幅部付近で
接触することができ、このことから非常に大きな効率を
得ることができる。
In addition, since a protrusion is provided on at least one of the contact member and the vibrator, which is located near the maximum amplitude part of the vibrator and becomes a contact area with each other, it is not affected by the surface precision of the vibrator or the contact member. , the vibrator and the contact member can reliably come into contact near the maximum amplitude portion, and from this, very high efficiency can be obtained.

実施例 この発明の第1の実施例を第1図ないし第7図に基づい
て説明する。この圧電駆動装置は、リニアモータに適用
した例であり、圧電材料にて口字状に形成されしかも一
対の対向辺3の断面形状が各々方形である1個の振動体
2からなり、この振動体2は前記各対向辺3の隣合う2
面に電極8a。
Embodiment A first embodiment of the present invention will be described with reference to FIGS. 1 to 7. This piezoelectric drive device is an example applied to a linear motor, and consists of one vibrating body 2 made of piezoelectric material in a mouth shape and having a pair of opposing sides 3 each having a rectangular cross section. The body 2 is the adjacent 2 of each opposing side 3.
Electrode 8a on the surface.

8bを形成して圧電素子部4が構成され、この圧電素子
部4に所定の高周波電圧が印加されると対向辺3が共振
振動する振動子1と、各対向辺3の隣合う圧電素子部4
に位相差を持たせて高周波電圧を印加する電源装置5と
、振動子1の対向辺3の各1面に接触せしめられる接触
部材6と、この接触部材6に対向辺3の最大振幅部付近
に位置して設けた突部6aとを備え、振動子1の対向辺
3の最大振幅部が円または楕円運動をすることにより、
接触部材6または振動子1のいずれかが駆動されるもの
である。突部6aは接触部材6そのものでもよく、また
別の部材を貼着したものでも良い、対向辺3の最大振幅
部は、1次モードで振動させる場合は対向辺3の長手方
向の中心部となる。
The piezoelectric element part 4 is configured by forming the piezoelectric element part 8b, and when a predetermined high frequency voltage is applied to the piezoelectric element part 4, the vibrator 1 whose opposing sides 3 resonantly vibrate, and the adjacent piezoelectric element part of each opposing side 3. 4
a power supply device 5 that applies a high-frequency voltage with a phase difference; a contact member 6 that is brought into contact with each side of the opposite side 3 of the vibrator 1; The maximum amplitude part of the opposing side 3 of the vibrator 1 moves in a circular or elliptical manner.
Either the contact member 6 or the vibrator 1 is driven. The protrusion 6a may be the contact member 6 itself, or may be another member attached to it.The maximum amplitude part of the opposing side 3 is the longitudinal center of the opposing side 3 when vibrating in the first mode. Become.

振動体2はPZT(ジルコンチタン酸鉛磁器)等の圧電
材料を用いているが、圧電材料とプラスチックの複合材
料を用いても良い。振動体2の基端部2aは、固定して
も振動に影響を与えない長さをとり、第2図のように基
台7に固定しである。
The vibrating body 2 is made of a piezoelectric material such as PZT (lead zirconium titanate porcelain), but a composite material of a piezoelectric material and plastic may also be used. The base end 2a of the vibrating body 2 has a length that does not affect vibration even if it is fixed, and is fixed to the base 7 as shown in FIG.

基台7に対し、接触部材6は相対的に第1図の矢印P方
向へ進退移動自在となる様にガイド手段(図示せず)で
支持しである。
The contact member 6 is supported by guide means (not shown) so that it can move forward and backward relative to the base 7 in the direction of arrow P in FIG.

第1図のように、各圧電素子部4(41〜44)の電極
8a、8bは交差指状としである。すなわち、対向辺3
の長手方向と垂直な複数本の単位電極al、b1を長手
方向に配列し、これら1本おきの単位電極aI、bIど
うしを接続部a2.b2で接続して2組の電極3a、8
bを形成する。これら2mの電極8a、8b間に直流電
圧を印加して分極処理を施す、この圧電素子部4は、1
次モードの圧電縦効果を利用するものである。
As shown in FIG. 1, the electrodes 8a and 8b of each piezoelectric element portion 4 (41 to 44) are interdigitated. In other words, the opposite side 3
A plurality of unit electrodes al and b1 are arranged in the longitudinal direction perpendicular to the longitudinal direction of the unit electrodes aI and b1, and every other unit electrode aI and bI are connected to each other at the connecting portions a2. Two sets of electrodes 3a, 8 connected by b2
form b. This piezoelectric element section 4 performs polarization treatment by applying a DC voltage between these 2 m long electrodes 8a and 8b.
It utilizes the piezoelectric longitudinal effect of the next mode.

電源装置5は、第3図に示すように高周波電源5aと9
0”位相器9とを存し、各圧電素子部4(4X〜44)
の電極8a、8bに同図のように電圧を印加する。同図
の+、−の符号は分極の極性を示す。
The power supply device 5 includes high frequency power supplies 5a and 9 as shown in FIG.
0" phase shifter 9, each piezoelectric element part 4 (4X~44)
A voltage is applied to the electrodes 8a and 8b as shown in the figure. The + and - signs in the figure indicate the polarity of polarization.

動作 振動体2の2本の対向辺3の各圧電素子部41〜44に
、第3図の電源装置5で高周波電圧を印加して励振する
と、各対向辺3はそれぞれ圧電素子部4I〜44の励振
に従って縦および横方向に振動する。このとき圧電素子
部4□、44には圧電素子部41.43よりも90″の
位相を遅らせた電圧を印加すると、振動子1の対向辺3
の先端部のX点、Y点は、第4図の様な円または楕円軌
道を描いて運動する。したがって、対向辺3の1面に接
触部材6が接触するように配置しであると、接触部材e
矢印P方向に直線的に移動する。X点、Y点の楕円軌道
の偏平度は、対向辺3の曲げ方向による曲げ剛性の違い
や、各圧電素子部4、〜44の印加する電圧の大きさ1
位相差等により調整できる。
When a high frequency voltage is applied to the piezoelectric element portions 41 to 44 on the two opposing sides 3 of the motion vibrating body 2 by the power supply device 5 shown in FIG. vibrates in the longitudinal and transverse directions according to the excitation of At this time, when a voltage whose phase is delayed by 90'' than that of the piezoelectric element parts 41 and 43 is applied to the piezoelectric element parts 4□ and 44, the opposite side of the vibrator 1
The X and Y points at the tip of the robot move in a circular or elliptical orbit as shown in FIG. Therefore, if the contact member 6 is arranged so as to be in contact with one surface of the opposing side 3, the contact member e
Move linearly in the direction of arrow P. The flatness of the elliptical orbits of the X point and the Y point is determined by the difference in bending rigidity depending on the bending direction of the opposing sides 3 and the magnitude of the voltage applied to each piezoelectric element part 4, - 44.
It can be adjusted by adjusting the phase difference, etc.

圧電素子部4□、44に90°進み位相の電圧を印加す
れば、第4図と反対回りの軌道を描くことになり、接触
部材6は矢印Pと逆方向に移動する。
If a voltage with a 90° advance phase is applied to the piezoelectric elements 4□, 44, the contact member 6 will move in the opposite direction to the arrow P, drawing a trajectory opposite to that shown in FIG.

このように動作するが、各振動体2は口字状としである
ので、その側対向辺3が互いに共振し、大きな振動が得
られる。そのため、電気的エネルギを効率良く機械的駆
動力に変換できる。
Although it operates in this manner, since each vibrating body 2 is in the shape of an opening, the opposing sides 3 resonate with each other, and large vibrations are obtained. Therefore, electrical energy can be efficiently converted into mechanical driving force.

また、振動体2は、圧電材料に直接に電極3a。Further, the vibrating body 2 has an electrode 3a directly on the piezoelectric material.

8bを形成して圧電素子部4を設けたものであるため、
圧電素子を貼着することによる特性ばらつきがなく、ま
た工数が削減されて生産性か向上する。
8b is formed and the piezoelectric element portion 4 is provided,
There is no variation in characteristics caused by pasting piezoelectric elements, and the number of man-hours is reduced, improving productivity.

振動体2の共振は、2本の対向辺3が連続した基端部2
aにおいて第5図(A)のように非振動状態となるよう
に行われるので、基端部2aを支持部とすることにより
、支持によって振動を妨げることがなく、このことから
も高効率が得られる。
The resonance of the vibrating body 2 occurs at the base end 2 where the two opposing sides 3 are continuous.
Since the vibration is carried out in a non-vibrating state as shown in FIG. can get.

また、このように振動体2に振動しない箇所があること
から、振動子lと接触部材6のいずれを固定側としても
可動側としても用いることができる。
Further, since there are parts of the vibrating body 2 that do not vibrate in this way, either the vibrator 1 or the contact member 6 can be used as either a fixed side or a movable side.

さらに、振動体2は2本の対向辺3を有し、この両方が
接触部材6に接し、両方の振動により駆動力が相加的に
働き、接触点が多点化される。そのため、摩耗が軽減さ
れ、かつ安定した駆動が可能となる。
Further, the vibrating body 2 has two opposing sides 3, both of which are in contact with the contact member 6, and the vibrations of both sides act additively to produce a driving force, thereby increasing the number of contact points. Therefore, wear is reduced and stable driving is possible.

また、接触部材6に突部6aを設けであるため、対向辺
3と接触部材6とが、振幅最大部付近で確実に接触する
。そのため、大きな推進力を得ることとなり、高効率が
得られる。
Further, since the contact member 6 is provided with the protrusion 6a, the opposing side 3 and the contact member 6 are reliably brought into contact near the maximum amplitude portion. Therefore, a large propulsion force is obtained, resulting in high efficiency.

この実施例では、対向辺3を第5図(A)のように1s
tモードで振動させる場合につき説明したが、第5図(
B)、  (C)に示すように、2ndモードや3rd
モード等、高次モードで振動させると、対向辺3の接触
部材6に対する接触点をより一層多くできる。これによ
り、接触点における摩耗をより一層少なくし、かつ動作
の安定を図ることができる。
In this embodiment, the opposite side 3 is 1s as shown in FIG. 5(A).
Although we have explained the case of vibration in t mode, Fig. 5 (
B), as shown in (C), 2nd mode and 3rd mode
By vibrating in a higher-order mode such as mode, the number of contact points of the opposing side 3 with the contact member 6 can be further increased. This makes it possible to further reduce wear at the contact points and stabilize the operation.

2次モードや3次モード等の高次モードで振動させる場
合は、例えば電極8a、8bを対向辺3の長手方向に分
割し、隣り合う分割′:4極の分極方向を逆とする。ま
た、高次モードで振動させる場合、接触部材6の突部6
aは、各モードでの最大振幅部のすべてに配設する。す
なわち、1次モードの時にはn個の突部6aを設ける。
When vibrating in a higher-order mode such as a secondary mode or a tertiary mode, for example, the electrodes 8a and 8b are divided in the longitudinal direction of the opposing sides 3, and the polarization directions of the adjacent divided 4 poles are reversed. In addition, when vibrating in a higher order mode, the protrusion 6 of the contact member 6
a is arranged at all the maximum amplitude parts in each mode. That is, in the first mode, n protrusions 6a are provided.

なお、前記実施例では突部6aの断面形状を円弧状とし
たが、突部6aは円弧以外の凸曲面の断面形状であって
もよく、また第6図(A)、  (B)に示す第2の実
施例のように方形状の断面形状としてもよい、第6図(
B)は、2次モードで振動させる場合に用いる接触部材
6である。
In the above embodiment, the protrusion 6a has a circular arc cross-sectional shape, but the protrusion 6a may have a convex cross-sectional shape other than a circular arc, as shown in FIGS. 6(A) and 6(B). It is also possible to have a rectangular cross-sectional shape as in the second embodiment.
B) is a contact member 6 used when vibrating in a secondary mode.

また、この実施例では、振動子1を接触部材6の片面だ
けにしか、接触させていないが、第7図の第3の実施例
のように振動体2を複数個用いて、両面に接触させても
よい。この場合、接触部材6の突部6aは、接触部材6
の両面に設ける。8は2個の振動体2を結合したスペー
サである。
Furthermore, in this embodiment, the vibrator 1 is brought into contact with only one side of the contact member 6, but as in the third embodiment shown in FIG. You may let them. In this case, the protrusion 6a of the contact member 6
Provided on both sides. 8 is a spacer that connects the two vibrating bodies 2;

第8図は第4の実施例を示す、この例は、振動子1側に
突部3aを設けたものである。突部3aは振動子1自身
でも、また別の部材でもよい、接触部材6には第1図の
ように突部6aを設けたものを用いてもよく、また突部
6aを有しないものを用いてもよい。
FIG. 8 shows a fourth embodiment. In this example, a protrusion 3a is provided on the vibrator 1 side. The protrusion 3a may be the vibrator 1 itself or another member. The contact member 6 may be provided with a protrusion 6a as shown in FIG. 1, or may be provided without a protrusion 6a. May be used.

第9図は第5の実施例であり、接触部材6′が支軸10
回りで回転自在な回転型としである。接触部材6′には
円環状の突部6a′を、振動子1の最大振幅部と対応し
て設けである。振動子1は第1図または第8図の例と同
様のものである。
FIG. 9 shows a fifth embodiment, in which the contact member 6' is connected to the support shaft 10.
It is a rotating type that can be rotated freely around the body. The contact member 6' is provided with an annular protrusion 6a' corresponding to the maximum amplitude part of the vibrator 1. The vibrator 1 is similar to the example shown in FIG. 1 or FIG.

第10図は第6の実施例であり、振動子1′が1個のコ
字状の振動体2′からなる。接触部材6は突部6aを有
し、矢印P方向に進退自在である。
FIG. 10 shows a sixth embodiment, in which the vibrator 1' consists of one U-shaped vibrating body 2'. The contact member 6 has a protrusion 6a and can move forward and backward in the direction of arrow P.

対向辺3′には交差指状に電極8a、8bを設けである
Electrodes 8a and 8b are provided in the form of interdigitated fingers on the opposing sides 3'.

第1)図は第7の実施例であり、振動子1′がコ字形で
、かつ接触部材6′が支軸10回りで回転自在な回転型
としである。接触部材6′は円環状の突部6a′を有す
る。
Figure 1) shows a seventh embodiment, in which the vibrator 1' is U-shaped and the contact member 6' is of a rotary type that can freely rotate around the support shaft 10. The contact member 6' has an annular projection 6a'.

これら第7図ないし第1)図の各実施例においても、第
1の実施例と同様な各利点が得られる。
Each of the embodiments shown in FIGS. 7 to 1) provides advantages similar to those of the first embodiment.

第12図および第13図は、各々第8および第9の実施
例を示す。第12図の例は、対向辺203の隣り合う2
面に、圧電横効果を利用した圧電素子部204を形成し
たものである。この例では、電極c、dは縦方向の交差
指状に設ける。すなわち、各圧電素子部204は、対向
辺203の長手方向に沿って2本または多数本の平行な
電極C3dからなる交差指電極を形成する。この電極C
1d間に直流電圧を印加して分極処理を施す。図の+、
−は分極の極性を示す、このように分極処理して電極c
、  d間に高周波電圧を印加すれば、対向辺203は
圧電素子部204の圧電横効果による伸縮を生じ、屈曲
振動を行う、その他の構成作用は、第1の実施例と同様
である。
FIG. 12 and FIG. 13 show the eighth and ninth embodiments, respectively. In the example of FIG. 12, two adjacent sides of the opposite side 203
A piezoelectric element portion 204 utilizing a piezoelectric transverse effect is formed on the surface. In this example, the electrodes c and d are arranged in a vertically interdigitated manner. That is, each piezoelectric element portion 204 forms an interdigital electrode consisting of two or many parallel electrodes C3d along the longitudinal direction of the opposing side 203. This electrode C
Polarization treatment is performed by applying a DC voltage for 1 d. + in the figure,
- indicates the polarity of polarization.
, d, the opposing side 203 expands and contracts due to the piezoelectric transverse effect of the piezoelectric element portion 204, causing bending vibration.Other structural functions are the same as in the first embodiment.

第13図の例は、振動子201′が1個の口字秋の振動
体202′の2次の振動モードを利用する実施例であり
、各対向辺203′の隣合う2面の各々に圧電横効果を
利用した圧電素子部204′を2個ずつ形成したもので
ある。すなわち、対向辺203に長手方向中央部の両側
に位置して、長手方向に沿う電極e、fを2本ずつ平行
に4本設け、平行な2本ずつを1組としてこの2本の間
に直流電圧を印加して分極処理する。このとき、1組目
の電極e、  fと2&II目の電極e、fとは極性を
反対にして分極し、同相の高周波電圧を印加するかまた
は、分極を同一方向とし反対の極性の高周波電圧を印加
する。
The example shown in FIG. 13 is an embodiment in which the vibrator 201' utilizes the second-order vibration mode of one Kujiaki vibrating body 202', and the vibrator 201' uses the second-order vibration mode of one Kujiaki vibrating body 202'. Two piezoelectric element portions 204' each utilizing a piezoelectric transverse effect are formed. In other words, two parallel electrodes e and f are provided on the opposite sides 203, two of which are located on both sides of the central part in the longitudinal direction and extend along the longitudinal direction. Polarization is performed by applying a DC voltage. At this time, the first pair of electrodes e, f and the second and second electrodes e, f are polarized with opposite polarity and a high frequency voltage of the same phase is applied, or the polarization is in the same direction and a high frequency voltage of opposite polarity is applied. Apply.

〔発明の効果〕〔Effect of the invention〕

この発明の圧電駆動装置は、各振動体の各対向辺の隣り
合う2面の圧電素子部に位相差を持たせた高周波電圧を
印加するので、各対向辺は最大振幅点が円または楕円運
動をする。この対向辺の1面に接触部材が接触するので
、この接触部材または振動子のいずれかが駆動され、機
械的駆動力が得られる。
The piezoelectric drive device of the present invention applies a high frequency voltage with a phase difference to the piezoelectric element portions on two adjacent sides of each opposing side of each vibrating body, so that the maximum amplitude point of each opposing side moves in a circular or elliptical motion. do. Since the contact member comes into contact with one of the opposing sides, either the contact member or the vibrator is driven, and a mechanical driving force is obtained.

この場合に、各振動体はコ字状または口字状としである
ので、その両射向辺が互いに共振し、大きな振幅が得ら
れる。そのため、電気的エネルギを効率良(機械的駆動
力に変換できる。また、振動子を圧電材料にて形成し、
その圧電材料に直接に電極を形成して圧電素子部を構成
したので、圧電素子を貼付けるものと異なり、貼付は誤
差等による特性のばらつきが少なく、かつ工数が削減さ
れて生産性が向上する。
In this case, since each vibrating body is U-shaped or square-shaped, both sides of the vibrating body resonate with each other, and a large amplitude can be obtained. Therefore, electrical energy can be efficiently converted into mechanical driving force.In addition, the vibrator is made of piezoelectric material,
Since the piezoelectric element part is constructed by forming electrodes directly on the piezoelectric material, unlike pasting the piezoelectric element, pasting has less variation in characteristics due to errors, etc., and reduces man-hours and improves productivity. .

振動体の共振は、2本の対向辺が連続した基端部におい
て非振動状態となるように行われるので、基端部を支持
部とすることにより、支持によって振動を妨げることが
なく、このことからも高効率が得られる。また、このよ
うに振動体に振動しない箇所があることから、振動子と
接触部材のいずれを固定側としても可動側としても用い
ることができる。さらに、振動体は2本の対向辺を有し
、この両方が接触部材に接触し、両方の振動により振動
力が相加的に働き、接触点が多点化される。
Resonance of the vibrating body occurs in a non-vibrating state at the base end where the two opposing sides are continuous, so by using the base end as the support part, the vibration is not hindered by the support, and this This also results in high efficiency. Furthermore, since there are parts of the vibrating body that do not vibrate, either the vibrator or the contact member can be used as either a fixed side or a movable side. Further, the vibrating body has two opposing sides, both of which are in contact with the contact member, and the vibrations of both sides produce an additive vibration force, thereby increasing the number of contact points.

そのため、摩耗が軽減され、かつ安定した駆動が可能と
なる。
Therefore, wear is reduced and stable driving is possible.

また、接触部材と振動子との少なくとも一方に、振動子
の最大振幅部付近に位置して互いの接触部分となる突部
を設けたので、振動子あるいは接触部材の面精度に左右
されずに、振動子と接触部材が確実に最大振幅部付近で
接触することができ、このことから非常に大きな効率を
得ることができるという効果がある。
In addition, since a protrusion is provided on at least one of the contact member and the vibrator, which is located near the maximum amplitude part of the vibrator and becomes a contact area with each other, it is not affected by the surface precision of the vibrator or the contact member. , the vibrator and the contact member can reliably come into contact near the maximum amplitude portion, and this has the effect that very high efficiency can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の斜視図、第2図はその破
断側面図、第3図はその電源装置のブロック図、第4図
はその動作説明図、第5図はその振動モード説明図、第
6図(A)、  (B)はそれぞれ第2の実施例の接触
部材の斜視図、第7図は第3の実施例の破断側面図、第
8図は第4の実施例の振動子の斜視図、第9図は第5の
実施例の平面図、第10図は第6の実施例の斜視図、第
1)図は第7の実施例の平面図、第12図および第13
図はそれぞれ第8および第9の実施例における振動子の
斜視図である。 1.1′・・・振動子、2.2′・・・振動体、3・・
・対向辺、4.4□〜4.・・・圧電素子部、6.6′
・・・接触部材、6a、6a’・・・突部、8a、8b
・・・電極、201,201’・・・振動子、202.
202’・・・振動体、203,203’・・・対向辺
特許出願人  清  水   洋 第1図 第3図 第2図 a 第4図 第5図 CB)        第6図 第7図 第13図
Fig. 1 is a perspective view of an embodiment of the present invention, Fig. 2 is a cutaway side view thereof, Fig. 3 is a block diagram of its power supply device, Fig. 4 is an explanatory diagram of its operation, and Fig. 5 is its vibration mode. Explanatory drawings, FIGS. 6A and 6B are perspective views of the contact member of the second embodiment, FIG. 7 is a cutaway side view of the third embodiment, and FIG. 8 is a fourth embodiment. Fig. 9 is a plan view of the fifth embodiment, Fig. 10 is a perspective view of the sixth embodiment, Fig. 1) is a plan view of the seventh embodiment, Fig. 12 and the 13th
The figures are perspective views of vibrators in eighth and ninth embodiments, respectively. 1.1'... vibrator, 2.2'... vibrating body, 3...
・Opposite side, 4.4□~4. ...Piezoelectric element part, 6.6'
...Contact member, 6a, 6a'...Protrusion, 8a, 8b
... Electrode, 201, 201' ... Vibrator, 202.
202'... Vibrating body, 203, 203'... Opposing side Patent applicant Hiroshi Shimizu (Figure 1, Figure 3, Figure 2 a, Figure 4, Figure 5, CB) Figure 6, Figure 7, Figure 13

Claims (2)

【特許請求の範囲】[Claims] (1) 圧電材料にてコ字状またはロ字状に形成されし
かも一対の対向辺の断面形状が各々ほぼ方形である振動
体を少なくとも1個有し、この振動体は前記各対向辺の
少なくとも隣合う2面に電極を形成して圧電素子部を構
成し、この圧電素子部に所定の高周波電圧が印加されて
前記対向辺が共振振動する振動子と、 前記各対向辺の隣合う圧電素子部に位相差を持たせて高
周波電圧を印加する電源装置と、 前記振動子の対向辺の各一面に接触される接触部材と、 この接触部材と前記振動子の少なくとも一方に前記振動
子の振幅最大部付近に位置して設けられて前記接触部材
と前記振動子との接触部分となる突部とを備え、 前記振動子の対向辺の最大振幅部が円または楕円運動を
することにより、前記接触部材または振動子のいずれか
が駆動される圧電駆動装置。
(1) At least one vibrating body is formed of a piezoelectric material into a U-shape or a C-shape, and each of a pair of opposing sides has a substantially square cross-sectional shape, and this vibrating body has at least one of the opposite sides. a vibrator that forms a piezoelectric element section by forming electrodes on two adjacent sides, and a predetermined high-frequency voltage is applied to the piezoelectric element section so that the opposing sides vibrate resonantly; and the adjacent piezoelectric elements on each of the opposing sides. a power supply device that applies a high frequency voltage with a phase difference between the parts; a contact member that contacts one side of each opposing side of the vibrator; and an amplitude of the vibrator that is applied to at least one of the contact member and the vibrator. a protrusion provided near a maximum part and serving as a contact part between the contact member and the vibrator, and the maximum amplitude part of the opposite side of the vibrator moves in a circular or elliptical manner, so that the A piezoelectric drive device in which either a contact member or a vibrator is driven.
(2) 前記圧電素子部は交差指電極にて構成し、その
電極で分極処理および高周波励振を行う特許請求の範囲
第(1)項記載の圧電駆動装置。
(2) The piezoelectric drive device according to claim (1), wherein the piezoelectric element portion is composed of interdigital electrodes, and the electrodes perform polarization processing and high-frequency excitation.
JP61256166A 1986-10-27 1986-10-27 Piezoelectric drive Expired - Lifetime JPH0697863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61256166A JPH0697863B2 (en) 1986-10-27 1986-10-27 Piezoelectric drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61256166A JPH0697863B2 (en) 1986-10-27 1986-10-27 Piezoelectric drive

Publications (2)

Publication Number Publication Date
JPS63110973A true JPS63110973A (en) 1988-05-16
JPH0697863B2 JPH0697863B2 (en) 1994-11-30

Family

ID=17288819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61256166A Expired - Lifetime JPH0697863B2 (en) 1986-10-27 1986-10-27 Piezoelectric drive

Country Status (1)

Country Link
JP (1) JPH0697863B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05236694A (en) * 1992-02-19 1993-09-10 Matsushita Electric Ind Co Ltd Motor
JPH0584193U (en) * 1992-04-15 1993-11-12 ニスカ株式会社 Ultrasonic drive
JP2007068350A (en) * 2005-09-01 2007-03-15 Tokyo Institute Of Technology Driving/guiding apparatus
WO2020230703A1 (en) * 2019-05-10 2020-11-19 ミニスイス・ソシエテ・アノニム Lens driving device, camera module, and camera-mounted device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05236694A (en) * 1992-02-19 1993-09-10 Matsushita Electric Ind Co Ltd Motor
JPH0584193U (en) * 1992-04-15 1993-11-12 ニスカ株式会社 Ultrasonic drive
JP2007068350A (en) * 2005-09-01 2007-03-15 Tokyo Institute Of Technology Driving/guiding apparatus
WO2020230703A1 (en) * 2019-05-10 2020-11-19 ミニスイス・ソシエテ・アノニム Lens driving device, camera module, and camera-mounted device

Also Published As

Publication number Publication date
JPH0697863B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
US4742260A (en) Piezoelectrically driving device
JPH0241673A (en) Ultrasonic driving gear
JP4119903B2 (en) Flat plate piezoelectric ultrasonic motor
JPH0458273B2 (en)
JPS62259485A (en) Piezoelectric driving apparatus
JPS63110973A (en) Piezoelectric driver
JPS63316675A (en) Piezoelectric linear motor
JPH0470876B2 (en)
JPH0773428B2 (en) Piezoelectric drive
JP3029677B2 (en) Ultrasonic transducer, driving method thereof, and ultrasonic actuator
JPH0552137B2 (en)
JPS63294280A (en) Piezoelectric driving device
JPH0223070A (en) Linear type ultrasonic motor
JPH0470875B2 (en)
JPS5989583A (en) Driving device using piezoelectric vibrator
JPH0480632B2 (en)
JPS63268476A (en) Oscillatory wave motor
JPS6356181A (en) Piezo-electric motor
JPS63110972A (en) Piezoelectric device
JPH05111268A (en) Piezoelectric actuator
JPS61157276A (en) Drive circuit of vibration wave motor
JPH02285977A (en) Ultrasonic motor
JPH01308172A (en) Ultrasonic wave driver
JP2003169486A (en) Ultrasonic motor
JPH07231685A (en) Surface acoustic wave linear motor