JPH0773428B2 - Piezoelectric drive - Google Patents

Piezoelectric drive

Info

Publication number
JPH0773428B2
JPH0773428B2 JP61227502A JP22750286A JPH0773428B2 JP H0773428 B2 JPH0773428 B2 JP H0773428B2 JP 61227502 A JP61227502 A JP 61227502A JP 22750286 A JP22750286 A JP 22750286A JP H0773428 B2 JPH0773428 B2 JP H0773428B2
Authority
JP
Japan
Prior art keywords
contact member
vibrator
piezoelectric
drive device
piezoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61227502A
Other languages
Japanese (ja)
Other versions
JPS62277079A (en
Inventor
洋 清水
澄夫 菅原
孝 高田
誠輝 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to US07/007,673 priority Critical patent/US4742260A/en
Priority to DE19873703676 priority patent/DE3703676A1/en
Publication of JPS62277079A publication Critical patent/JPS62277079A/en
Publication of JPH0773428B2 publication Critical patent/JPH0773428B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • H02N2/0015Driving devices, e.g. vibrators using only bending modes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/026Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors by pressing one or more vibrators against the driven body
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/103Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors by pressing one or more vibrators against the rotor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H57/00Electrostrictive relays; Piezoelectric relays

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、圧電素子を用いた往復動型または回転型等
の圧電駆動装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to a reciprocating type or rotating type piezoelectric drive device using a piezoelectric element.

〔背景技術〕[Background technology]

従来、圧電素子を用いた超音波モータとして、特公昭59
−037672号公報に示されるものがある。これは、圧電素
子を振動体に貼りつけて縦振動を発生させ、振動体の先
端部に傾きを持った駆動片を形成し、その先端部が前記
縦振動によって楕円運動を行い、円板と接触することに
より、摩擦力により円板を回転させるものである。
Conventionally, as an ultrasonic motor that uses a piezoelectric element,
There is one disclosed in Japanese Patent Publication No. 037672. This is because a piezoelectric element is attached to a vibrating body to generate vertical vibration, a driving piece having an inclination is formed at the tip of the vibrating body, and the tip makes an elliptical motion due to the longitudinal vibration, and By making contact, the disc is rotated by frictional force.

しかし、この従来構造であると、回転方向が駆動片の傾
き方向によって決まってしまい、また駆動片の先端部は
細く、摩擦のために摩耗も大きく、寿命的にも問題があ
る。
However, with this conventional structure, the rotation direction is determined by the tilt direction of the drive piece, and the tip of the drive piece is thin, and wear is large due to friction, and there is a problem in terms of life.

また、他の従来例として、特開昭58−148682号公報に示
されるものがある。この例は、圧電素子の全体振動を振
動体に伝え、一方の波形をもう一方の波形と90゜位相を
ずらせて振動させることにより、振動体表面に進行波を
発生させ、その上にロータを接触させることにより、摩
擦でロータを回転させるものである。
Further, as another conventional example, there is one disclosed in JP-A-58-148682. In this example, the entire vibration of the piezoelectric element is transmitted to the vibrating body, and one waveform is vibrated with a 90 ° phase shift from the other waveform to generate a traveling wave on the vibrating body surface, and the rotor is placed on top of it. By bringing them into contact, the rotor is rotated by friction.

この例によると、逆転も可能であるが、常に振動子全体
にエネルギを与える必要があり、しかも圧電素子の振動
体に貼着された面と反対側の面の振動は吸収してやる必
要がある。このためエネルギロスが大きく、効率向上に
難がある。また、リニアモータの形成には進行波を循環
させる方策を取らなければ、エネルギロスが大きすぎて
問題に成らず、その循環方法も極めて難しい。
According to this example, reversing is possible, but it is necessary to always apply energy to the entire vibrator, and it is also necessary to absorb the vibration of the surface of the piezoelectric element on the side opposite to the surface attached to the vibrating body. Therefore, energy loss is large, and it is difficult to improve efficiency. Further, unless a measure for circulating the traveling wave is taken to form the linear motor, the energy loss is too large to cause a problem, and the circulating method is extremely difficult.

またT字形の振動体の各面に複数の圧電素子部を設け
て、振動体を振動させることにより移動体を駆動できる
ようにした装置があった(たとえば特開昭61−15572
号)が、効率面および駆動の安定性の面で十分でなかっ
た。
Further, there is a device in which a plurality of piezoelectric element portions are provided on each surface of a T-shaped vibrating body so that the moving body can be driven by vibrating the vibrating body (for example, JP-A-61-15572).
No.) was not sufficient in terms of efficiency and driving stability.

〔発明の目的〕[Object of the Invention]

この発明は、低消費電力で効率良く機械的駆動力を得る
ことができ、かつ接触点が多点化されて摩耗が削減さ
れ、また安定駆動が可能な圧電駆動装置を提供すること
を目的とする。
An object of the present invention is to provide a piezoelectric drive device that can efficiently obtain a mechanical driving force with low power consumption, has multiple contact points to reduce wear, and can perform stable driving. To do.

〔発明の開示〕[Disclosure of Invention]

この発明の圧電駆動装置は、弾性を有する材料にてコ字
状またはロ字状に形成され、かつ一対の対向辺の断面形
状が各々ほぼ方形である振動体を少なくとも1個備え、
さらに前記振動体は前記各対向辺の少なくとも隣合う2
面に圧電素子部を有してなり、この圧電素子部に所定の
高周波電圧が印加されて前記対向辺が屈曲振動により共
振する振動子と、 前記各対向辺の隣合う圧電素子部に位相差を持たせて高
周波電圧を印加する電源装置と、 前記振動子の対向辺の各1面に接触される接触部材とを
備え、 前記振動子の対向辺の最大振幅点が円または楕円運動を
することにより、前記接触部材または振動子のいずれか
が駆動されるものである。
The piezoelectric drive device of the present invention is provided with at least one vibrating body formed of a material having elasticity in a U-shape or a U-shape and each of a pair of opposing sides having a substantially rectangular cross-sectional shape.
Further, the vibrating body is at least adjacent to each of the opposite sides.
A piezoelectric element part is provided on the surface, and a predetermined high-frequency voltage is applied to the piezoelectric element part to cause the opposite side to resonate due to bending vibration, and a phase difference between the adjacent piezoelectric element parts on the opposite sides. And a contact member that is in contact with each one of the opposite sides of the vibrator, and the maximum amplitude point of the opposite side of the vibrator makes a circular or elliptical motion. As a result, either the contact member or the vibrator is driven.

前記圧電素子部は、前記振動体に圧電素子を貼着して形
成したものであっても、また前記振動体を圧電材料にて
形成して、この圧電材料に直接に電極を形成したもので
あってもよい。なお、圧電材料に直接に電極を形成して
圧電素子部を形成した場合は、圧電素子を貼付けるもの
と異なり、貼付け誤差等による特性のばらつきがなく、
かつ工数が削減されて生産性が向上する。
The piezoelectric element portion may be formed by attaching a piezoelectric element to the vibrating body, or may be formed by forming the vibrating body with a piezoelectric material and directly forming electrodes on the piezoelectric material. It may be. When the electrodes are formed directly on the piezoelectric material to form the piezoelectric element portion, unlike the case where the piezoelectric element is attached, there is no variation in characteristics due to attachment errors or the like,
In addition, man-hours are reduced and productivity is improved.

この発明の構成によると、各振動体の各対向辺の隣合う
2面の設けた圧電素子部に位相差を持たせた高周波電圧
を印加するので、各対向辺は最大振幅点が円または楕円
運動をする。この対向辺の1面に接触部材が接触するの
で、この接触部材または振動子のいずれかが駆動され、
機械的駆動力が得られる。
According to the configuration of the present invention, since a high frequency voltage having a phase difference is applied to the piezoelectric element portions provided on the two adjacent surfaces of the opposing sides of each vibrating body, the maximum amplitude point of each opposing side is a circle or an ellipse. exercise. Since the contact member comes into contact with one surface of the facing side, either the contact member or the vibrator is driven,
A mechanical driving force is obtained.

この場合に、各振動体はコ字状またはロ字状としてある
ので、その両対向辺が互いに共振し、大きな振幅が得ら
れる。そのため、電気的エネルギを効率良く機械的駆動
力に変換できる。また、振動体の共振は、2本の対向辺
が連続した基端部において非振動状態となるように行わ
れるので、基端部を支持部とすることにより、支持によ
って振動を妨げることがなく、このことからも高効率が
得られる。また、このように振動体に振動しない箇所が
あることから、振動子と接触部材のいずれを固定側とし
ても可動側としても用いることができる。さらに、振動
体は2本の対向辺を有し、この部分で接触部材に接する
ので、接触点が多点化される。そのため、摩耗が軽減さ
れ、かつ安定した駆動が可能となる。
In this case, since each vibrating body is U-shaped or R-shaped, both opposing sides thereof resonate with each other and a large amplitude is obtained. Therefore, electrical energy can be efficiently converted into mechanical driving force. Further, since the resonance of the vibrating body is performed so that the base end where two opposite sides are continuous is in a non-vibrating state, by using the base end as a support portion, the support does not interfere with the vibration. From this, high efficiency can be obtained. Further, since there is a portion where the vibrating body does not vibrate as described above, either the vibrator or the contact member can be used as the fixed side or the movable side. Further, since the vibrating body has two opposing sides and contacts the contact member at this portion, the number of contact points is increased. Therefore, wear is reduced and stable driving is possible.

実施例 この発明の第1の実施例を第1図ないし第6図に基づい
て説明する。この圧電駆動装置は、リニアモータに適用
した例であり、金属弾性材料にてコ字状に形成されしか
も一対の対向辺3の断面形状が各々方形である1個の振
動体2からなり、この振動体2は前記各対向辺3の隣合
う2面に圧電素子を貼着して圧電素子部4が形成され、
この圧電素子部4に所定の高周波電圧が印加されると対
向辺3が屈曲振動により共振する振動子1と、各対向辺
3の隣合う圧電素子部4に位相差を持たせて高周波電圧
を印加する電源装置5と、振動子1の対向辺3の各1面
に接触せしめられる接触部材6とを備え、振動子1の対
向辺3の最大振幅点が円または楕円運動をすることによ
り、接触部材6または振動子1のいずれかが駆動される
ものである。
Embodiment A first embodiment of the present invention will be described with reference to FIGS. 1 to 6. This piezoelectric drive device is an example applied to a linear motor, and is composed of a single vibrating body 2 which is formed of a metal elastic material in a U-shape and has a pair of opposed sides 3 each having a rectangular cross section. In the vibrating body 2, a piezoelectric element portion 4 is formed by adhering a piezoelectric element to the two adjacent surfaces of each of the facing sides 3.
When a predetermined high frequency voltage is applied to the piezoelectric element portion 4, the high frequency voltage is generated by providing a phase difference between the vibrator 1 in which the opposite side 3 resonates by bending vibration and the adjacent piezoelectric element portion 4 of each opposite side 3. A power supply device 5 for applying a voltage and a contact member 6 that is brought into contact with each one surface of the facing side 3 of the vibrator 1 are provided, and the maximum amplitude point of the facing side 3 of the vibrator 1 makes a circular or elliptical motion. Either the contact member 6 or the vibrator 1 is driven.

振動体2はエリンバ等の恒弾性体を用いているが、精度
や大振幅が不要のときは、一般の鋼材を用いても良く、
またその他の金属やセラミック等を用いることもでき
る。振動体2の各対向辺3の断面形状は方形であるが、
各角部に面取りを施して8角形状の断面形状としてもよ
く、また面取りの代りに角部を丸めてもよい。要は、対
向辺3は互いに直角に隣合う4面を有する断面形状であ
ればよい。振動体2の基端部2aは、固定しても振動に影
響を与えない長さをとり、第2図のように基台7に固定
してある。基台7に対し、接触部材6は相対的に第1図
の矢印P方向へ進退移動自在にガイド手段(図示せず)
で支持してある。接触部材6は、対向辺3の圧電素子部
4が貼着されていない各1面における先端部であるX点
およびY点(第4図(B))に接するように配置してあ
る。なお、必ずしも先端部に接するようにしなくてもよ
い。また、接触部材6は、対向辺3の圧電素子部4が貼
着された1面における圧電素子部4の貼着されていない
部分に接触するようにしてもよい。さらに、振動子1
は、振動体2の一対の対向辺3の3面または4面に圧電
素子部4を貼着し、対向辺3の圧電素子部4が貼着され
ていない1面、または圧電素子部4が貼着された1面に
おける圧電素子部4の貼着されていない部分に接触部材
6が接するようにしてもよい。これらの例において、対
向辺3の圧電素子部4が貼着された面に、絶縁部材を介
して接触部材6が接するようにしてもよい。
The vibrating body 2 uses a constant elastic body such as elinvar, but when precision or large amplitude is not required, general steel material may be used.
Other metals, ceramics, etc. can also be used. Although the cross-sectional shape of each opposing side 3 of the vibrating body 2 is a square,
Each corner may be chamfered to have an octagonal cross-sectional shape, or the corner may be rounded instead of chamfering. In short, the facing side 3 may have a cross-sectional shape having four surfaces that are adjacent to each other at right angles. The base end portion 2a of the vibrating body 2 has a length that does not affect vibration even when fixed, and is fixed to the base 7 as shown in FIG. The contact member 6 is movable relative to the base 7 in the direction of arrow P in FIG.
Supported by. The contact member 6 is arranged so as to be in contact with points X and Y (FIG. 4 (B)), which are the front end portions of the respective surfaces on which the piezoelectric element portions 4 of the facing side 3 are not adhered. In addition, it is not always necessary to contact the tip portion. Further, the contact member 6 may be in contact with a portion of the opposite side 3 on which the piezoelectric element portion 4 is attached, on a portion of the piezoelectric element portion 4 which is not attached. Furthermore, oscillator 1
Means that the piezoelectric element portion 4 is attached to the three or four surfaces of the pair of opposing sides 3 of the vibrating body 2, and the one surface where the piezoelectric element portion 4 of the opposing side 3 is not attached, or the piezoelectric element portion 4 is The contact member 6 may be in contact with the part of the one surface where the piezoelectric element portion 4 is not adhered. In these examples, the contact member 6 may be in contact with the surface of the opposing side 3 to which the piezoelectric element portion 4 is attached, via an insulating member.

電源装置5は、第6図に示すように高周波電源8と90゜
位相器9とを有し、各圧電素子部4(41〜44)に同図の
ように電圧を印加する。同図の+,−の符号は分極方向
を示す。
The power supply device 5 has a high frequency power supply 8 and a 90 ° phaser 9 as shown in FIG. 6, and applies a voltage to each piezoelectric element section 4 (4 1 to 4 4 ) as shown in FIG. The + and − signs in the figure indicate the polarization directions.

動作 振動体2の2本の対向辺3の各圧電素子部41〜44、第6
図の電源装置5で高周波電圧を印加して励振すると、各
対向辺3はそれぞれの圧電素子部41〜44の励振に従って
縦および横方向に振動する。このとき圧電素子部42,44
には圧電素子部41,43よりも90゜位相を遅らせた電圧を
印加すると、振動子1の対向辺3の先端部のX点,Y点
は、第5図の様な円または楕円軌道を描いて運動する。
したがって、対向辺3の1面に接触部材6が接触するよ
うに配置してあると、接触部材6は矢印P方向に直線的
に移動する。X点,Y点の楕円軌道の偏平度は、対向辺3
の曲げ方向による曲げ剛性の違いや、各圧電素子部41
44に印加する電圧の大きさ,位相差等により調整でき
る。
Operation Piezoelectric element parts 4 1 to 4 4 on the two opposing sides 3 of the vibrating body 2 and the sixth part
When excited by applying a high frequency voltage power source device 5 of FIG., Each of the opposite sides 3 vibrates in the longitudinal and transverse directions in accordance with the excitation of each of the piezoelectric element 41 to 4. At this time, the piezoelectric element parts 4 2 , 4 4
The piezoelectric element 4 1 to 4 3 when a voltage is applied which is delayed 90 ° phase than, X point of the front end portion of the opposite side 3 of the vibrator 1, Y point, such circular or elliptical Figure 5 Draw a trajectory and move.
Therefore, when the contact member 6 is arranged so as to contact one surface of the facing side 3, the contact member 6 moves linearly in the arrow P direction. The flatness of the elliptical orbit at points X and Y is 3 on the opposite side.
Bending Bending differences and rigidity due to the direction of each piezoelectric element 4 1
It can be adjusted by the magnitude of the voltage applied to 4 4 and the phase difference.

圧電素子部42,44に90゜進み位相の電圧を印加すれば、
第5図と反対回りの軌道を描くことになり、接触部材6
は矢印Pと逆方向に移動する。
If a voltage of 90 ° lead phase is applied to the piezoelectric elements 4 2 and 4 4 ,
A trajectory opposite to that shown in FIG. 5 is drawn, and the contact member 6
Moves in the direction opposite to arrow P.

このように動作するが、各振動体2はコ字状としてある
ので、その両対向辺3が互いに共振し、大きな振幅が得
られる。そのため、電気的エネルギを効率良く機械的駆
動力に変換できる。また、振動体2の共振は、2本の対
向辺3が連続した基端部2aにおいて第3図(A)のよう
に非振動状態となるように行われるので、基端部2aを支
持部とすることにより、支持によって振動を妨げること
がなく、このことからも高効率が得られる。また、この
ように振動体2に振動しない箇所があることから、振動
子1と接触部材6のいずれを固定側としても可動側とし
ても用いることができる。さらに、振動体2は2本の対
向辺3を有し、この部分で接触部材6に接するので、接
触点が多点化される。そのため、摩耗が軽減され、かつ
安定した駆動が可能となる。
Although it operates in this way, since the respective vibrating bodies 2 are U-shaped, their opposing sides 3 resonate with each other and a large amplitude is obtained. Therefore, electrical energy can be efficiently converted into mechanical driving force. Further, the resonance of the vibrating body 2 is performed so that the base end portion 2a where the two opposing sides 3 are continuous is in the non-vibrating state as shown in FIG. 3 (A). By so doing, vibration is not hindered by the support, and high efficiency can be obtained from this as well. Further, since there is a portion where the vibrating body 2 does not vibrate in this way, either the vibrator 1 or the contact member 6 can be used as the fixed side or the movable side. Further, the vibrating body 2 has two opposing sides 3 and contacts the contact member 6 at this portion, so that the number of contact points is increased. Therefore, wear is reduced and stable driving is possible.

この実施例では、対向辺3を第3図(A)のように1次
モードで振動させる場合につき説明したが、第3図
(B),(C)に示すように、2次モードや3次モード
等、高次モードで振動させると、対向辺3の接触部材6
に対する接触点をより一層多くできる。これにより、接
触点における摩耗をより一層少なくし、かつ動作の安定
を図ることができる。1次モードは、対向辺3の長手方
向につき、1枚の圧電素子部4を貼り付けた場合に発生
する。2次モードは、この1枚の圧電素子部4を長手方
向に2分割し、分極方向を反対にして貼付けたときに発
生する。3次モードは、1枚の圧電素子部4を長手方向
に3分割し、中央の分割圧電素子と両側の分割圧電素子
の分極方向を反対として貼り付け、各分割圧電素子の同
一面側の電極を共通として同一の圧電を印加したときに
発生する振幅モードを示す。
In this embodiment, the case where the opposite side 3 is vibrated in the primary mode as shown in FIG. 3 (A) has been described, but as shown in FIGS. 3 (B) and (C), the secondary mode or 3 When vibrating in a higher mode such as the next mode, the contact member 6 on the opposite side 3
The number of contact points with respect to can be further increased. As a result, wear at the contact point can be further reduced and the operation can be stabilized. The primary mode occurs when one piezoelectric element unit 4 is attached in the longitudinal direction of the facing side 3. The secondary mode is generated when the one piezoelectric element portion 4 is divided into two in the longitudinal direction and the polarization directions are opposite to each other. In the third-order mode, one piezoelectric element portion 4 is divided into three in the longitudinal direction, and the central divided piezoelectric element and the divided piezoelectric elements on both sides are attached so that the polarization directions are opposite to each other. Shows the amplitude mode that occurs when the same piezoelectric is applied with the same.

第7図は、1個のコ字状の振動対2からなる振動子1を
用いて回転モータとした実施例を示す。接触部材16は円
板状に形成し、その軸18を軸受19で基台17に回転自在に
支持してある。振動子1は、基端部2aで基台17の立片部
分に固定してある。振動子1の2本の対向辺3は接触部
材16と平行に配置し、その先端部が接触部材16の外周縁
に位置するようにする。対向辺3の先端には摩擦片20を
つけ、2本の振動子3が同方向に円運動するように振動
させ、接触部材16が回転するようにしてある。その他は
第1の実施例と同様である。
FIG. 7 shows an embodiment in which a vibrator 1 including one U-shaped vibration pair 2 is used as a rotary motor. The contact member 16 is formed in a disk shape, and its shaft 18 is rotatably supported by a base 17 by a bearing 19. The vibrator 1 is fixed to the standing piece of the base 17 at the base end 2a. The two opposing sides 3 of the vibrator 1 are arranged in parallel with the contact member 16 so that the tips thereof are located at the outer peripheral edge of the contact member 16. A friction piece 20 is attached to the tip of the opposite side 3, and the two vibrators 3 are vibrated so as to make circular motions in the same direction, and the contact member 16 is rotated. Others are the same as those in the first embodiment.

第8図および第9図は、2個のコ字状の振動体2を間隔
を開けて重合的に配置し、上下の振動体2の間に接触部
材6′を配置したものである。上下の振動体2は互いに
基端部2aでスペーサ(図示せず)を介して重ね合わせて
ある。なお、スペーサを用いずに基台(図示せず)に各
振動体2を個別に取付けてもよい。両振動体2の対向辺
3の各点m,n,p,qは、圧電素子部4により第9図のよう
に振動させられ、接触部材6′は上下両面で各対向辺3
に接して直進駆動される。この場合、2個の振動体2で
駆動するので、より一層大出力の駆動力が得られ、かつ
動作が安定する。その他は、第1の実施例と同様であ
る。両振動体2は、第10図のように基端部2a′で互いに
一体化させ、1個の振動子1′としてもよい。
FIG. 8 and FIG. 9 show two U-shaped vibrators 2 which are arranged in a superposed manner with a space therebetween, and a contact member 6 ′ is arranged between the upper and lower vibrators 2. The upper and lower vibrating bodies 2 are superposed on each other at a base end portion 2a via a spacer (not shown). Each vibrating body 2 may be individually attached to a base (not shown) without using a spacer. The points m, n, p, q on the opposite sides 3 of both vibrating bodies 2 are vibrated by the piezoelectric element portion 4 as shown in FIG.
Drive straight ahead in contact with. In this case, since the two vibrating bodies 2 are used for driving, a larger output driving force can be obtained and the operation is stabilized. Others are the same as those in the first embodiment. Both vibrators 2 may be integrated with each other at the base end portion 2a 'as shown in Fig. 10 to form one vibrator 1'.

第11図は、2個のコ字状の振動体2を互いに反対向きと
して一体のH形の振動子1″を構成した例である。この
振動子1″は、例えば第12図のように用いる。すなわ
ち、振動子1″の中心部に軸31を固定し、軸31は基台37
に固定し、軸受38の装着された円板状の接触部材36を軸
31に嵌めて回転自在とし、1本の対向辺3の先端を接触
部材36と外周縁に配置する。そして、各圧電子部4によ
り、4本の対向辺3の先端が同じ方向に円運動するよう
に撓ませることにより、接触部材36が回転し、回転型の
モータを構成する。その他は第1の実施例と同様であ
る。
FIG. 11 shows an example in which two U-shaped vibrators 2 are oriented in mutually opposite directions to form an integral H-shaped vibrator 1 ″. This vibrator 1 ″ is, for example, as shown in FIG. To use. That is, the shaft 31 is fixed to the center of the vibrator 1 ″, and the shaft 31 is mounted on the base 37.
And the disk-shaped contact member 36 with the bearing 38 mounted on the shaft.
It is fitted in 31 so as to be rotatable, and the tip of one opposing side 3 is arranged on the contact member 36 and the outer peripheral edge. Then, each piezoelectric element 4 bends the tips of the four opposing sides 3 so as to make circular motions in the same direction, whereby the contact member 36 rotates, thereby forming a rotary motor. Others are the same as those in the first embodiment.

第13図ないし第15図は、1個のロ字状の振動体102から
なる振動体101を用いた実施例を示す。この例では、1
次モードの振動とした場合、対向辺103の中央部の点が
円または楕円運動し、その平面部に接触部材106を接触
させると、中央部の円または楕円運動により、接触部材
106は移動することになる。接触部材106は矢印Q方向に
直線的に進退自在に支持してリニアモータとすることも
でき、また接触部材106を回転自在に支持して回転型モ
ータとすることもできる。この例の場合、1次モードで
は第15図(A)のような振動となり、2次モードおよび
3次モードではそれぞれ第15図(B),(C)のような
振動となる。107は、基台である。圧電素子部4の分極
方法は前述と同様である。その他の構成効果は第1の実
施例と同様である。
FIG. 13 to FIG. 15 show an embodiment using a vibrating body 101 composed of one square-shaped vibrating body 102. In this example, 1
In the case of the next mode of vibration, the point at the center of the opposite side 103 moves in a circle or an ellipse, and when the contact member 106 is brought into contact with the plane part, the contact member 106 is moved in a circle or an ellipse in the center.
106 will move. The contact member 106 may be supported linearly in the direction of the arrow Q to be a linear motor, or may be rotatably supported to be a rotary motor. In the case of this example, the vibration as shown in FIG. 15 (A) occurs in the primary mode, and the vibrations as shown in FIGS. 15 (B) and (C) occur in the secondary mode and the tertiary mode, respectively. 107 is a base. The polarization method of the piezoelectric element portion 4 is the same as described above. Other structural effects are similar to those of the first embodiment.

第16図および第17図は、ロ字状の振動体102を、スペー
サ105を介して2枚重合的に配置し、両振動体102の間に
接触部材106を矢印Q方向に直線的に進退自在に配置し
たものである。4本の対向辺103は第9図の運動をする
ように圧電素子部4を取付ける。その他は第1の実施例
と同様である。
In FIGS. 16 and 17, two square-shaped vibrating bodies 102 are superposed on each other via a spacer 105, and a contact member 106 is linearly moved back and forth in the arrow Q direction between both vibrating bodies 102. It is arranged freely. The piezoelectric element portion 4 is attached so that the four opposite sides 103 move as shown in FIG. Others are the same as those in the first embodiment.

なお、第1の実施例および第13図の実施例において、第
18図に示すように、接触部材206を丸棒状として一対の
対向辺3(103)の間に位置させ、回転駆動することも
できる。また、第19図または第20図のように、接触部材
306を円筒状とし、2本の対向辺3(103)を取り囲むよ
うに配置してもよい。第19図の例は接触部材306を対向
辺3の互いの外側の面に接触させ、第20図の例は一対の
対向辺3の互いに同一平面に位置する面に接触させてい
る。この場合も、接触部材3(103)が回転運動を行
う。
In addition, in the first embodiment and the embodiment of FIG.
As shown in FIG. 18, the contact member 206 may be formed into a round bar shape and positioned between the pair of opposed sides 3 (103) to be rotationally driven. Also, as shown in FIG. 19 or 20, the contact member
The 306 may be cylindrical and may be arranged so as to surround the two opposing sides 3 (103). In the example of FIG. 19, the contact member 306 is in contact with the outer surfaces of the facing sides 3 and in the example of FIG. 20, the contacting surfaces of the pair of facing sides 3 are in the same plane. In this case as well, the contact member 3 (103) makes a rotary motion.

また、前記各実施例では、対向辺3,103の隣り合う2面
のみに圧電素子部4を貼り付けたが、3面に圧電素子部
4を貼付けても、また4面に貼付けてもよい。3面に貼
付けた場合は、残りの1面に接触部材6,6′,106を接触
させるようにすることが望ましい。4面に貼付けた場合
は、絶縁部材を介して対向辺3と接触部材6,6′,106と
を接触させることが望ましい。絶縁部材は接触部材6,
6′,106側に設けても、対向辺3側に設けてもよい。
Further, in each of the above-described embodiments, the piezoelectric element portions 4 are attached only to the two adjacent surfaces of the facing sides 3 and 103, but the piezoelectric element portions 4 may be attached to the three surfaces or may be attached to the four surfaces. When it is attached to three surfaces, it is desirable to contact the contact members 6, 6 ', 106 with the remaining one surface. When it is attached to four surfaces, it is desirable that the opposing side 3 and the contact members 6, 6 ', 106 are brought into contact with each other via an insulating member. Insulation member is contact member 6,
It may be provided on the 6 ', 106 side or on the opposite side 3 side.

第21図ないし第23図は、各々振動子401〜401″を圧電材
料で形成し、直接に圧電素子部404〜404″を形成した実
施例を示す。圧電材料としては、PZT(ジルコンチタン
酸鉛磁器)等の圧電セラミック、または圧電セラミック
とプラスチックとの複合圧電材料等が用いられる。
21 to 23 show an embodiment in which the vibrators 401 to 401 ″ are made of a piezoelectric material and the piezoelectric element portions 404 to 404 ″ are directly formed. As the piezoelectric material, a piezoelectric ceramic such as PZT (lead zircon titanate porcelain) or a composite piezoelectric material of piezoelectric ceramic and plastic is used.

第21図の例は、振動子401を1個のコ字形振動体402から
なるものとし、方形断面形状の対向辺403の隣り合う2
面に、1次モードの縦効果を利用した圧電素子部404を
直接に形成したものである。各圧電素子部404は、対向
辺404の長手方向と垂直な複数本の電極a1,b1を前記長手
方向に配列し、これら1本おきの電極a1,b1どうしを接
続部a2,b2で接続して2組の電極組a,bを形成する。すな
わち、電極a1,b1を横方向に交差指状に設ける。これら
2組の電極組a,b間に直流電圧を印加して、分極処理を
施す。図の+,−は分極の極性を示す。このように分極
処理して、第6図の電源装置5と同様な電源装置により
高周波電圧を印加すれば、対向辺403は圧電素子部04の
主として圧電縦効果による伸縮が生じ、屈曲振動を行
う。また、対向辺403の隣合う2面の圧電素子部404に位
相差を持つ電圧を印加すれば、対向辺403の先端は円ま
たは楕円運動を行う。なお、各圧電素子部404の電極a1,
b1は2本だけでもよい。
In the example shown in FIG. 21, the vibrator 401 is composed of one U-shaped vibrator 402, and two adjacent sides 403 of opposite sides 403 having a rectangular cross section are arranged.
The piezoelectric element portion 404 utilizing the longitudinal effect of the primary mode is directly formed on the surface. In each piezoelectric element portion 404, a plurality of electrodes a 1 and b 1 perpendicular to the longitudinal direction of the opposite side 404 are arranged in the longitudinal direction, and every other electrode a 1 and b 1 is connected to the connecting portion a 2 , b 2 are connected to form two electrode sets a and b. That is, the electrodes a 1 and b 1 are provided in the crosswise direction in the lateral direction. A DC voltage is applied between the two electrode sets a and b to perform polarization treatment. + And-in the figure show the polarities of polarization. If the high-frequency voltage is applied by a power supply device similar to the power supply device 5 in FIG. 6 by performing the polarization process in this way, the opposite side 403 is expanded and contracted mainly by the piezoelectric vertical effect of the piezoelectric element portion 04, and bending vibration is performed. . Further, when a voltage having a phase difference is applied to the two adjacent piezoelectric element portions 404 of the facing side 403, the tip of the facing side 403 makes a circular or elliptical motion. Note that the electrodes a 1 ,
Only two b 1's are needed.

第22図の例は、対向辺403′の隣り合う2面に、圧電横
効果を利用した圧電素子部404′を形成したものであ
る。この例では、電極c,dは縦方向の交差指状に設け
る。すなわち、各圧電素子部404′は、対向辺403′の長
手方向に沿って2本または多数本の平行な電極c,dから
なる交差指電極を形成する。この電極c,d間に直流電圧
を印加して分極処理を施す。図の+,−は分極の極性を
示す。このように分極処理して電極c,d間に高周波電圧
を印加すれば、対向辺403′は圧電素子部404′の圧電横
効果による伸縮を生じ屈曲振動を行う。その他の構成作
用は、第21図の実施例と同様である。
In the example of FIG. 22, a piezoelectric element portion 404 'utilizing the piezoelectric lateral effect is formed on two adjacent surfaces of the opposing side 403'. In this example, the electrodes c and d are provided in a crosswise finger shape in the vertical direction. That is, each piezoelectric element portion 404 'forms an interdigital electrode composed of two or a plurality of parallel electrodes c and d along the longitudinal direction of the opposite side 403'. A DC voltage is applied between the electrodes c and d to perform polarization treatment. + And-in the figure show the polarities of polarization. When the high-frequency voltage is applied between the electrodes c and d by the polarization process as described above, the opposing side 403 'expands and contracts due to the piezoelectric lateral effect of the piezoelectric element portion 404' and causes bending vibration. The other constructional effects are similar to those of the embodiment shown in FIG.

第23図の例は、振動子401″が1個のロ字状の振動体40
2″の2次の屈曲モードを利用する実施例で、各対向辺4
03″の隣合う2面の各々に圧電横効果を利用した圧電素
子部404″を2個づつ形成したものである。すなわち、
対向辺403″に長手方向中央部の両側に位置して、長手
方向に沿う電極e,fを2本ずつ平行に4本設け、平行な
2本ずつを1組としてこの2本の間に直流電圧を印加し
て分極処理する。このとき、1組目の電極e,fと2組目
の電極e,fとは極性を反対にして分極し、同相の高周波
電圧を印加するかまたは、分極を同一方向とし反対の極
性の高周波電圧を印加する。
In the example shown in FIG. 23, the vibrator 401 ″ has a single square-shaped vibrator 40.
In the embodiment using the 2 ″ secondary bending mode, each facing side 4
Two piezoelectric element parts 404 ″ utilizing the piezoelectric lateral effect are formed on each of two adjacent surfaces of 03 ″. That is,
Two electrodes e and f are provided in parallel on the opposite sides 403 ″ on both sides of the central portion in the longitudinal direction, and two electrodes e and f along the longitudinal direction are provided in parallel. Polarization is performed by applying a voltage.At this time, the first set of electrodes e and f and the second set of electrodes e and f are polarized with their polarities opposite to each other and a high frequency voltage of the same phase is applied or The same direction is applied, and a high frequency voltage of opposite polarity is applied.

これら第21図ないし第23図の振動子401〜401″を用いて
前記各実施例と同様に接触部材6,36等と組合せることに
より、往復動型または回転型等の圧電駆動装置が構成さ
れる。
By combining the vibrators 401 to 401 ″ of FIGS. 21 to 23 with the contact members 6, 36 and the like in the same manner as in the above embodiments, a reciprocating type or rotating type piezoelectric drive device is configured. To be done.

なお、これら第21図ないし第23図の例と同様に、第10
図,第11図,第16図の例のように振動子が複数個の振動
体からなるものにおいても、振動子を圧電材料で形成し
て直接に電極を形成することもできる。
It should be noted that, similar to the example of FIGS. 21 to 23,
Even in the case where the vibrator is composed of a plurality of vibrators as in the examples of FIGS. 11, 11 and 16, the vibrator can be formed of a piezoelectric material to directly form the electrodes.

また、貼付けの場合と同様に、対向辺403〜403″の3面
または4面に圧電素子部404〜404″を設けることもで
き、さらに高次モードで対向辺403〜403″を振動させる
ように構成することもできる。
Further, similarly to the case of pasting, the piezoelectric element portions 404 to 404 ″ can be provided on the three or four surfaces of the opposite sides 403 to 403 ″, and the opposite sides 403 to 403 ″ can be vibrated in a higher order mode. It can also be configured to.

このように、振動子401〜401″に圧電セラミック等の圧
電材料を用いて振動子401〜401″に圧電素子部404〜40
4″を直接に形成することにより、圧電素子の貼着が省
略でき、接着層がないことから性能の安定が図れる。ま
た、形状的にも複雑なものが可能となり、コスト面にお
よび性能面で有利な圧電駆動装置が構成できる。
As described above, the piezoelectric elements such as piezoelectric ceramics are used for the vibrators 401 to 401 ″ and the piezoelectric elements 404 to 40 ″ are applied to the vibrators 401 to 401 ″.
By directly forming the 4 ″, the attachment of the piezoelectric element can be omitted, and the performance is stable because there is no adhesive layer. In addition, it is possible to make the shape complicated, and the cost and performance are improved. Thus, an advantageous piezoelectric drive device can be constructed.

〔発明の効果〕〔The invention's effect〕

この発明の圧電駆動装置は、各振動体をコ字状またはロ
字状としてあるので、その両対向辺が互いに共振し、大
きな振幅が得られる。そのため、電気的エネルギを効率
良く機械的駆動力に変換できる。また、振動体の共振
は、2本の対向辺が連続した基端部において非振動状態
となるように行われるので、基端部を支持部とすること
により、支持によって振動を妨げることがなく、このこ
とからも高効率が得られる。また、このように振動体に
振動しない箇所があることから、振動子と接触部材のい
ずれを固定側としても可動側としても用いることができ
る。さらに、振動体は2本の対向辺を有し、この部分で
接触部材に接するので、接触点が多点化される。そのた
め、摩耗が軽減され、かつ安定した駆動が可能となると
いう効果がある。なお、圧電材料に直接に電極を形成し
て圧電素子部を形成した場合は、圧電素子を貼付けるも
のと異なり、貼付け誤差等による特性のばらつきがな
く、かつ工数が削減されて生産性が向上する。
In the piezoelectric drive device of the present invention, since each vibrating body is U-shaped or R-shaped, both opposing sides thereof resonate with each other, and a large amplitude is obtained. Therefore, electrical energy can be efficiently converted into mechanical driving force. Further, since the resonance of the vibrating body is performed so that the base end where two opposite sides are continuous is in a non-vibrating state, by using the base end as a support portion, the support does not interfere with the vibration. From this, high efficiency can be obtained. Further, since there is a portion where the vibrating body does not vibrate as described above, either the vibrator or the contact member can be used as the fixed side or the movable side. Further, since the vibrating body has two opposing sides and contacts the contact member at this portion, the number of contact points is increased. Therefore, there is an effect that abrasion is reduced and stable driving is possible. When the piezoelectric element part is formed by directly forming electrodes on the piezoelectric material, unlike the case where the piezoelectric element is attached, there is no variation in characteristics due to attachment errors and the number of steps is reduced, improving productivity. To do.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例の斜視図、第2図はその破
断側面図、第3図は同じくその振動モードの説明図、第
4図(A)は同じくその振動子の平面図、第4図(B)
は同じくその正面図、第5図は同じくその動作説明図、
第6図は同じくその電源装置のブロック、第7図
(A),(B)はそれぞれ他の実施例の平面図および破
断側面図、第8図(A)はさらに他の実施例の平面図,
第8図(B)はその正面図、第9図は同じくその動作説
明図、第10図はさらに他の実施例の振動子の斜視図、第
11図はさらに他の実施例の振動子の斜視図、第12図
(A),(B)はそれぞれその全体の破断平面図および
縦断側面図、第13図はさらに他の実施例の斜視図、第14
図はその破断側面図、第15図は同じくその振動モードの
説明図、第16図はさらに他の実施例の振動子の斜視図、
第17図はその全体の斜視図、第18図はさらに他の実施例
の原理説明図、第19図はさらに他の実施例の原理説明
図、第20図はさらに他の実施例の原理説明図、第21図な
いし第23図はそれぞれ互いに異なるさらに他の実施例に
おける振動子の斜視図である。 1,1′,1″,101,401〜401″……振動子、2,102,402,40
2′,402″……振動体、3,103,303,303′,303″……対向
辺、4,41〜44,404,404′,404″……圧電素子部、6,6′,
16,106,206,306……接触部材
FIG. 1 is a perspective view of an embodiment of the present invention, FIG. 2 is a cutaway side view thereof, FIG. 3 is an explanatory view of its vibration mode, and FIG. 4 (A) is a plan view of its vibrator. Fig. 4 (B)
Is also its front view, and FIG. 5 is also its operation explanatory diagram,
FIG. 6 is a block diagram of the power supply unit, FIGS. 7 (A) and 7 (B) are plan views and broken side views of another embodiment, and FIG. 8 (A) is a plan view of still another embodiment. ,
FIG. 8 (B) is a front view thereof, FIG. 9 is an operation explanatory view thereof, and FIG. 10 is a perspective view of a vibrator of still another embodiment.
FIG. 11 is a perspective view of a vibrator of still another embodiment, FIGS. 12 (A) and 12 (B) are respectively a plan view and a vertical sectional side view of the whole, and FIG. 13 is a perspective view of still another embodiment. , 14th
FIG. 16 is a cutaway side view thereof, FIG. 15 is an explanatory view of its vibration mode, FIG. 16 is a perspective view of a vibrator of still another embodiment,
FIG. 17 is a perspective view of the whole thereof, FIG. 18 is a principle explanatory view of still another embodiment, FIG. 19 is a principle explanatory view of yet another embodiment, and FIG. 20 is a principle explanation of yet another embodiment. FIGS. 21 and 23 are perspective views of vibrators according to further different embodiments. 1,1 ′, 1 ″, 101,401 to 401 ″ …… Resonator, 2,102,402,40
2 ′, 402 ″ …… Vibrator, 3,103,303,303 ′, 303 ″ …… Opposite side, 4,4 1 to 4 4 , 404,404 ′, 404 ″ …… Piezoelectric element part, 6,6 ′,
16,106,206,306 …… Contact member

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高田 孝 大阪府門真市大字門真1048番地 松下電工 株式会社内 (72)発明者 石橋 誠輝 大阪府門真市大字門真1048番地 松下電工 株式会社内 (56)参考文献 特開 昭61−15572(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Takashi Takada, 1048 Kadoma, Kadoma City, Osaka Prefecture, Matsushita Electric Works, Ltd. (72) Seiki Ishibashi, 1048, Kadoma, Kadoma City, Osaka, Matsushita Electric Works, Ltd. (56) References JP-A-61-15572 (JP, A)

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】弾性を有する材料にてコ字状またはロ字状
に形成され、かつ一対の対向辺の断面形状が各々ほぼ方
形である振動体を少なくとも1個備え、さらに前記振動
体は前記各対向辺の少なくとも隣合う2面に圧電素子部
を有してなり、この圧電素子部に所定の高周波電圧が印
加されて前記対向辺が屈曲振動により共振する振動子
と、 前記各対向辺の隣合う圧電素子部に位相差を持たせて高
周波電圧を印加する電源装置と、 前記振動子の対向辺の各1面に接触される接触部材とを
備え、 前記振動子の対向辺の最大振幅点が円または楕円運動を
することにより、前記接触部材または振動子のいずれか
が駆動される圧電駆動装置。
1. A vibrating body, which is formed of an elastic material in a U-shape or a U-shape, and has a pair of opposing sides each having a substantially rectangular cross-section. A vibrator having a piezoelectric element section on at least two adjacent sides of each opposing side, wherein a predetermined high frequency voltage is applied to the piezoelectric element section, and the opposing side resonates by bending vibration; A power supply device that applies a high-frequency voltage with a phase difference between adjacent piezoelectric element parts, and a contact member that contacts each one of the facing sides of the vibrator, and the maximum amplitude of the facing side of the vibrator is provided. A piezoelectric drive device in which either the contact member or the vibrator is driven by the point making a circular or elliptical motion.
【請求項2】前記圧電素子部は、前記振動体に圧電素子
を貼着して形成される特許請求の範囲第1項記載の圧電
駆動装置。
2. The piezoelectric drive device according to claim 1, wherein the piezoelectric element portion is formed by attaching a piezoelectric element to the vibrating body.
【請求項3】前記振動体は圧電セラミックスで構成し、
前記圧電素子部はこの圧電セラミックに駆動用電極を直
接形成してなる特許請求の範囲第1項記載の圧電駆動装
置。
3. The vibrating body is made of piezoelectric ceramics,
The piezoelectric drive device according to claim 1, wherein the piezoelectric element portion is formed by directly forming a drive electrode on the piezoelectric ceramic.
【請求項4】前記振動子は、1個の振動体からなる特許
請求の範囲第2項または第3項記載の圧電駆動装置
4. The piezoelectric drive device according to claim 2 or 3, wherein the vibrator is composed of one vibrator.
【請求項5】前記振動子は、2個の振動体からなる特許
請求の範囲第2項または第3項記載の圧電駆動装置
5. The piezoelectric drive device according to claim 2, wherein the vibrator is composed of two vibrating bodies.
【請求項6】前記2個の振動体は、所定の間隔を介在さ
せて重合的に配設され、前記接触部材が前記振動体の2
対の対向辺に接触される特許請求の範囲第5項記載の圧
電駆動装置。
6. The two vibrating bodies are superposedly arranged with a predetermined space therebetween, and the contact member is a vibrating body.
The piezoelectric drive device according to claim 5, wherein the piezoelectric drive device is in contact with opposite sides of the pair.
【請求項7】前記2個の振動体は、個々の振動体がコ字
状をなすものであってH型に配設され、前記接触部材が
前記振動体の2対の対向辺に接触されている特許請求の
範囲第5項記載の圧電駆動装置。
7. The two vibrating bodies, wherein each vibrating body is U-shaped and arranged in an H shape, and the contact member is in contact with two pairs of opposing sides of the vibrating body. The piezoelectric drive device according to claim 5.
【請求項8】前記接触部材は、平板状に形成され、前記
接触部材または前記振動子のいずれかが直線的に駆動さ
れる特許請求の範囲第2項または第3項記載の圧電駆動
装置。
8. The piezoelectric driving device according to claim 2, wherein the contact member is formed in a flat plate shape, and either the contact member or the vibrator is linearly driven.
【請求項9】前記接触部材は、円板状に形成され、前記
接触部材または前記振動子のいずれかが回転的に駆動さ
れる特許請求の範囲第2項または第3項記載の圧電駆動
装置。
9. The piezoelectric drive device according to claim 2, wherein the contact member is formed in a disc shape, and either the contact member or the vibrator is rotationally driven. .
【請求項10】前記接触部材は、前記一対の対向辺の間
にこの対向辺と平行に延びる丸軸状に形成され、前記接
触部材または前記振動子のいずれかが回転的に駆動され
る特許請求の範囲第4項記載の圧電駆動装置。
10. The contact member is formed in the shape of a round shaft extending between the pair of opposing sides in parallel with the opposing sides, and either the contact member or the vibrator is rotationally driven. The piezoelectric drive device according to claim 4.
【請求項11】前記接触部材は、円筒状に形成され、前
記接触部材または前記振動子のいずれかが回転的に駆動
される特許請求の範囲第2項または第3項記載の圧電駆
動装置。
11. The piezoelectric drive device according to claim 2, wherein the contact member is formed in a cylindrical shape, and either the contact member or the vibrator is rotationally driven.
JP61227502A 1986-02-06 1986-09-25 Piezoelectric drive Expired - Lifetime JPH0773428B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US07/007,673 US4742260A (en) 1986-02-06 1987-01-28 Piezoelectrically driving device
DE19873703676 DE3703676A1 (en) 1986-02-06 1987-02-06 PIEZOELECTRIC DRIVE DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2470686 1986-02-06
JP61-24706 1986-02-06

Publications (2)

Publication Number Publication Date
JPS62277079A JPS62277079A (en) 1987-12-01
JPH0773428B2 true JPH0773428B2 (en) 1995-08-02

Family

ID=12145618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61227502A Expired - Lifetime JPH0773428B2 (en) 1986-02-06 1986-09-25 Piezoelectric drive

Country Status (1)

Country Link
JP (1) JPH0773428B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63294281A (en) * 1987-05-25 1988-11-30 Hiroshi Shimizu Piezoelectric driving device
JPS63294279A (en) * 1987-05-25 1988-11-30 Hiroshi Shimizu Piezoelectric driving device
JPS63294278A (en) * 1987-05-25 1988-11-30 Hiroshi Shimizu Piezoelectric driving device
JP2552429Y2 (en) * 1988-05-11 1997-10-29 富士写真フイルム株式会社 Shutter device
US7157830B2 (en) * 2003-04-02 2007-01-02 Piezomotor Uppsala Ab Near-resonance wide-range operating electromechanical motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2510486B2 (en) * 1984-06-29 1996-06-26 キヤノン株式会社 Piezoelectric device

Also Published As

Publication number Publication date
JPS62277079A (en) 1987-12-01

Similar Documents

Publication Publication Date Title
US4742260A (en) Piezoelectrically driving device
CN111464070B (en) Linear ultrasonic motor stator and electric excitation method thereof
JPH0117354B2 (en)
JP4119903B2 (en) Flat plate piezoelectric ultrasonic motor
JPH0458273B2 (en)
JPS62259485A (en) Piezoelectric driving apparatus
JPH0773428B2 (en) Piezoelectric drive
JP2902712B2 (en) Ultrasonic motor
JPH0470876B2 (en)
JPS63110973A (en) Piezoelectric driver
JPH0470875B2 (en)
JPH0552137B2 (en)
JPH0458272B2 (en)
JPS5989583A (en) Driving device using piezoelectric vibrator
JPS63110972A (en) Piezoelectric device
JPS6356181A (en) Piezo-electric motor
JP2538033B2 (en) Planar ultrasonic actuator
JP2585574B2 (en) Ultrasonic drive using a ring-shaped piezoelectric vibrator
JPH0724956Y2 (en) Ultrasonic linear motor
JPH08163879A (en) Ultrasonic oscillator and ultrasonic motor
JPH01308172A (en) Ultrasonic wave driver
JPH0744852B2 (en) Standing wave type ultrasonic motor
JPS63217983A (en) Ultrasonic driving device
JPH03155374A (en) Ultrasonic motor
JP2538026B2 (en) Planar ultrasonic actuator