JPS6252422B2 - - Google Patents

Info

Publication number
JPS6252422B2
JPS6252422B2 JP53072066A JP7206678A JPS6252422B2 JP S6252422 B2 JPS6252422 B2 JP S6252422B2 JP 53072066 A JP53072066 A JP 53072066A JP 7206678 A JP7206678 A JP 7206678A JP S6252422 B2 JPS6252422 B2 JP S6252422B2
Authority
JP
Japan
Prior art keywords
graphite
graphite coating
electron gun
funnel
cathode ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53072066A
Other languages
Japanese (ja)
Other versions
JPS551010A (en
Inventor
Shigemi Hirasawa
Hiromi Kanai
Hiroyoshi Choda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Corp
Original Assignee
Hitachi Ltd
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Powdered Metals Co Ltd filed Critical Hitachi Ltd
Priority to JP7206678A priority Critical patent/JPS551010A/en
Publication of JPS551010A publication Critical patent/JPS551010A/en
Publication of JPS6252422B2 publication Critical patent/JPS6252422B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はカラーブラウン管、特に管内壁面に塗
布された導電性黒鉛被膜(以下黒鉛被膜と称す
る)に関するものである。 通常、カラーブラウン管のフアンネル部内壁面
に被着形成された黒鉛被膜は、高電圧が印加され
て電子ビームを加速する機能、シヤドウマスクな
どの電極から発生した2次電子を補集して2次電
子による色純度の劣化を防止する機能あるいは電
子銃構体に高電圧を供給する機能など種々の重要
な機能を果すものであり、ガス放出および吸着能
など管内真空度に悪影響を与えないことが要求さ
れている。一方、この黒鉛を主成分とする黒鉛被
膜は、次のような方法によりパルプのフアンネル
部内壁面に被着形成される。すなわちカラーブラ
ウン管を構成するフアンネル部内壁面を例えば弗
化水素などの洗浄剤を用いて洗浄し、乾燥した
後、この内壁面の所定部分に対し黒鉛中にバイン
ダーとして例えば珪酸カリ、珪酸ソーダ、珪酸リ
チウムなどのような珪酸塩を一定の割合で添加調
合した黒鉛塗料を刷子塗り法あるいはスプレー法
などを用いて塗布した後、熱処理を施して黒鉛被
膜を形成する。 このように形成されたカラーブラウン管は、フ
アンネル中央部にこの黒鉛被膜に接触して高電圧
を供給するアノードボタンが埋設され、さらにネ
ツク部には電子銃構体の最終電極に接続された高
電圧を受給するバルブスペーサコンタクトが黒鉛
被膜に接触配置されて外部高電圧発生回路から高
電圧がアノードボタン、黒鉛被膜、バルブスペー
サコンタクトを介して電子銃の電極に供給され
る。 しかしながら、上記黒鉛被膜はそのネツク部分
に電子銃構体の一部であつて高電圧を受給するバ
ルブスペーサコンタクトが接触配置されるため、
動作時管内異物等により発生するスパークの大電
流が当該部分を流れていた。 したがつて、このようなスパークの発生率を減
少させようとしたものとしては、例えば電子銃構
体をフアンネル部に封止する前にバルブに衝撃を
与えることによつてバルブ内のゴミを除去させた
り、ネツク部を再洗浄させたりあるいは強固な黒
鉛被膜を形成して当接部分の削れを防止させたり
する方法等種々の手段によつて処置していたが、
スパークの発生を確実に除去することが困難であ
つた。 一方、このようなスパークの発生は、高電圧発
生回路からアノードボタン、黒鉛被膜およびバル
ブスペーサコンタクトを介して電子銃回路に約
1000Aの大電流(Eb=30KV)が流れ、バルブス
ペーサコンタクトとその当接する黒鉛被膜とを損
傷させ、電子銃回路に供給する電流を大幅に低下
させ、また電子銃構体に接続された電子銃回路を
損傷させていた。なお、このような構造における
前記黒鉛被膜の比抵抗は約0.15Ω−cm、また抵抗
値は約1KΩ未満程度のものである。 このような欠点を除去しようとしたものとして
は、Fe2O3、黒鉛、水ガラスを主成分とした高抵
抗値の黒鉛被膜をフアンネル部内壁面に塗布して
高抵抗値を持たせ、スパーク時に発生する大電流
を小さくさせる方法が提案されている。 ところが、このFe2O3系の黒鉛被膜は、TiO2
の黒鉛被膜(TiO2、黒鉛、水ガラスが主成分)
と比較すると、ガス放出特性においてTiO2系黒
鉛被膜より劣るため、真空度不良、エミツシヨン
不良等を起すことがある。これはゲツターの飛散
量を増加させることによつて対策が可能である
が、コスト増となるため、有利ではない。また、
Fe2O3系の黒鉛被膜は、黒鉛とFe2O3との比重差
がTiO2系の黒鉛被膜より大きいため、材料スラ
リーの安定性が多少劣る傾向を有しており、この
ため、塗布時点での管理工数の増加につながり、
やはり有利ではない。さらに黒鉛被膜の強度は、
Fe2O3系黒鉛被膜とTiO2系黒鉛被膜では同等ない
し多少Fe2O3系の黒鉛被膜が有利であるが、実用
上の強度としてはTiO2系黒鉛被膜の場合で充分
で全く問題はない。したがつて、この両者を綜合
的に比較すると、TiO2系黒鉛被膜の方が優れて
いることになる。 したがつて、本発明の目的は上記の点に着目し
てなされたものであり、スパークの発生を減少さ
せると共に例えスパークが発生してもバルブスペ
ーサコンタクトとその当接する黒鉛被膜の損傷お
よび電子銃回路の損傷を防止したカラーブラウン
管を提供することにある。 このような目的を達成するために本発明による
カラーブラウン管は、黒鉛、二酸化チタン、水ガ
ラスを主成分として比抵抗が100〜105Ω−cmを有
する黒鉛被膜材料をフアンネルコーン部とネツク
部間に塗布し、アノードボタンと電子銃の電極に
接続されたバルブスペーサコンタクト間に5KΩ
〜5MΩの抵抗値を持たせたものである。以下図
面を用いて本発明によるカラーブラウン管につい
て詳細に説明する。 第1図は本発明によるカラーブラウン管の一実
施例を示す要部断面図である。同図において、1
はパネル部、2はフアンネル部、2aはフアンネ
ルコーン部、2bはフアンネルネツク部、3はパ
ネル部1の内面側に配置されたシヤドウマスク、
4はフアンネルコーン部2aの内壁面に被着形成
されたコーン部内装黒鉛被膜、5はフアンネルコ
ーン部2aの内壁面に被着形成された本発明によ
るTiO2系高抵抗黒鉛被膜、6はフアンネルネツ
ク部2bの内壁面に被着形成されたネツク部内装
黒鉛被膜、7はコーン部内装黒鉛被膜4に外部か
ら高電圧を供給するアノードボタン、8は電子銃
構体、9はネツク部内装黒鉛被膜6にその接触片
を当接させて電子銃構体8の一部を構成すると共
に高電圧を受給するバルブスペーサコンタクト、
10は電子銃構体8の先端部に設けられたゲツタ
ー、11は電子銃構体8方向へのゲツター10の
飛散を遮蔽するゲツターシールドである。 実施例 1 まず、重量比で黒鉛=11、TiO2=100、水ガラ
ス=30を主成分としたTiO2系黒鉛を第1図に示
した20型90゜偏向のカラーブラウン管フアンネル
コーン部2aの内壁面でフアンネルネツク部2b
近傍に塗布し、高抵抗黒鉛被膜5を被着形成し
た。このような構成によれば、真空中におけるア
ノードボタン7と電子銃構体8のバルブスペーサ
コンタクト9間に約400KΩの高抵抗値が得ら
れ、スパーク時の電流は従来の約1/30に減少させ
ることができた。この場合、ゲツター10は電子
銃構体8の先端部に取り付けられ、電子銃構体8
に電気的に接続されるが、ゲツター10の支持体
がフアンネルコーン部2aの内壁に接触する部分
はコーン部内装黒鉛被膜4を塗布しなかつた。さ
らに、ゲツター10にはゲツターシールド11を
取り付け、高抵抗黒鉛被膜5にゲツター10材が
まわり込み等による被着を除いて直接飛着しない
ように構成されている。 実施例 2 第2図は本発明によるカラーブラウン管の他の
実施例を示す要部断面図であり、第1図と同記号
は同一要素となるのでその説明は省略する。同図
において、まず、重量比で黒鉛=12、TiO2
100、水ガラス=30を主成分としたTiO2系黒鉛を
フアンネルコーン部2aの内壁面でフアンネルネ
ツク部2b近傍とアノードボタン7間に塗布し、
高抵抗黒鉛被膜12を被着形成した。このような
構成によれば、真空中でのアノードボタン7とバ
ルブスペーサコンタクト9間におけるスパークの
電流は約1/15に減少させることができた。この場
合、ゲツター10はサエスゲツター社製のフリツ
タブルゲツターをシヤドウマスク3のフレームに
取り付け、主としてけい光面方向にゲツターを飛
散させた。 なお、上記実施例においては、高抵抗黒鉛被膜
5,12の被着形状をフアンネルコーン部2aの
内壁面にリング状に被着形成した場合について説
明したが、本発明はこれに限定されるものではな
く、他の黒鉛被膜の一部に独立して例えば帯状に
被着形成してアノードボタン7とバルブスペーサ
コンタクト9間に5KΩ〜5MΩの抵抗値が得られ
れば前述と同様の効果が得られる。 また、上記実施例においては、高抵抗黒鉛被膜
5,12にゲツター10がまわり込み等による被
着を除いて直接飛着して抵抗値を劣化させること
のないようにその位置、飛散方向を決定しなけれ
ばならない。また、それが困難な場合には、ゲツ
ター材が高抵抗黒鉛被膜5,12方向に飛散して
抵抗値を劣化させないようなゲツターシールド1
1の構造にしなければならない。 なお、上述の実施例では高抵抗黒鉛被膜5,1
2上にゲツター材が直接飛着しないことと説明し
たが、まわり込みなどによる被着は避け難く、ま
た不連続であれば問題はない。上述では比抵抗が
100〜105Ω−cm、抵抗値を5KΩ〜5MΩとした
が、比抵抗及び抵抗値がこの範囲を外れるとスパ
ーク電流が大きくなり、またスポツトノツキング
作業が困難になり、さらに導通不良によるバルブ
クラツクの発生等の不具合があり、さらにまた暗
電流の変動に対するフオーカス安定度に問題があ
り、これらの値については動作中のスパークと、
製造時のスポツトノツキングとのかね合い等で決
められる。 これを更に詳細に説明すると、19″及び20″カラ
ーブラウン管を用い、比抵抗、抵抗値等をかえて
試作した結果を表1に示す。
The present invention relates to a color cathode ray tube, and particularly to a conductive graphite coating (hereinafter referred to as graphite coating) coated on the inner wall surface of the tube. Normally, the graphite coating formed on the inner wall surface of the funnel part of a color cathode ray tube has the function of accelerating the electron beam by applying a high voltage, and collecting secondary electrons generated from electrodes such as a shadow mask. It performs various important functions such as preventing deterioration of color purity and supplying high voltage to the electron gun structure, and is required to have no adverse effect on the vacuum inside the tube such as gas release and adsorption ability. There is. On the other hand, this graphite film containing graphite as a main component is formed on the inner wall surface of the funnel portion of the pulp by the following method. That is, after cleaning the inner wall surface of the funnel part constituting the color cathode ray tube using a cleaning agent such as hydrogen fluoride and drying, a predetermined portion of the inner wall surface is coated with a binder such as potassium silicate, sodium silicate, or lithium silicate in graphite. After applying a graphite paint prepared by adding a certain proportion of silicate, such as the following, using a brush coating method or a spray method, heat treatment is performed to form a graphite coating. The color cathode ray tube formed in this way has an anode button buried in the center of the funnel that contacts this graphite coating and supplies a high voltage, and a high voltage connected to the final electrode of the electron gun structure in the neck. A receiving valve spacer contact is disposed in contact with the graphite coating, and a high voltage is supplied from an external high voltage generating circuit to the electrode of the electron gun via the anode button, the graphite coating, and the valve spacer contact. However, the graphite coating has a valve spacer contact that is part of the electron gun structure and receives high voltage, and is placed in contact with the neck portion of the graphite coating.
During operation, a large current from sparks generated by foreign objects inside the pipe was flowing through the relevant part. Therefore, attempts to reduce the incidence of such sparks include, for example, applying an impact to the bulb to remove dust from the bulb before sealing the electron gun assembly in the funnel. Various methods have been used to treat the problem, such as re-cleaning the neck area, or forming a strong graphite film to prevent the contact area from being scraped.
It was difficult to reliably eliminate spark generation. On the other hand, such a spark is generated from the high voltage generation circuit to the electron gun circuit via the anode button, graphite coating and valve spacer contact.
A large current of 1000A (Eb = 30KV) flows, damaging the valve spacer contact and the graphite film in contact with it, significantly reducing the current supplied to the electron gun circuit, and also damaging the electron gun circuit connected to the electron gun structure. was causing damage. In addition, the specific resistance of the graphite coating in such a structure is about 0.15 Ω-cm, and the resistance value is about less than about 1 KΩ. An attempt has been made to eliminate these defects by applying a high-resistance graphite film containing Fe 2 O 3 , graphite, and water glass as the main components to the inner wall of the funnel to give it a high resistance value. Methods have been proposed to reduce the large current generated. However, this Fe 2 O 3 -based graphite coating is a TiO 2 -based graphite coating (mainly composed of TiO 2 , graphite, and water glass).
Compared to TiO2-based graphite coatings, the gas release properties are inferior to those of TiO2- based graphite coatings, which may result in poor vacuum, poor emission, etc. This can be countered by increasing the amount of getters scattered, but this is not advantageous because it increases cost. Also,
Fe 2 O 3 -based graphite coatings have a larger specific gravity difference between graphite and Fe 2 O 3 than TiO 2 -based graphite coatings, so the stability of the material slurry tends to be somewhat inferior. This leads to an increase in management man-hours at the time,
It's still not advantageous. Furthermore, the strength of the graphite coating is
Fe 2 O 3 -based graphite coatings and TiO 2 -based graphite coatings are equivalent, or Fe 2 O 3 -based graphite coatings are more or less advantageous, but in terms of practical strength, TiO 2 -based graphite coatings are sufficient and there are no problems at all. do not have. Therefore, if the two are comprehensively compared, the TiO 2 -based graphite coating is superior. Therefore, it is an object of the present invention to reduce the occurrence of sparks, and even if sparks occur, damage to the valve spacer contact and the graphite coating in contact with it, and prevent the electron gun from being damaged. An object of the present invention is to provide a color cathode ray tube whose circuits are prevented from being damaged. In order to achieve this object, the color cathode ray tube according to the present invention has a funnel cone and a graphite coating material mainly composed of graphite, titanium dioxide, and water glass and having a specific resistance of 10 0 to 10 5 Ω-cm. 5KΩ between the valve spacer contact connected to the anode button and the electron gun electrode.
It has a resistance value of ~5MΩ. The color cathode ray tube according to the present invention will be described in detail below with reference to the drawings. FIG. 1 is a sectional view of essential parts showing an embodiment of a color cathode ray tube according to the present invention. In the same figure, 1
2 is a panel portion, 2 is a funnel portion, 2a is a funnel cone portion, 2b is a funnel neck portion, 3 is a shadow mask disposed on the inner surface side of the panel portion 1,
4 is a cone internal graphite coating formed on the inner wall surface of the funnel cone portion 2a; 5 is a TiO 2 -based high-resistance graphite coating according to the present invention formed on the inner wall surface of the funnel cone portion 2a; 6 Reference numeral 1 indicates a graphite coating inside the neck portion formed on the inner wall surface of the funnel neck portion 2b, 7 indicates an anode button for supplying high voltage from the outside to the graphite coating 4 on the interior of the cone portion, 8 indicates the electron gun structure, and 9 indicates graphite coating inside the neck portion. a valve spacer contact which forms part of the electron gun assembly 8 by bringing its contact piece into contact with the coating 6 and receives high voltage;
10 is a getter provided at the tip of the electron gun assembly 8, and 11 is a getter shield for shielding the getter 10 from scattering in the direction of the electron gun assembly 8. Example 1 First, TiO 2 -based graphite whose main components are graphite = 11, TiO 2 = 100, and water glass = 30 in weight ratio was placed in the funnel cone portion 2a of a 20-inch 90° deflection color cathode ray tube shown in Fig. 1. Funnel neck part 2b on the inner wall surface of
A high resistance graphite coating 5 was formed by applying the coating in the vicinity. With this configuration, a high resistance value of about 400KΩ can be obtained between the anode button 7 and the valve spacer contact 9 of the electron gun assembly 8 in a vacuum, and the current at the time of sparking is reduced to about 1/30 of the conventional one. I was able to do that. In this case, the getter 10 is attached to the tip of the electron gun assembly 8, and the getter 10 is attached to the tip of the electron gun assembly 8.
However, the cone interior graphite coating 4 was not applied to the portion where the support of the getter 10 contacts the inner wall of the funnel cone portion 2a. Further, a getter shield 11 is attached to the getter 10 to prevent the material of the getter 10 from directly flying onto the high-resistance graphite coating 5 except for adhesion due to wrapping or the like. Embodiment 2 FIG. 2 is a sectional view of a main part showing another embodiment of the color cathode ray tube according to the present invention, and since the same symbols as in FIG. 1 represent the same elements, a description thereof will be omitted. In the same figure, first, graphite = 12, TiO 2 =
100, water glass = 30 is applied as a main component on the inner wall surface of the funnel cone portion 2a , near the funnel neck portion 2b and between the anode button 7,
A high resistance graphite coating 12 was deposited. With this configuration, the spark current between the anode button 7 and the valve spacer contact 9 in a vacuum can be reduced to about 1/15. In this case, the getter 10 was a frittable getter manufactured by SAES Getter Co., Ltd., attached to the frame of the shadow mask 3, and the getter was scattered mainly in the direction of the phosphorescent surface. In the above embodiment, the case where the high-resistance graphite coatings 5 and 12 are deposited in a ring shape on the inner wall surface of the funnel cone portion 2a has been described, but the present invention is not limited to this. Instead, if a resistance value of 5KΩ to 5MΩ is obtained between the anode button 7 and the valve spacer contact 9 by forming it independently on a part of other graphite coatings, for example, in a band shape, the same effect as described above can be obtained. It will be done. In addition, in the above embodiment, the position and scattering direction of the getter 10 are determined so as to prevent the getter 10 from directly flying onto the high-resistance graphite coatings 5 and 12 and deteriorating the resistance value, excluding adhesion due to wrapping etc. Must. In addition, if this is difficult, a getter shield 1 is provided to prevent the getter material from scattering in the direction of the high-resistance graphite coatings 5 and 12 and deteriorating the resistance value.
1 structure. In addition, in the above-mentioned embodiment, the high-resistance graphite coatings 5, 1
Although it has been explained that the getter material does not fly directly onto the surface of the material 2, it is difficult to avoid adhesion by wrapping around the material, and there is no problem as long as it is discontinuous. In the above, the specific resistance is
10 0 to 10 5 Ω-cm, and the resistance value was set to 5KΩ to 5MΩ. However, if the specific resistance and resistance value are out of this range, the spark current will become large, the spot-knocking work will be difficult, and there will be problems due to poor continuity. There are problems such as valve cracks, and there are also problems with focus stability due to changes in dark current, and these values are based on sparks during operation,
It is decided based on the balance with spotting during manufacturing. To explain this in more detail, Table 1 shows the results of trial production using 19'' and 20'' color cathode ray tubes with different resistivities, resistance values, etc.

【表】 この表1からも明らかなように、試料A,Bの
如く比抵抗及び抵抗値が1Ω−cm、5KΩよりそ
れぞれ小さいものでは、スパーク電流が大きく、
外部回路に損傷を与えることになる。また逆に試
料K,Lの如く比抵抗、抵抗値が大きいもので
は、スパーク電流そのものは小さいが、高抵抗と
なると塗膜中の絶縁物の量が多くなり、かつ導電
体である黒鉛と均一に分布しない問題が生じ、抵
抗値の変動が大きくなり、目的とするスポツトノ
ツキング作業が困難になること及びスパーク毎に
電流値が大きく変動して安定性が保持できず、さ
らにはバルブクラツクの発生の問題が生ずる。こ
れに対し、試料C〜Jではスパーク電流値も小さ
くなり、かつ所望のスポツトノツキングも実施で
きる。 以上説明したように本発明によるカラーブラウ
ン管によれば、電子銃構体と黒鉛被膜との接触部
において何らかの原因でスパークを発生したとき
に流れる電流を従来の構造のものに比べて例えば
1/30とか1/15等のように非常に小さく抑えること
ができることになり、黒鉛被膜、これに当接する
電子銃構体のバルブスペーサコンタクトの損傷を
防ぎ、さらには電子銃構体に接続される回路の損
傷を防ぎ、カラーブラウン管の信頼性、品質等を
大幅に向上させることができる極めて優れた効果
が得られる。
[Table] As is clear from Table 1, when the resistivity and resistance value are smaller than 1Ω-cm and 5KΩ, respectively, such as samples A and B, the spark current is large;
This will cause damage to the external circuit. Conversely, in samples K and L, which have large specific resistance and resistance values, the spark current itself is small, but when the resistance becomes high, the amount of insulating material in the coating increases, and it is evenly distributed with graphite, which is a conductor. The problem arises that the resistance value is not distributed, and the resistance value fluctuates widely, making it difficult to perform the desired spot-knocking work.The current value fluctuates greatly with each spark, making it impossible to maintain stability, and furthermore, valve cracking occurs. The problem arises. On the other hand, in Samples C to J, the spark current value was also small, and desired spot spotting could be performed. As explained above, according to the color cathode ray tube according to the present invention, when a spark is generated for some reason at the contact portion between the electron gun structure and the graphite coating, the current that flows can be reduced, for example, compared to the conventional structure.
This means that it can be made extremely small, such as 1/30 or 1/15, which prevents damage to the graphite coating and the valve spacer contact of the electron gun assembly that comes into contact with it, and furthermore, reduces the size of the circuit connected to the electron gun assembly. This provides an extremely excellent effect of preventing damage to color cathode ray tubes and greatly improving reliability, quality, etc. of color cathode ray tubes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるカラーブラウン管の一実
施例を示す要部断面図、第2図は本発明によるカ
ラーブラウン管の他の実施例を示す要部断面図で
ある。 1……パネル部、2……フアンネル部、2a…
…フアンネルコーン部、2b……フアンネルネツ
ク部、3……パネル部、4……コーン部内装黒鉛
被膜、5……高抵抗黒鉛被膜、6……ネツク部内
装黒鉛被膜、7……アノードボタン、8……電子
銃構体、9……バルブスペーサコンタクト、10
……ゲツター、11……ゲツターシールド、12
……高抵抗黒鉛被膜。
FIG. 1 is a sectional view of a main part showing one embodiment of a color cathode ray tube according to the present invention, and FIG. 2 is a sectional view of a main part showing another embodiment of a color cathode ray tube according to the invention. 1...Panel part, 2...Funnel part, 2a...
...Funnel cone part, 2b...Funnel neck part, 3...Panel part, 4...Graphite coating inside the cone part, 5...High resistance graphite coating, 6...Graphite coating inside the neck part, 7...Anode button, 8...Electron gun structure, 9...Valve spacer contact, 10
...Getter, 11...Getter Shield, 12
...High resistance graphite coating.

Claims (1)

【特許請求の範囲】[Claims] 1 フアンネル部内壁面に導電性黒鉛被膜を被着
形成してなるカラーブラウン管において、アノー
ドボタンと電子銃構体とが前記導電性黒鉛被膜に
接触する点間に存在する導電性黒鉛被膜の少なく
とも一部を黒鉛、二酸化チタン、水ガラスを主成
分として比抵抗が100〜105Ω−cmである黒鉛被膜
材料で形成し前記アノードボタンと電子銃構体間
に5KΩ〜5MΩの抵抗値をもたせたことを特徴と
するカラーブラウン管。
1. In a color cathode ray tube having a conductive graphite coating formed on the inner wall surface of the funnel, at least a portion of the conductive graphite coating existing between the points where the anode button and the electron gun structure contact the conductive graphite coating is It is made of a graphite coating material whose main components are graphite, titanium dioxide, and water glass and has a specific resistance of 10 0 to 10 5 Ω-cm to provide a resistance value of 5 KΩ to 5 MΩ between the anode button and the electron gun structure. Features a color cathode ray tube.
JP7206678A 1978-06-16 1978-06-16 Color braun tube Granted JPS551010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7206678A JPS551010A (en) 1978-06-16 1978-06-16 Color braun tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7206678A JPS551010A (en) 1978-06-16 1978-06-16 Color braun tube

Publications (2)

Publication Number Publication Date
JPS551010A JPS551010A (en) 1980-01-07
JPS6252422B2 true JPS6252422B2 (en) 1987-11-05

Family

ID=13478643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7206678A Granted JPS551010A (en) 1978-06-16 1978-06-16 Color braun tube

Country Status (1)

Country Link
JP (1) JPS551010A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55150539A (en) * 1979-05-14 1980-11-22 Hitachi Ltd Cathode-ray tube
JPS5645553A (en) * 1979-09-21 1981-04-25 Hitachi Ltd Color picture tube
JPS5682555A (en) * 1979-12-07 1981-07-06 Toshiba Corp Cathode ray tube
KR900006174B1 (en) * 1985-01-31 1990-08-24 히타찌 훈마쯔 야킨 가부시끼가이샤 Cathode ray tubes and coating materials therefor
JPS6253661U (en) * 1985-09-25 1987-04-03
US5083396A (en) * 1988-02-05 1992-01-28 Traut Emma L Crop protection system
US6211611B1 (en) * 1997-10-13 2001-04-03 Matsushita Electronics Corporation Color cathode-ray tube with resistive spring contact

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149671A (en) * 1991-09-30 1993-06-15 Mitsubishi Electric Corp Refrigerator with freezer chamber

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5430933Y2 (en) * 1973-12-15 1979-09-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149671A (en) * 1991-09-30 1993-06-15 Mitsubishi Electric Corp Refrigerator with freezer chamber

Also Published As

Publication number Publication date
JPS551010A (en) 1980-01-07

Similar Documents

Publication Publication Date Title
US4220893A (en) Electrically resistive arc suppressor shadowing getter flash
JPS6252422B2 (en)
US4153857A (en) Television cathode ray tube having getter flash tolerant internal resistive element
US4425377A (en) Method of making a cathode-ray tube having a conductive internal coating exhibiting reduced arcing current
US3979632A (en) Cathode ray tube having surface charge inhibiting means therein
CA1199361A (en) Crt comprising metallized glass beads for suppressing arcing therein
JP3272764B2 (en) Cathode ray tube and method of manufacturing cathode ray tube
JP3590219B2 (en) Color cathode ray tube
JPS6318837B2 (en)
US4210844A (en) Cathode ray tube arc suppressor coating
JPS645741B2 (en)
US4353006A (en) CRT with means for suppressing arcing therein
US4080695A (en) Method of depositing tripartite coating system for a cathode ray tube
JPH0359542B2 (en)
JPH0246625A (en) Spot knocking method of electron gun mount structure
JPS6318832B2 (en)
JPS607044A (en) Color picture tube
JP2586220B2 (en) Manufacturing method of color cathode ray tube
JP2637115B2 (en) Manufacturing method of cathode ray tube
JPS6372038A (en) Cathode-ray tube
US3639797A (en) Cathode-ray tube having a plated inner metal layer of high-tensile strength
US4818912A (en) CRT with arc suppressing means on insulating support rods
JPS60160548A (en) Color picture tube
JPS6124781B2 (en)
JPH06333516A (en) Cathode-ray tube