JPS62295353A - Enclosed type nickel-hydrogen storage battery - Google Patents

Enclosed type nickel-hydrogen storage battery

Info

Publication number
JPS62295353A
JPS62295353A JP61138582A JP13858286A JPS62295353A JP S62295353 A JPS62295353 A JP S62295353A JP 61138582 A JP61138582 A JP 61138582A JP 13858286 A JP13858286 A JP 13858286A JP S62295353 A JPS62295353 A JP S62295353A
Authority
JP
Japan
Prior art keywords
negative electrode
hydrogen storage
alloy
electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61138582A
Other languages
Japanese (ja)
Other versions
JPH0677450B2 (en
Inventor
Munehisa Ikoma
宗久 生駒
Hiroshi Kawano
川野 博志
Isao Matsumoto
功 松本
Nobuyuki Yanagihara
伸行 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61138582A priority Critical patent/JPH0677450B2/en
Publication of JPS62295353A publication Critical patent/JPS62295353A/en
Publication of JPH0677450B2 publication Critical patent/JPH0677450B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve the oxygen gas absorption power, and to obtain an enclosed type nickel-hydrogen storage battery whose inner pressure does not rise even though a contineous overcharging is given, by applying a hydrogen absorbing alloy negative electrode made by forming a thin layer of carbon powder over the surface of a hydrogen absorbing alloy. CONSTITUTION:As a hydrogen absorbing alloy, the MmNi3.8Mn0.4Al0.3 Co0.5 alloy is used. This alloy is heat-treated in a furnace, then, after a rough crushing, powdered in a ball mill to obtain the alloy powder for the negative electrode. The alloy powder is made into a paste in a solution of poly inylalcohol, filled in a foam nickel porous body, and dried to make up an electrode. The electrode is soaked in a KOH solution, given an alkaline treatment, washed in the water and dried, and then pressurized to make a negative electrode. Therefore, the ionization reaction of the oxygen gas generated from the positive electrode over the surface of the negative electrode during the overcharging is promoted rapidly.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は、負極に水素吸蔵合金を用いた密閉形ニッケル
−水素蓄電池において、特に水素吸蔵合金負極の表面に
おけるガス吸収能の向上に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention Industrial Field of Application The present invention relates to a sealed nickel-metal hydride storage battery using a hydrogen storage alloy as a negative electrode. This is related to the improvement of

従来の技術 従来、この種の水素吸蔵合金を負極に用いたニッケル−
水素蓄電池を密閉化するには、過充電時に正極から発生
する酸素ガスを負極に吸蔵された水素と反応させて水に
戻す必要がある。この水素吸蔵合金負極による酸素ガス
吸収能は(1) 、 (2)式により示される。
Conventional technology Conventionally, nickel-based hydrogen storage alloys using this type of hydrogen storage alloy for negative electrodes have been used.
To seal a hydrogen storage battery, it is necessary to cause oxygen gas generated from the positive electrode during overcharging to react with hydrogen stored in the negative electrode and return it to water. The oxygen gas absorption ability of this hydrogen storage alloy negative electrode is expressed by equations (1) and (2).

/)02 + H20+ 2 e−−20H−−・(1
)MHx+20H−−MHエニー+2H20+2e  
 (2)すなわち、水素吸蔵合金を負頂に用いた場合、
(1)式の酸素イオン化反応が律速であり、ニッケル−
水素蓄電池のガス吸収能を向上させるには、(1)式の
反応を迅速に進行させる必要がある。しかし、水素吸蔵
合金負極は酸素ガスイオン化能力が悪く、密閉形電池を
構成すると、過充電時に電池内圧が上昇し易いという欠
点がある。この問題点を解決するために、負極に白金や
パラジウムなどの貴金族触媒を添加する方法が提案され
ている(特開昭61−103424号公報)。
/)02 + H20+ 2 e--20H--(1
)MHx+20H--MHany+2H20+2e
(2) That is, when a hydrogen storage alloy is used for the negative apex,
The oxygen ionization reaction in equation (1) is rate-determining, and the nickel-
In order to improve the gas absorption ability of a hydrogen storage battery, it is necessary to allow the reaction of formula (1) to proceed rapidly. However, the hydrogen storage alloy negative electrode has a poor ability to ionize oxygen gas, and when a sealed battery is constructed, the battery internal pressure tends to increase during overcharging, which is a drawback. In order to solve this problem, a method has been proposed in which a noble metal group catalyst such as platinum or palladium is added to the negative electrode (Japanese Unexamined Patent Publication No. 103424/1983).

発明が解決しようとする問題点 このような従来の構成では貴金族触媒は非常に高価であ
り、コスト面において大きな障害となる。
Problems to be Solved by the Invention In such a conventional configuration, the noble metal catalyst is very expensive and poses a major cost problem.

また、無制御で連続過充電を行った場合、電池内圧が一
定にならず上昇するという問題があった。
Further, when continuous overcharging is performed without control, there is a problem in that the internal pressure of the battery does not become constant and increases.

本発明は、このような問題点を解決するもので、水素吸
蔵合金負極の表面を改良することで安価で簡単な構成に
より、ニッケル−水素蓄電池のガス吸収能を向上させ、
しかも無制御で長時間連続過充電を行った場合も電池内
圧が上昇しない、密閉形ニッケル−水素蓄電池を提供す
ることを目的とするものである。
The present invention solves these problems, and improves the gas absorption capacity of nickel-hydrogen storage batteries with an inexpensive and simple structure by improving the surface of the hydrogen storage alloy negative electrode.
Moreover, it is an object of the present invention to provide a sealed nickel-metal hydride storage battery in which the internal pressure of the battery does not increase even when overcharging is performed continuously for a long time without control.

問題点を解決するための手段 本発明は上記問題点を解決するために、水素吸蔵合金の
表面に、炭素粉末からなる層を形成した水素吸蔵合金負
極を用いて密閉形ニッケル−水素蓄電池を構成したもの
である。
Means for Solving the Problems In order to solve the above problems, the present invention constructs a sealed nickel-hydrogen storage battery using a hydrogen storage alloy negative electrode in which a layer of carbon powder is formed on the surface of the hydrogen storage alloy. This is what I did.

作  用 本発明は、上記した構成により過充電時に正極から発生
する酸素ガスの負極表面でのイオン化反応を迅速に進行
させるものである。
Function The present invention allows the ionization reaction of oxygen gas generated from the positive electrode during overcharging to proceed rapidly on the surface of the negative electrode with the above-described configuration.

実施例 以下本発明を実施例により説明、する。水素吸蔵合金は
Mrrl N i 3. s M n o、 4 A 
l o、 a COo、 s合金を用いた。この合金は
、市販のミツシュメタルMm (希土類元素の混合物、
例えばCe45wt%。
EXAMPLES The present invention will be explained and explained below using examples. Hydrogen storage alloy is Mrrl Ni 3. s M no, 4 A
lo, a COo, s alloys were used. This alloy is a commercially available Mitshumetal Mm (mixture of rare earth elements,
For example, Ce45wt%.

La30wt%、Nd5wt%、他の希土類元素20w
t%)とNi 、Mn 、Al 、Coの各試料を所定
の組成比に秤量し、アーク溶解炉に入れて、10−’ 
〜10−5Torrまで真空状態廻した後、7 /L/
ゴンガス雰囲気中でアーク放電し、加熱溶解し、Mln
 N l 3. aMn o、 4 A lo、3CO
Oo、 s する水素吸蔵合金を得た。さらに、この合
金の均質性を良好にするために、真空中にて1060℃
で6時間熱処理を行い、次にこの合金を粗粉砕後、ボー
ルミルで3871m以下の粉末にし、負極に用いる合金
粉末を得た。これらの合金粉末をポリビニルアルコール
の5wt%水溶液でペースト状にし、発泡ニッケル多孔
体に充填し乾燥した。次に、この電極を比重1.30の
KOH水溶液中に45℃で12時間浸漬し、アルカリ処
理を施し、水洗乾燥後、加圧して負極とした。負極の表
面には、ケッチェンブラック(EC−PXライオン油脂
製)又は黒鉛(日;4J)He ) 全1.6wt%ポ
リビニルアルコール水溶液に分肢させたものを塗布し、
ケッチェンブラック又は黒鉛からなる種々の膜厚の炭素
粉末層を形成した。また、フッ素樹脂との混合層を形成
するために、フッ素丈脂の水性ディスパージョンとケッ
チェンブランクを混合した溶液を塗布し、ケッチェンブ
ラックとフッ素樹脂からなる混合層を形成した。実施例
で用いた水素吸蔵合金負極を次表に示す。
La30wt%, Nd5wt%, other rare earth elements 20w
t%), Ni, Mn, Al, and Co samples were weighed to a predetermined composition ratio, placed in an arc melting furnace, and heated for 10-'
After turning the vacuum state to ~10-5 Torr, 7/L/
Mln is heated and melted by arc discharge in a gas atmosphere.
N l 3. aMno, 4 A lo, 3CO
A hydrogen storage alloy with Oo, s was obtained. Furthermore, in order to improve the homogeneity of this alloy, it was heated to 1060°C in vacuum.
The alloy was heat-treated for 6 hours, and then this alloy was coarsely pulverized and made into a powder of 3871 m or less in a ball mill to obtain an alloy powder used for a negative electrode. These alloy powders were made into a paste with a 5 wt % aqueous solution of polyvinyl alcohol, filled into a foamed nickel porous body, and dried. Next, this electrode was immersed in a KOH aqueous solution having a specific gravity of 1.30 at 45° C. for 12 hours, subjected to alkali treatment, washed with water, dried, and then pressurized to form a negative electrode. On the surface of the negative electrode, Ketjen black (manufactured by EC-PX Lion Oil Co., Ltd.) or graphite (Japan; 4J) He divided into a 1.6 wt% polyvinyl alcohol aqueous solution was applied.
Carbon powder layers of various thicknesses made of Ketjen black or graphite were formed. In addition, in order to form a mixed layer with fluororesin, a solution of a mixture of an aqueous dispersion of fluororesin and Ketjen blank was applied to form a mixed layer consisting of Ketjen black and fluororesin. The hydrogen storage alloy negative electrodes used in the examples are shown in the following table.

「 第1図は、本発明の負極の特性を試験するために製作し
た電極構成図であるーC第1図において、1は水素吸蔵
合金を主体とする負極板でちり、2はその表面に塗布形
成したケッチェンプラ、り層、黒鉛層またはケッチェン
ブラックとフッ素f:J JiThの混合層である。
"Figure 1 is a diagram of the structure of an electrode manufactured to test the characteristics of the negative electrode of the present invention. In Figure 1, 1 is a negative electrode plate mainly made of a hydrogen storage alloy, and 2 is a dust layer on its surface. This is a Ketjen plastic layer, a graphite layer, or a mixed layer of Ketjen black and fluorine f:J JiTh formed by coating.

第1図で示したS極と公知のニッケル正極とをセパレー
ターを介して巻回し、AAサイズの密閉形ニッケル−水
素蓄電池を構成した。電解液には比重1.30 KOH
水溶’7’fl K L 10H−H20を409’/
’if!溶解したものを用いた。電池内圧は、図示して
いないが電池ケース底部にドリルで孔径1gの穴をあけ
、ここに圧力センサーを取り付けて固定装置にこの電池
を固定し、測定した。電池内圧測定時の充電条件は、’
/3 cm A X 4.5 Hであり、連続過充電に
おける電池内圧測定時の充電条件は、にtoMA X 
48 Hである。
The S pole shown in FIG. 1 and a known nickel positive electrode were wound together with a separator in between to form an AA size sealed nickel-hydrogen storage battery. The electrolyte has a specific gravity of 1.30 KOH
Water-soluble '7' fl K L 10H-H20 409'/
'if! The dissolved one was used. Although not shown, the internal pressure of the battery was measured by drilling a hole with a diameter of 1 g in the bottom of the battery case, attaching a pressure sensor to the hole, and fixing the battery to a fixing device. The charging conditions when measuring battery internal pressure are '
/3 cm A
It is 48H.

表に示したA−Gの負極を用いて構成した電池の充電時
間と電池内圧の関係を調べた結果を第2図に示す。第2
図から明らかなように、ケッチェンブラックの炭素層を
設けていない従来例の電極Aは、′/3cmA の充電
率で4.5時間後には10 Kg / c−の圧力にな
る。これに対し、電極C〜Fを用いて構成した電池の内
圧はe Kg / cJ以下であり、ケッチェンブラッ
クからなる炭素層を負極表面に設けることにより、水素
吸蔵合金負極の酸素ガス吸収能は著しく向上することが
わかる。すなわち、正極から発生した酸素ガスは、負極
の表面でイオン化(″/2o2+H20+2e−−2Q
H−)されるが、ケッチェンブラックの炭素層が負極表
面に存在することにより、酸素イオン化反応が促進され
、酸素ガス吸収能が向上する。
FIG. 2 shows the results of investigating the relationship between charging time and battery internal pressure for batteries constructed using the negative electrodes A to G shown in the table. Second
As is clear from the figure, the conventional electrode A without the Ketjen black carbon layer reaches a pressure of 10 Kg/c- after 4.5 hours at a charging rate of '/3 cmA. On the other hand, the internal pressure of a battery constructed using electrodes C to F is less than e Kg/cJ, and by providing a carbon layer made of Ketjen Black on the negative electrode surface, the oxygen gas absorption ability of the hydrogen storage alloy negative electrode is increased. It can be seen that there is a significant improvement. In other words, oxygen gas generated from the positive electrode is ionized on the surface of the negative electrode (''/2o2+H20+2e--2Q
H-) However, the presence of the Ketjen black carbon layer on the surface of the negative electrode promotes the oxygen ionization reaction and improves the oxygen gas absorption ability.

さらに、ケッチェンブラックとフッ素樹脂からなる層を
設けた電極Gは、ケッチェンブラック単独の電極りと比
較すると、膜厚は同じであるが電池内圧は低下している
ことがわかる。これは酸素ガスのイオン化反応は気相・
固相・液相の三相界面の反応であり、フッ素樹脂のよう
な撥水性の樹脂ヲケッチェンブラックと混合することに
ヨリ、適切な三相界面が形成され酸素イオン化反応が促
進されることによる。したがって、電極Gを用いて構成
した電池は、電極りのものと比べ電池内圧が低下する。
Furthermore, it can be seen that the electrode G provided with a layer made of Ketjen Black and a fluororesin has a lower battery internal pressure, although the film thickness is the same, when compared with an electrode made of Ketjen Black alone. This means that the ionization reaction of oxygen gas occurs in the gas phase.
This is a reaction at the three-phase interface between solid and liquid phases, and when mixed with water-repellent resin Wokechen Black such as fluororesin, an appropriate three-phase interface is formed and the oxygen ionization reaction is promoted. by. Therefore, a battery constructed using electrode G has a lower internal pressure than a battery constructed using electrodes.

また、黒鉛層をもつ電極Hを用いた電池は、電極りを用
いたものに比べ電池内圧が高い。すなわち、アルカリニ
次電池に用いるca極やZn極と異なり、反応式から明
らかなように、生成されたH2OによりOH−イオン濃
度が低下する。したがって、低アルカリ濃度における酸
素のイオン化、すなわち触媒能の改善が必要とされる。
Furthermore, a battery using the electrode H having a graphite layer has a higher internal pressure than a battery using an electrode layer. That is, unlike the Ca electrode and Zn electrode used in alkaline secondary batteries, as is clear from the reaction formula, the OH- ion concentration decreases due to the generated H2O. Therefore, there is a need for improved oxygen ionization, ie catalytic performance, at low alkali concentrations.

ケッチェンブラックは、黒鉛と異なり、三次元方向に無
数の鎖状に分岐した、微細な炭素微粉末であり、電子伝
導度もよいが、それ以上に触媒作用を有する。
Ketjen black, unlike graphite, is a fine carbon powder that branches into countless chains in three dimensions, and has good electronic conductivity, but more than that, it has a catalytic effect.

したがって、電極りを用いた電池の方がガス吸収能が向
上する。
Therefore, a battery using electrodes has better gas absorption ability.

なお、電極Bを用いたものは、従来例に比較すると効果
はあるが、電池内圧がB Kg / caと高い。
Although the battery using electrode B is more effective than the conventional example, the internal pressure of the battery is as high as B kg/ca.

また、炭素層の膜厚が2001μm以上になると、負極
の体積が増加し、密閉電池が構成できない。
Furthermore, if the thickness of the carbon layer is 2001 μm or more, the volume of the negative electrode increases, making it impossible to construct a sealed battery.

したがって、膜厚は2〜200μmの範囲が好ましい。Therefore, the film thickness is preferably in the range of 2 to 200 μm.

第3図に、′/3cmA で48時間連続過充電した場
合の充電時間と電池内圧の関係を示す。従来例の電極A
を用いたものは、電池内圧が一定にならず、20 Kg
 / crAになる。密閉形ニッケル−水素蓄電池には
10 Kg / c−で作動する安全弁が設けられてい
る。したがって、10 Kq/ cn1以上の内圧にな
ると安全弁が作動し、漏液を生じたり、サイクル寿命が
低下することになる。本発明の電極りを用いたものは、
48時間の連続過充電を行っても電池内圧は5 Kg 
/ cI+#と一定であり、連続過充電を行っても漏液
等の問題が発生しなかった。
FIG. 3 shows the relationship between charging time and battery internal pressure when the battery was overcharged continuously for 48 hours at '/3cmA. Conventional electrode A
The internal pressure of the battery is not constant and 20 kg
/ Become crA. The sealed nickel-metal hydride storage battery is equipped with a safety valve operating at 10 Kg/c-. Therefore, when the internal pressure reaches 10 Kq/cn1 or higher, the safety valve is activated, causing leakage and shortening the cycle life. Those using the electrode of the present invention are
Even after 48 hours of continuous overcharging, the battery internal pressure remains at 5 kg.
/cI+#, and no problems such as leakage occurred even after continuous overcharging.

発明の効果 以上のように、本発明は水素吸蔵合金の表面K、炭素粉
末からなる薄層を形成した水素吸蔵合金負極を用いるこ
とにより、酸素ガス吸収能が向上し、連続過充電を行っ
た場合も電池内圧が上昇しない、密閉形ニッケル−水素
蓄電池を提供するものである。さらに、貴金属触媒に比
べ非常に安価な炭素を用いているため、工業的価値が犬
である。
Effects of the Invention As described above, the present invention uses a hydrogen storage alloy negative electrode with a thin layer of carbon powder formed on the surface K of the hydrogen storage alloy, thereby improving oxygen gas absorption ability and allowing continuous overcharging. The object of the present invention is to provide a sealed nickel-metal hydride storage battery in which the internal pressure of the battery does not increase even when the battery is closed. Furthermore, since carbon is used, which is much cheaper than precious metal catalysts, its industrial value is low.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明における電極構成を示す断面図、第2図
は電池内圧を示す特性図、第3図は連続過充電における
電池内圧を示す特性図である。 1・・・・・・水素吸蔵合金からなる電極、2・・・・
炭素粉末からなる薄層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 充電時間(hp) 第 3 図 オシ 1+−シ間 (hrン
FIG. 1 is a sectional view showing the electrode configuration in the present invention, FIG. 2 is a characteristic diagram showing the internal pressure of the battery, and FIG. 3 is a characteristic diagram showing the internal pressure of the battery during continuous overcharging. 1... Electrode made of hydrogen storage alloy, 2...
A thin layer of carbon powder. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Charging time (hp) Figure 3 Between 1+ and 2 (hr)

Claims (4)

【特許請求の範囲】[Claims] (1)ニッケル正極と、水素吸蔵合金の表面に、炭素粉
末層を形成した水素吸蔵合金負極とを用いた密閉形ニッ
ケル−水素蓄電池。
(1) A sealed nickel-hydrogen storage battery using a nickel positive electrode and a hydrogen storage alloy negative electrode with a carbon powder layer formed on the surface of the hydrogen storage alloy.
(2)炭素粉末は三次元方向に無数の鎖状に分岐した、
微細な粉末である特許請求の範囲第1項記載の密閉形ニ
ッケル−水素蓄電池。
(2) The carbon powder is branched into countless chains in three dimensions.
The sealed nickel-hydrogen storage battery according to claim 1, which is a fine powder.
(3)炭素粉末からなる薄層の厚さが2μm〜200μ
mである水素吸蔵合金負極を用いた特許請求の範囲第1
項記載の密閉形ニッケル−水素蓄電池。
(3) The thickness of the thin layer made of carbon powder is 2 μm to 200 μm
Claim 1 using a hydrogen storage alloy negative electrode that is
Sealed nickel-metal hydride storage battery as described in .
(4)炭素粉末の薄層が、フッ素樹脂との混合層である
特許請求の範囲第1項記載の密閉形ニッケル−水素蓄電
池。
(4) The sealed nickel-hydrogen storage battery according to claim 1, wherein the thin layer of carbon powder is a mixed layer with a fluororesin.
JP61138582A 1986-06-13 1986-06-13 Sealed nickel-hydrogen battery Expired - Lifetime JPH0677450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61138582A JPH0677450B2 (en) 1986-06-13 1986-06-13 Sealed nickel-hydrogen battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61138582A JPH0677450B2 (en) 1986-06-13 1986-06-13 Sealed nickel-hydrogen battery

Publications (2)

Publication Number Publication Date
JPS62295353A true JPS62295353A (en) 1987-12-22
JPH0677450B2 JPH0677450B2 (en) 1994-09-28

Family

ID=15225487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61138582A Expired - Lifetime JPH0677450B2 (en) 1986-06-13 1986-06-13 Sealed nickel-hydrogen battery

Country Status (1)

Country Link
JP (1) JPH0677450B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506074A (en) * 1993-09-30 1996-04-09 Sanyo Electric Co. Ltd. Metal hydride electrode and nickel-hydrogen alkaline storage cell
FR2735618A1 (en) * 1995-03-17 1996-12-20 Samsung Display Devices Co Ltd HYDROGEN STORAGE ALLOY ANODE AND METHOD FOR THE PRODUCTION THEREOF

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53103541A (en) * 1977-02-23 1978-09-08 Matsushita Electric Ind Co Ltd Hydrogen occlusion electrode
JPS5456143A (en) * 1977-09-20 1979-05-04 Communications Satellite Corp Metallic oxide hydride electrode type accumulator
JPS58163157A (en) * 1982-03-23 1983-09-27 Toshiba Corp Metal oxide-hydrogen cell
JPS5996679A (en) * 1982-11-24 1984-06-04 Japan Storage Battery Co Ltd Sealed secondary battery
JPS6063875A (en) * 1983-09-16 1985-04-12 Sanyo Electric Co Ltd Paste type cadmium anode plate for sealed alkaline storage battery
JPS60100382A (en) * 1983-11-07 1985-06-04 Matsushita Electric Ind Co Ltd Closed nickel-hydrogen storage battery
JPS60130063A (en) * 1983-12-16 1985-07-11 Matsushita Electric Ind Co Ltd Manufacture of sealed nickel-hydrogen storage battery
JPS60202666A (en) * 1984-03-26 1985-10-14 Sanyo Electric Co Ltd Paste type cadmium anode plate for alkaline storage battery
JPS60264049A (en) * 1984-06-12 1985-12-27 Sanyo Electric Co Ltd Alkali zinc battery
JPS61185863A (en) * 1985-02-14 1986-08-19 Toshiba Corp Hydrogen occlusion alloy electrode
JPS62264557A (en) * 1986-05-13 1987-11-17 Toshiba Corp Metal oxide-hydrogen battery

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53103541A (en) * 1977-02-23 1978-09-08 Matsushita Electric Ind Co Ltd Hydrogen occlusion electrode
JPS5456143A (en) * 1977-09-20 1979-05-04 Communications Satellite Corp Metallic oxide hydride electrode type accumulator
JPS58163157A (en) * 1982-03-23 1983-09-27 Toshiba Corp Metal oxide-hydrogen cell
JPS5996679A (en) * 1982-11-24 1984-06-04 Japan Storage Battery Co Ltd Sealed secondary battery
JPS6063875A (en) * 1983-09-16 1985-04-12 Sanyo Electric Co Ltd Paste type cadmium anode plate for sealed alkaline storage battery
JPS60100382A (en) * 1983-11-07 1985-06-04 Matsushita Electric Ind Co Ltd Closed nickel-hydrogen storage battery
JPS60130063A (en) * 1983-12-16 1985-07-11 Matsushita Electric Ind Co Ltd Manufacture of sealed nickel-hydrogen storage battery
JPS60202666A (en) * 1984-03-26 1985-10-14 Sanyo Electric Co Ltd Paste type cadmium anode plate for alkaline storage battery
JPS60264049A (en) * 1984-06-12 1985-12-27 Sanyo Electric Co Ltd Alkali zinc battery
JPS61185863A (en) * 1985-02-14 1986-08-19 Toshiba Corp Hydrogen occlusion alloy electrode
JPS62264557A (en) * 1986-05-13 1987-11-17 Toshiba Corp Metal oxide-hydrogen battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506074A (en) * 1993-09-30 1996-04-09 Sanyo Electric Co. Ltd. Metal hydride electrode and nickel-hydrogen alkaline storage cell
FR2735618A1 (en) * 1995-03-17 1996-12-20 Samsung Display Devices Co Ltd HYDROGEN STORAGE ALLOY ANODE AND METHOD FOR THE PRODUCTION THEREOF

Also Published As

Publication number Publication date
JPH0677450B2 (en) 1994-09-28

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP3042043B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JPH02223150A (en) Alkaline storage battery using hydrogen storage alloy
JPH04137368A (en) Nickel-hydrogen storage battery and its manufacture
US4994334A (en) Sealed alkaline storage battery and method of producing negative electrode thereof
JPS62139255A (en) Manufacture of hydrogen absorbing electrode
JPS60100382A (en) Closed nickel-hydrogen storage battery
JPH02291665A (en) Alkali battery and manufacture of its negative electrode
JPS59181459A (en) Metal oxide hydrogen battery
JPS62295353A (en) Enclosed type nickel-hydrogen storage battery
JPH04212269A (en) Alkaline storage battery
Geng Electrochemical characteristics of Ni Pd-coated MmNi5-based alloy powder for nickel-metal hydride batteries
WO1998054775A9 (en) Hydrogen storage alloy
JPS63195960A (en) Sealed alkaline storage battery
JPH03295177A (en) Sealed alkaline storage battery
JPH01267960A (en) Hydrogen absorption alloy electrode and its manufacture
JPH0690922B2 (en) Sealed alkaline storage battery
JP2679441B2 (en) Nickel-metal hydride battery
JP2642144B2 (en) Method for producing hydrogen storage electrode
JPH10172552A (en) Hydrogen storage alloy powder and its manufacture
JPH028419B2 (en)
JPH04188561A (en) Alkaline storage battery
JPS63175342A (en) Manufacture of hydrogen absorption electrode
JP2916156B2 (en) Manufacturing method of sheet electrode and battery
JP2004011004A (en) Hydrogen storage alloy powder, its producing method, and nickel-hydrogen storage battery using it

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term