JPH0677450B2 - Sealed nickel-hydrogen battery - Google Patents

Sealed nickel-hydrogen battery

Info

Publication number
JPH0677450B2
JPH0677450B2 JP61138582A JP13858286A JPH0677450B2 JP H0677450 B2 JPH0677450 B2 JP H0677450B2 JP 61138582 A JP61138582 A JP 61138582A JP 13858286 A JP13858286 A JP 13858286A JP H0677450 B2 JPH0677450 B2 JP H0677450B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
battery
negative electrode
electrode
internal pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61138582A
Other languages
Japanese (ja)
Other versions
JPS62295353A (en
Inventor
宗久 生駒
博志 川野
功 松本
伸行 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61138582A priority Critical patent/JPH0677450B2/en
Publication of JPS62295353A publication Critical patent/JPS62295353A/en
Publication of JPH0677450B2 publication Critical patent/JPH0677450B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負極に水素吸蔵合金を用いた密閉形ニッケル
−水素蓄電池において、特に水素吸蔵合金負極の表面に
おけるガス吸収能の向上に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed nickel-hydrogen storage battery using a hydrogen storage alloy for a negative electrode, and more particularly to improving gas absorption capacity on the surface of the hydrogen storage alloy negative electrode.

従来の技術 従来、この種の水素吸蔵合金を負極に用いたニッケル−
水素蓄電池を密閉化するには、過充電時に正極から発生
する酸素ガスを負極に吸蔵された水素と反応させて水に
戻す必要がある。この水素吸蔵合金負極による酸素ガス
吸収能は(1),(2)式により示される。
2. Description of the Related Art Conventionally, a nickel-based alloy using this type of hydrogen storage alloy
In order to seal the hydrogen storage battery, it is necessary to react oxygen gas generated from the positive electrode during overcharge with hydrogen stored in the negative electrode and return it to water. The oxygen gas absorption capacity of the hydrogen storage alloy negative electrode is expressed by the equations (1) and (2).

1/2O2+H2O+2e-→2OH- ……(1) MHx+2OH-→MHx-2+2H2O+2e- (2) すなわち、水素吸蔵合金を負極に用いた場合、(1)式
の酸素イオン化反応が律速であり、ニッケル−水素蓄電
池のガス吸収能を向上させるには、(1)式の反応を迅
速に進行させる必要がある。しかし、水素吸蔵合金負極
は酸素ガスイオン化能力が悪く、密閉形電池を構成する
と、過充電時に電池内圧が上昇し易いという欠点があ
る。この問題点を解決するために、負極に白金やパラジ
ウムなどの貴金族触媒を添加する方法が提案されている
(特開昭51−103424号公報)。
1 / 2O 2 + H 2 O + 2e - → 2OH - ...... (1) MHx + 2OH - → MH x-2 + 2H 2 O + 2e - (2) That is, when a hydrogen storage alloy in the negative electrode, (1) an oxygen ion reaction Is the rate-determining factor, and in order to improve the gas absorption capacity of the nickel-hydrogen storage battery, the reaction of formula (1) needs to proceed rapidly. However, the hydrogen storage alloy negative electrode has a poor oxygen gas ionization ability, and if a sealed battery is constructed, the internal pressure of the battery tends to rise during overcharge. In order to solve this problem, a method of adding a noble metal catalyst such as platinum or palladium to the negative electrode has been proposed (JP-A-51-103424).

発明が解決しようとする問題点 このような従来の構成では貴金属触媒は非常に高価であ
り、コスト面において大きな障害となる。
Problems to be Solved by the Invention In such a conventional configuration, the noble metal catalyst is very expensive, which is a major obstacle in terms of cost.

また、無制御で連続過充電を行った場合、電池内圧が一
定にならず上昇するという問題があった。
Further, when the continuous overcharge is performed without control, there is a problem that the battery internal pressure rises without being constant.

本発明は、このような問題点を解決するもので、水素吸
蔵合金負極の表面を改良することで安価で簡単な構成に
より、ニッケル−水素蓄電池のガス吸収能を向上させ、
しかも無制御で長時間連続過充電を行った場合も電池内
圧が上昇しない、密閉形ニッケル−水素蓄電池を提供す
ることを目的とするものである。
The present invention is to solve such problems, by improving the surface of the hydrogen storage alloy negative electrode, by an inexpensive and simple configuration, to improve the gas absorption capacity of the nickel-hydrogen storage battery,
Moreover, it is an object of the present invention to provide a sealed nickel-hydrogen storage battery in which the internal pressure of the battery does not rise even when continuously overcharged for a long time without control.

問題点を解決するための手段 本発明は上記問題点を解決するために、水素吸蔵合金の
表面に、炭素粉末からなる層を形成した水素吸蔵合金負
極を用いて密閉形ニッケル−水素蓄電池を構成したもの
である。
Means for Solving the Problems In order to solve the above problems, the present invention configures a sealed nickel-hydrogen storage battery by using a hydrogen storage alloy negative electrode in which a layer made of carbon powder is formed on the surface of a hydrogen storage alloy. It was done.

作用 本発明は、上記した構成により過充電時に正極から発生
する酸素ガスの負極表面でのイオン化反応を迅速に進行
させるものである。
Action The present invention has the above-described structure to rapidly advance the ionization reaction of oxygen gas generated from the positive electrode during overcharge on the negative electrode surface.

実施例 以下本発明を実施例により説明する。水素吸蔵合金はMm
Ni3.8Mn0.4Al0.3Co0.5合金を用いた。この合金は、市販
のミッシュメタルMm(希土類元素の混合物、例えばCe45
wt%,La30wt%,Nd5wt%,他の希土類元素20wt%)とNi,
Mn,Al,Coの各試料を所定の組成比に秤量し、アーク溶解
炉に入れて、10-4〜10-5Torrまで真空状態にした後、ア
ルゴンガス雰囲気中でアーク放電し、加熱溶解し、MmNi
3.8Mn0.4Al0.3CoO0.5なる水素吸蔵合金を得た。さら
に、この合金の均質性を良好にするために、真空中にて
1050℃で6時間熱処理を行い、次にこの合金を粗粉砕
後、ボールミルで38μm以下の粉末にし、負極に用いる
合金粉末を得た。これらの合金粉末をポリビニルアルコ
ールの5wt%水溶液でペースト状にし、発泡ニッケル多
孔体に充填し乾燥した。次に、この電極を比重1.30のKO
H水溶液中に45℃で12時間浸漬し、アルカリ処理を施
し、水洗乾燥後、加圧して負極とした。負極の表面に
は、ケッチェンブラック(EC−PXライオン油脂製)又は
黒鉛(日本黒鉛)を1.5wt%ポリビニルアルコール水溶
液に分散させたものを塗布し、ケッチェンブラック又は
黒鉛からなる種々の膜厚の炭素粉末層を形成した。ま
た、フッ素樹脂との混合層を形成するために、フッ素樹
脂の水性ディスパージョンとケッチェンブラックを混合
した溶液を塗布し、ケッチェンブラックとフッ素樹脂か
らなる混合層を形成した。実施例で用いた水素吸蔵合金
負極を次表に示す。
EXAMPLES The present invention will be described below with reference to examples. Hydrogen storage alloy is Mm
A Ni 3.8 Mn 0.4 Al 0.3 Co 0.5 alloy was used. This alloy is a commercially available Mischmetal Mm (mixture of rare earth elements, such as Ce45
wt%, La30wt%, Nd5wt%, other rare earth elements 20wt%) and Ni,
Weigh each sample of Mn, Al, and Co to the specified composition ratio, put it in an arc melting furnace, put it in a vacuum state to 10 -4 to 10 -5 Torr, then arc discharge in an argon gas atmosphere and heat melting. And MmNi
A hydrogen storage alloy of 3.8 Mn 0.4 Al 0.3 CoO 0.5 was obtained. Furthermore, in order to improve the homogeneity of this alloy,
Heat treatment was carried out at 1050 ° C. for 6 hours, and then the alloy was roughly pulverized and then powdered to 38 μm or less with a ball mill to obtain an alloy powder used for a negative electrode. These alloy powders were made into a paste with a 5 wt% aqueous solution of polyvinyl alcohol, filled into a foamed nickel porous body and dried. Next, attach this electrode to KO with a specific gravity of 1.30.
It was immersed in an H 2 aqueous solution at 45 ° C. for 12 hours, subjected to alkali treatment, washed with water, dried, and pressurized to give a negative electrode. The surface of the negative electrode is coated with Ketjen Black (made by EC-PX Lion Oil and Fats) or graphite (Nippon Graphite) dispersed in a 1.5 wt% polyvinyl alcohol aqueous solution to obtain various film thicknesses of Ketjen Black or graphite. The carbon powder layer of was formed. Further, in order to form a mixed layer of the fluororesin, a solution obtained by mixing an aqueous dispersion of the fluororesin and Ketjen black was applied to form a mixed layer of the Ketjen black and the fluororesin. The following table shows the hydrogen storage alloy negative electrodes used in the examples.

第1図は、本発明の負極の特性を試験するために製作し
た電極構成図である。第1図において、1は水素吸蔵合
金を主体とする負極板であり、2はその表面に塗布形成
したケッチェングブラック層、黒鉛層またはケッチェン
ブラックとフッ素樹脂の混合層である。
FIG. 1 is an electrode configuration diagram prepared for testing the characteristics of the negative electrode of the present invention. In FIG. 1, 1 is a negative electrode plate mainly composed of a hydrogen storage alloy, and 2 is a Ketching black layer, a graphite layer or a mixed layer of Ketjen black and a fluororesin, which is formed by coating on the surface thereof.

第1図で示した負極と公知のニッケル正極とをセパレー
ターを介して巻回し、AAサイズの密閉形ニッケル−水素
蓄電池を構成した。電解液には比重1.30KOH水溶液にLiO
H・H2Oを40g/l溶解したものを用いた。電池内圧は、図
示していないが電池ケース底部にドリルで孔径1mmの穴
をあけ、ここに圧力センサーを取り付けて固定装置にこ
の電池を固定し、測定した。電池内圧測定時の充電条件
は、1/3cmA×4.5Hであり、連続過充電における電池内圧
測定時の充電条件は、1/3cmA×48Hである。
The negative electrode shown in FIG. 1 and a known nickel positive electrode were wound with a separator interposed therebetween to form an AA size sealed nickel-hydrogen storage battery. The specific gravity of the electrolyte is 1.30 KOH aqueous solution and LiO.
A solution obtained by dissolving H · H 2 O at 40 g / l was used. Although not shown, the internal pressure of the battery was measured by making a hole having a hole diameter of 1 mm in the bottom of the battery case with a drill, attaching a pressure sensor here and fixing the battery to a fixing device. The charging condition when measuring the battery internal pressure was 1/3 cmA × 4.5H, and the charging condition when measuring the battery internal pressure during continuous overcharging was 1/3 cmA × 48H.

表に示したA〜Gの負極を用いて構成した電池の充電時
間と電池内圧の関係を調べた結果を第2図に示す。第2
図から明らかなように、ケッチェンブラックの炭素層を
設けていない従来例の電極Aは、1/3cmAの充電率で4.5
時間後には、10Kg/cm2の圧力になる。これに対し、電極
C〜Fを用いて構成した電池の内圧は6Kg/cm2以下であ
り、ケッチェンブラックからなる炭素層を負極表面に設
けることにより、水素吸蔵合金負極の酸素ガス吸収能は
著しく向上することがわかる。すなわち、正極から発生
した酸素ガスは、負極の表面でイオン化(1/2O2+H2O+
2e-→2OH-)されるが、ケッチェンブラックの炭素層が
負極表面に存在することにより、酸素イオン化反応が促
進され、酸素ガス吸収能が向上する。
FIG. 2 shows the result of examining the relationship between the charging time and the battery internal pressure of the battery configured by using the negative electrodes A to G shown in the table. Second
As is clear from the figure, the electrode A of the conventional example in which the carbon layer of Ketjen Black is not provided has a charging rate of 1/3 cmA of 4.5.
After a time, a pressure of 10 Kg / cm 2 is reached. On the other hand, the internal pressure of the battery constructed by using the electrodes C to F is 6 Kg / cm 2 or less, and by providing a carbon layer made of Ketjen black on the negative electrode surface, the oxygen gas absorption capacity of the hydrogen storage alloy negative electrode can be improved. It can be seen that it is significantly improved. That is, the oxygen gas generated from the positive electrode is ionized (1 / 2O 2 + H 2 O +) on the surface of the negative electrode.
2e - → 2OH -) is although, by the carbon layer of the Ketjen black is present on the surface of the negative electrode, it is promoted oxygen ion reaction, the oxygen gas absorption ability is improved.

さらに、ケッチェンブラックとフッ素樹脂からなる層を
設けた電極Gは、ケッチェンブラック単独の電極Dと比
較すると、膜厚は同じであるが電池内圧は低下している
ことがわかる。これは酸素ガスのイオン化反応は気相・
固相・液相の三相界面の反応であり、フッ素樹脂のよう
な撥水性の樹脂をケッチェンブラックと混合することに
より、適切な三相界面が形成され酸素イオン化反応が促
進されることになる。したがって、電極Gを用いて構成
した電池は、電極Dのものと比べ電池内圧が低下する。
Further, it can be seen that the electrode G provided with the layer made of Ketjen black and the fluororesin has the same film thickness as the electrode D of Ketjen black alone, but the internal pressure of the battery is lowered. This is because the ionization reaction of oxygen gas is in the gas phase
It is a reaction at the three-phase interface between solid and liquid phases, and by mixing a water-repellent resin such as fluororesin with Ketjen Black, an appropriate three-phase interface is formed and the oxygen ionization reaction is promoted. Become. Therefore, the battery formed using the electrode G has a lower battery internal pressure than that of the electrode D.

また、黒鉛層をもつ電極Hを用いた電池は、電極Dを用
いたものに比べ電池内圧が高い。すなわち、アルカリ二
次電池に用いるCd極やZn極と異なり、反応式から明らか
なように、生成されたH2OによりOH-イオン濃度が低下す
る。したがって、低アルカリ濃度における酸素のイオン
化、すなわち触媒能の改善が必要とされる。ケッチェン
ブラックは、黒鉛と異なり、三次元方向に無数の鎖状に
分岐した、微細な炭素微粉末であり、電子伝導度もよい
が、それ以上に触媒作用を有する。したがって、電極D
を用いた電池の方がガス吸収能が向上する。
Further, the battery using the electrode H having the graphite layer has a higher battery internal pressure than the battery using the electrode D. That is, unlike the Cd electrode and the Zn electrode used in the alkaline secondary battery, the OH ion concentration decreases due to the generated H 2 O, as is clear from the reaction formula. Therefore, there is a need for ionization of oxygen at low alkali concentrations, i.e. improved catalytic activity. Unlike graphite, Ketjen black is a fine carbon fine powder branched into a number of chains in a three-dimensional direction and has good electron conductivity, but has a catalytic action more than that. Therefore, the electrode D
The gas absorption capacity of the battery using is improved.

なお、電極Bを用いたものは、従来例に比較すると効果
はあるが、電池内圧が8Kg/cm2と高い。また、炭素層の
膜厚が200μm以上になると、負極の体積が増加し、密
閉電池が構成できない。したがって、膜厚は2〜200μ
mの範囲が好ましい。
Although the one using the electrode B is more effective than the conventional example, the internal pressure of the battery is as high as 8 kg / cm 2 . Further, when the thickness of the carbon layer is 200 μm or more, the volume of the negative electrode increases and the sealed battery cannot be constructed. Therefore, the film thickness is 2-200μ
A range of m is preferred.

第3図に、1/3cmAで48時間連続過充電した場合の充電時
間と電池内圧の関係を示す。従来例の電極Aを用いたも
のは、電池内圧が一定にならず、20Kg/cm2になる。密閉
形ニッケル−水素蓄電池には10Kg/cm2で作動する安全弁
が設けられている。したがって、10Kg/cm2以上の内圧に
なると安全弁が作動し、漏液を生じたり、サイクル寿命
が低下することになる。本発明の電極Dを用いたもの
は、48時間の連続過充電を行っても電池内圧は5Kg/cm2
と一定であり、連続過充電を行っても漏液等の問題が発
生しなかった。
Figure 3 shows the relationship between charging time and battery internal pressure when continuously overcharged at 1/3 cmA for 48 hours. In the case of using the electrode A of the conventional example, the internal pressure of the battery is not constant and becomes 20 kg / cm 2 . The sealed nickel-metal hydride storage battery is equipped with a safety valve that operates at 10 kg / cm 2 . Therefore, at an internal pressure of 10 Kg / cm 2 or more, the safety valve will operate, causing liquid leakage or shortening the cycle life. With the electrode D of the present invention, the battery internal pressure was 5 kg / cm 2 even after continuous overcharge for 48 hours.
Therefore, problems such as liquid leakage did not occur even after continuous overcharging.

発明の効果 以上のように、本発明は水素吸蔵合金の表面に、炭素粉
末からなる薄層を形成した水素吸蔵合金負極を用いるこ
とにより、酸素ガス吸収能が向上し、連続過充電を行っ
た場合も電池内圧が上昇しない、密閉形ニッケル−水素
蓄電池を提供するものである。さらに、貴金属触媒に比
べ非常に安価な炭素を用いているため、工業的価値が大
である。
Effects of the Invention As described above, according to the present invention, by using a hydrogen storage alloy negative electrode in which a thin layer made of carbon powder is formed on the surface of a hydrogen storage alloy, oxygen gas absorption capacity is improved, and continuous overcharge is performed. Even in the case, the present invention provides a sealed nickel-hydrogen storage battery in which the battery internal pressure does not rise. Further, since it uses carbon, which is extremely cheaper than the noble metal catalyst, it has great industrial value.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明における電極構成を示す断面図、第2図
は電池内圧を示す特性図、第3図は連続過充電における
電池内圧を示す特性図である。 1……水素吸蔵合金からなる電極、2……炭素粉末から
なる薄層。
FIG. 1 is a cross-sectional view showing an electrode structure in the present invention, FIG. 2 is a characteristic view showing a battery internal pressure, and FIG. 3 is a characteristic view showing a battery internal pressure in continuous overcharge. 1 ... Electrode made of hydrogen storage alloy, 2 ... Thin layer made of carbon powder.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ニッケル正極と、水素吸蔵合金の表面に、
炭素粉末層を形成した水素吸蔵合金負極とを用いた密閉
形ニッケル−水素蓄電池。
1. A nickel positive electrode and a surface of a hydrogen storage alloy,
A sealed nickel-hydrogen storage battery using a hydrogen storage alloy negative electrode having a carbon powder layer formed thereon.
【請求項2】炭素粉末は三次元方向に無数の鎖状に分岐
した、微細な粉末である特許請求の範囲第1項記載の密
閉形ニッケル−水素蓄電池。
2. The sealed nickel-hydrogen storage battery according to claim 1, wherein the carbon powder is a fine powder that is branched into a myriad of chains in a three-dimensional direction.
【請求項3】炭素粉末からなる薄層の厚さが2μm〜20
0μmである水素吸蔵合金負極を用いた特許請求の範囲
第1項記載の密閉形ニッケル−水素蓄電池。
3. A thin layer of carbon powder having a thickness of 2 μm to 20 μm.
The sealed nickel-hydrogen storage battery according to claim 1, which uses a hydrogen storage alloy negative electrode having a thickness of 0 μm.
【請求項4】炭素粉末の薄層が、フッ素樹脂との混合層
である特許請求の範囲第1項記載の密閉形ニッケル−水
素蓄電池。
4. The sealed nickel-hydrogen storage battery according to claim 1, wherein the thin layer of carbon powder is a mixed layer with a fluororesin.
JP61138582A 1986-06-13 1986-06-13 Sealed nickel-hydrogen battery Expired - Lifetime JPH0677450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61138582A JPH0677450B2 (en) 1986-06-13 1986-06-13 Sealed nickel-hydrogen battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61138582A JPH0677450B2 (en) 1986-06-13 1986-06-13 Sealed nickel-hydrogen battery

Publications (2)

Publication Number Publication Date
JPS62295353A JPS62295353A (en) 1987-12-22
JPH0677450B2 true JPH0677450B2 (en) 1994-09-28

Family

ID=15225487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61138582A Expired - Lifetime JPH0677450B2 (en) 1986-06-13 1986-06-13 Sealed nickel-hydrogen battery

Country Status (1)

Country Link
JP (1) JPH0677450B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506074A (en) * 1993-09-30 1996-04-09 Sanyo Electric Co. Ltd. Metal hydride electrode and nickel-hydrogen alkaline storage cell
FR2735618A1 (en) * 1995-03-17 1996-12-20 Samsung Display Devices Co Ltd HYDROGEN STORAGE ALLOY ANODE AND METHOD FOR THE PRODUCTION THEREOF

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53103541A (en) * 1977-02-23 1978-09-08 Matsushita Electric Ind Co Ltd Hydrogen occlusion electrode
JPS5456143A (en) * 1977-09-20 1979-05-04 Communications Satellite Corp Metallic oxide hydride electrode type accumulator
JPS58163157A (en) * 1982-03-23 1983-09-27 Toshiba Corp Metal oxide-hydrogen cell
JPS5996679A (en) * 1982-11-24 1984-06-04 Japan Storage Battery Co Ltd Sealed secondary battery
JPS6063875A (en) * 1983-09-16 1985-04-12 Sanyo Electric Co Ltd Paste type cadmium anode plate for sealed alkaline storage battery
JPS60100382A (en) * 1983-11-07 1985-06-04 Matsushita Electric Ind Co Ltd Closed nickel-hydrogen storage battery
JPS60130063A (en) * 1983-12-16 1985-07-11 Matsushita Electric Ind Co Ltd Manufacture of sealed nickel-hydrogen storage battery
JPS60202666A (en) * 1984-03-26 1985-10-14 Sanyo Electric Co Ltd Paste type cadmium anode plate for alkaline storage battery
JPS60264049A (en) * 1984-06-12 1985-12-27 Sanyo Electric Co Ltd Alkali zinc battery
JPS61185863A (en) * 1985-02-14 1986-08-19 Toshiba Corp Hydrogen occlusion alloy electrode
JPS62264557A (en) * 1986-05-13 1987-11-17 Toshiba Corp Metal oxide-hydrogen battery

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53103541A (en) * 1977-02-23 1978-09-08 Matsushita Electric Ind Co Ltd Hydrogen occlusion electrode
JPS5456143A (en) * 1977-09-20 1979-05-04 Communications Satellite Corp Metallic oxide hydride electrode type accumulator
JPS58163157A (en) * 1982-03-23 1983-09-27 Toshiba Corp Metal oxide-hydrogen cell
JPS5996679A (en) * 1982-11-24 1984-06-04 Japan Storage Battery Co Ltd Sealed secondary battery
JPS6063875A (en) * 1983-09-16 1985-04-12 Sanyo Electric Co Ltd Paste type cadmium anode plate for sealed alkaline storage battery
JPS60100382A (en) * 1983-11-07 1985-06-04 Matsushita Electric Ind Co Ltd Closed nickel-hydrogen storage battery
JPS60130063A (en) * 1983-12-16 1985-07-11 Matsushita Electric Ind Co Ltd Manufacture of sealed nickel-hydrogen storage battery
JPS60202666A (en) * 1984-03-26 1985-10-14 Sanyo Electric Co Ltd Paste type cadmium anode plate for alkaline storage battery
JPS60264049A (en) * 1984-06-12 1985-12-27 Sanyo Electric Co Ltd Alkali zinc battery
JPS61185863A (en) * 1985-02-14 1986-08-19 Toshiba Corp Hydrogen occlusion alloy electrode
JPS62264557A (en) * 1986-05-13 1987-11-17 Toshiba Corp Metal oxide-hydrogen battery

Also Published As

Publication number Publication date
JPS62295353A (en) 1987-12-22

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
US4994334A (en) Sealed alkaline storage battery and method of producing negative electrode thereof
US5034289A (en) Alkaline storage battery and method of producing negative electrode thereof
EP0170519B1 (en) A method of producing a sealed metal oxide-hydrogen storage cell
JP3345889B2 (en) Manufacturing method of alkaline storage battery and its negative electrode
JPH0677451B2 (en) Manufacturing method of hydrogen storage electrode
US5131920A (en) Method of manufacturing sealed rechargeable batteries
JPH0677450B2 (en) Sealed nickel-hydrogen battery
EP3483960B1 (en) Negative electrode for nickel hydrogen secondary battery, and nickel hydrogen secondary battery including the negative electrode
US6197448B1 (en) Hydrogen storage alloy
JP2689473B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JP2629258B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH0763004B2 (en) Sealed alkaline storage battery
JP3343417B2 (en) Metal oxide / hydrogen secondary battery
JP3141141B2 (en) Sealed nickel-metal hydride storage battery
JP2566912B2 (en) Nickel oxide / hydrogen battery
JPH0810596B2 (en) Metal oxide / hydrogen battery
JPH028419B2 (en)
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JP3229672B2 (en) Metal hydride storage battery
JPH0690922B2 (en) Sealed alkaline storage battery
JPH03295177A (en) Sealed alkaline storage battery
JP2679441B2 (en) Nickel-metal hydride battery
JPH0690924B2 (en) Storage battery electrode
Zhu et al. Electrochemical characteristics of encapsulated metal-hydride-alloy electrodes

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term