JPH04212269A - Alkaline storage battery - Google Patents

Alkaline storage battery

Info

Publication number
JPH04212269A
JPH04212269A JP3054849A JP5484991A JPH04212269A JP H04212269 A JPH04212269 A JP H04212269A JP 3054849 A JP3054849 A JP 3054849A JP 5484991 A JP5484991 A JP 5484991A JP H04212269 A JPH04212269 A JP H04212269A
Authority
JP
Japan
Prior art keywords
battery
electrode
zinc
positive electrode
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3054849A
Other languages
Japanese (ja)
Other versions
JP2604282B2 (en
Inventor
Katsuya Kono
勝也 河野
Yoshikazu Ishikura
良和 石倉
Shinsuke Nakahori
真介 中堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP3054849A priority Critical patent/JP2604282B2/en
Publication of JPH04212269A publication Critical patent/JPH04212269A/en
Application granted granted Critical
Publication of JP2604282B2 publication Critical patent/JP2604282B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To extraordinarily enhance the cycle characteristics of a storage battery by adding zinc or zinc compounds to a positive electrode made of nickel hydroxide, and thereby preventing the charge acceptance property of the positive electrode from being lowered. CONSTITUTION:An electrode is restrained from being expanded with zinc or zinc compounds contained in the electrode made of nickel hydroxide, and oxygen over-voltage is concurrently increased with lithium hydroxide and solium hydroxide contained in alkaline electrolyte mainly composed of potassium hydroxide.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ニッケル−カドミウム
電池、ニッケル−水素電池等に代表される水酸化ニッケ
ルを主体とする正極を備えたアルカリ蓄電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline storage battery having a positive electrode mainly composed of nickel hydroxide, such as a nickel-cadmium battery or a nickel-hydrogen battery.

【0002】0002

【従来の技術】アルカリ蓄電池用のニッケル電極におい
ては、特公昭42−21115号公報に示されるように
、充放電サイクルによる極板の膨張を抑えるべく、ニッ
ケル電極にカドミウムを添加するような方法が広く知ら
れている。また、特公昭60−12742号公報、特公
昭59−10538号公報及び特開昭51−87733
号公報に示されるように、カドミウムの添加に加えてコ
バルトを添加することにより、極板の膨張抑制の他、高
温での充電特性の向上や活物質利用率の向上或いは自己
放電の抑制等を図ることができることが知られている。
[Prior Art] In the case of nickel electrodes for alkaline storage batteries, as shown in Japanese Patent Publication No. 42-21115, there is a method of adding cadmium to the nickel electrodes in order to suppress the expansion of the electrode plates during charge/discharge cycles. widely known. In addition, Japanese Patent Publication No. 60-12742, Japanese Patent Publication No. 59-10538, and Japanese Patent Publication No. 51-87733
As shown in the publication, by adding cobalt in addition to cadmium, in addition to suppressing the expansion of the electrode plate, it also improves the charging characteristics at high temperatures, improves the active material utilization rate, and suppresses self-discharge. It is known that it is possible to

【0003】しかしながら、近年、環境保全の立場から
、カドミウムの使用に対する規制が高まりつつある。
However, in recent years, regulations on the use of cadmium have been increasing from the standpoint of environmental conservation.

【0004】そこで、カドミウムに代えて、活物質に亜
鉛または亜鉛化合物を添加する方法が提案されている。 (例えば、特開昭59−83347号公報、D.H.F
ritts“Zinc Hydroxide as a
 Substitute for Cobalt Hy
droxide inNickel Electrod
es”,The Electrochemical S
ociety INC.160th Meeting 
Extended Abstracts,Vol.81
−2,P86(1981).あるいは昭和63年第29
回電池討論会予稿集P53等) 。しかしながら、活物
質に亜鉛または亜鉛化合物を添加したニッケル電極では
、活物質の充電受け入れ性が大幅に低下する。特に、酸
素過電圧が低下して酸素ガスの発生が促進される高温で
の充電条件下では、充電容量が大きく低下するという問
題を有していた。
[0004] Therefore, a method has been proposed in which zinc or a zinc compound is added to the active material instead of cadmium. (For example, JP-A-59-83347, D.H.F.
ritts“Zinc Hydroxide as a
Substitute for Cobalt Hy
droxide in Nickel Electrod
es", The Electrochemical S
ocity INC. 160th Meeting
Extended Abstracts, Vol. 81
-2, P86 (1981). Or the 29th of 1986
Proceedings of the 2017 Battery Symposium, P53, etc.). However, in a nickel electrode in which zinc or a zinc compound is added to the active material, the charge acceptance of the active material is significantly reduced. In particular, under charging conditions at high temperatures where the oxygen overvoltage is reduced and the generation of oxygen gas is promoted, there has been a problem in that the charging capacity is significantly reduced.

【0005】これに対し、活物質の充電受け入れ性を向
上させる方法としては、従来よりコバルト化合物をニッ
ケル電極の活物質中へ添加する方法が採られている。し
かし、コバルト化合物を添加しただけでは、活物質の充
電受け入れ性は向上するが、電極膨張を余り抑制するこ
とができない。
On the other hand, as a method for improving the charge acceptance of an active material, a method of adding a cobalt compound to the active material of a nickel electrode has been adopted. However, although the charge acceptance of the active material is improved by simply adding a cobalt compound, electrode expansion cannot be suppressed very much.

【0006】そこで、ニッケル電極中にコバルトと亜鉛
とを共に添加するような方法も考えられるが、亜鉛を添
加した場合に、前記活物質の充電受け入れ性を向上させ
ようとすると、コバルトを多量に添加しなければならず
、活物質の充填量が減少して、電池容量が大きく低下す
るという問題があった。
[0006] Therefore, a method of adding cobalt and zinc together to the nickel electrode may be considered, but if zinc is added and the charge acceptance of the active material is to be improved, it is necessary to add a large amount of cobalt. There was a problem in that the filling amount of the active material was reduced and the battery capacity was significantly reduced.

【0007】[0007]

【発明が解決しようとする課題】本発明は、前述した問
題点に鑑みてなされたものであり、亜鉛または亜鉛化合
物を含有させた水酸化ニッケルを主活物質とする正極を
用いた場合における正極の充電受け入れ性の低下を防止
し、特に高温における充電受け入れ性を改良して、前記
亜鉛または亜鉛化合物の添加効果、即ち電極の膨張抑制
効果を発揮させようとするものである。そして、この種
アルカリ蓄電池のサイクル特性を飛躍的に向上させよう
とするものである。
[Problems to be Solved by the Invention] The present invention has been made in view of the above-mentioned problems, and provides a positive electrode in which a positive electrode whose main active material is nickel hydroxide containing zinc or a zinc compound is used. The purpose of this invention is to prevent a decrease in the charge acceptability of the electrode, improve the charge acceptability particularly at high temperatures, and exhibit the effect of adding the zinc or zinc compound, that is, the effect of suppressing expansion of the electrode. The aim is to dramatically improve the cycle characteristics of this type of alkaline storage battery.

【0008】[0008]

【課題を解決するための手段】本発明のアルカリ蓄電池
は、亜鉛または亜鉛化合物を含有する水酸化ニッケルを
主活物質とする正極と、負極と、水酸化カリウムを主体
とするアルカリ電解液とを備え、前記アルカリ電解液中
に、水酸化リチウム及び水酸化ナトリウムを含有させる
ことを特徴とするものである。
[Means for Solving the Problems] The alkaline storage battery of the present invention comprises a positive electrode whose main active material is nickel hydroxide containing zinc or a zinc compound, a negative electrode, and an alkaline electrolyte whose main active material is potassium hydroxide. The alkaline electrolyte is characterized in that lithium hydroxide and sodium hydroxide are contained in the alkaline electrolyte.

【0009】ここで、前記負極としては、水素吸蔵合金
電極を用いることが、特に好ましい。
[0009] Here, it is particularly preferable to use a hydrogen storage alloy electrode as the negative electrode.

【0010】そして、前記電解液の水酸化リチウムの濃
度を1.0〜2.0規定、水酸化ナトリウムの濃度を0
.3〜0.9規定、水酸化カリウムの濃度を3規定以上
とすると、より効果的である。
[0010] Then, the concentration of lithium hydroxide in the electrolytic solution is 1.0 to 2.0N, and the concentration of sodium hydroxide is 0N.
.. It is more effective when the concentration of potassium hydroxide is 3 to 0.9N, and 3N or more.

【0011】[0011]

【作用】水酸化ニッケル電極の充電時には、(1)式の
活物質充電反応と、(2)式の酸素ガス発生反応とが競
争的に起こることになる。
[Operation] During charging of the nickel hydroxide electrode, the active material charging reaction of equation (1) and the oxygen gas generation reaction of equation (2) occur competitively.

【0012】0012

【化1】[Chemical formula 1]

【0013】[0013]

【化2】[Case 2]

【0014】ところが、活物質と亜鉛または亜鉛化合物
を含有した電極、たとえば固溶体を形成したニッケル電
極では、(1)式の反応の過電圧が増大することと、平
衝電位が貴方向にシフトしたことで、結果的に(2)式
の反応が促進されるものと考えられる。この結果、充電
受け入れ性が低下する。
However, in an electrode containing an active material and zinc or a zinc compound, such as a nickel electrode in which a solid solution is formed, the overvoltage of the reaction of equation (1) increases and the equilibrium potential shifts in the noble direction. Therefore, it is thought that the reaction of formula (2) is promoted as a result. As a result, charge acceptance is reduced.

【0015】これに対して本発明者が種々実験した結果
、活物質と亜鉛の固溶体を有するニッケル電極に、水酸
化カリウム水溶液に水酸化リチウム及び水酸化ナトリウ
ムを適度に添加した電解液を用いると、(2)式の反応
を抑制し、(1)式の反応を大幅に促進させる効果を有
することを見出した。
On the other hand, as a result of various experiments conducted by the present inventor, it was found that when an electrolytic solution prepared by adding appropriate amounts of lithium hydroxide and sodium hydroxide to a potassium hydroxide aqueous solution is used for a nickel electrode having a solid solution of active material and zinc. , has been found to have the effect of suppressing the reaction of formula (2) and significantly promoting the reaction of formula (1).

【0016】即ち、これは酸素過電圧か増大したために
、充電の受け入れ性を向上させることができるものと推
定される。この作用効果は、ニッケル極の充電に対して
添加された亜鉛が充電受け入れ性を低下させるという毒
作用を成すが、これがリチウム及びナトリウムの存在に
よって解消されるためと推定される。またこの効果は、
水酸化リチウムのみ、あるいは水酸化ナトリウムのみで
は、十分に得られないことがわかった。また、水酸化ナ
トリウムの濃度を0.3〜0.9規定、水酸化リチウム
の濃度を1.0〜2.0規定としたのは、これらの濃度
以下では十分な効果が得られず、これらの濃度以上では
電池容量の低下を生じるためである。
[0016] That is, it is presumed that this is because the oxygen overvoltage has increased, thereby improving the charging acceptability. This effect is presumed to be due to the fact that zinc added to the nickel electrode has a poisonous effect of reducing charge acceptance, but this is eliminated by the presence of lithium and sodium. Also, this effect
It was found that lithium hydroxide alone or sodium hydroxide alone was not sufficient. In addition, the reason why the concentration of sodium hydroxide was set to 0.3 to 0.9N and the concentration of lithium hydroxide to 1.0 to 2.0N was because sufficient effects could not be obtained below these concentrations. This is because if the concentration exceeds , the battery capacity will decrease.

【0017】そして、本発明の効果がニッケル−カドミ
ウム電池よりも、負極として水素吸蔵合金電極を用いた
ニッケル−水素アルカリ蓄電池において、最大限に発揮
されるのは、以下の理由によるものと思われる。
[0017] The reason why the effects of the present invention are exhibited to the greatest extent in a nickel-hydrogen alkaline storage battery using a hydrogen storage alloy electrode as the negative electrode than in a nickel-cadmium battery is believed to be due to the following reasons. .

【0018】即ち、カドミウム電極を用いたニッケル−
カドミウム電池では、充電時に生じた活物質である金属
カドミウムが正極から発生する酸素と反応して、放電活
物質である水酸化カドミウムになるという、いわゆるノ
イマン方式によって密閉化が達成されている。一方、水
素吸蔵合金電極を用いたニッケル−水素アルカリ蓄電池
では、活物質である水素と、正極から発生する酸素が反
応することによって同様に密閉化が達成されている。
That is, nickel using a cadmium electrode
In cadmium batteries, sealing is achieved by the so-called Neumann method, in which metallic cadmium, the active material produced during charging, reacts with oxygen generated from the positive electrode to become cadmium hydroxide, the discharge active material. On the other hand, in a nickel-hydrogen alkaline storage battery using a hydrogen-absorbing alloy electrode, sealing is similarly achieved by the reaction between hydrogen, which is an active material, and oxygen generated from the positive electrode.

【0019】ところが、ニッケル−水素アルカリ蓄電池
においては、水素吸蔵合金自身が上記酸素によって酸化
され易いという性質を有しており、このような酸化が生
じると電池の性能が著しく劣化する。特に、この現象は
、水素吸蔵合金中に吸蔵された水素量が少ない程起こり
易い傾向がある。従って、上記(1)式に比べて(2)
式が優先的に起こる場合、水素吸蔵合金の酸化も進行し
易く、その結果、合金の性能劣化が著しくなる。 しかしながら、本発明の場合、正極からの酸素の発生が
遅れるため、水素吸蔵合金の酸化による電池性能の劣化
も抑制される。
However, in a nickel-hydrogen alkaline storage battery, the hydrogen storage alloy itself has a property of being easily oxidized by the above-mentioned oxygen, and when such oxidation occurs, the performance of the battery is significantly deteriorated. In particular, this phenomenon tends to occur more easily as the amount of hydrogen stored in the hydrogen storage alloy decreases. Therefore, compared to the above equation (1), (2)
When this occurs preferentially, oxidation of the hydrogen storage alloy tends to proceed, and as a result, the performance of the alloy deteriorates significantly. However, in the case of the present invention, since the generation of oxygen from the positive electrode is delayed, deterioration of battery performance due to oxidation of the hydrogen storage alloy is also suppressed.

【0020】また、本発明のアルカリ蓄電池の正極には
、亜鉛または亜鉛の化合物が添加されているので、正極
の膨張を抑制しうる。
Furthermore, since zinc or a zinc compound is added to the positive electrode of the alkaline storage battery of the present invention, expansion of the positive electrode can be suppressed.

【0021】更に、上記の如く、活物質の充電受け入れ
性が向上し、水素吸蔵合金の酸化が抑制され、且つ正極
の膨張を抑制しうるので、サイクル特性も向上する。
Furthermore, as described above, the charge acceptance of the active material is improved, the oxidation of the hydrogen storage alloy is suppressed, and the expansion of the positive electrode can be suppressed, so that the cycle characteristics are also improved.

【0022】加えて、正極には亜鉛または亜鉛の化合物
を添加するだけでよいので、活物質の充填量が少なくな
ることもない。したがって、電池容量を低下させること
なく、上記の優れた効果を奏することになる。
In addition, since it is only necessary to add zinc or a zinc compound to the positive electrode, the amount of active material packed will not decrease. Therefore, the above-mentioned excellent effects can be achieved without reducing the battery capacity.

【0023】[0023]

【実施例】【Example】

(第1実施例) 〔実施例〕 図1は本発明の一例を示す円筒型ニッケル−水素アルカ
リ蓄電池の断面図であり、焼結式ニッケル正極1と、水
素吸蔵合金を含む負極2と、これら正負両極1・2間に
介挿されたセパレータ3とから成る電極群4は渦巻状に
卷回されている。この電極群4は負極端子兼用の外装缶
5内に配置されており、この外装缶5と上記負極2とは
負極用導電タブ10により接続されている。上記外装缶
5の上部開口にはパッキング6を介して封口体7が装着
されており、この封口体7の内部にはコイルスプリング
8が設けられいてる。このコイルスプリング8は電池内
部の内圧が以上上昇したときに矢印A方向に押圧されて
、電池内部のガスが大気中に放出されるように構成され
ている。また、上記封口体7と前記正極1とは正極用導
電タブ9にて接続されている。
(First Example) [Example] FIG. 1 is a cross-sectional view of a cylindrical nickel-hydrogen alkaline storage battery showing an example of the present invention, in which a sintered nickel positive electrode 1, a negative electrode 2 containing a hydrogen storage alloy, and An electrode group 4 consisting of positive and negative electrodes 1 and 2 and a separator 3 interposed between them is spirally wound. This electrode group 4 is arranged in an outer can 5 which also serves as a negative electrode terminal, and this outer can 5 and the negative electrode 2 are connected by a conductive tab 10 for the negative electrode. A closure body 7 is attached to the upper opening of the outer can 5 via a packing 6, and a coil spring 8 is provided inside the closure body 7. This coil spring 8 is configured to be pressed in the direction of arrow A when the internal pressure inside the battery rises above a certain level, so that the gas inside the battery is released into the atmosphere. Further, the sealing body 7 and the positive electrode 1 are connected by a positive electrode conductive tab 9.

【0024】ここで、上記構造の円筒型ニッケル−水素
アルカリ蓄電池を、以下のようにして作製した。
A cylindrical nickel-hydrogen alkaline storage battery having the above structure was manufactured in the following manner.

【0025】まず、3モル%の硝酸コバルトと7モル%
の硝酸亜鉛とを加えた硝酸ニッケル水溶液を用い、多孔
度85%のニッケル焼結基板に、化学含浸法によって水
酸化ニッケルを主体とする活物質を充填し、ニッケル正
極を作製した。
First, 3 mol% cobalt nitrate and 7 mol%
Using a nickel nitrate aqueous solution containing zinc nitrate, a nickel sintered substrate with a porosity of 85% was filled with an active material mainly composed of nickel hydroxide by a chemical impregnation method to produce a nickel positive electrode.

【0026】このようにして作製した正極を、以下正極
aと称する。
The positive electrode thus produced is hereinafter referred to as positive electrode a.

【0027】一方、これと並行して、市販のMm(ミッ
シュメタル:希土類元素の混合物)、Ni、Co、Mn
及びAlを元素比で1:3.2:1:0.6:0.2の
割合となるように秤量した後、高周波溶解炉内で溶解し
て溶湯を作製し、更にこの溶湯を冷却することにより、
MmNi3.2CoMn0.6Al0.2で示される合
金のイ ンゴットを作製した。次に、上記インゴットを
粒径50μm以下に粉砕した。この後、上記水素吸蔵合
金粉末に、結着剤としてのPTFE(ポリテトラフルオ
ロエチレン)粉末を5wt%加えて混練し、ペーストを
作製する。更に、このペーストをパンチングメタルから
なる集電体の両面に圧着して負極2を作製した。
On the other hand, in parallel with this, commercially available Mm (misch metal: mixture of rare earth elements), Ni, Co, Mn
and Al in an elemental ratio of 1:3.2:1:0.6:0.2, then melted in a high-frequency melting furnace to produce a molten metal, and this molten metal is further cooled. By this,
An ingot of an alloy represented by MmNi3.2CoMn0.6Al0.2 was prepared. Next, the above ingot was pulverized to a particle size of 50 μm or less. Thereafter, 5 wt % of PTFE (polytetrafluoroethylene) powder as a binder is added to the hydrogen storage alloy powder and kneaded to prepare a paste. Furthermore, this paste was pressed onto both sides of a current collector made of punched metal to produce a negative electrode 2.

【0028】次いで、上記正極1と負極2とを不織布か
らなるセパレータ3を介して巻回し、電極群4を作製し
た。しかる後、この電極群4を外装缶5内に挿入し、更
にアルカリ電解液〔水酸化カリウム(KOH)の濃度:
5規定、水酸化リチウム(LiOH)の濃度:1.5規
定、水酸化ナトリウム(NaOH)の濃度:0.6規定
〕を上記外装缶5内に注液した後、外装缶5を密閉する
ことにより円筒型ニッケル−水素蓄電池を作製した。 尚、このようにして作製した電池の理論容量は、100
0mAhである。
Next, the positive electrode 1 and the negative electrode 2 were wound together with a separator 3 made of non-woven fabric interposed therebetween to prepare an electrode group 4. After that, this electrode group 4 is inserted into the outer can 5, and then an alkaline electrolyte [concentration of potassium hydroxide (KOH):
5N, lithium hydroxide (LiOH) concentration: 1.5N, sodium hydroxide (NaOH) concentration: 0.6N] into the above-mentioned outer can 5, and then seal the outer can 5. A cylindrical nickel-metal hydride storage battery was manufactured. The theoretical capacity of the battery thus produced is 100
It is 0mAh.

【0029】このようにして作製した電池を、以下電池
Aと称する。 〔比較例1〕 アルカリ電解液として、KOHの濃度が6規定、LiO
Hの濃度が1規定のものを用いる他は、上記実施例と同
様にして電池を作製した。
The battery thus produced is hereinafter referred to as battery A. [Comparative Example 1] As an alkaline electrolyte, the concentration of KOH was 6N, LiO
A battery was produced in the same manner as in the above example except that a battery having an H concentration of 1N was used.

【0030】このようにして作製した電池を、以下電池
X1と称する。 〔比較例2〕 10モル%の硝酸コバルトを加えた硝酸ニッケル水溶液
(即ち、硝酸亜鉛を添加しない水溶液)を用い、多孔度
85%のニッケル焼結基板に、化学含浸法によって水酸
化ニッケルを主体とする活物質を充填し、ニッケル正極
を作製した。したがって、この正極には、亜鉛が含浸さ
れないことになる。
The battery thus produced is hereinafter referred to as battery X1. [Comparative Example 2] Using a nickel nitrate aqueous solution containing 10 mol% cobalt nitrate (that is, an aqueous solution without adding zinc nitrate), a nickel sintered substrate with a porosity of 85% was coated with nickel hydroxide as a main component by a chemical impregnation method. A nickel positive electrode was prepared by filling the active material with the following. Therefore, this positive electrode will not be impregnated with zinc.

【0031】このようにして作製した正極を、以下正極
xと称する。
The positive electrode thus produced is hereinafter referred to as positive electrode x.

【0032】上記正極xを用いる他は(即ち、電解液は
上記実施例と同様のものを用いている)、上記実施例と
同様にして電池を作製した。
A battery was produced in the same manner as in the above example except that the above positive electrode x was used (that is, the same electrolyte as in the above example was used).

【0033】このようにして作製した電池を、以下電池
X2と称する。 〔比較例3〕 上記正極xと、前記比較例1で用いた電解液とを用いる
他は、前記実施例と同様にして電池を作製した。
The battery thus produced is hereinafter referred to as battery X2. [Comparative Example 3] A battery was produced in the same manner as in the Example, except that the positive electrode x and the electrolytic solution used in Comparative Example 1 were used.

【0034】このようにして作製した電池を、以下電池
X3と称する。
The battery thus produced is hereinafter referred to as battery X3.

【0035】ここで、上記本発明の電池A、比較例の電
池X1〜電池X3、或いは正極a、正極xを用いて、以
下に示すような実験を行った。
The following experiment was conducted using the battery A of the present invention, the batteries X1 to X3 of the comparative examples, or the positive electrode a and the positive electrode x.

【0036】尚、実験1では充電温度特性を、実験2で
は充放電サイクル特性を、実験3では亜鉛の添加による
電極の膨張抑制効果の確認を、実験4では適正な亜鉛の
添加料の確認を実験5では電解液の作用,効果の確認を
、実験6〜8ではそれぞれ電解液中のKOH、LiOH
、NaOHの適正濃度の確認を行った。 〔実験1〕 上記本発明の電池A及び比較例の電池X1〜電池X3の
充電温度特性を調べたので、その結果を図2に示す。尚
、実験条件は、種々の周囲温度の下で、各電池を0.1
Cの電流で16時間充電した後、0.2Cの電流で電池
電圧が1.0Vになる迄放電させるという条件であり、
このような条件下で種々の周囲温度における電池容量を
測定した。また、電池容量(%)は、周囲温度20℃で
充電した時の放電容量を100として算出した。
[0036] In Experiment 1, we examined the charging temperature characteristics, in Experiment 2 we examined the charge/discharge cycle characteristics, in Experiment 3 we verified the effect of suppressing electrode expansion due to the addition of zinc, and in Experiment 4 we verified the appropriate zinc additive. In Experiment 5, the action and effect of the electrolyte were confirmed, and in Experiments 6 to 8, KOH and LiOH in the electrolyte were confirmed.
, the appropriate concentration of NaOH was confirmed. [Experiment 1] The charging temperature characteristics of the battery A of the present invention and batteries X1 to X3 of the comparative examples were investigated, and the results are shown in FIG. 2. The experimental conditions were as follows: each battery was heated to 0.1 at various ambient temperatures.
The conditions are to charge the battery with a current of C for 16 hours and then discharge with a current of 0.2C until the battery voltage reaches 1.0V.
Under these conditions, battery capacity was measured at various ambient temperatures. Further, the battery capacity (%) was calculated by setting the discharge capacity when charged at an ambient temperature of 20° C. as 100.

【0037】図2から明らかなように、本発明の電池A
は、正極中に亜鉛が添加されていない比較例の電池X2
,電池X3と同様の傾向を示し、充電時の電池周囲温度
の上昇に伴う電池容量の低下が抑制されていることが認
められる。これに対して、比較例の電池X1では、充電
時の電池周囲温度の上昇に伴って、著しく電池容量が低
 下していることが認められる。したがって、本発明の
電池Aは比較例の電池X1 に比べて、高温時における
活物質の充電受け入れ性が向上していることが分かる。 〔実験2〕 上記本発明の電池A及び比較例の電池X1〜電池X3の
充放電サイクル特性を調べたので、その結果を図3に示
す。尚、実験条件は、各電池を室温にて1.2Cの電流
で1時間充電した後、1Cの電流で電池電圧が1.0V
に達する迄放電するという条件である。そして、電池容
量(%)は、各電池の1サイクル目の容量を100とし
て算出したものである。
As is clear from FIG. 2, the battery A of the present invention
is Comparative Example Battery X2 in which zinc is not added to the positive electrode.
, and showed the same tendency as battery X3, and it was observed that the decrease in battery capacity due to the rise in battery ambient temperature during charging was suppressed. In contrast, in Comparative Example Battery X1, it was observed that the battery capacity decreased significantly as the ambient temperature of the battery increased during charging. Therefore, it can be seen that the battery A of the present invention has improved charge acceptance of the active material at high temperatures compared to the battery X1 of the comparative example. [Experiment 2] The charge/discharge cycle characteristics of the battery A of the present invention and batteries X1 to X3 of the comparative examples were investigated, and the results are shown in FIG. 3. The experimental conditions were that each battery was charged at room temperature with a current of 1.2C for 1 hour, and then the battery voltage was increased to 1.0V with a current of 1C.
The condition is to discharge until it reaches . The battery capacity (%) was calculated with the first cycle capacity of each battery as 100.

【0038】図3から明らかなように、本発明の電池A
はサイクル寿命が800回以上であるのに対して、比較
例の電池X1〜電池X3ではサイクル寿命が400回程
度であり、電池Aは電池X1〜電池X3に比べてサイク
ル特性が飛躍的に改善されていることが認められる。 〔実験1,2のまとめ〕 以上の如く、本発明の電池Aは亜鉛または亜鉛化合物を
含有した水酸化ニッケル電極を用いた電池であるにもか
かわらず、比較例の電池X1〜電池X3に比べてサイク
ル特性に優れ、且つ、高温時における充電受け入れ性の
面でも亜鉛を添加しない電池X2及び電池X3と同等の
性能を有していることが確認された。これは、以下に示
す理由によるものと考えられる。
As is clear from FIG. 3, the battery A of the present invention
has a cycle life of more than 800 times, whereas the cycle life of Comparative Examples Batteries X1 to Batteries X3 is about 400 times, and battery A has dramatically improved cycle characteristics compared to Batteries X1 to Batteries X3. It is recognized that [Summary of Experiments 1 and 2] As described above, although Battery A of the present invention is a battery using a nickel hydroxide electrode containing zinc or a zinc compound, it is inferior to Battery X1 to Battery X3 of Comparative Examples. It was confirmed that the battery had excellent cycle characteristics, and had performance equivalent to battery X2 and battery X3 in which zinc was not added in terms of charge acceptance at high temperatures. This is considered to be due to the following reasons.

【0039】即ち、本発明の電池Aでは、亜鉛が添加さ
れているため電極の膨張が抑制され、且つアルカリ電解
液にNaOH、LiOHが添加されているので充電反応
が促進(特に、高温において)され、更に、このことに
より酸素の発生が少なくなるので、負極の水素吸蔵合金
の酸化防止効果が発揮されるといった理由によるものと
考えられる。一方、比較例の電池X1〜電池X3では、
いずれもセパレータ中の液量の減少に伴う、いわゆるド
ライアウト現象が生じるという理由によるものと考えら
れる。具体的には、比較例の電池X1では、酸素ガス発
生反応が促進され 、電池内に多量の酸素が存在するこ
ととなるため、負極(水素吸蔵合金)が酸化する。この
結果、ガス消費反応が低下し、電池内圧が上昇するため
、電解液が電池系外に漏れる。一方、比較例の電池X2
、電池X3では、亜鉛が含有されていないので、正極が
膨張し、これに伴ってセパレータから正極への電解液が
移行するといった現象が発生するといった理由による。 〔実験3〕 上記本発明の電池Aに用いた正極aと比較例の電池X2
及び電池X3に用いた正極xとを、十分な量を有するK
OH(比重1.23)中に浸透し、ニッケル板を対極に
して、充放電サイクルを行った。そして、電極の厚みの
変化と、20サイクル目の充電状態の極板のX線回折分
析(粉末法)を行ったので、その結果を夫々図4及び図
5に示す。尚、実験条件は、充電電流1.5Cで1時間
充電した後、放電電流1Cで極板電圧0.1V(v.s
.Hg/HgO)まで放電するという条件である。
That is, in the battery A of the present invention, the expansion of the electrode is suppressed because zinc is added, and the charging reaction is accelerated (especially at high temperatures) because NaOH and LiOH are added to the alkaline electrolyte. Furthermore, this is thought to be due to the fact that this reduces the amount of oxygen generated, thereby exerting the oxidation-preventing effect of the hydrogen storage alloy of the negative electrode. On the other hand, in batteries X1 to X3 of comparative examples,
This is believed to be due to the so-called dry-out phenomenon occurring as the amount of liquid in the separator decreases. Specifically, in the battery X1 of the comparative example, the oxygen gas generation reaction is promoted and a large amount of oxygen is present in the battery, so that the negative electrode (hydrogen storage alloy) is oxidized. As a result, the gas consumption reaction decreases and the battery internal pressure increases, causing the electrolyte to leak out of the battery system. On the other hand, battery X2 of comparative example
This is because battery X3 does not contain zinc, so the positive electrode expands, and this causes a phenomenon in which the electrolyte moves from the separator to the positive electrode. [Experiment 3] Positive electrode a used in the battery A of the present invention and battery X2 of the comparative example
and the positive electrode x used in battery X3, with a sufficient amount of K.
It penetrated into OH (specific gravity 1.23), and a nickel plate was used as a counter electrode, and a charge/discharge cycle was performed. Then, changes in the thickness of the electrode and X-ray diffraction analysis (powder method) of the electrode plate in the charged state at the 20th cycle were conducted, and the results are shown in FIGS. 4 and 5, respectively. The experimental conditions were that after charging for 1 hour at a charging current of 1.5C, the plate voltage was set at 0.1V (v.s.
.. The condition is to discharge to Hg/HgO).

【0040】図4より明らかなように、充放電サイクル
を経た場合に、正極aは正極xに比べて電極厚みの増加
率が著しく低減していることが認められる。これは、図
5に示すように正極aは正極xに比べて、低密度の活物
質であるγ−NiOOHの生成が抑制されるという理由
によるものと考えられる。 〔実験4〕 硝酸亜鉛の添加量を0、3、5、7、10モル%と変化
させて(即ち、正極中のZn量を変化させて)正極を作
製し、上記実験3と同様の方法で充放電を行い、3サイ
クル終了時点での正極の厚みの増加率を調べたので、そ
の結果を図6に示す。尚、実験条件は、上記実験3と同
様の条件であり、且つ硝酸コバルトは3モル%に固定し
ている。
As is clear from FIG. 4, it is recognized that the rate of increase in electrode thickness of the positive electrode a is significantly lower than that of the positive electrode x when subjected to charge/discharge cycles. This is considered to be because, as shown in FIG. 5, the production of γ-NiOOH, which is a low-density active material, is suppressed in the positive electrode a compared to the positive electrode x. [Experiment 4] Positive electrodes were produced by changing the amount of zinc nitrate added to 0, 3, 5, 7, and 10 mol% (that is, changing the amount of Zn in the positive electrode), and using the same method as in Experiment 3 above. The battery was charged and discharged, and the rate of increase in the thickness of the positive electrode at the end of three cycles was investigated. The results are shown in FIG. The experimental conditions were the same as in Experiment 3 above, and the cobalt nitrate content was fixed at 3 mol %.

【0041】図6から明らかなように、亜鉛添加量が3
モル%以上であれば、電極厚みの増加率が抑制されてい
ることが認められる。したがって、亜鉛の添加量は3モ
ル%以上であることが好ましい。但し、亜鉛の添加量が
10モル%を超えると、電極容量の低下を招くため、1
0モル%以下であることが好ましい。 〔実験5〕 上記正極aを用いて、充電時の電位変化をもたらすNa
OH、LiOHの添加効果を調べたので、その結果を図
7に示す。尚、充電条件は、充電電流0.2Cで8時間
充電するという条件であり、電解液としては下記の3つ
のものを用いた。また、電解液は十分な量を有している
As is clear from FIG. 6, when the amount of zinc added is 3
If it is mol% or more, it is recognized that the rate of increase in electrode thickness is suppressed. Therefore, the amount of zinc added is preferably 3 mol% or more. However, if the amount of zinc added exceeds 10 mol%, the electrode capacity will decrease, so 1.
It is preferably 0 mol% or less. [Experiment 5] Using the above positive electrode a, Na
The effects of adding OH and LiOH were investigated, and the results are shown in FIG. The charging conditions were that the battery was charged for 8 hours at a charging current of 0.2 C, and the following three electrolytes were used. Moreover, the electrolyte solution has a sufficient amount.

【0042】 c1 :KOH(7N) c2 :KOH(6N)+LiOH(1.5N)c3 
:KOH(5N)+LiOH(1.5N)+NaOH(
0.6N) 図7から明らかなように、電解液c1では、初期の充電
電位と満充電後の電位 (O2発生)差が小さく、前記
(1)(2)式の反応が競争的に起こっているこ とが
伺える。これに対して、LiOHを添加した電解液c2
では、電位差が極め て大きくなる、即ち、充放電反応
が促進されることになり、さらにNaOHを添加した電
解液c3では、電位差が極めて大きくなる、即ち、充電
反応が飛躍的に 促進されることが理解できる。 〔実験6〕 NaOHの濃度を変化させて充電温度特性を調べたので
、その結果を図8に示す。実験は、電解液として、KO
H濃度とLiOH濃度を固定し(即ち、KOH濃度:6
規定、LiOH濃度:1.5規定に固定)、NaOHの
濃度を種々変化させる他は、本発明の電池Aと同様の構
成の電池を作製し、これらの電池を充放電するというも
のである。尚、実験条件は、各電池を0.1Cの電流で
16時間充電(電池の周囲温度は20℃及び40℃)し
た後、0.2Cの電流で電池電圧が1.0Vに達する迄
放電(電池の周囲温度は室温)させ、この時の電池容量
を測定するというものである。
c1: KOH (7N) c2: KOH (6N) + LiOH (1.5N) c3
:KOH (5N) + LiOH (1.5N) + NaOH (
0.6N) As is clear from Figure 7, in electrolyte c1, the difference between the initial charge potential and the potential after full charge (O2 generation) is small, and the reactions of equations (1) and (2) above occur competitively. I can see that there is a lot going on. On the other hand, electrolyte c2 containing LiOH
In this case, the potential difference becomes extremely large, that is, the charging and discharging reaction is promoted.Furthermore, in the case of electrolytic solution C3 to which NaOH is added, the potential difference becomes extremely large, that is, the charging reaction is dramatically promoted. I can understand. [Experiment 6] The charging temperature characteristics were investigated by changing the concentration of NaOH, and the results are shown in FIG. The experiment was carried out using KO as the electrolyte.
H concentration and LiOH concentration were fixed (i.e., KOH concentration: 6
LiOH concentration: fixed at 1.5 normal), and batteries having the same configuration as battery A of the present invention except that the concentration of NaOH was varied variously, and these batteries were charged and discharged. The experimental conditions were to charge each battery with a current of 0.1C for 16 hours (the ambient temperature of the battery was 20℃ and 40℃), and then discharge it with a current of 0.2C until the battery voltage reached 1.0V ( The ambient temperature of the battery is room temperature), and the battery capacity at this time is measured.

【0043】図8より明らかなように、NaOHの濃度
としては、0.3規定〜0.9規定であることが好まし
く、特にこの傾向は、充電時の温度が高くなる程顕著で
あることが認められる。 〔実験7〕 LiOHの濃度を変化させて充電温度特性を調べたので
、その結果を図9に示す。実験は、電解液として、KO
H濃度とNaOH濃度を固定し(即ち、KOH濃度:6
規定、NaOH濃度:0.6規定に固定)、LiOHの
濃度を種々変化させる他は、本発明の電池Aと同様の構
成の電池くを作製し、これら電池を充放電するというも
のである。尚、実験条件は、上記実験6と同様の条件で
ある。
As is clear from FIG. 8, the concentration of NaOH is preferably 0.3N to 0.9N, and this tendency is particularly noticeable as the temperature during charging increases. Is recognized. [Experiment 7] The charging temperature characteristics were investigated by changing the concentration of LiOH, and the results are shown in FIG. The experiment was carried out using KO as the electrolyte.
H concentration and NaOH concentration were fixed (i.e., KOH concentration: 6
(NaOH concentration: fixed at 0.6 normal), and the LiOH concentration was varied variously.Batteries having the same structure as the battery A of the present invention were prepared, and these batteries were charged and discharged. The experimental conditions were the same as in Experiment 6 above.

【0044】図9より明らかなように、LiOHの濃度
としては、1.0〜2.0規定であることが好ましく、
特にこの傾向は、充電時の電池の周囲温度が高くなる程
顕著である。 〔実験8〕 KOHの濃度を変化させて充電温度特性を調べたので、
その結果を図10に示す。実験は、電解液として、Li
OH濃度とNaOH濃度とを固定し(即ち、LiOH濃
度:1.5規定、NaOH濃度:0.6規定に固定)、
KOHの濃度を種々変化させる他は、本発明の電池Aと
同様の構成の電池を作製し、これら電池を充放電すると
いうものである。尚、実験条件は、上記実験6と同様の
条件である。
As is clear from FIG. 9, the concentration of LiOH is preferably 1.0 to 2.0 normal;
In particular, this tendency becomes more pronounced as the ambient temperature of the battery increases during charging. [Experiment 8] The charging temperature characteristics were investigated by changing the concentration of KOH.
The results are shown in FIG. In the experiment, Li was used as the electrolyte.
The OH concentration and the NaOH concentration were fixed (i.e., LiOH concentration: fixed at 1.5 normal, NaOH concentration: fixed at 0.6 normal),
Batteries having the same configuration as Battery A of the present invention except for varying the concentration of KOH were prepared, and these batteries were charged and discharged. The experimental conditions were the same as in Experiment 6 above.

【0045】図10より明らかなように、KOHの濃度
としては、3規定以上に設定することが好ましい。 〔実験6〜8のまとめ〕 上記実験6〜実験8の結果より、亜鉛または亜鉛化合物
が含有され水酸化ニッケルを主活物質とする正極を用い
たアルカリ蓄電池においては、以下に示すアルカリ電解
液を用いることが特に好ましい。
As is clear from FIG. 10, the concentration of KOH is preferably set to 3 normal or more. [Summary of Experiments 6 to 8] From the results of Experiments 6 to 8 above, in an alkaline storage battery using a positive electrode containing zinc or a zinc compound and using nickel hydroxide as the main active material, the following alkaline electrolyte was used. It is particularly preferred to use

【0046】 KOHの濃度    :  3規定以上LiOHの濃度
  :  1〜2規定 NaOHの濃度  :  0.3〜0.9規定(第2実
施例) 〔実施例〕 負極の水素吸蔵合金として、組成式Ti0.5Zr0.
5Ni1.5V0.5で表されるものを用いる他は、上
記第1実施例の実施例と同様にして電池を作製した。
Concentration of KOH: 3N or more Concentration of LiOH: 1 to 2N Concentration of NaOH: 0.3 to 0.9N (Second Example) [Example] As a hydrogen storage alloy for the negative electrode, composition formula Ti0 .5Zr0.
A battery was produced in the same manner as in the first example above, except that 5Ni1.5V0.5 was used.

【0047】このようにして作製した電池を、以下電池
Bと称する。 〔比較例〕 アルカリ電解液として、KOH濃度が6規定、LiOH
濃度が1.5規定のものを用いる他は、上記実施例と同
様にして電池を作製した。
The battery thus produced is hereinafter referred to as battery B. [Comparative example] As an alkaline electrolyte, KOH concentration is 6N, LiOH
A battery was produced in the same manner as in the above example except that the concentration was 1.5 normal.

【0048】このようにして作製した電池を、以下電池
Yと称する。 〔実験〕 上記本発明の電池B及び比較例の電池Yの充放電サイク
ル特性を調べたので、その結果を図11に示す。尚、実
験条件は、前記第1実施例の実験2と同様の条件である
The battery manufactured in this manner will be referred to as battery Y hereinafter. [Experiment] The charge/discharge cycle characteristics of the battery B of the present invention and the battery Y of the comparative example were investigated, and the results are shown in FIG. The experimental conditions were the same as in Experiment 2 of the first embodiment.

【0049】図11から明らかなように、本発明の電池
Bは比較例の電池Yと比べて、サイクル寿命が格段に長
くなっていることが認められる。 〔その他の事項〕 ■上記本実施例では、負極として水素吸蔵合金電極を用
いた場合について言及したが、カドミウム電極を使用し
た場合であっても、上記同様の効果が得られることを実
験で確認した。
As is clear from FIG. 11, it is recognized that the cycle life of battery B of the present invention is significantly longer than that of battery Y of the comparative example. [Other matters] ■In this example above, the case where a hydrogen storage alloy electrode was used as the negative electrode was mentioned, but it was confirmed through experiments that the same effect as above can be obtained even when a cadmium electrode is used. did.

【0050】■上記実施例においては、水素吸蔵合金と
してMmNi3.2CoAl0.2Mn0.6等を用い
たが、これ以外のLaNi2CO3等の希土類系水素吸
蔵合金、Ti− Ni系水素吸蔵合金、Ti−Mn系水
素吸蔵合金、Ti−Fe系水素吸蔵合金、Zr−Mn系
水素吸蔵合金等を用いることができるのは言うまでもな
い。
[0050] In the above examples, MmNi3.2CoAl0.2Mn0.6 etc. were used as the hydrogen storage alloy, but other rare earth hydrogen storage alloys such as LaNi2CO3, Ti-Ni hydrogen storage alloys, Ti-Mn Needless to say, hydrogen storage alloys based on the hydrogen storage system, Ti--Fe hydrogen storage alloys, Zr-Mn hydrogen storage alloys, and the like can be used.

【0051】[0051]

【発明の効果】以上、詳述した如く、本発明によれば、
亜鉛または亜鉛化合物を含有した水酸化ニッケルを主活
物質とする正極を用いた場合であっても、高温時におけ
る充電受け入れ性を改良し、放電容量の大きなアルカリ
蓄電池が得られ、この種電池のサイクル特性を飛躍的に
向上させることができる。
[Effects of the Invention] As detailed above, according to the present invention,
Even when using a positive electrode whose main active material is nickel hydroxide containing zinc or a zinc compound, an alkaline storage battery with improved charge acceptance at high temperatures and a large discharge capacity can be obtained, making it possible to obtain an alkaline storage battery with a large discharge capacity. Cycle characteristics can be dramatically improved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一例に係るニッケル−水素アルカリ蓄
電池の断面図。
FIG. 1 is a sectional view of a nickel-hydrogen alkaline storage battery according to an example of the present invention.

【図2】本発明の電池A及び比較例の電池X1〜電池X
3の充電時における周囲の温度と電池容量との関係を示
すグラフ。
[Figure 2] Battery A of the present invention and batteries X1 to Batteries X of comparative examples
3 is a graph showing the relationship between ambient temperature and battery capacity during charging.

【図3】本発明の電池Aと比較例の電池X1〜電池X3
とのサイクル特性を示すグラフ。
[Figure 3] Battery A of the present invention and batteries X1 to X3 of comparative examples
Graph showing cycle characteristics.

【図4】電極aと電極xとにおける充放電サイクル数と
電極厚みの増加率との関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the number of charge/discharge cycles and the rate of increase in electrode thickness for electrodes a and x.

【図5】電極aと電極xとのX線回折図。FIG. 5 is an X-ray diffraction diagram of electrode a and electrode x.

【図6】亜鉛の添加物と電極厚みの増加率との関係を示
すグラフ。
FIG. 6 is a graph showing the relationship between zinc additives and the rate of increase in electrode thickness.

【図7】電解液c1〜電解液c3における充電時間と充
電時の電位との関係を示すグラフ。
FIG. 7 is a graph showing the relationship between charging time and potential during charging in electrolytes c1 to c3.

【図8】電解液のNaOH濃度を変化させた場合の電池
容量の変化を示すグラフ。
FIG. 8 is a graph showing changes in battery capacity when changing the NaOH concentration of the electrolyte.

【図9】電解液のLiOH濃度を変化させた場合の電池
容量の変化を示すグラフ。
FIG. 9 is a graph showing changes in battery capacity when the LiOH concentration of the electrolyte is changed.

【図10】電解液のKOH濃度を変化させた場合の電池
容量の変化を示すグラフ。
FIG. 10 is a graph showing changes in battery capacity when the KOH concentration of the electrolyte is changed.

【図11】本発明の電池Bと比較例の電池Yとにおける
サイクル特性を示すグラフ。
FIG. 11 is a graph showing the cycle characteristics of Battery B of the present invention and Battery Y of Comparative Example.

【符号の説明】[Explanation of symbols]

1  正極 2  負極 3  セパレータ 5  外装缶 A、B  本発明電池 1 Positive electrode 2 Negative electrode 3 Separator 5 Exterior can A, B Inventive battery

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】亜鉛または亜鉛化合物を含有する水酸化ニ
ッケルを主活物質とする正極と、負極と、水酸化カリウ
ムを主体とするアルカリ電解液とからなる蓄電池であっ
て、前記アルカリ電解液中に、水酸化リチウム及び水酸
化ナトリウムが含有されていることを特徴とするアルカ
リ蓄電池。
[Claim 1] A storage battery comprising a positive electrode whose main active material is nickel hydroxide containing zinc or a zinc compound, a negative electrode, and an alkaline electrolyte whose main active material is potassium hydroxide, wherein the alkaline electrolyte contains: An alkaline storage battery characterized by containing lithium hydroxide and sodium hydroxide.
【請求項2】前記水酸化リチウムの濃度が1.0〜2.
0規定であることを特徴とする請求項1記載のアルカリ
蓄電池。
2. The concentration of the lithium hydroxide is 1.0 to 2.
2. The alkaline storage battery according to claim 1, wherein the alkaline storage battery has a zero normality.
【請求項3】前記水酸化ナトリウムの濃度が0.3〜0
.9規定であることを特徴とする請求項1または請求項
2記載のアルカリ蓄電池。
Claim 3: The concentration of the sodium hydroxide is 0.3 to 0.
.. 9. The alkaline storage battery according to claim 1 or claim 2, characterized in that the alkaline storage battery has a 9 standard.
JP3054849A 1990-03-23 1991-03-19 Alkaline storage battery Expired - Lifetime JP2604282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3054849A JP2604282B2 (en) 1990-03-23 1991-03-19 Alkaline storage battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-74430 1990-03-23
JP7443090 1990-03-23
JP3054849A JP2604282B2 (en) 1990-03-23 1991-03-19 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH04212269A true JPH04212269A (en) 1992-08-03
JP2604282B2 JP2604282B2 (en) 1997-04-30

Family

ID=26395665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3054849A Expired - Lifetime JP2604282B2 (en) 1990-03-23 1991-03-19 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2604282B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05345810A (en) * 1992-06-15 1993-12-27 Toagosei Chem Ind Co Ltd Dispresion of fluorine-containing water-base resin
JPH0629040A (en) * 1992-04-22 1994-02-04 Furukawa Battery Co Ltd:The Nickel-hydrogen battery
JPH06283195A (en) * 1993-03-30 1994-10-07 Furukawa Battery Co Ltd:The Nickel-hydrogen secondary battery
US5965295A (en) * 1996-06-14 1999-10-12 Toshiba Battery Co., Ltd. Alkaline secondary battery, paste type positive electrode for alkaline secondary battery, method for manufacturing alkaline secondary battery
JP2009231259A (en) * 2008-02-25 2009-10-08 Sanyo Electric Co Ltd Alkaline storage battery
JP2010073424A (en) * 2008-09-17 2010-04-02 Gs Yuasa Corporation Nickel hydrogen storage battery
WO2015141808A1 (en) * 2014-03-20 2015-09-24 大日本印刷株式会社 Secondary cell and electrolyte solution for secondary cell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556740A (en) * 1978-06-30 1980-01-18 Furukawa Battery Co Ltd:The Alkali storage battery
JPS5524331A (en) * 1978-08-07 1980-02-21 Yuasa Battery Co Ltd Nickel-cadmium alkaline cell
JPS5983347A (en) * 1982-11-02 1984-05-14 Matsushita Electric Ind Co Ltd Sealed nickel-cadmium storage battery
US4699856A (en) * 1986-06-26 1987-10-13 U.S. Philips Corporation Electrochemical cell
JPS63228567A (en) * 1987-03-17 1988-09-22 Japan Storage Battery Co Ltd Alkaline battery
JPH0346758A (en) * 1989-07-14 1991-02-28 Yuasa Battery Co Ltd Nickel-hydrogen battery
JPH04137368A (en) * 1990-09-26 1992-05-12 Matsushita Electric Ind Co Ltd Nickel-hydrogen storage battery and its manufacture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556740A (en) * 1978-06-30 1980-01-18 Furukawa Battery Co Ltd:The Alkali storage battery
JPS5524331A (en) * 1978-08-07 1980-02-21 Yuasa Battery Co Ltd Nickel-cadmium alkaline cell
JPS5983347A (en) * 1982-11-02 1984-05-14 Matsushita Electric Ind Co Ltd Sealed nickel-cadmium storage battery
US4699856A (en) * 1986-06-26 1987-10-13 U.S. Philips Corporation Electrochemical cell
JPS63228567A (en) * 1987-03-17 1988-09-22 Japan Storage Battery Co Ltd Alkaline battery
JPH0346758A (en) * 1989-07-14 1991-02-28 Yuasa Battery Co Ltd Nickel-hydrogen battery
JPH04137368A (en) * 1990-09-26 1992-05-12 Matsushita Electric Ind Co Ltd Nickel-hydrogen storage battery and its manufacture

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629040A (en) * 1992-04-22 1994-02-04 Furukawa Battery Co Ltd:The Nickel-hydrogen battery
JPH05345810A (en) * 1992-06-15 1993-12-27 Toagosei Chem Ind Co Ltd Dispresion of fluorine-containing water-base resin
JPH06283195A (en) * 1993-03-30 1994-10-07 Furukawa Battery Co Ltd:The Nickel-hydrogen secondary battery
US5965295A (en) * 1996-06-14 1999-10-12 Toshiba Battery Co., Ltd. Alkaline secondary battery, paste type positive electrode for alkaline secondary battery, method for manufacturing alkaline secondary battery
JP2009231259A (en) * 2008-02-25 2009-10-08 Sanyo Electric Co Ltd Alkaline storage battery
JP2010073424A (en) * 2008-09-17 2010-04-02 Gs Yuasa Corporation Nickel hydrogen storage battery
WO2015141808A1 (en) * 2014-03-20 2015-09-24 大日本印刷株式会社 Secondary cell and electrolyte solution for secondary cell

Also Published As

Publication number Publication date
JP2604282B2 (en) 1997-04-30

Similar Documents

Publication Publication Date Title
JP2730121B2 (en) Alkaline secondary battery and manufacturing method thereof
JPH10106556A (en) Nickel positive electrode and nickel-hydrogen storage battery using it
US5132177A (en) Alkaline storage cell
JPH04212269A (en) Alkaline storage battery
JP2000340221A (en) Nickel electrode, nickel hydrogen storage battery using same as positive electrode
JP3157237B2 (en) Metal-hydrogen alkaline storage battery
JP2001313069A (en) Nickel hydrogen storage battery
JP2005108816A (en) Hydrogen storage alloy for alkaline accumulator, its manufacturing method and alkaline accumulator
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
US6270547B1 (en) Hydrogen absorbing alloy electrode and process for fabricating same
JPH0513096A (en) Metal hydride storage battery
JP3548006B2 (en) Hydrogen storage alloy for alkaline storage battery and method for producing the same, hydrogen storage alloy electrode for alkaline storage battery and method for producing the same
JPH08321302A (en) Hydrogen storage electrode
JP2680650B2 (en) Sealed alkaline storage battery and manufacturing method thereof
JP2975755B2 (en) Activation method of metal hydride storage battery
JPH08315852A (en) Nickel hydrogen storage battery
JP3222902B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH06283170A (en) Nickel-hydrogen battery
JP3482478B2 (en) Nickel-metal hydride storage battery
JP3362400B2 (en) Nickel-metal hydride storage battery
JP2000243400A (en) Hydrogen storage alloy electrode and nickel hydrogen storage battery using it as negative electrode
JP2001015150A (en) Nickel-hydrogen storage battery
JPH05283068A (en) Metal hydride storage battery
JPH04319257A (en) Metal-hydrogen alkali secondary battery
JPH0799689B2 (en) Sealed metal-hydrogen secondary battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120129

Year of fee payment: 15