JPS62160744A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS62160744A
JPS62160744A JP61002228A JP222886A JPS62160744A JP S62160744 A JPS62160744 A JP S62160744A JP 61002228 A JP61002228 A JP 61002228A JP 222886 A JP222886 A JP 222886A JP S62160744 A JPS62160744 A JP S62160744A
Authority
JP
Japan
Prior art keywords
layer
solder
plating
resist
diffusion barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61002228A
Other languages
Japanese (ja)
Other versions
JPH0697663B2 (en
Inventor
Norio Totsuka
戸塚 憲男
Yasumitsu Sugawara
菅原 安光
Takuji Osumi
卓史 大角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP61002228A priority Critical patent/JPH0697663B2/en
Publication of JPS62160744A publication Critical patent/JPS62160744A/en
Publication of JPH0697663B2 publication Critical patent/JPH0697663B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05556Shape in side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05556Shape in side view
    • H01L2224/05557Shape in side view comprising protrusions or indentations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05575Plural external layers
    • H01L2224/0558Plural external layers being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13005Structure
    • H01L2224/13006Bump connector larger than the underlying bonding area, e.g. than the under bump metallisation [UBM]

Abstract

PURPOSE:To improve the reliability of bonding without exposing a diffused barrier layer in a resist removing process, in manufacturing a semiconductor element having a bump electrode, by performing photolithography for a solder layer after a copper plating process at the outer surfaces of an Ni layer and the copper plated layer. CONSTITUTION:After copper plating, resist for this plating is all removed. The other part is coated with resist 11 again so that an outer surface parts 10 of the side walls of an Ni layer 6 and a copper plated layer 8 are exposed. As a result, holes 10a are formed at the outer surface parts of the side walls. As a result, holes 10a are formed at the outer surface parts of the side walls. Then solder plating is performed, and a bump electrode is formed by a solder plated layer 9. The holes 10a of the outer surface parts 10 of the side walls are filled with the solder 9. Then, the resist 11 for plating of the solder 9 is removed with solvent. Then an Al-Ni alloy layer 5 is etched. In this etching process, the top surfaces and the side surface of the Ni layer 6 and the copper plated layer 8 are not eroded with etchant since they are all coated with the solder plated layer 9. Finally, the solder plated layer 9 is dissolved ordinarily at 240-350 deg.C, and a trapezoidal bump electrode is turned into a spherical shape.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はパン!電極を有する半導体素子の製造方法に関
するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention is based on bread! The present invention relates to a method of manufacturing a semiconductor element having electrodes.

(従来の技術) 従来、半導体フリップチップ素子のハンダバンプ電極を
形成する方法としては、選択蒸着法、電気メツキ法およ
びハンダボール法、ハンダディップ法があり、例えば、
特公昭43−28735号公報あるいはphilip 
Tech+ Rev vol 34’+ 74などによ
り知られている。
(Prior Art) Conventionally, methods for forming solder bump electrodes of semiconductor flip-chip devices include selective vapor deposition, electroplating, solder ball method, and solder dip method.
Special Publication No. 43-28735 or Philip
It is known from Tech+ Rev vol 34'+ 74 and the like.

選択蒸着法は、蒸着時間が長いこと、蒸着膜厚の制御が
困難であること、ハンダゾール法はバンプ電極の径を小
さくできないこと、ハンダディップ法はバンプ電極を高
くすることができないことの理由であまり採用されてい
ない。
The selective vapor deposition method requires a long vapor deposition time and is difficult to control the deposited film thickness, the solder sol method cannot reduce the diameter of the bump electrode, and the solder dip method cannot increase the height of the bump electrode. Not widely adopted.

従来の電気メツキ法による半導体フリラグチップ素子の
バンプ電極形成法の一例を第3図(a)〜第3図(h)
に示す。まず第3図(、)に示すように、半導体基板1
上に形成されたフィールド酸化膜2の上のバンプを形成
すべき個所に、At電極・譬ツド3を形成し、さらにC
VD法にてパシベーション膜4を成長させた後、At電
極/IPツド3上の膜4を除去しスルーホールを開孔す
る。
An example of a method for forming bump electrodes of a semiconductor free-lag chip element using the conventional electroplating method is shown in FIGS. 3(a) to 3(h).
Shown below. First, as shown in FIG. 3(,), a semiconductor substrate 1
At the place where a bump is to be formed on the field oxide film 2 formed above, an At electrode/metal 3 is formed, and then a carbon oxide film 2 is formed.
After growing the passivation film 4 by the VD method, the film 4 on the At electrode/IP pad 3 is removed and a through hole is opened.

次に第3図(b)に示すようにAt−Ni合金層5、N
i層6を順次蒸着する。
Next, as shown in FIG. 3(b), an At-Ni alloy layer 5, an N
The i-layer 6 is sequentially deposited.

次に、第3図(c)に示すようにレジストなどにてマス
キングを行って、バンプ電極が形成される個所以外のN
i層6をエツチングしてAt−N i合金層5の一部を
露出させる。
Next, as shown in FIG. 3(c), masking is performed with a resist or the like to remove the N
The i-layer 6 is etched to expose a portion of the At-Ni alloy layer 5.

次に、第3図(d)に示すように、At−Ni合金層5
が露出された個所において、通常のホトリソ工程により
、レジスト7にてバンプ電極が形成される個所以外を櫃
う。
Next, as shown in FIG. 3(d), the At-Ni alloy layer 5
At the exposed portions, the resist 7 is removed by a normal photolithography process except for the portions where bump electrodes are to be formed.

次に第3図(、)に示すように、At−Ni合金層5を
電流の導通層として、電気メツキ法により、銅メッキ層
8をメッキする。この銅メッキ層8は通常10μm程度
の厚さである。
Next, as shown in FIG. 3(,), a copper plating layer 8 is plated by electroplating using the At--Ni alloy layer 5 as a current conducting layer. This copper plating layer 8 usually has a thickness of about 10 μm.

その後、第3図(f)に示すように、ハンダメッキを行
ないハンダメッキ層9のバンプ電極を形成する。このハ
ンダの厚さは、40〜60μm程度である。
Thereafter, as shown in FIG. 3(f), solder plating is performed to form bump electrodes of the solder plating layer 9. The thickness of this solder is approximately 40 to 60 μm.

次に、第3図(g)に示すように、メッキ用のレジスト
7を溶剤で除去した後、露出したAt−Ni合金層5を
エツ、チングする。
Next, as shown in FIG. 3(g), after removing the plating resist 7 with a solvent, the exposed At--Ni alloy layer 5 is etched.

最後に、第3図(h)に示すように、通常240〜35
0℃の温度でハンダメッキ層9を溶解させて、台状のバ
ンプ電極を球状にさせる。
Finally, as shown in Figure 3 (h), usually 240 to 35
The solder plating layer 9 is melted at a temperature of 0° C. to make the platform-shaped bump electrode into a spherical shape.

ここで中間金属At−Ni合金層5はフィールド酸化膜
2およびAt電極パッド3への密着金属で、中間金属層
であるNi層6および銅メッキ層8は、At電極パッド
3とハンダ層9との相互拡散を防止する拡散バリヤ層で
ある。
Here, the intermediate metal At-Ni alloy layer 5 is a metal that adheres to the field oxide film 2 and the At electrode pad 3, and the intermediate metal layer 6 and copper plating layer 8 are the metal that adheres to the At electrode pad 3 and the solder layer 9. It is a diffusion barrier layer that prevents mutual diffusion of .

以下Ni層6及び/或は銅メッキ層8を拡散バリヤ層と
呼ぶこともある。
Hereinafter, the Ni layer 6 and/or the copper plating layer 8 may also be referred to as a diffusion barrier layer.

(発明が解決しようとする問題点) しかしながら、第3図優)に示すAt−Ni合金層5を
除去する工程において銅メッキ層8が一緒にエツチング
されてしまう欠点があった。銅メッキ層8がエツチング
されると、バンプ電極9のSL  基板への密着強度の
低下、さらにはバンプ電極9が81基板から剥離しまう
現象が見られ、♂ンディングの信頼性上好ましくない。
(Problems to be Solved by the Invention) However, there is a drawback that the copper plating layer 8 is etched together with the step of removing the At-Ni alloy layer 5 shown in FIG. When the copper plating layer 8 is etched, the adhesion strength of the bump electrode 9 to the SL substrate decreases, and furthermore, the bump electrode 9 peels off from the substrate 81, which is unfavorable from the viewpoint of reliability of female bonding.

以上は第3図に示したように、ハンダバンプ電極の形成
法としてA4/−Ni −Cu−Pb/Snの金属構成
を例示したが、その他の代表的金属構成としてTi−C
u−Ni−Pb/Sn 、 Cr−Cu−Ni−Pb/
Sn等があるがいずれの場合にも拡散バリヤ一層として
、銅及び/あるいはニッケル層の存在が必要でこれらの
拡散バリヤ一層としての銅及び/あるいは、ニッケルは
、メッキのための電流ノ?ス層(カレント・フィルム)
ここではAt−Ni合金層5をエツチングするエッチャ
ント、即ち酸に対して非常にエツチングされやすく、い
ずれの金属構成のバンプ電極でもバンプ電極9の81基
板への密着強度の低下を起こし、ぜンディングの信頼性
の上から好ましいもの。
As shown in FIG. 3, the metal composition of A4/-Ni-Cu-Pb/Sn has been exemplified as a method for forming solder bump electrodes, but other typical metal compositions include Ti-C
u-Ni-Pb/Sn, Cr-Cu-Ni-Pb/
In either case, a copper and/or nickel layer is required as a diffusion barrier layer. layer (current film)
Here, it is very easily etched by the etchant that etches the At-Ni alloy layer 5, that is, acid, and the adhesion strength of the bump electrode 9 to the substrate 81 decreases in any of the bump electrodes of any metal configuration, resulting in a reduction in bonding. Preferable in terms of reliability.

ではなかった。It wasn't.

即ち、これらの欠点は異種の金属の連続メッキを行って
、第3図(g)に示されるレジスト除去工程で、最初に
メッキされる可溶性金属が直接露出されるためである。
That is, these drawbacks are due to the fact that when different metals are continuously plated, the soluble metal to be plated first is directly exposed in the resist removal process shown in FIG. 3(g).

(問題を解決するための手段) 本発明は前記問題を解決するために拡散バリヤを成す銅
メッキ層8とハンダ層9を連続的にメッキを行わないで
銅メッキ層8の工程終了後、ハンダ層の選択被覆のため
のホトリソをこの拡散バリヤ層6,8の外周に行うこと
によって、拡散バリア層側壁外周部にレジスト除去工程
において、この拡散バリヤ層6,8の側壁外周部が露出
しないようにしたものである。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention does not continuously plate the copper plating layer 8 and the solder layer 9, which form a diffusion barrier, but after the copper plating layer 8 process is completed, the solder is removed. By performing photolithography on the outer periphery of the diffusion barrier layers 6 and 8 for selective coating of layers, the outer periphery of the side walls of the diffusion barrier layers 6 and 8 is prevented from being exposed during the resist removal process. This is what I did.

(作用) 上記製造方法に従うと、拡散バリア層の側壁外周部に形
成された孔内にハンダメッキ層が充填され、拡散バリア
層は頂面及び側壁が全てハンダメッキ層で覆れるのでメ
ッキ通電用の一電極を成すAt−Ni層のエツチング時
にこのAt−Ni層のエッチャントで浸食されることが
ない。
(Function) According to the above manufacturing method, the holes formed on the outer periphery of the side walls of the diffusion barrier layer are filled with the solder plating layer, and the top surface and side walls of the diffusion barrier layer are all covered with the solder plating layer, so that the plating current can be applied. When etching the At--Ni layer constituting one electrode, the At--Ni layer is not corroded by the etchant.

(実施例) 以下、この発明の半導体素子の製造方法の実施例につい
て第1図(i)〜(4の工程断面図に基づき説明する。
(Example) Hereinafter, an example of the method for manufacturing a semiconductor element of the present invention will be described based on process cross-sectional views of FIGS. 1(i) to (4).

なお、銅メッキ層8のメッキ工程までは従来の製造方法
第3図(、)〜第3図(、)と同一であるので、その製
法の説明は割愛する。
Incidentally, since the steps up to the plating process of the copper plating layer 8 are the same as those in the conventional manufacturing method shown in FIGS.

さて、第1図(i)に示すように、銅メッキ層8が終了
した後、このメッキのためのレジスト7を全て除去し、
81層6及び銅メッキ層8の側壁外周部10が露出する
ように再度他の部分をレジスト11で被覆する。この結
果孔10aが側壁外周部に形成される。
Now, as shown in FIG. 1(i), after the copper plating layer 8 is completed, the resist 7 for this plating is completely removed.
Other parts are again covered with a resist 11 so that the side wall outer peripheral part 10 of the 81 layer 6 and the copper plating layer 8 is exposed. As a result, a hole 10a is formed in the outer periphery of the side wall.

次に第1図(j)に示すようにハンダメッキを行ない、
ハンダメッキ層9によるバンプ電極を形成してN4層6
及び銅メッキ層8の側壁外周部10の孔10a内もこの
ハンダメッキ層9で満たされる。
Next, perform solder plating as shown in Figure 1 (j),
A bump electrode is formed by the solder plating layer 9 and the N4 layer 6 is formed.
The inside of the hole 10a in the side wall outer peripheral portion 10 of the copper plating layer 8 is also filled with this solder plating layer 9.

次に第1図(k)に示すようにハンダ層9のメッキのた
めのレノスト11を溶剤で除去した後、At−Ni合金
層5をエツチングする。このエツチング工程では81層
6及び銅メッキ層8の頂面及び側面はハンダメッキ層9
で全て覆われているためAL−Ni合金層5のエッチャ
ントで浸されることはない。
Next, as shown in FIG. 1(k), after removing the renost 11 for plating the solder layer 9 with a solvent, the At--Ni alloy layer 5 is etched. In this etching process, the top and side surfaces of the 81 layer 6 and the copper plating layer 8 are covered with a solder plating layer 9.
Since it is completely covered with the etchant of the AL-Ni alloy layer 5, it is not immersed in the etchant of the AL-Ni alloy layer 5.

最後に第1図(4に示すように、通常240〜350℃
の温度でハンダメッキ層9を溶解させて台状のバンプ電
極を球状にさせる。
Finally, as shown in Figure 1 (4), the temperature is usually 240~350℃.
The solder plating layer 9 is melted at a temperature of 100 to turn the table-shaped bump electrode into a spherical shape.

以上のように本発明の半導体素子の製造方法では、半導
体工業に使われる金属用のエッチャント例えば酸に対し
て可溶性である拡散バリヤ層のメッキ工程後、そのレジ
ストヲ除去し、再度この拡散バリヤ層の外周に対してホ
トリソ工程を行ない、拡散バリヤ層の全ての面をハンダ
メッキ層9で覆うようにハンダメッキを行ない、メッキ
のための電流パス層(カレント・フィルム)ここでハA
t−Ni合金層5をエツチングする時に、拡散バリヤ層
がエツチングされないようにしたものである。
As described above, in the semiconductor device manufacturing method of the present invention, after the plating process of the diffusion barrier layer, which is soluble in metal etchants such as acids used in the semiconductor industry, the resist is removed and the diffusion barrier layer is re-plated. A photolithography process is performed on the outer periphery, and solder plating is performed so that all surfaces of the diffusion barrier layer are covered with a solder plating layer 9, and a current path layer (current film) for plating is formed.
This is to prevent the diffusion barrier layer from being etched when etching the t-Ni alloy layer 5.

次に第2の実施例を第2図(ハ)〜(p)の工程断面図
を用いて説明する。なおAL−Ni合金層5の一部を除
去する工程、即ち第3図(C)工程までは従来の製造方
法と同一であるので、その説明は割愛する。
Next, a second embodiment will be described using process cross-sectional views shown in FIGS. 2(c) to 2(p). Note that the steps up to the step of removing a portion of the AL-Ni alloy layer 5, ie, the step shown in FIG. 3(C), are the same as the conventional manufacturing method, and therefore the description thereof will be omitted.

さて、第2図(ハ)は第3図(d)に対応してレジスト
7にて、拡散バリヤとなる銅メッキ層8のためのホトリ
ソを行うが、ここでの実施例ではレジストにゲジタイプ
のレジスト7aを使う。
Now, in FIG. 2(c), corresponding to FIG. 3(d), photolithography is performed on the resist 7 for the copper plating layer 8 which will serve as a diffusion barrier, but in this example, the resist is of a gauge type. Use resist 7a.

次に第2図(n)に示されるように銅メッキ層8をレジ
スト7aの厚さの範囲以内でメッキする。次に第2図(
、)に示すように拡散バリヤ層6,8の側壁外周部10
のレジタ)7aが露光されるようにマスク部材12でマ
スクし第2図(p)に示すように現像すると側壁外周部
10に孔10aが形成される。以下の工程は第1図(j
)以後の工程に対応するので図の提示は省略する。
Next, as shown in FIG. 2(n), a copper plating layer 8 is plated within the thickness of the resist 7a. Next, Figure 2 (
, ), the side wall outer peripheral portion 10 of the diffusion barrier layers 6, 8
A hole 10a is formed in the outer peripheral portion 10 of the side wall by masking with a mask member 12 so that the register 7a is exposed and developing as shown in FIG. 2(p). The following process is shown in Figure 1 (j
) Since it corresponds to the subsequent steps, the presentation of the figure is omitted.

第2の実施例では第1の実施例で見られたように、(i
)工程でレジスト7を除去し再度レジスト11f:形成
する事なく行うことができる。
In the second embodiment, as seen in the first embodiment, (i
) process can be performed without removing the resist 7 and forming the resist 11f again.

(発明の効果) 以上詳細に説明したように銅メッキ層8の工程終了後ハ
ンダ層9のためのホトリソを、この81層6及び銅メッ
キ層8の外周に行う事によって、レジスト除去工程にお
いてこの拡散バリヤ層6,8が露出しないようにしたも
のである。その結果メッキのための電流・ぐス層(ここ
ではAt−Ni層5)をエツチングする際、この拡散バ
リヤ層6,8は、エツチングされなくなる。従ってバン
プ電極のシリコン基板への密着強度も低下することなく
高歩留シで、高信頼性のバンプ電極プロセスが可能とな
る。また高信頼性のバリヤ効果を示し、基板へのフリッ
プ・チップボンディングの信頼性を向上させることがで
きる。
(Effects of the Invention) As described in detail above, by performing photolithography for the solder layer 9 on the outer periphery of the 81 layer 6 and the copper plating layer 8 after the process of copper plating layer 8 is completed, this process can be performed in the resist removal process. The diffusion barrier layers 6 and 8 are not exposed. As a result, when etching the current/gas layer for plating (here the At--Ni layer 5), the diffusion barrier layers 6, 8 are no longer etched. Therefore, it is possible to perform a highly reliable bump electrode process with a high yield without reducing the adhesion strength of the bump electrode to the silicon substrate. It also exhibits a highly reliable barrier effect and can improve the reliability of flip chip bonding to a substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(i)〜(4は本発明の第1の実施例を示す半導
体素子の製造方法の工程断面図、第2図に)〜(p)は
本発明の第2の実施例を示す半導体素子の製造方法の工
程断面図、第3図(、)〜(h)は従来のバンゾ電罹形
成法の工程断面図である。 1・・・半導体基板、2・・・フィールド酸化膜、3・
・・htM、極ハツト、4・・・ノぐシベーション膜、
5・・・At−Ni合金層、6・・・Ni 層、7・・
・レジスト、7a・・・ポジ形レノスト、8・・・銅メ
ッキ層、9・・・ハンダメッキ層、10・・・側壁外周
部、10a・・・孔、11・・・レジスト、12・・・
マスク部材。 特許出願人  沖電気工業株式会社 J、96.8fis 第2.1*Rイ’j’J 七4s
 i 工JX1ml!l IIし1≦ミづj5明J 2
 、、文方安t4i“」をシラし、すLA’z−鮪ie
第2図 従〉ト、r)lぐン7°電収1彩心G大。111J行市
目力第3図
FIGS. 1(i) to (4) are process cross-sectional views of a method for manufacturing a semiconductor device showing a first embodiment of the present invention, and FIGS. 1(p) to (p) show a second embodiment of the present invention. FIGS. 3(a) to 3(h) are cross-sectional views of the process of the method for manufacturing a semiconductor device, and are cross-sectional views of the conventional banzoelectric molding method. 1... Semiconductor substrate, 2... Field oxide film, 3...
...htM, Gokuhatsuto, 4...Nogusivation film,
5...At-Ni alloy layer, 6...Ni layer, 7...
・Resist, 7a...Positive Renost, 8...Copper plating layer, 9...Solder plating layer, 10...Side wall outer periphery, 10a...Hole, 11...Resist, 12...・
Mask parts. Patent Applicant Oki Electric Industry Co., Ltd. J, 96.8fis No. 2.1*Ri'j'J 74s
i Engineering JX 1ml! l II 1 ≦ Mizj5 Ming J 2
,, Bunkata An t4i "" is written, LA'z-Tunaie
Figure 2 Sub〉G, r) l gun 7° electrical collection 1 Saishin G large. 111J row Ichimeki figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)a、半導体基板主表面の第1絶縁膜上に形成され
た導電層上に開孔部を有する第2絶縁膜を形成する工程
と、 b、この開孔部を介して前記導電層と接し且つ前記第2
絶縁膜上を延在するメッキ用導電路を成す金属層を形成
する工程と、 c、前記導電層と対応する部位の前記金属層上にこの金
属層より僅か大きいサイズの拡散バリアメタル層を形成
する工程と、 d、前記拡散バリア層の上面及び側面を露出せしめ残余
の主表面を被覆するマスク部材を、この拡散バリア層が
形成されている主表面上に形成する工程と、 e、前記マスク部材で被覆されない前記拡散バリア層の
上面及び側面にバンプ電極構成金属をメッキにより形成
する工程と、 f、前記マスク部材を除去し、露出した前記金属層を選
択的に除去する工程と、 g、前記バンプ電極形成金属を加熱して球状バンプ電極
を形成する工程とを有する半導体装置の製造方法。 2、前記拡散バリアメタル層は、Ni、Cuの二層膜で
構成されCuはNiと同一サイズでNi上にメッキによ
って形成された事を特徴とする特許請求の範囲第1項記
載の半導体装置の製造方法。
(1) a. Forming a second insulating film having an opening on the conductive layer formed on the first insulating film on the main surface of the semiconductor substrate, and b. Passing the conductive layer through the opening. and the second
forming a metal layer forming a conductive path for plating extending on the insulating film; c. forming a diffusion barrier metal layer slightly larger than the metal layer on the metal layer at a portion corresponding to the conductive layer; d. Forming a mask member on the main surface on which the diffusion barrier layer is formed, exposing the top and side surfaces of the diffusion barrier layer and covering the remaining main surface; e. The mask. forming a bump electrode constituent metal by plating on the upper and side surfaces of the diffusion barrier layer that are not covered with the member; f. removing the mask member and selectively removing the exposed metal layer; g. A method for manufacturing a semiconductor device, comprising the step of heating the bump electrode forming metal to form a spherical bump electrode. 2. The semiconductor device according to claim 1, wherein the diffusion barrier metal layer is composed of a two-layer film of Ni and Cu, and the Cu has the same size as the Ni and is formed on the Ni by plating. manufacturing method.
JP61002228A 1986-01-10 1986-01-10 Method for manufacturing semiconductor device Expired - Fee Related JPH0697663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61002228A JPH0697663B2 (en) 1986-01-10 1986-01-10 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61002228A JPH0697663B2 (en) 1986-01-10 1986-01-10 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS62160744A true JPS62160744A (en) 1987-07-16
JPH0697663B2 JPH0697663B2 (en) 1994-11-30

Family

ID=11523498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61002228A Expired - Fee Related JPH0697663B2 (en) 1986-01-10 1986-01-10 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0697663B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090151982A1 (en) * 2005-06-06 2009-06-18 Yoshikazu Oshika Metal-ceramic composite substrate and method of its manufacture
US8334594B2 (en) 2009-10-14 2012-12-18 Advanced Semiconductor Engineering, Inc. Chip having a metal pillar structure
US8552553B2 (en) 2009-10-14 2013-10-08 Advanced Semiconductor Engineering, Inc. Semiconductor device
US8686568B2 (en) 2012-09-27 2014-04-01 Advanced Semiconductor Engineering, Inc. Semiconductor package substrates having layered circuit segments, and related methods
US8698307B2 (en) 2010-09-27 2014-04-15 Advanced Semiconductor Engineering, Inc. Semiconductor package with integrated metal pillars and manufacturing methods thereof
US8884443B2 (en) 2012-07-05 2014-11-11 Advanced Semiconductor Engineering, Inc. Substrate for semiconductor package and process for manufacturing

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090151982A1 (en) * 2005-06-06 2009-06-18 Yoshikazu Oshika Metal-ceramic composite substrate and method of its manufacture
US8334594B2 (en) 2009-10-14 2012-12-18 Advanced Semiconductor Engineering, Inc. Chip having a metal pillar structure
US8552553B2 (en) 2009-10-14 2013-10-08 Advanced Semiconductor Engineering, Inc. Semiconductor device
US8698307B2 (en) 2010-09-27 2014-04-15 Advanced Semiconductor Engineering, Inc. Semiconductor package with integrated metal pillars and manufacturing methods thereof
US8884443B2 (en) 2012-07-05 2014-11-11 Advanced Semiconductor Engineering, Inc. Substrate for semiconductor package and process for manufacturing
US9224707B2 (en) 2012-07-05 2015-12-29 Advanced Semiconductor Engineering, Inc. Substrate for semiconductor package and process for manufacturing
US9437532B2 (en) 2012-07-05 2016-09-06 Advanced Semiconductor Engineering, Inc. Substrate for semiconductor package and process for manufacturing
US8686568B2 (en) 2012-09-27 2014-04-01 Advanced Semiconductor Engineering, Inc. Semiconductor package substrates having layered circuit segments, and related methods

Also Published As

Publication number Publication date
JPH0697663B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
US5492235A (en) Process for single mask C4 solder bump fabrication
EP1032030B1 (en) Flip chip bump bonding
US5631499A (en) Semiconductor device comprising fine bump electrode having small side etch portion and stable characteristics
JPS5828736B2 (en) How to form a flat thin film
JPH05218043A (en) Formation method of metal contact pad and formation method of metal contact terminal
JPH1032208A (en) Manufacture of semiconductor device
JPS62160744A (en) Manufacture of semiconductor device
JP2000133667A (en) Formation of bump electrode
JP2005057264A (en) Packaged electric structure and its manufacturing method
US20030157438A1 (en) Bump forming process
JP3446021B2 (en) Bump electrode structure of semiconductor device and method for forming the same
JPH09199505A (en) Semiconductor device and its manufacture
JPH02253628A (en) Manufacture of semiconductor device
JPS6112047A (en) Manufacture of semiconductor device
JPH02224336A (en) Manufacture of semiconductor device
CN1103119C (en) Process for single mask C4 solder bump fabrication
JP3506686B2 (en) Method for manufacturing semiconductor device
JPS63122248A (en) Manufacture of semiconductor device
JP2006120803A (en) Semiconductor device and manufacturing method therefor
JP4188752B2 (en) Semiconductor package and manufacturing method thereof
JPH04217323A (en) Manufacture of bump electrode for semiconductor device
JPH02277242A (en) Manufacture of semiconductor device
JP2002076046A (en) Method for manufacturing semiconductor device
JPH0350734A (en) Manufacture of integrated circuit
JPH03190240A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees