JPS62148851A - Solidification state detecting device for billet - Google Patents

Solidification state detecting device for billet

Info

Publication number
JPS62148851A
JPS62148851A JP60291456A JP29145685A JPS62148851A JP S62148851 A JPS62148851 A JP S62148851A JP 60291456 A JP60291456 A JP 60291456A JP 29145685 A JP29145685 A JP 29145685A JP S62148851 A JPS62148851 A JP S62148851A
Authority
JP
Japan
Prior art keywords
slab
ultrasonic
wave
billet
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60291456A
Other languages
Japanese (ja)
Inventor
Hajime Takada
一 高田
Mitsuyoshi Kojo
古城 満義
Akio Momoo
桃尾 章生
Kunio Kurita
栗田 邦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP60291456A priority Critical patent/JPS62148851A/en
Publication of JPS62148851A publication Critical patent/JPS62148851A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To detect the solidification state of a billet in detail in two dimensions by providing an ultrasonic wave receiving means which receives an ultrasonic wave transmitted through them billet, a scanning means which scans a transmitting means and the receiving means in the width direction of the billet, a position detecting means, a transmitted wave amplitude detecting means, and an arithmetic processing means. CONSTITUTION:An ultrasonic transverse wave can not be propagated in remaining molten metal 20 in liquid phase, so when the solidification state of the billet 16 in a breadthwise section is as shown in a figure A, the change state of the amplitude of the transmitted signal of the ultrasonic transverse wave obtained by the detection coil of the ultrasonic receiver 24 by scanning the transmitter 22 and receiver 24 for the ultrasonic transverse wave in transmission type arrangement in the width direction of the billet is as shown in a figure B. Therefore, the solidification state of the billet in the width direction can be detected.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、鋳片の凝固状態検出装置に係り、特に、連続
鋳造鋳片の凝固状態を検出する際に用いるのに好適な、
電磁的な方法で鋳片に透入させた横波超音波が、鋳片内
部の残存溶融金属を透過しないことを利用して、鋳片の
凝固状態を検出するようにした鋳片の凝固状態検出装置
の改良に関する。
The present invention relates to a solidification state detection device for a slab, and in particular, a device suitable for use in detecting the solidification state of a continuously cast slab.
Detection of the solidification state of a slab by utilizing the fact that transverse ultrasonic waves transmitted through the slab using an electromagnetic method do not pass through the remaining molten metal inside the slab. Concerning improvements to equipment.

【従来の技術I 溶融金属の連続鋳造は、一般に、第5図に示ず如く、タ
ンプッシュ10から、所定の断面形状を有する鋳型12
内へ溶融金属14を注入し、鋳型12の下方より、これ
を凝固金属18と残存溶融金属20からなる鋳片16と
して連続的に引き出すことにより行なわれている。 鋳片16は、鋳型12より引き出された直後は、その内
部に未凝固の残存′Pj融金ff1X20の厚い層を有
しているが、その後の冷却により、この残存溶融金属2
0は、外側より徐々に凝固して凝固金属18となり、や
がては全体が凝固する。 このような溶融金属の連続鋳造に際して、鋳片16の内
部における溶融金属20の残存状態、即ち、凝固金属1
8の凝固状態を常に把握することは、内部の溶融金属が
凝固金属18を破って外部へ漏出するブレイクアウト事
故を防止し、又、凝固金属18の凝固形状を適切なもの
として、中心偏析を低減させ、鋳片16の品質を良好に
し、更に、鋳片16の引き抜き速度を最大限に保って生
産性を向上する上で、極めて重要な事項である。 このような鋳片の凝固状態を検出する従来技術としては
、鋳片16における横波超音波の透過性を12察する方
法が知られている。この方法は、横波が液体中を伝播し
ないことを利用するものであり、鋳片16において、横
波超音波が透過する部分は、その内部が完全に凝固して
おり、横波超音波が透過しない部分は、その内部に残存
溶融金属が存在すると判定するものである。 又、この方法と、近年、超音波の高温あるいは面の粗い
物体への送受信方法として、その有効性が広く知られる
ようになった電磁的な超音波の送受信方法を組合わせた
方法として、特開昭52−130422で開示された鋳
片における完全)疑問位置検出方法がある。この方法は
、第6図に示す如く、鋳片16を挟んでその両側面に超
音波送信子22及び超音波受信子24を配設し、超音波
送信子22により鋳片16に横波XB音波を電磁的な方
法で通入させ、この横波超音波の鋳片厚さ方向での透過
性を超音波受信子24で検出して、鋳片16における完
全凝固位置を検出しようとするものである。 【発明が解決しようとする問題点】 しかしながら、特開昭52−130422で提案された
方法は、鋳片16における凝固金属18の凝固状態を単
に1次元的に検出するだけであり、特に、中心偏析の低
減による鋳片の品質の良質化を図るためには、凝固金属
18の凝固形状も適切なものにすることがg!要である
ことから、この方法は、鋳片16の品質を良好とする目
的にとっては不十分である。又、鋳片16における溶融
金属20の残存形状が、第7図に破線で示したような場
合には、例えば鋳片16の幅方向中心位置に超音波送信
子22及び受信子24を配設して測定を行った場合、こ
の測定位置においては、鋳片16の内部に残存溶融金I
Fi120が存在しないと検出され、これより下流の鋳
片16の内部には残存溶融金層20が存在しないと誤判
定する虞れがある。
[Prior Art I] Continuous casting of molten metal is generally carried out from a tumble pusher 10 to a mold 12 having a predetermined cross-sectional shape, as shown in FIG.
This is done by injecting molten metal 14 into the casting mold 12 and continuously drawing it out from below the mold 12 as a slab 16 consisting of solidified metal 18 and residual molten metal 20. Immediately after being pulled out from the mold 12, the slab 16 has a thick layer of unsolidified residual molten metal ff1X20 inside it, but as it cools thereafter, this residual molten metal 2
0 gradually solidifies from the outside to become solidified metal 18, and eventually solidifies as a whole. During such continuous casting of molten metal, the remaining state of the molten metal 20 inside the slab 16, that is, the solidified metal 1
Constantly grasping the solidification state of the solidified metal 8 prevents breakout accidents in which the internal molten metal breaks through the solidified metal 18 and leaks to the outside, and also prevents center segregation by optimizing the solidified shape of the solidified metal 18. This is an extremely important matter in order to reduce the stress, improve the quality of the slab 16, and further maintain the maximum drawing speed of the slab 16 to improve productivity. As a conventional technique for detecting the solidification state of a slab, a method of detecting the transverse ultrasonic wave transmittance of the slab 16 is known. This method takes advantage of the fact that transverse waves do not propagate in liquid, and the parts of slab 16 through which transverse ultrasonic waves pass are completely solidified inside, and the parts where transverse ultrasonic waves do not pass through. It is determined that there is residual molten metal inside. In addition, we have developed a special method that combines this method with an electromagnetic method for transmitting and receiving ultrasonic waves, which has recently become widely known for its effectiveness as a method for transmitting and receiving ultrasonic waves to objects with high temperatures or rough surfaces. There is a method for completely detecting a position in a slab disclosed in Japanese Patent Publication No. 52-130422. In this method, as shown in FIG. 6, an ultrasonic transmitter 22 and an ultrasonic receiver 24 are arranged on both sides of the slab 16, and the ultrasonic transmitter 22 sends transverse XB waves to the slab 16. The system attempts to detect the complete solidification position in the slab 16 by passing the transverse ultrasonic waves through the slab using an electromagnetic method, and detecting the permeability of this transverse ultrasonic wave in the thickness direction of the slab using the ultrasonic receiver 24. . [Problems to be Solved by the Invention] However, the method proposed in JP-A-52-130422 merely detects the solidification state of the solidified metal 18 in the slab 16 one-dimensionally. In order to improve the quality of slabs by reducing segregation, it is important to make the solidification shape of the solidified metal 18 appropriate! Therefore, this method is insufficient for the purpose of improving the quality of the slab 16. Furthermore, if the remaining shape of the molten metal 20 in the slab 16 is as shown by the broken line in FIG. When the measurement is performed at this measurement position, there is residual molten metal I inside the slab 16.
It is detected that Fi 120 does not exist, and there is a possibility that it may be incorrectly determined that there is no remaining molten gold layer 20 inside the slab 16 downstream from this.

【発明の目的】[Purpose of the invention]

本発明は、前記従来の問題点を解消するべくなされたも
ので、鋳片内部における溶融金属の残存状態、即ち凝固
金属の1疑固状態を、より詳細に2次元的に測定するこ
とができる鋳片の凝固状態検出装置を12供することを
目的とする。
The present invention has been made to solve the above-mentioned conventional problems, and it is possible to two-dimensionally measure the residual state of molten metal inside the slab, that is, the pseudo-solid state of solidified metal in more detail. The object of the present invention is to provide a device for detecting the solidification state of slabs.

【問題点を解決するための手段】[Means to solve the problem]

本発明は、電磁的な方法で鋳片に通入させた横波超音波
が、鋳片内部の残存溶融金属を透過しないことを利用し
て、鋳片の凝固状態を検出するようにした鋳片の凝固状
態検出装置において、超音波を電磁的な方法で鋳片に通
入させる超音波送信手段と、鋳片を透過した超音波を電
磁的な方法で受信する超音波受信手段と、前記超音波送
信手段及び受信手段を、少くとも鋳片の幅方向に走査す
る走査手段と、前記超音波送信手段及び受信手段の、鋳
片に対する走査位置を検出する位置検出手段と、前記超
音波受信手段の出力信号から、少くとも横波超音波の透
過波の振幅を求める透過波振幅検出手段と、該透過波振
幅検出手段及び前記位置検出手段の出力から、鋳片内部
の少くとも幅方向各位性における残存溶融金属の分布を
求める演算処理手段とを備えることにより、前記目的を
達成したものである。
The present invention is a slab in which the solidification state of a slab is detected by utilizing the fact that transverse ultrasonic waves passed through the slab using an electromagnetic method do not pass through the remaining molten metal inside the slab. The solidification state detection device includes: an ultrasonic transmitting means for transmitting ultrasonic waves through the slab by an electromagnetic method; an ultrasonic receiving means for receiving the ultrasonic waves transmitted through the slab by an electromagnetic method; scanning means for scanning the sonic wave transmitting means and receiving means at least in the width direction of the slab; position detecting means for detecting the scanning position of the ultrasonic transmitting means and receiving means with respect to the slab; and the ultrasonic receiving means A transmitted wave amplitude detection means for determining the amplitude of at least the transmitted wave of the transverse ultrasonic wave from the output signal of The above object is achieved by including arithmetic processing means for determining the distribution of residual molten metal.

【作用】[Effect]

既に述べたように、横波超音波は、液相である残存溶―
金Is 20の中を伝播することができないので、鋳片
16の幅方向断面における凝固状態が、第1図(A)で
示すような場合、横波超音波の送受tS子22.24を
、第1図(A)のように透過型の配置で鋳片幅方向に走
査した場合、超音波受信子24の検出コイル〈図示省略
)にとらえられる横波超音波の透過信号の振幅の変化状
態は、第1図([3>に示す如くとなる。 従って、横波超音波の送受信子22.24を鋳片16の
幅方向に走査することによって、鋳片の幅方向における
溶融金属20の残存状態、即ち、鋳片の幅方向における
凝固状態を検出することが可能となる。 なお、第1図の説明においては、超音波送受信子22.
24を、鋳片16の幅方向に直線的に走査していたが、
超音波送受信子22.24を走査する方向や方法はこれ
に限定されない。 【実施例] 以下図面を参照して、本発明が採用された連続鋳造鋳片
の凝固状態検出装置の実施例を詳細に説明する。 本実施例は、第2図に示ず如く構成されており、電磁的
な横波超音波の送信子22及び受信子24は、鋳片16
の幅方向に、駆動機構(図示省略)及びレール30によ
って移動可能な走査架台32に、支持アーム34を介し
て取り付けられている。 又、この支持アーム34を、スプリング、エアシリンダ
(油圧シリンダでも可)あるいはねし機構(図示省略)
によって鋳片16の厚さ方向へ上下動させることにより
、超音波送信子22及び受信子24を、測定時に鋳片1
6の表面近傍へ接近させたり、あるいは、測定を行われ
ない時に、鋳片16の表面近傍から待機位置へ退避さけ
たりすることが可能とされている。 前記超音波送信子22及び受信子24の鋳片16の幅方
向における位置は、前記走査架台32の内部に取り付け
られた位置検出子36及び位置検出器38によって検出
するようにされている。 前記超音波送信子22は、第3図に詳細に示す如く、磁
界発生用コイル22Aと、鉄心22Bと、超音波発生用
コイル22Cから構成されている。 又前記超音波受信子24は、同じく第3図に詳細に示ず
如く、磁界発生用コイル24Aと、鉄心24Bと、超音
波検出用コイル24Cから構成されている。従って、測
定時に、鋳片16の近傍に磁界発生用コイル22A並び
に鉄心22Bを配置して、磁界発生用電源40(第2図
)から磁界発生用コイル22Aに電流を通電すると、凝
固金属18の表面近傍に、破線Aで示ずような磁界が発
生する。一方、超音波発生用コイル22Gに高周波パル
ス信号源42(第2図)からパルス状の電流を流ずと、
凝固金属18の表面近傍に、電!i誘導によって渦電流
Bが励起され、該渦電流Bと前記14&界八との相互作
用の結果、フレミングの法則によって、矢印Cで示され
る運動力(超音波発生用コイル22Gに通電された電流
に対応してパルス状の運動力)が生じ、これにより、矢
印り方向へ伝わる横波超音波が励振される。この横波超
音波は、伝播路上に残存溶融金属が存在しなければ、鋳
片16の反対側の面の凝固金属18まで到達するが、こ
の時運動力Eを生じ、これと磁界発生用電源44(第2
図)からIa界発生用コイル24△に加えられる電流に
よって発生されている磁界Fとの相互作用の結果、フレ
ミングの法則により表面近傍に渦電RGが発生する。こ
の渦電流Gは、超音波検出用コイル24Cによって電磁
誘導により検出され、増幅回路46(第2図)によって
増幅される。このようにして、電磁的に横波超音波。 を送信し、かつ受信することができる。なJ3、横波超
音波の伝播路上に残存溶融金属が存在すれば、横波超音
波は反対側の面の凝固金属までは到達しないため、超音
波検出用コイル24Gには検出されない。 前記超音波受信子24の超音波検出用コイル24Cで受
信された信号は、前記増幅回路46で増幅された後、ゲ
ート回路48へ出力される。このゲート回路48は、入
力された信号のうち、横波超音波の透過波が現われる部
分の信号を取出して、ピーク値検出回路50へ出力する
。ピーク値検出回路50は、ゲート回路48より入力さ
れた信号の振幅の最大値、即ち、横波角S波の透過波の
振幅を検出して、これを演算処理器52へ出力する。 一方、前記走査架台32はレール30上を走行しており
、鋳片16の幅方向における超音波送信子22及び受信
子24の位置を変化させながら、前記のような横波超音
波の透過波の振幅の検出及びこの値の演鈴lll!X1
!I!器52への入力、及び、位置検出器38による超
音波送信子22及び受信子24のtli片幅片面方向置
の検出、及び、この値の演算処理器52への入力を行な
う。従って、演算処理器52には、鋳片16の幅方向各
位置における横波超音波の透過波の振幅がとらえられ、
この関係が表示器54に表示される。 このようにして求められた鋳片16の幅方向各位置にJ
3ける横波超音波の透過波の振幅の一例と、その際に鋳
片16に鋲を打込み、鋳片16の冷却後、この鋲の溶解
状況を調査して19た鋳片の実際の凝固状態とを合わせ
て第4図に示す。図から明らかな如く、本実施例により
、鋳片の凝固状態を精度良く検出できる。 なお前記実施例においては、鋳片長手方向の1箇所で超
音波送信子22及び受信子24の幅方向への走査が行わ
れていたが、鋳片の凝固状態をより詳しく測定するため
に、鋳片長手方向で位置の異なる2箇所以上で超音波送
信子22及び受信子24をそれぞれ幅方向に走査したり
、あるいは、単一の超音波送信子22及び受信子24の
組合せを、2次元的に走査することも可能である。 又、前記実施例においては、電磁的に横波超音波を送信
し受信するための磁界として、直流電流による磁界を用
いていたが、磁界の種類はこれに限定されず、永久磁石
による磁界やコイルにパルス状の大電流を流して誘起さ
れるパルス状Ia界を用いてもよい。 【発明の効果1 以上説明したとおり、本発明によれば、鋳片の凝固状態
を詳細に2次元的に検出することができる。従って、金
属の連続鋳造におけるブレイクアウト事故の防止、適切
な凝固形状により達成される中心偏析の低減による鋳片
品質の向上、鋳片の引1友き速度を最大限とすることに
よる生産性の向上等を図ることができるという優れた効
果を有する。
As mentioned above, transverse wave ultrasound can destroy residual dissolved matter in the liquid phase.
Since the gold cannot propagate through the gold Is 20, if the solidification state in the cross section in the width direction of the slab 16 is as shown in FIG. When scanning in the slab width direction with a transmission type arrangement as shown in Fig. 1 (A), the state of change in the amplitude of the transmission signal of the transverse ultrasonic wave detected by the detection coil (not shown) of the ultrasonic receiver 24 is as follows. 1 (as shown in [3>). Therefore, by scanning the transverse ultrasonic transmitter/receiver 22, 24 in the width direction of the slab 16, the remaining state of the molten metal 20 in the width direction of the slab, That is, it becomes possible to detect the solidification state of the slab in the width direction.In the explanation of FIG. 1, the ultrasonic transceiver 22.
24 was scanned linearly in the width direction of the slab 16,
The direction and method of scanning the ultrasonic transceivers 22 and 24 are not limited to these. [Example] Hereinafter, an example of a solidification state detection device for a continuously cast slab to which the present invention is applied will be described in detail with reference to the drawings. This embodiment is constructed as shown in FIG. 2, and the electromagnetic transverse ultrasonic transmitter 22 and receiver 24 are
It is attached via a support arm 34 to a scanning frame 32 that is movable in the width direction by a drive mechanism (not shown) and rails 30 . In addition, this support arm 34 can be connected to a spring, an air cylinder (a hydraulic cylinder is also possible), or a tension mechanism (not shown).
By moving the ultrasonic transmitter 22 and the receiver 24 up and down in the thickness direction of the slab 16 with the
It is possible to approach the vicinity of the surface of the slab 16, or to move it away from the vicinity of the surface of the slab 16 to a standby position when no measurement is being performed. The positions of the ultrasonic transmitter 22 and the receiver 24 in the width direction of the slab 16 are detected by a position detector 36 and a position detector 38 mounted inside the scanning frame 32. As shown in detail in FIG. 3, the ultrasonic transmitter 22 is composed of a magnetic field generating coil 22A, an iron core 22B, and an ultrasonic generating coil 22C. Further, the ultrasonic receiver 24 is composed of a magnetic field generating coil 24A, an iron core 24B, and an ultrasonic detecting coil 24C, as similarly not shown in detail in FIG. Therefore, during measurement, when the magnetic field generating coil 22A and the iron core 22B are arranged near the slab 16 and current is applied to the magnetic field generating coil 22A from the magnetic field generating power source 40 (FIG. 2), the solidified metal 18 A magnetic field as shown by broken line A is generated near the surface. On the other hand, if a pulsed current is not passed from the high frequency pulse signal source 42 (FIG. 2) to the ultrasonic generation coil 22G,
Electricity is generated near the surface of the solidified metal 18! An eddy current B is excited by the i-induction, and as a result of the interaction between the eddy current B and the above-mentioned 14&Kaihachi, the kinetic force shown by the arrow C (current applied to the ultrasonic generation coil 22G) is generated according to Fleming's law. In response to this, a pulse-like kinetic force is generated, which excites transverse ultrasonic waves that propagate in the direction of the arrow. If there is no remaining molten metal on the propagation path, this transverse ultrasonic wave will reach the solidified metal 18 on the opposite side of the slab 16, but at this time it will generate a kinetic force E, which is combined with the magnetic field generation power source 44. (Second
As a result of the interaction with the magnetic field F generated by the current applied to the Ia field generating coil 24Δ from FIG. This eddy current G is detected by electromagnetic induction by the ultrasonic detection coil 24C and amplified by the amplifier circuit 46 (FIG. 2). In this way, electromagnetic transverse ultrasound waves. can be sent and received. J3, if there is residual molten metal on the propagation path of the transverse ultrasonic waves, the transverse ultrasonic waves will not reach the solidified metal on the opposite surface, and will not be detected by the ultrasonic detection coil 24G. The signal received by the ultrasonic detection coil 24C of the ultrasonic receiver 24 is amplified by the amplification circuit 46 and then output to the gate circuit 48. The gate circuit 48 extracts a portion of the input signal in which the transmitted wave of the transverse ultrasound appears, and outputs it to the peak value detection circuit 50 . The peak value detection circuit 50 detects the maximum value of the amplitude of the signal input from the gate circuit 48 , that is, the amplitude of the transmitted wave of the transverse wave angle S wave, and outputs it to the arithmetic processor 52 . On the other hand, the scanning frame 32 runs on the rails 30, and while changing the positions of the ultrasonic transmitter 22 and the receiver 24 in the width direction of the slab 16, transmits the transmitted waves of the transverse ultrasonic waves as described above. Detection of amplitude and rendition of this value! X1
! I! The position detector 38 detects the position of the ultrasonic transmitter 22 and the receiver 24 in the tli single-width direction, and inputs this value to the arithmetic processor 52. Therefore, the arithmetic processor 52 captures the amplitude of the transmitted wave of the transverse ultrasonic wave at each position in the width direction of the slab 16,
This relationship is displayed on the display 54. J at each position in the width direction of the slab 16 determined in this way.
An example of the amplitude of the transmitted wave of transverse ultrasonic waves in 3, and the actual solidification state of the slab 19, which was obtained by driving a stud into the slab 16 and investigating the state of melting of the stud after cooling the slab 16. Both are shown in Figure 4. As is clear from the figure, according to this embodiment, the solidification state of the slab can be detected with high accuracy. In the above embodiment, the ultrasonic transmitter 22 and the receiver 24 were scanned in the width direction at one point in the longitudinal direction of the slab, but in order to measure the solidification state of the slab in more detail, The ultrasonic transmitter 22 and the receiver 24 can be scanned in the width direction at two or more locations at different positions in the longitudinal direction of the slab, or the combination of a single ultrasonic transmitter 22 and the receiver 24 can be scanned in a two-dimensional manner. It is also possible to scan directly. Further, in the above embodiment, a magnetic field generated by a direct current was used as a magnetic field for electromagnetically transmitting and receiving transverse ultrasound waves, but the type of magnetic field is not limited to this, and a magnetic field generated by a permanent magnet or a coil may be used. A pulsed Ia field induced by passing a large pulsed current may also be used. Effects of the Invention 1 As explained above, according to the present invention, the solidification state of a slab can be detected two-dimensionally in detail. Therefore, prevention of breakout accidents in continuous casting of metals, improvement of slab quality by reducing center segregation achieved by proper solidification shape, and productivity improvement by maximizing the drawing speed of the slab. It has an excellent effect of making it possible to improve the quality of the product.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る鋳片の凝固状態検出装置の測定
原理を説明するための、鋳片の横断面図及び鋳片幅方向
位置と対応させた横波透過波の振幅の変化状態の例を示
す線図、第2図は、本発明に係る連続鋳造鋳片の凝固状
態検出装置の実施例の構成を示す、一部ブロック線図を
含む断面図、第3図は、前記実施例で用いられている超
音波送信子及び受信子の構成及び作用を示す断面図、第
4図は、前記実施例による鋳片の凝固状態の測定例を、
鋲により測定した鋳片の凝固状態と比較して示す線図、
第5図は、鋳片の連続鋳造機の原理的な構成を示す断面
図、第6図は、鋳片に対する超音波送信子及び受信子の
配置状態を示ず側面図、第7図は、同じく正面図である
。 16・・・・・・鋳片、      18・・・・・・
凝固金属、20・・・・・・残存溶融金属、 22・・・・・・超音波送信子、 24・・・・・・超音波受(a子、 30・・・・・・レール、 32・・・・・・走査架台、   36・・・・・・位
置検出子、38・・・・・・位置検出器、  48・・
・・・・ゲート回路、50・・・・・・ピーク値検出回
路、 52・・・・・・演算処理器。
FIG. 1 is a cross-sectional view of a slab and a change state of the amplitude of a transmitted transverse wave corresponding to a position in the width direction of a slab, for explaining the measurement principle of the solidification state detection device of a slab according to the present invention. A diagram showing an example; FIG. 2 is a cross-sectional view including a partial block diagram showing the configuration of an embodiment of the solidification state detection device for continuously cast slabs according to the present invention; FIG. 3 is a cross-sectional view including a partial block diagram; FIG. 4 is a cross-sectional view showing the configuration and operation of the ultrasonic transmitter and receiver used in
A diagram showing a comparison with the solidification state of slabs measured with rivets,
FIG. 5 is a sectional view showing the basic structure of a continuous casting machine for slabs, FIG. 6 is a side view showing the arrangement of ultrasonic transmitters and receivers with respect to slabs, and FIG. It is also a front view. 16... Slab, 18...
Solidified metal, 20...Residual molten metal, 22...Ultrasonic transmitter, 24...Ultrasonic receiver (a-element, 30...Rail, 32 ...Scanning frame, 36...Position detector, 38...Position detector, 48...
... Gate circuit, 50 ... Peak value detection circuit, 52 ... Arithmetic processor.

Claims (1)

【特許請求の範囲】[Claims] (1)電磁的な方法で鋳片に透入させた横波超音波が、
鋳片内部の残存溶融金属を透過しないことを利用して、
鋳片の凝固状態を検出するようにした鋳片の凝固状態検
出装置において、 超音波を電磁的な方法で鋳片に透入させる超音波送信手
段と、 鋳片を透過した超音波を電磁的な方法で受信する超音波
受信手段と、 前記超音波送信手段及び受信手段を、少くとも鋳片の幅
方向に走査する走査手段と、 前記超音波送信手段及び受信手段の、鋳片に対する走査
位置を検出する位置検出手段と、 前記超音波受信手段の出力信号から、少くとも横波超音
波の透過波の振幅を求める透過波振幅検出手段と、 該透過波振幅検出手段及び前記位置検出手段の出力から
、鋳片内部の少くとも幅方向各位置における残存溶融金
属の分布を求める演算処理手段と、を備えたことを特徴
とする鋳片の凝固状態検出装置。
(1) Transverse ultrasonic waves transmitted through the slab using an electromagnetic method
Taking advantage of the fact that the remaining molten metal inside the slab does not pass through,
A slab solidification state detection device configured to detect the solidification state of a slab includes an ultrasonic transmitting means that transmits ultrasonic waves into the slab using an electromagnetic method, and an ultrasonic wave transmitting means that electromagnetically transmits the ultrasonic waves that have passed through the slab. scanning means for scanning the ultrasonic wave transmitting means and the receiving means at least in the width direction of the slab; scanning positions of the ultrasonic wave transmitting means and the receiving means with respect to the slab; a position detecting means for detecting the transmitted wave; a transmitted wave amplitude detecting means for determining the amplitude of a transmitted wave of at least a transverse ultrasound wave from an output signal of the ultrasonic receiving means; and an output of the transmitted wave amplitude detecting means and the position detecting means. A calculation processing means for determining the distribution of residual molten metal at at least each position in the width direction inside the slab from the above.
JP60291456A 1985-12-24 1985-12-24 Solidification state detecting device for billet Pending JPS62148851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60291456A JPS62148851A (en) 1985-12-24 1985-12-24 Solidification state detecting device for billet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60291456A JPS62148851A (en) 1985-12-24 1985-12-24 Solidification state detecting device for billet

Publications (1)

Publication Number Publication Date
JPS62148851A true JPS62148851A (en) 1987-07-02

Family

ID=17769101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60291456A Pending JPS62148851A (en) 1985-12-24 1985-12-24 Solidification state detecting device for billet

Country Status (1)

Country Link
JP (1) JPS62148851A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1298429A1 (en) * 2001-04-25 2003-04-02 Nkk Corporation Method of producing continuously cast pieces of steel
JP2009503497A (en) * 2005-07-27 2009-01-29 オトクリトエ アクツィオネルノエ オブシェストボ ”ノルディンクラフト” Electroacoustic transducer
JP2013537309A (en) * 2010-09-15 2013-09-30 シーメンス ヴェ メタルス テクノロジーズ エスアーエス Moving metal strip inspection equipment
CN104439144A (en) * 2014-12-19 2015-03-25 山东钢铁股份有限公司 Steel billet solidification detection system and method based on ultrasonic waves

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52130422A (en) * 1976-04-27 1977-11-01 Nippon Steel Corp Checking method of perfect congealed point in casting piece
JPS6031008A (en) * 1983-07-29 1985-02-16 Nippon Steel Corp Apparatus for measuring thickness of solidified cast piece
JPS60237358A (en) * 1984-04-12 1985-11-26 ヌーケン・ゲーエムベーハー Ultrasonic inspection method and device for conductive material to be inspected

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52130422A (en) * 1976-04-27 1977-11-01 Nippon Steel Corp Checking method of perfect congealed point in casting piece
JPS6031008A (en) * 1983-07-29 1985-02-16 Nippon Steel Corp Apparatus for measuring thickness of solidified cast piece
JPS60237358A (en) * 1984-04-12 1985-11-26 ヌーケン・ゲーエムベーハー Ultrasonic inspection method and device for conductive material to be inspected

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1298429A1 (en) * 2001-04-25 2003-04-02 Nkk Corporation Method of producing continuously cast pieces of steel
EP1298429A4 (en) * 2001-04-25 2004-09-29 Jfe Steel Corp Method of producing continuously cast pieces of steel
US7156148B2 (en) 2001-04-25 2007-01-02 Nkk Corporation Manufacturing method for continuously cast product of steel
US7448430B2 (en) 2001-04-25 2008-11-11 Nkk Corporation Manufacturing method for continuously cast product of steel
JP2009503497A (en) * 2005-07-27 2009-01-29 オトクリトエ アクツィオネルノエ オブシェストボ ”ノルディンクラフト” Electroacoustic transducer
JP2013537309A (en) * 2010-09-15 2013-09-30 シーメンス ヴェ メタルス テクノロジーズ エスアーエス Moving metal strip inspection equipment
US9217728B2 (en) 2010-09-15 2015-12-22 Siemens Vai Metals Technologies Sas Device for inspecting a moving metal strip
CN104439144A (en) * 2014-12-19 2015-03-25 山东钢铁股份有限公司 Steel billet solidification detection system and method based on ultrasonic waves

Similar Documents

Publication Publication Date Title
US7448430B2 (en) Manufacturing method for continuously cast product of steel
JPS62148851A (en) Solidification state detecting device for billet
JP3826727B2 (en) Method and apparatus for determining solidification state of slab and method for producing continuous cast slab
JP2006198643A (en) Method of manufacturing continuously cast slab
JP3757830B2 (en) Manufacturing method of continuous cast slab
JPH0548860B2 (en)
JPS60133955A (en) Method for electromagnetic stirring in continuous casting
JP3891220B2 (en) Method and apparatus for determining solidification of slab and method for producing continuous cast slab
JP2003103351A (en) Manufacturing method for continuous casting ingot
JP2006198644A (en) Method of manufacturing continuously cast slab
JPS5937323Y2 (en) Internal molten state detection device for castings
JPH1183814A (en) Solidification state detecting method for cast piece device therefor
JP3235524B2 (en) Casting bulging detection method, bulging determination method, bulging prevention method, and apparatus therefor
JP2016191573A (en) Ultrasonic flaw detection device, ultrasonic flaw detection method, and method of manufacturing steel
JPS5454664A (en) Measuring apparatus for thickness of billet solidification in continuous casting
JPH02295650A (en) Continuous casting of thin metallic product and apparatus
JPS6319551A (en) Detection of sensor position abnormality in molten metal solidified state detector
JPS5915738B2 (en) Method for measuring solidification thickness of continuously cast slabs
WO2023171311A1 (en) Solidification position measurement device, solidification position measurement method, metal material quality management method, casting equipment, metal material manufacturing equipment, and metal material manufacturing method
JPS6045372B2 (en) Shear control device for processed metal objects using electromagnetic ultrasonic waves
JP2004205382A (en) Solidification state detection device for continuously cast cast-piece
KR101937805B1 (en) Apparatus for detecting solidification of steel and method for the same
JPH0464788B2 (en)
JPH08327647A (en) Current velocity measuring apparatus
JPS62137562A (en) Flaw detector for continuous ingot