JPS5915738B2 - Method for measuring solidification thickness of continuously cast slabs - Google Patents

Method for measuring solidification thickness of continuously cast slabs

Info

Publication number
JPS5915738B2
JPS5915738B2 JP4069776A JP4069776A JPS5915738B2 JP S5915738 B2 JPS5915738 B2 JP S5915738B2 JP 4069776 A JP4069776 A JP 4069776A JP 4069776 A JP4069776 A JP 4069776A JP S5915738 B2 JPS5915738 B2 JP S5915738B2
Authority
JP
Japan
Prior art keywords
slab
magnetic field
thickness
measuring
continuously cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4069776A
Other languages
Japanese (ja)
Other versions
JPS52123650A (en
Inventor
捷宏 川島
昭治 室田
幸雄 中森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4069776A priority Critical patent/JPS5915738B2/en
Publication of JPS52123650A publication Critical patent/JPS52123650A/en
Publication of JPS5915738B2 publication Critical patent/JPS5915738B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 本発明は、溶融金属(以下単に溶湯という)の連続鋳造
法において鋳型から連続的に引出される鋳片の凝固厚み
を測定する方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the solidification thickness of a slab continuously drawn from a mold in a continuous casting method for molten metal (hereinafter simply referred to as molten metal).

一般に溶湯の連続鋳造法では第1図に示すようにタンデ
イツシユ1を通し、所定の断面形状をもつた鋳型2内に
溶湯3を注入し、下方から鋳片4として連続的に引出し
ている。
Generally, in the continuous casting method of molten metal, as shown in FIG. 1, molten metal 3 is poured into a mold 2 having a predetermined cross-sectional shape through a tundish 1, and is continuously drawn out from below as a slab 4.

鋳型2から引出された鋳片4の内部は未凝固の溶湯3を
残し、漸次全体が凝固していくことはよく知られている
。而してかかる鋳片4の完全凝固点、あるいは所定位置
における鋳片の凝固厚みを正確に検出、測定することは
、内部の溶湯がこの凝固シェルを破つて外側に漏出する
所謂プレーグアウト事故を防いだわ、冷却進度や引抜速
度など所謂鋳造条件を最適にすることにより安全性、生
産性、品質を大巾に5 向上させる情報にし得ることも
またよく知られている。従来からこのような鋳片の凝固
厚みを測定することを目的として超音波を利用する種種
の方式が提案されまた試験されてきたが、精度の面、実
際10設備への適用においてもいずれも問題があり、い
まだ決定的な厚み測定法が具現化されていないのが実情
である。
It is well known that the unsolidified molten metal 3 remains inside the slab 4 pulled out from the mold 2, and the entire slab gradually solidifies. Accurately detecting and measuring the complete solidification point of the slab 4 or the solidification thickness of the slab at a predetermined position prevents the so-called plague-out accident in which the molten metal inside ruptures the solidified shell and leaks to the outside. It is also well known that by optimizing so-called casting conditions such as cooling progress and drawing speed, information can be obtained that can greatly improve safety, productivity, and quality. Various methods using ultrasonic waves have been proposed and tested for the purpose of measuring the solidified thickness of slabs, but all of them have problems in terms of accuracy and in terms of application to actual equipment. The reality is that no definitive thickness measurement method has been developed yet.

例えば、第2図に示すように、鋳片に対し内部に発信器
、受信器を収納したロール5を押しつけ、15発信器よ
り発信した超音波を鋳片の外側b点と凝固シェルの内側
c点とのパルス反射エコーの時間差より凝固厚みを測定
する方法が知られている。
For example, as shown in Fig. 2, a roll 5 containing a transmitter and a receiver inside is pressed against the slab, and the ultrasonic waves emitted from the transmitter 15 are transmitted between point b on the outside of the slab and c on the inside of the solidified shell. A method is known in which the coagulation thickness is measured from the time difference between the pulse reflection echo and the point.

この方式は、1 ロールの内胴a点での反射が全エネル
ギーのフ0 ほぼ94%を占めること。
In this method, reflection at point a of the inner shell of one roll accounts for approximately 94% of the total energy.

2 又b点での反射も大きいこと、従つてc点での反射
エネルギーは極めて小さくなる。
2. Also, the reflection at point b is large, so the reflected energy at point c is extremely small.

3 さらに反射波がa、b、c、d、e点で生じ、c点
での反射エネルギーが極めて小さいこととク5 相俟つ
てS/N比が悪く、実際の凝固厚みを測定するには情度
面で極めて大きな問題がある。
3 Furthermore, reflected waves occur at points a, b, c, d, and e, and the reflected energy at point c is extremely small. There is a huge problem in terms of sentiment.

さらに第3図に示すように鋳片4に対し相対して超音波
の発信器を配置して超音波を透過させ凝固厚さの違いに
より音波の通過時間の変化度合を30とヤ、凝固厚さを
推定する所謂インパルス透過法も知られている。然し、
この方法も第2図の場合と同様、鋳片外面における反射
が極めて大きく、その上透過時間によつて推定する方法
であるため実際の未凝固溶湯がどの程度存在するかが不
明確35であわ、従つて測定誤差が第2図における反射
法よりも大きいという欠点がある。そのほか横波を利用
するインパレス透過法が特公昭48−3932号で開示
されているが、この方式は未凝固部分の存在により音波
が受信されていないことを検知するものであるから完全
凝固していることのみを判断できるが凝固厚みを測定す
るという目的にはそぐわない。
Furthermore, as shown in Fig. 3, an ultrasonic transmitter is placed opposite to the slab 4, and the ultrasonic wave is transmitted through it, and the degree of change in the passage time of the sound wave is 30 degrees depending on the difference in solidification thickness. A so-called impulse transmission method for estimating the distance is also known. However,
In this method, as in the case of Fig. 2, the reflection on the outer surface of the slab is extremely large, and since it is estimated based on the transmission time, it is unclear how much unsolidified molten metal actually exists35. , so there is a drawback that the measurement error is larger than that of the reflection method in FIG. In addition, an impulse transmission method using transverse waves is disclosed in Japanese Patent Publication No. 48-3932, but this method detects that the sound wave is not being received due to the presence of an unsolidified portion, so it is completely solidified. However, it is not suitable for the purpose of measuring solidified thickness.

そのほか遅延棒を鋳片に溶接して凝固厚みを測定する方
法が昭48−100349号で公開されているが、この
方法は凝固厚みを連続的に測定出来ない欠点がある。本
発明はこれらの実情に鑑み種種の検討の結果電磁力を利
用して鋳片に超音波を入射させ固相一液相境界での反射
エコーを電気的に検出する極めて精度の高い凝固厚み測
定方法を見い出したものであジ、以下実施例にもとづき
図面によつて詳細に説明する。第4図に本発明による原
理図を示しておシ溶湯3の外壁は冷却されて鋳片4を形
成して訃D、鋳片4の近傍に送受信器を配置している。
In addition, a method of measuring the solidification thickness by welding a delay rod to the slab is disclosed in No. 100349/1982, but this method has the disadvantage that the solidification thickness cannot be measured continuously. In view of these circumstances, and as a result of various studies, the present invention has developed an extremely accurate solidification thickness measurement system that utilizes electromagnetic force to inject ultrasonic waves into a slab and electrically detect the reflected echo at the solid-liquid phase boundary. This method has been discovered and will be described in detail below with reference to the drawings based on examples. FIG. 4 shows a principle diagram of the present invention. The outer wall of the molten metal 3 is cooled to form a slab 4, and a transmitter/receiver is placed near the slab 4.

磁界発生用電源装置7によつて送受信器6に磁界発生用
電流を供給しており1電気信号は送信用回路8によつて
送受信器6に供給されておシ、受信信号は増幅器9によ
つて増幅され、ブラウン管表示装置10によつて測定結
果を表示させる。本発明の特徴は鋳片4に送受信器6を
接触させることなく電磁力を利用して鋳片に超音波を透
入させ鋳片4の固相一溶湯3の液相境界での反射エコー
を電気的に検出することにある。
A magnetic field generation power supply device 7 supplies a magnetic field generation current to the transceiver 6, an electrical signal is supplied to the transceiver 6 by a transmission circuit 8, and a received signal is supplied to the transceiver 6 by an amplifier 9. The measured results are displayed on the cathode ray tube display device 10. The feature of the present invention is that ultrasonic waves are transmitted through the slab using electromagnetic force without bringing the transceiver 6 into contact with the slab 4, and the reflected echo at the boundary between the solid phase of the slab 4 and the liquid phase of the molten metal 3 is detected. The purpose is to detect it electrically.

以下に電磁力を利用して鋳片内に超音波を送受信する方
法(以下単に電磁超音波という)の一例を説明する。
An example of a method of transmitting and receiving ultrasonic waves within a slab using electromagnetic force (hereinafter simply referred to as electromagnetic ultrasonic waves) will be described below.

第5図に回転対称軸をもつ送受信器の断面図を示してい
る。
FIG. 5 shows a cross-sectional view of a transceiver having an axis of rotational symmetry.

11は磁界用のコイルで電源7に接続される。Reference numeral 11 denotes a magnetic field coil connected to the power source 7.

12は送信用のコイルで送信回路8に接続される。12 is a transmitting coil connected to the transmitting circuit 8;

13は受信用コイルで増幅器9を通じてブラウン管表示
装置10に接続される。
Reference numeral 13 denotes a receiving coil which is connected to a cathode ray tube display device 10 through an amplifier 9.

14は磁界用の鉄心である。14 is an iron core for magnetic field.

例えば、磁界用電源7よシ磁界コイル11に電圧(例え
ば直流200)を印加すると、磁界(5KG)が発生し
、鋳片4には第5図口に示すように磁路が出来る。
For example, when a voltage (for example, DC 200) is applied from the magnetic field power source 7 to the magnetic field coil 11, a magnetic field (5 KG) is generated, and a magnetic path is created in the slab 4 as shown in the opening of FIG.

送信コイル12には送信回路どの組合せによう振動電流
(例えば、RLC共振の減衰振動f?21VHDを第5
図の口に示すように流すと、鋳片4の表面に渦電流15
が発生し、磁界との相互作用の結果フレミングの左手法
則により液相3の方向に運動力fが生じ、電気振動が機
械振動に変換され、超音波として液相3の方向に進行す
る。固相4と液相3の境界での反射エコーは第5図のハ
に示すように鋳片表面方向に達して磁界との相互作用の
結果、フレミングの右手法則により渦電流16が生じ、
機械振動が電気振動に変換され、これが受信コイル13
に検出される。
The transmitting coil 12 is connected to the transmitting circuit in which combination the oscillating current (for example, the damped vibration f?21VHD of the RLC resonance is applied to the fifth
When flowing as shown in the figure, eddy current 15 appears on the surface of slab 4.
is generated, and as a result of the interaction with the magnetic field, a kinetic force f is generated in the direction of the liquid phase 3 according to Fleming's left-hand law, and the electric vibration is converted into mechanical vibration, which propagates in the direction of the liquid phase 3 as an ultrasonic wave. The reflected echo at the boundary between the solid phase 4 and the liquid phase 3 reaches the surface of the slab as shown in Fig. 5C, and as a result of interaction with the magnetic field, an eddy current 16 is generated according to Fleming's right-hand rule.
Mechanical vibrations are converted into electrical vibrations, which are transmitted to the receiving coil 13.
detected.

また、受信コイルは送信コイルに流れる電流をも検出す
るため、ブラウン管表示装置10には増幅器9で増幅さ
れた送信信号Tと検出信号Fが表示される。その表示内
容を第5図イに示す。即ち、差TOが凝固厚みとして測
定される。このようにして電磁超音波は鋳造中の鋳片に
超音波を前述した従来法と全く異なる方法で簡単に送受
信することが出来るため、次に述べる利点がある。
Further, since the receiving coil also detects the current flowing through the transmitting coil, the transmitting signal T and the detection signal F amplified by the amplifier 9 are displayed on the cathode ray tube display device 10. The displayed contents are shown in FIG. 5A. That is, the difference TO is measured as the solidified thickness. In this way, electromagnetic ultrasonic waves can easily transmit and receive ultrasonic waves to the slab being cast in a method that is completely different from the conventional method described above, and therefore has the following advantages.

1電磁超音波は送受信器6を鋳片に接触することなく超
音波の送受信が出来るため、前述した従来の超音波法の
ようにロールや遅延棒その他一切の接触媒質を使用する
必要がない。
1 Since electromagnetic ultrasonic waves can transmit and receive ultrasonic waves without the transmitter/receiver 6 coming into contact with the slab, there is no need to use rolls, delay rods, or any couplant unlike the conventional ultrasonic method described above.

2鋳造中の鋳片はある一定速度で引抜かれているが、電
磁超音波は鋳片に接触することなく送受信出来るため、
引抜速度の増減に左右されることなく安定にしかも連続
的に測定出来る。
2 During casting, the slab is pulled out at a certain speed, but electromagnetic ultrasonic waves can be transmitted and received without coming into contact with the slab.
Measurements can be made stably and continuously without being affected by increases or decreases in the drawing speed.

本実施例では、磁界としては直流電流による磁界で説明
をしたが、これは永久磁石、またはコイルにパルス状の
大電流を流して誘起されるパルス状磁界でもよく、特に
制限するものではない。
In this embodiment, the magnetic field has been explained using a magnetic field caused by a direct current, but this may be a pulsed magnetic field induced by passing a large pulsed current through a permanent magnet or a coil, and is not particularly limited.

又、電気信号送信用コイルならびに受信用コイルとして
別のものを使用しているが、その時間差を利用して同一
コイルで行うことも出来る。
Further, although different coils are used as the electric signal transmitting coil and the receiving coil, it is also possible to use the same coil by taking advantage of the time difference.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般の連続鋳造の原理を示す断面図、第2図〜
第3図は従来法の説明図であり、第4図は本発明による
測定装置のプロツク図であ)、第5図イ、口、ハは本発
明の超音波の送受信の原理を示す説明図である。 1:タンデイツシユ、2:鋳型、3:溶湯、4:鋳型、
5:ロール、6:送受信器、7:磁界発生用電源装置、
8:送信用回路、9:増輻器、10:ブラウン管表示装
置、11:磁界コイル、12:送信用コイル、13:受
信用コイル、14:鉄心。
Figure 1 is a sectional view showing the principle of general continuous casting, Figure 2~
Fig. 3 is an explanatory diagram of the conventional method, Fig. 4 is a block diagram of the measuring device according to the present invention), and Figs. It is. 1: tandate, 2: mold, 3: molten metal, 4: mold,
5: Roll, 6: Transmitter/receiver, 7: Magnetic field generation power supply device,
8: transmitting circuit, 9: intensifier, 10: cathode ray tube display, 11: magnetic field coil, 12: transmitting coil, 13: receiving coil, 14: iron core.

Claims (1)

【特許請求の範囲】[Claims] 1 鋳片に磁界を加えた状態で該鋳片に渦電流を誘起さ
せることにより超音波を透入させ、鋳片の固相一液相の
境界からの反射超音波を鋳片に加えた磁界により電気的
に変換して検出することを特徴とする連続鋳造鋳片の凝
固厚み測定方法。
1 A magnetic field is created by applying ultrasonic waves to the slab by inducing eddy currents in the slab while a magnetic field is applied to the slab, and applying reflected ultrasound waves from the boundary between the solid phase and liquid phase of the slab to the slab. A method for measuring the solidification thickness of continuously cast slabs, which is characterized by electrically converting and detecting the solidified thickness.
JP4069776A 1976-04-10 1976-04-10 Method for measuring solidification thickness of continuously cast slabs Expired JPS5915738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4069776A JPS5915738B2 (en) 1976-04-10 1976-04-10 Method for measuring solidification thickness of continuously cast slabs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4069776A JPS5915738B2 (en) 1976-04-10 1976-04-10 Method for measuring solidification thickness of continuously cast slabs

Publications (2)

Publication Number Publication Date
JPS52123650A JPS52123650A (en) 1977-10-18
JPS5915738B2 true JPS5915738B2 (en) 1984-04-11

Family

ID=12587741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4069776A Expired JPS5915738B2 (en) 1976-04-10 1976-04-10 Method for measuring solidification thickness of continuously cast slabs

Country Status (1)

Country Link
JP (1) JPS5915738B2 (en)

Also Published As

Publication number Publication date
JPS52123650A (en) 1977-10-18

Similar Documents

Publication Publication Date Title
JP5051204B2 (en) Method and device for detecting solidification completion position of continuous cast slab and method for producing continuous cast slab
US7448430B2 (en) Manufacturing method for continuously cast product of steel
CA1120235A (en) Method and apparatus for regulating the bath level in a continuous casting mould by means of alternating electro-magnetic fields
JP2006343203A (en) Ultrasonic measuring method and ultrasonic measuring instrument
JP3826727B2 (en) Method and apparatus for determining solidification state of slab and method for producing continuous cast slab
JP2006198643A (en) Method of manufacturing continuously cast slab
JPS5915738B2 (en) Method for measuring solidification thickness of continuously cast slabs
JP4453557B2 (en) Manufacturing method of continuous cast slab
JP3757830B2 (en) Manufacturing method of continuous cast slab
JPS60133955A (en) Method for electromagnetic stirring in continuous casting
JP4483538B2 (en) Method and device for detecting solidification completion position of continuous cast slab and method for producing continuous cast slab
JPH0548860B2 (en)
JPH08211085A (en) Flow velocity measuring device
JP2016191573A (en) Ultrasonic flaw detection device, ultrasonic flaw detection method, and method of manufacturing steel
JP3779809B2 (en) Method and apparatus for continuous casting of molten metal
JPH08211084A (en) Flow velocity measuring device
JPH0464788B2 (en)
JPH1183814A (en) Solidification state detecting method for cast piece device therefor
JPH0216874B2 (en)
JPS6027361B2 (en) How to measure the thickness of conductive materials
JPS6196404A (en) Method and instrument for measuring thickness of cooling water film of belt caster
JPS6186121A (en) Tube cutting method
KR101937805B1 (en) Apparatus for detecting solidification of steel and method for the same
JPS5892825A (en) Ultrasonic level meter
JPS55158506A (en) Measuring device for thickness of solidified layer of casting