JPH1183814A - Solidification state detecting method for cast piece device therefor - Google Patents

Solidification state detecting method for cast piece device therefor

Info

Publication number
JPH1183814A
JPH1183814A JP9244466A JP24446697A JPH1183814A JP H1183814 A JPH1183814 A JP H1183814A JP 9244466 A JP9244466 A JP 9244466A JP 24446697 A JP24446697 A JP 24446697A JP H1183814 A JPH1183814 A JP H1183814A
Authority
JP
Japan
Prior art keywords
slab
ultrasonic wave
transmitted
distance
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9244466A
Other languages
Japanese (ja)
Inventor
Riichi Murayama
理一 村山
Akira Miura
昌 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9244466A priority Critical patent/JPH1183814A/en
Publication of JPH1183814A publication Critical patent/JPH1183814A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/048Transmission, i.e. analysed material between transmitter and receiver

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately find a solidification state, for example, a central solid phase rate. SOLUTION: A transverse ultrasonic wave is made incident on a cast piece S from an electromagnetic ultrasonc transmitting element 1a of a transmitting probe 1, a received signal from an electromagnetic ultrasonic receiving element 2a of a receiving probe 2 is fed to a transmitted signal measuring circuit 7, and the circuit 7 computes the intensity of the transverse ultrasonic wave. A lift-off data obtained from eddy current type range finders 1b/2b is taken in an operation circuit 8 to correct intensity of the transverse ultrasonic wave. A central solid phase rate is calculated from the corrected intensity of the transmitted transverse ultrasonic wave to be output to a measured result outputting device 9. The device 9 finds a pressure data corresponding to a computed result from the operation circuit 8 based on a preliminarily given relation between a central solid phase rate and a drafting rate to be output to rolling rolls 32, 32.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、連続鋳造鋳片にお
ける中心固相率等の情報を得て、その凝固状態を検出す
る方法及びその実施に使用する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting the solidification state of a continuously cast slab by obtaining information such as the ratio of the solid phase in the center, and an apparatus used for implementing the method.

【0002】[0002]

【従来の技術】溶融金属の連続鋳造は、一般に、図3に
示す如く、タンディッシュ21から所定の断面形状を有す
る鋳型22へ溶融金属23を注入し、溶融部24と凝固部25と
が混在した鋳片Sを鋳型22の下方から連続的に引き出す
ことにより行われている。鋳片Sは、鋳型22から引き出
された直後は、未凝固である溶融部24が内側の大部分を
占めているが、その後の冷却により凝固が進行するにつ
れて、凝固部25が占める割合が高くなり、全体が凝固す
る。
2. Description of the Related Art Generally, as shown in FIG. 3, a molten metal 23 is poured from a tundish 21 into a mold 22 having a predetermined sectional shape, and a molten portion 24 and a solidified portion 25 are mixed. This is performed by continuously drawing the cast slab S from below the mold 22. Immediately after being drawn from the mold 22, the slab S has a large portion of the unsolidified molten portion 24 occupying the inside, but as the solidification progresses due to the subsequent cooling, the ratio of the solidified portion 25 increases. And the whole solidifies.

【0003】この冷却過程においては、内部にある溶融
部24が、外側にある凝固部25を破って外部へ漏出するブ
レイクアウト事故を防止し、また品質の向上のために中
心偏析を低減することが重要であり、最大の引抜き速度
にて引き抜くことが生産性向上のために必要である。
[0003] In this cooling process, it is necessary to prevent a breakout accident in which the molten portion 24 inside breaks the solidified portion 25 outside and leaks to the outside, and to reduce center segregation to improve quality. Is important, and it is necessary to extract at the maximum drawing speed in order to improve productivity.

【0004】そこで従来から、図4に示す如く、鋳片S
の厚み方向に実際に鋲31を打ち込み、その後、その鋳片
Sを鋲31の位置で切断することにより、内部の溶融状況
を判断する方法が行われている。鋳片S内部の溶融部24
に接触した鋲31部分には融けた痕跡が見られ、これによ
り溶融部24の有無を判断することができる。
Therefore, conventionally, as shown in FIG.
A method of actually driving a stud 31 in the thickness direction and then cutting the cast piece S at the position of the stud 31 to determine the internal melting state is performed. Fused portion 24 inside slab S
A trace of melting is seen at the portion of the stud 31 that has come into contact with, so that the presence or absence of the fused portion 24 can be determined.

【0005】また図5に示す如く、鋳片Sを両側から圧
延ロール32、32で挟持し、圧延ロール32にかかる荷重変
化を負荷荷重計33にて検出し、内部状況を推定する方法
がある。この方法では鋳片S内部の溶融状況が変化した
場合に、鋳片Sの膨張力が変化することを利用する。し
かしながら溶融状況を直接測定するのではなく、異常検
出しかできないので、実用化には至っていない。
As shown in FIG. 5, there is a method in which a slab S is sandwiched between rolling rolls 32, 32 from both sides, and a load change applied to the rolling roll 32 is detected by a load load meter 33 to estimate the internal condition. . This method utilizes the fact that the expansion force of the slab S changes when the melting state inside the slab S changes. However, it has not yet been put to practical use because it can only detect abnormalities without directly measuring the melting state.

【0006】さらに特開昭62−148851号公報には、送信
子35から鋳片Sの厚み方向に横波超音波を入射せしめ、
鋳片Sを透過し、受信子36にて受信された横波超音波の
強度から、内部の凝固状況を推定する方法(図6)が開
示されている。この方法は、横波が液体中を伝搬しない
性質を利用しており、液体、即ち溶融部24が存在する場
合は受信子36にて横波超音波が受信されず、内部が完全
に凝固している場合は透過した横波超音波が受信子36に
て受信される。
Further, in Japanese Patent Application Laid-Open No. 62-148852, a transverse ultrasonic wave is applied from the transmitter 35 in the thickness direction of the slab S,
A method of estimating the internal solidification state from the intensity of the shear wave ultrasonic wave transmitted through the slab S and received by the receiver 36 (FIG. 6) is disclosed. This method utilizes the property that the transverse wave does not propagate in the liquid, and when the liquid, that is, the molten portion 24 is present, the transverse wave ultrasonic wave is not received by the receiver 36, and the inside is completely coagulated. In this case, the transmitted transverse ultrasonic waves are received by the receiver 36.

【0007】[0007]

【発明が解決しようとする課題】連続鋳造鋳片において
は、W型クレータエンドと呼ばれる図7に示す如き中心
偏析が発生し易く、中心偏析が発生した鋳片は、品質不
良として判断され、歩留りを悪化させる。従って前述し
た如く、製品品質の向上には中心偏析の低減が必要であ
り、このために圧延ロール32、32(図5)にて軽圧を加
える制御を行っており、ここで加える圧力は、図8に示
す如く、鋳片Sの凝固状態(中心固相率)によって厳密
に制御される必要があることが分かっている。
In a continuous cast slab, a center segregation, called a W-shaped crater end, as shown in FIG. 7 is apt to occur. Worsen. Therefore, as described above, it is necessary to reduce the center segregation in order to improve the product quality. For this reason, the control of applying light pressure by the rolling rolls 32, 32 (FIG. 5) is performed. As shown in FIG. 8, it has been found that the slab S must be strictly controlled by the solidification state (central solid fraction).

【0008】しかしながら、従来方法では中心固相率を
得ることは困難である。図4に示す如き鋲31を用いる方
法では、鋲31を打ち込んだ位置の状況しか得られず、ま
た実時間で情報を得ることはできない。
[0008] However, it is difficult to obtain the central solid fraction by the conventional method. In the method using the studs 31 as shown in FIG. 4, only the situation at the position where the studs 31 are driven can be obtained, and information cannot be obtained in real time.

【0009】また図6に示す方法では、理論的には中心
固相率の推定が可能であるが、実際には、送信子35、受
信子36と鋳片Sとの距離(リフトオフ)が変動するため
に、出力が変動し、正確な情報を得ることは困難であ
る。
Although the method shown in FIG. 6 can theoretically estimate the center solid fraction, the actual distance (lift-off) between the transmitter 35 and the receiver 36 and the slab S fluctuates. Therefore, the output fluctuates, and it is difficult to obtain accurate information.

【0010】本発明は、斯かる事情に鑑みてなされたも
のであり、鋳片における透過横波超音波の強度を測定す
ると共に、リフトオフを同時に検出して強度測定値を補
正することにより、凝固状態、例えば中心固相率を正確
に求めることが可能な凝固状態検出方法及びその実施に
使用する装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and measures the intensity of transmitted transverse ultrasonic waves in a slab, simultaneously detects lift-off, and corrects the measured intensity to obtain a solidified state. For example, it is an object of the present invention to provide a method for detecting a solidification state capable of accurately determining a center solid fraction and an apparatus used for carrying out the method.

【0011】[0011]

【課題を解決するための手段】図9は、50mm厚、100 mm
厚のPb鋳片における受信信号強度のリフトオフ特性を
示すグラフである。50mm厚のPb鋳片に関しては、リフ
トオフが10〜26mmの範囲において約−17%/mmの割合で
減少していた。また100 mm厚のPb鋳片に関しては、リ
フトオフが5〜16mmの範囲において約−16.5%/mmの割
合で減少していた。このグラフより、厚みの違いに関係
なく、受信信号強度はリフトオフによって大きく変動す
ることが判る。
[Means for Solving the Problems] FIG.
It is a graph which shows the lift-off characteristic of the received signal intensity in a thick Pb cast piece. For the 50 mm thick Pb slab, the lift-off decreased at a rate of about -17% / mm in the range of 10 to 26 mm. In the case of the Pb slab having a thickness of 100 mm, the lift-off was reduced at a rate of about -16.5% / mm in the range of 5 to 16 mm. From this graph, it can be seen that the received signal strength fluctuates greatly due to lift-off regardless of the difference in thickness.

【0012】また種々の条件が、受信信号強度に与える
影響を調査した結果を表1に示す。‘リフトオフ’は、
冷間のサンプルを用いて、センサ、サンプル間のリフト
オフを変化させ、そのときのセンサ出力を測定すること
により得る。‘スラブ(鋳片)厚み’及び‘センサ内温
度’による影響は、操業ラインで変動する幅の最大値を
示しており、実測値はこれより遙に小さい。‘固相率評
価誤差’は、事前にセンサ出力と中心固相率との関係
(例えば中心固相率が0.7〜1.0の間で、受信信号強度
は平均2〜6Vに変化する)を求めておき、種々の条件
が変化した場合の出力誤差を中心固相率に換算して求め
た。
Table 1 shows the results of investigating the effects of various conditions on the received signal strength. 'Lift off'
It is obtained by changing the lift-off between the sensor and the sample using a cold sample and measuring the sensor output at that time. The effects of the 'slab (slab) thickness' and the 'sensor temperature' indicate the maximum value of the width that fluctuates in the operation line, and the measured values are much smaller. The 'solid phase ratio evaluation error' is a relation between the sensor output and the central solid phase ratio in advance (for example, when the central solid phase ratio is between 0.7 and 1.0, the received signal intensity changes to an average of 2 to 6 V). ) Was calculated, and the output error when various conditions were changed was converted into the central solid phase ratio.

【0013】影響値(1)は現状操業を表中のように予想
して同様に求めた。即ち、リフトオフ変化を0.3mm以
下、スラブ厚み変動を3mm以下、センサ内温度変化を20
℃以下としている。また影響値(2)はセンサ内に距離計
を取り付けた場合の影響を同様に調査した結果である。
The influence value (1) was similarly obtained by assuming the current operation as shown in the table. That is, the lift-off change is 0.3 mm or less, the slab thickness change is 3 mm or less, and the temperature change in the sensor is 20 mm or less.
℃ or below. The influence value (2) is a result of similarly examining the influence when a distance meter is installed in the sensor.

【0014】[0014]

【表1】 [Table 1]

【0015】影響値(1)では、スラブ厚みによる影響が
大きいが、この値は操業ラインではプロセスコンピュー
タを通して情報を入手することができるので、比較的容
易に補正することが可能である。またセンサ内に距離計
を設置した場合、センサ内温度が上昇することがある
が、測定精度(固相率評価誤差)に対する温度の影響は
小さく、無視しても支障はない程度である。
In the influence value (1), the influence of the slab thickness is large, but since this information can be obtained through the process computer in the operation line, it can be corrected relatively easily. When a distance meter is installed in the sensor, the temperature in the sensor may increase. However, the influence of the temperature on the measurement accuracy (solid-state-ratio evaluation error) is so small that it can be neglected.

【0016】そこで請求項1記載の発明は、連続鋳造さ
れる鋳片に対して、その厚み方向に、送信子から横波超
音波を透入せしめ、前記鋳片を透過した透過横波超音波
を受信子にて受信することにより、前記鋳片の凝固状態
を検出する方法において、前記横波超音波を送信したと
きの前記送信子と前記鋳片との距離を測定し、前記透過
横波超音波を受信したときの前記受信子と前記鋳片との
距離を測定し、これら距離を用いて受信された前記透過
横波超音波の強度を補正することを特徴とする。
Therefore, according to the first aspect of the present invention, a transverse wave ultrasonic wave is transmitted from a transmitter in a thickness direction of a continuously cast slab, and a transmitted transverse wave ultrasonic wave transmitted through the slab is received. In the method for detecting the solidification state of the slab, by receiving the transmitted transverse wave ultrasonic wave, the distance between the transmitter and the slab when transmitting the transverse wave ultrasonic wave is measured, and the transmitted transverse wave ultrasonic wave is received. And measuring the distance between the receiver and the slab at the time of performing the correction and correcting the intensity of the transmitted transverse ultrasonic wave received using the distance.

【0017】請求項3記載の発明は、連続鋳造される鋳
片に対して、その厚み方向に、送信子から横波超音波を
透入せしめ、前記鋳片を透過した透過横波超音波を受信
子にて受信することにより、前記鋳片の凝固状態を検出
する装置において、前記横波超音波を送信したときの前
記送信子と前記鋳片との距離を測定する距離測定手段
と、前記透過横波超音波を受信したときの前記受信子と
前記鋳片との距離を測定する距離測定手段と、これら距
離を用いて受信された前記透過横波超音波の強度を補正
する手段とを備えることを特徴とする。
According to a third aspect of the present invention, a transverse wave ultrasonic wave is transmitted from a transmitter in a thickness direction of a cast piece to be continuously cast, and a transmitted transverse ultrasonic wave transmitted through the cast piece is received by a receiver. In the apparatus for detecting the solidification state of the cast slab, the distance measuring means for measuring the distance between the transmitter and the cast slab when the shear wave ultrasonic wave is transmitted; and Distance measuring means for measuring the distance between the receiver and the slab when receiving a sound wave, and means for correcting the intensity of the transmitted transverse ultrasonic wave received using these distances, I do.

【0018】リフトオフにより大きく変動する透過横波
超音波の強度を、リフトオフの測定値にて補正するの
で、これの影響が除かれた、鋳片内の凝固状態を正確に
示す受信信号を得ることができる。
Since the intensity of the transmitted transverse ultrasonic wave which fluctuates greatly due to the lift-off is corrected by the measured value of the lift-off, it is possible to obtain a reception signal which is free from the influence and accurately indicates the solidification state in the slab. it can.

【0019】請求項2記載の発明は、請求項1におい
て、所定の演算式を用いて、補正された強度から中心固
相率を演算することを特徴とする。
According to a second aspect of the present invention, in the first aspect, the central solid phase ratio is calculated from the corrected intensity using a predetermined arithmetic expression.

【0020】請求項4記載の発明は、請求項3におい
て、所定の演算式を用いて、補正された強度から中心固
相率を演算する手段を備えることを特徴とする。
The invention according to a fourth aspect is characterized in that, in the third aspect, there is provided means for calculating the central solid phase ratio from the corrected intensity using a predetermined arithmetic expression.

【0021】得られた中心固相率に対応した押圧力で鋳
片を圧延することにより、中心偏析を効果的に抑制し、
例えばW型クレータエンドが生じていない良品質の鋳片
を製造することができる。
By rolling the slab with a pressing force corresponding to the obtained center solid fraction, center segregation is effectively suppressed,
For example, it is possible to manufacture a high-quality cast piece having no W-shaped crater end.

【0022】請求項5記載の発明は、請求項3又は4に
おいて、前記距離測定手段は、渦電流式距離計であり、
前記送信子及び前記受信子に内蔵されていることを特徴
とする。
According to a fifth aspect of the present invention, in the third or fourth aspect, the distance measuring means is an eddy current type distance meter,
It is characterized in that it is built in the transmitter and the receiver.

【0023】熱間での距離測定が、非接触で、しかも被
測定物との間に金属板等の保護板が介在していても可能
である。
The hot distance measurement can be performed without contact, and even when a protective plate such as a metal plate is interposed between the object and the object to be measured.

【0024】[0024]

【発明の実施の形態】以下、本発明をその実施の形態を
示す図面に基づき具体的に説明する。 実施の形態1.図1は本発明に係る鋳片の凝固状態検出
装置の構成を示すブロック図である。送信用探触子1に
は、電磁超音波送信子1aと渦電流式距離計1bとが装着さ
れており、受信用探触子2には、電磁超音波受信子2aと
渦電流式距離計2bとが装着されている。電磁超音波送信
子1a及び電磁超音波受信子2aは、これらの電磁石を駆動
するための励磁電源3に接続されており、電磁超音波送
信子1aにはこれを駆動するためのパルサー4が接続され
ている。電磁超音波受信子2aにはこれが出力する信号を
増幅する増幅器5が接続されており、その出力信号は透
過信号測定回路7へ与えられるようになしてある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings showing the embodiments. Embodiment 1 FIG. FIG. 1 is a block diagram showing a configuration of a device for detecting a solidification state of a slab according to the present invention. The transmitting probe 1 is equipped with an electromagnetic ultrasonic transmitter 1a and an eddy current type distance meter 1b, and the receiving probe 2 is equipped with an electromagnetic ultrasonic receiver 2a and an eddy current type distance meter. 2b is installed. The electromagnetic ultrasonic transmitter 1a and the electromagnetic ultrasonic receiver 2a are connected to an excitation power source 3 for driving these electromagnets, and the pulsar 4 for driving the electromagnetic ultrasonic transmitter 1a is connected to the electromagnetic ultrasonic transmitter 1a. Have been. An amplifier 5 for amplifying a signal output from the electromagnetic ultrasonic receiver 2a is connected to the electromagnetic ultrasonic receiver 2a, and the output signal is supplied to a transmission signal measuring circuit 7.

【0025】励磁電源3、パルサー4、増幅器5及び透
過信号測定回路7は、動作タイミングの同期をとるため
に同期回路6に接続されている。透過信号測定回路7、
及び渦電流式距離計1b、2bの出力信号は演算回路8へ与
えられ、その演算結果は測定結果出力装置9にて適宜デ
ータに処理されて出力されるようになっている。
The excitation power supply 3, pulser 4, amplifier 5, and transmission signal measuring circuit 7 are connected to a synchronizing circuit 6 for synchronizing the operation timing. Transmission signal measurement circuit 7,
The output signals of the eddy current rangefinders 1b and 2b are supplied to a calculation circuit 8, and the calculation results are appropriately processed by a measurement result output device 9 and output.

【0026】図1に示す如く、送信用探触子1及び受信
用探触子2を鋳片Sの表面側及び裏面側に適宜間隔を隔
てて取り付けたときの動作について述べる。励磁電源3
にて励磁された電磁石による横波超音波が、パルサー4
の出力タイミングで送信用探触子1の電磁超音波送信子
1aから鋳片Sへ入射せしめられる。このタイミングに同
期して駆動される受信用探触子2の電磁超音波受信子2a
からの受信信号は、増幅器5で増幅され、透過信号測定
回路7へ与えられる。透過信号測定回路7はこの信号の
極大振幅値を読み取り、横波超音波の強度として演算す
る。
The operation when the transmitting probe 1 and the receiving probe 2 are mounted on the front side and the back side of the slab S at appropriate intervals as shown in FIG. 1 will be described. Excitation power supply 3
The transverse ultrasonic waves generated by the electromagnets excited by the
At the output timing of the electromagnetic probe of the transmitting probe 1
It is made to enter the slab S from 1a. The electromagnetic ultrasonic receiver 2a of the receiving probe 2 driven in synchronization with this timing
Is amplified by the amplifier 5 and supplied to the transmission signal measuring circuit 7. The transmission signal measuring circuit 7 reads the maximum amplitude value of this signal and calculates it as the intensity of the shear wave ultrasonic wave.

【0027】一方、渦電流式距離計1bから得られる、超
音波送信時の送信用探触子1と鋳片Sの表面との距離の
データと、渦電流式距離計2bから得られる、超音波受信
時の受信用探触子2と鋳片Sの裏面との距離のデータと
を演算回路8が取り込み、これらリフトオフデータによ
り、横波超音波の強度を補正する。そしてこの補正され
た透過横波超音波の強度Vから、例えば(1)式にて中心
固相率Pを算出し、測定結果出力装置9へ出力する。但
し、リフトオフの測定データをLとし、C1、C2、C
3を定数とする。 P=C1*(V−C3*L)+C2 …(1) 測定結果出力装置9は、予め与えられている、図8に示
す如き中心固相率と圧下量との関係に基づいて、演算回
路8からの演算結果に相当する圧力データを求めて、圧
延ロール32、32…へ出力する。圧延ロール32、32…は支
持された圧力で鋳片Sを押圧する。
On the other hand, data on the distance between the transmitting probe 1 and the surface of the casting S at the time of ultrasonic transmission, which is obtained from the eddy current type distance meter 1b, and the distance data obtained from the eddy current type distance meter 2b. The arithmetic circuit 8 fetches data on the distance between the receiving probe 2 and the back surface of the slab S at the time of sound wave reception, and corrects the intensity of the shear wave ultrasonic wave based on the lift-off data. Then, from the corrected intensity V of the transmitted transverse ultrasonic wave, the central solid phase ratio P is calculated by, for example, equation (1) and output to the measurement result output device 9. Here, the lift-off measurement data is L, and C1, C2, C
Let 3 be a constant. P = C1 * (V−C3 * L) + C2 (1) The measurement result output device 9 calculates an arithmetic circuit based on a predetermined relationship between the center solid phase ratio and the reduction amount as shown in FIG. 8 is obtained and output to the rolling rolls 32, 32... The rolling rolls 32 press the slab S with the supported pressure.

【0028】図1に示す本発明装置でのリフトオフ測定
精度は0.05mmであった。また図6に示す従来装置、及び
図1に示す装置を用いて実際に中心固相率を求めた。そ
の結果、中心固相率評価精度は、0.27から0.11へ向上し
た。さらに得られた中心固相率を用いて圧延ロール32に
て圧延しながら連続鋳造を実施したところ、良品率が大
幅に向上した。
The precision of the lift-off measurement in the apparatus of the present invention shown in FIG. 1 was 0.05 mm. Further, the center solid phase ratio was actually obtained using the conventional apparatus shown in FIG. 6 and the apparatus shown in FIG. As a result, the accuracy of evaluation of the center solid fraction was improved from 0.27 to 0.11. Further, continuous casting was performed while rolling by the roll 32 using the obtained center solid phase ratio. As a result, the non-defective product rate was greatly improved.

【0029】実施の形態2.図2は実施の形態2に係る
鋳片の凝固状態検出装置の構成を示すブロック図であ
る。送信用探触子1及び受信用探触子2には渦電流式距
離計は設置されておらず、代わりに電磁超音波送信子1
a、電磁超音波受信子2aのインピーダンス変化を測定す
るインピーダンスメータ11、21と、電磁超音波送信子1
a、電磁超音波受信子2aを距離計として使用する場合
に、これらのインピーダンスをインピーダンスメータ1
1、21へ入力せしめる切替器12、22とを備える。インピ
ーダンスメータ11、21から得られる距離データは演算回
路8へ入力されるようになしてある。その他の構成は実
施の形態1と同様であり、同符号を付して説明を省略す
る。
Embodiment 2 FIG. 2 is a block diagram showing a configuration of a device for detecting a solidified state of a slab according to a second embodiment. The transmitting probe 1 and the receiving probe 2 are not provided with an eddy current type distance meter.
a, impedance meters 11 and 21 for measuring the impedance change of the electromagnetic ultrasonic receiver 2a, and the electromagnetic ultrasonic transmitter 1
a, when the electromagnetic ultrasonic receiver 2a is used as a distance meter, these impedances are
Switchers 12 and 22 for inputting the signals to 1 and 21 are provided. Distance data obtained from the impedance meters 11 and 21 is input to the arithmetic circuit 8. Other configurations are the same as those of the first embodiment, and the same reference numerals are given and the description is omitted.

【0030】図2に示す如く、送信用探触子1及び受信
用探触子2を鋳片Sの表面側及び裏面側に適宜間隔を隔
てて取り付けたときの動作について述べる。励磁電源3
にて励磁された電磁石による横波超音波が、パルサー4
の出力タイミングで送信用探触子1から鋳片Sへ入射せ
しめられる。このタイミングに同期して駆動される受信
用探触子2からの受信信号は、増幅器5で増幅され、透
過信号測定回路7へ与えられる。透過信号測定回路7は
この信号の極大振幅値を読み取り、横波超音波の強度と
して演算する。
The operation when the transmitting probe 1 and the receiving probe 2 are mounted on the front side and the back side of the slab S at appropriate intervals as shown in FIG. 2 will be described. Excitation power supply 3
The transverse ultrasonic waves generated by the electromagnets excited by the
At the output timing described above, the beam is made to enter the slab S from the transmission probe 1. The reception signal from the reception probe 2 driven in synchronization with this timing is amplified by the amplifier 5 and supplied to the transmission signal measurement circuit 7. The transmission signal measuring circuit 7 reads the maximum amplitude value of this signal and calculates it as the intensity of the shear wave ultrasonic wave.

【0031】一方、切替器12、22が横波超音波の強度を
測定する毎にスイッチングして、電磁超音波送信子1a、
電磁超音波受信子2aのインピーダンスをインピーダンス
メータ11、21へ入力せしめる。そうするとインピーダン
スメータ11は、インピーダンス変化を測定し、超音波送
信時の送信用探触子1と鋳片Sの表面との距離のデータ
を求め、演算回路8へ与える。またインピーダンスメー
タ12は、インピーダンス変化を測定し、超音波送信時の
送信用探触子2と鋳片Sの裏面との距離のデータを求
め、演算回路8へ与える。演算回路8は、これら距離デ
ータ(リフトオフデータ)を用いて、透過信号測定回路
7からの横波超音波の強度を補正する。そしてこの補正
された透過横波超音波の強度から中心固相率を算出し、
測定結果出力装置9へ出力する。測定結果出力装置9
は、予め与えられている、図8に示す如き中心固相率と
圧下量との関係に基づいて、演算回路8からの演算結果
に相当する圧力データを求めて、圧延ロール32、32…へ
出力する。圧延ロール32、32…は支持された圧力で鋳片
Sを押圧する。
On the other hand, each time the switches 12 and 22 measure the intensity of the shear wave ultrasonic wave, the switching is performed, and the electromagnetic ultrasonic wave transmitter 1a,
The impedance of the electromagnetic ultrasonic receiver 2a is input to the impedance meters 11 and 21. Then, the impedance meter 11 measures a change in impedance, obtains data on the distance between the transmitting probe 1 and the surface of the slab S during ultrasonic transmission, and supplies the data to the arithmetic circuit 8. The impedance meter 12 measures the change in impedance, obtains data on the distance between the transmission probe 2 and the back surface of the slab S during ultrasonic transmission, and supplies the data to the arithmetic circuit 8. The arithmetic circuit 8 uses the distance data (lift-off data) to correct the intensity of the shear wave ultrasonic wave from the transmission signal measuring circuit 7. Then, the central solid fraction is calculated from the corrected intensity of the transmitted transverse ultrasonic wave,
Output to the measurement result output device 9. Measurement result output device 9
Calculates pressure data corresponding to the calculation result from the calculation circuit 8 based on the relationship between the center solid phase ratio and the reduction amount as shown in FIG. Output. The rolling rolls 32 press the slab S with the supported pressure.

【0032】図2に示す本発明装置でのリフトオフ測定
精度は0.1mmであった。また図6に示す従来装置、及び
図2に示す装置を用いて実際に中心固相率を求めた。そ
の結果、中心固相率評価精度は、0.27から0.1へ向上し
た。さらに得られた中心固相率を用いて圧延ロール32に
て圧延しながら連続鋳造を実施したところ、実施の形態
1には僅かに及ばないが、従来よりも遙に良品率が向上
した。
The precision of the lift-off measurement in the apparatus of the present invention shown in FIG. 2 was 0.1 mm. Further, the center solid phase ratio was actually obtained using the conventional apparatus shown in FIG. 6 and the apparatus shown in FIG. As a result, the evaluation accuracy of the center solid phase ratio was improved from 0.27 to 0.1. Further, when the continuous casting was carried out while rolling with the rolling roll 32 using the obtained center solid phase ratio, the yield rate was slightly lower than that of the first embodiment, but far higher than the conventional one.

【0033】[0033]

【発明の効果】以上のように本発明に係る鋳片の凝固状
態検出方法及びその実施に使用する装置は、鋳片におけ
る透過横波超音波の強度を測定すると共に、リフトオフ
を同時に検出して強度測定値を補正することにより、リ
フトオフの影響が除かれた、鋳片内の凝固状態を正確に
示す受信信号を得ることができ、凝固状態、例えば中心
固相率を正確に求めることが可能である等、本発明は優
れた効果を奏する。
As described above, the method for detecting the solidification state of a slab according to the present invention and the apparatus used for carrying out the method measure the intensity of transmitted transverse ultrasonic waves in the slab and simultaneously detect lift-off to obtain the intensity. By correcting the measured values, the effect of lift-off has been removed, it is possible to obtain a reception signal that accurately indicates the solidification state in the slab, and it is possible to accurately determine the solidification state, for example, the center solid fraction. For example, the present invention has excellent effects.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の形態1に係る鋳片の凝固状態検出装置を
示すブロック図である。
FIG. 1 is a block diagram showing an apparatus for detecting a solidified state of a slab according to a first embodiment.

【図2】実施の形態2に係る鋳片の凝固状態検出装置を
示すブロック図である。
FIG. 2 is a block diagram showing an apparatus for detecting a solidified state of a slab according to a second embodiment.

【図3】連続鋳造機の構成を示す模式的断面図である。FIG. 3 is a schematic sectional view showing a configuration of a continuous casting machine.

【図4】従来の鋳片の凝固状態検出方法を示す模式図で
ある。
FIG. 4 is a schematic view showing a conventional method for detecting a solidification state of a slab.

【図5】従来の鋳片の凝固状態検出方法を示す模式図で
ある。
FIG. 5 is a schematic view showing a conventional method for detecting a solidification state of a slab.

【図6】従来の鋳片の凝固状態検出方法を示す模式図で
ある。
FIG. 6 is a schematic view showing a conventional method for detecting a solidification state of a slab.

【図7】W型クレータエンドの発生状況を示す模式図で
ある。
FIG. 7 is a schematic diagram showing a state of occurrence of a W-shaped crater end.

【図8】中心固相率を用いた圧延制御の概念図である。FIG. 8 is a conceptual diagram of rolling control using a center solid fraction.

【図9】透過横波超音波の受信信号強度のリフトオフ特
性を示すグラフである。
FIG. 9 is a graph showing a lift-off characteristic of a received signal intensity of transmitted transverse ultrasonic waves.

【符号の説明】[Explanation of symbols]

1 送信用探触子 1a 電磁超音波送信子 1b、2b 渦電流式距離計 2 受信用探触子 2a 電磁超音波受信子 7 透過信号測定回路 8 演算回路 S 鋳片 DESCRIPTION OF SYMBOLS 1 Transmitting probe 1a Electromagnetic ultrasonic transmitter 1b, 2b Eddy current type distance meter 2 Receiving probe 2a Electromagnetic ultrasonic receiver 7 Transmission signal measuring circuit 8 Arithmetic circuit S Cast piece

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 連続鋳造される鋳片に対して、その厚み
方向に、送信子から横波超音波を透入せしめ、前記鋳片
を透過した透過横波超音波を受信子にて受信することに
より、前記鋳片の凝固状態を検出する方法において、前
記横波超音波を送信したときの前記送信子と前記鋳片と
の距離を測定し、前記透過横波超音波を受信したときの
前記受信子と前記鋳片との距離を測定し、これら距離を
用いて受信された前記透過横波超音波の強度を補正する
ことを特徴とする鋳片の凝固状態検出方法。
1. A transverse wave ultrasonic wave is transmitted from a transmitter in a thickness direction of a slab to be continuously cast, and a transmitted transverse wave ultrasonic wave transmitted through the slab is received by a receiver. In the method for detecting the solidification state of the slab, the distance between the transmitter and the slab when transmitting the shear wave ultrasonic wave is measured, and the receiver when the transmitted transverse wave ultrasonic wave is received. A method for detecting a solidification state of a slab, comprising measuring a distance from the slab and correcting the intensity of the transmitted transverse ultrasonic wave received using the distance.
【請求項2】 所定の演算式を用いて、補正された強度
から中心固相率を演算することを特徴とする請求項1記
載の鋳片の凝固状態検出方法。
2. The method for detecting a solidified state of a slab according to claim 1, wherein the central solid phase ratio is calculated from the corrected intensity using a predetermined arithmetic expression.
【請求項3】 連続鋳造される鋳片に対して、その厚み
方向に、送信子から横波超音波を透入せしめ、前記鋳片
を透過した透過横波超音波を受信子にて受信することに
より、前記鋳片の凝固状態を検出する装置において、前
記横波超音波を送信したときの前記送信子と前記鋳片と
の距離を測定する距離測定手段と、前記透過横波超音波
を受信したときの前記受信子と前記鋳片との距離を測定
する距離測定手段と、これら距離を用いて受信された前
記透過横波超音波の強度を補正する手段とを備えること
を特徴とする鋳片の凝固状態検出装置。
3. A transverse wave ultrasonic wave is transmitted from a transmitter in a thickness direction of a cast piece to be continuously cast, and a transmitted transverse wave ultrasonic wave transmitted through the cast piece is received by a receiver. In a device for detecting the solidification state of the slab, a distance measuring means for measuring the distance between the transmitter and the slab when transmitting the shear wave ultrasonic wave, and when receiving the transmitted shear wave ultrasonic wave A solidification state of the slab, comprising: a distance measuring unit that measures a distance between the receiver and the slab; and a unit that corrects the intensity of the transmitted transverse ultrasonic wave received using these distances. Detection device.
【請求項4】 所定の演算式を用いて、補正された強度
から中心固相率を演算する手段を備えることを特徴とす
る請求項3記載の鋳片の凝固状態検出装置。
4. The apparatus for detecting a solidified state of a slab according to claim 3, further comprising means for calculating a central solid fraction from the corrected intensity using a predetermined arithmetic expression.
【請求項5】 前記距離測定手段は、渦電流式距離計で
あり、前記送信子及び前記受信子に内蔵されていること
を特徴とする請求項3又は4記載の鋳片の凝固状態検出
装置。
5. The apparatus according to claim 3, wherein the distance measuring means is an eddy current type distance meter, and is incorporated in the transmitter and the receiver. .
JP9244466A 1997-09-09 1997-09-09 Solidification state detecting method for cast piece device therefor Pending JPH1183814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9244466A JPH1183814A (en) 1997-09-09 1997-09-09 Solidification state detecting method for cast piece device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9244466A JPH1183814A (en) 1997-09-09 1997-09-09 Solidification state detecting method for cast piece device therefor

Publications (1)

Publication Number Publication Date
JPH1183814A true JPH1183814A (en) 1999-03-26

Family

ID=17119075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9244466A Pending JPH1183814A (en) 1997-09-09 1997-09-09 Solidification state detecting method for cast piece device therefor

Country Status (1)

Country Link
JP (1) JPH1183814A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009509147A (en) * 2005-09-20 2009-03-05 ゲオルクスマリーエンヒュッテ ゲゼルシャフト ミット ベシュレンクテル ハフツング Equipment for ultrasonic inspection of hot rolled material
JP2015226932A (en) * 2014-06-02 2015-12-17 新日鐵住金株式会社 Solid phase rate calculation method and detection device
JP2016080444A (en) * 2014-10-14 2016-05-16 新日鐵住金株式会社 Measurement device, measurement method, program and storage medium
CN109632950A (en) * 2018-12-21 2019-04-16 哈尔滨理工大学 A kind of device and detection method of densimetry detection semi-solid metal slurry solid rate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009509147A (en) * 2005-09-20 2009-03-05 ゲオルクスマリーエンヒュッテ ゲゼルシャフト ミット ベシュレンクテル ハフツング Equipment for ultrasonic inspection of hot rolled material
JP4819900B2 (en) * 2005-09-20 2011-11-24 ゲオルクスマリーエンヒュッテ ゲゼルシャフト ミット ベシュレンクテル ハフツング Rolling line with a plurality of rolling stands arranged one after the other
JP2015226932A (en) * 2014-06-02 2015-12-17 新日鐵住金株式会社 Solid phase rate calculation method and detection device
JP2016080444A (en) * 2014-10-14 2016-05-16 新日鐵住金株式会社 Measurement device, measurement method, program and storage medium
CN109632950A (en) * 2018-12-21 2019-04-16 哈尔滨理工大学 A kind of device and detection method of densimetry detection semi-solid metal slurry solid rate

Similar Documents

Publication Publication Date Title
JP5051204B2 (en) Method and device for detecting solidification completion position of continuous cast slab and method for producing continuous cast slab
JPH1183814A (en) Solidification state detecting method for cast piece device therefor
JP2006198643A (en) Method of manufacturing continuously cast slab
JPH10197502A (en) Central solid phase rate sensing method for cast piece by continuous casting
JP3757830B2 (en) Manufacturing method of continuous cast slab
JPH10325714A (en) Method and apparatus for detection of shape of unsolidified part of continuous-casting cast piece
JPS6239886Y2 (en)
JPH01127161A (en) Method for measuring profile of crater end solidification in continuous casting
JP2008238257A (en) Method for producing continuously cast slab and continuous caster
JP4483538B2 (en) Method and device for detecting solidification completion position of continuous cast slab and method for producing continuous cast slab
JP4296946B2 (en) Method and device for detecting solidification completion position of continuous cast slab
JP3235524B2 (en) Casting bulging detection method, bulging determination method, bulging prevention method, and apparatus therefor
JPS60133955A (en) Method for electromagnetic stirring in continuous casting
JPS6319551A (en) Detection of sensor position abnormality in molten metal solidified state detector
JP2009045658A (en) Centering method for steel sheet and centering apparatus
JPH0242409B2 (en)
JPH11183449A (en) Method and apparatus for measurement of center solid-phase rate of cast piece
JPS58176504A (en) Measuring device of solidified thickness for ingot
JPS6196404A (en) Method and instrument for measuring thickness of cooling water film of belt caster
JP3079912B2 (en) Metal material inspection equipment
JP2012215413A (en) Internal coagulation detection apparatus and internal coagulation detection method
KR101937805B1 (en) Apparatus for detecting solidification of steel and method for the same
JPH04262841A (en) Instrument and method for measuring flow speed on surface of molten steel in continuous casting mold
JPS58195109A (en) Detecting method of unsolidified phase in casting material
JPH05192753A (en) Instrument for measuring powder film thickness in continuous casting