JPH10197502A - Central solid phase rate sensing method for cast piece by continuous casting - Google Patents

Central solid phase rate sensing method for cast piece by continuous casting

Info

Publication number
JPH10197502A
JPH10197502A JP9002086A JP208697A JPH10197502A JP H10197502 A JPH10197502 A JP H10197502A JP 9002086 A JP9002086 A JP 9002086A JP 208697 A JP208697 A JP 208697A JP H10197502 A JPH10197502 A JP H10197502A
Authority
JP
Japan
Prior art keywords
slab
phase
transverse wave
cast piece
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9002086A
Other languages
Japanese (ja)
Inventor
Riichi Murayama
理一 村山
Akira Miura
昌 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9002086A priority Critical patent/JPH10197502A/en
Publication of JPH10197502A publication Critical patent/JPH10197502A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure accurately the central solid phase rate of a cast piece in the solidification process to be conducted for improvement of the quality of cast piece by controlling in good timing the operating conditions of continuous casting properly. SOLUTION: Using an electromagnetic ultrasonic probe of transverse wave type, ultrasonic waves in the transverse mode are incident on the surface of each cast piece fabricated by a continuous casting process, and the transmitted transverse wave is received by a receiver furnished at the contrary surface, and the time for the transverse wave to have penetrated the cast piece is measured by the use of a received signal waveform of the part where the intensity of the received signal exceeds that of the noise signal. From the obtained measurement, the solid phase rate of the central part of the cast piece is determined on the basis of the relationship between the solid phase rate of cast piece determined previously and the time from the incidence of the ultrasonic wave in transverse mode across the thickness to its penetration of the cast piece. Therein the central solid phase rate are signified by the ratio of the solidified phase to the molten phase in that region of the cast piece central part where molten phase and solidified phase are in co-existence.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属の連続鋳造鋳
片の冷却過程において中心固相率を超音波により検出す
る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of detecting a central solid fraction by ultrasonic waves in a cooling process of a continuously cast slab of metal.

【0002】[0002]

【従来の技術】金属の連続鋳造方法は、タンディシュ内
の溶融金属をタンディシュの下部に設けた鋳型に浸漬ノ
ズルを介して連続的に注入し、鋳型内で凝固シェルを形
成させて鋳型の下部から鋳片として連続的に引き出し、
鋳片内部の溶鋼を外側から徐々に凝固させて鋳片を得る
方法である。
2. Description of the Related Art In a continuous casting method of metal, a molten metal in a tundish is continuously poured into a mold provided at a lower portion of the tundish through an immersion nozzle, a solidified shell is formed in the mold, and a molten shell is formed from a lower portion of the mold. Continuously drawn as a slab,
This is a method of gradually solidifying molten steel inside a slab from the outside to obtain a slab.

【0003】この連続鋳造において、鋳型から引き出さ
れた鋳片内部の溶鋼の凝固は、溶鋼温度、鋳片の引き抜
き速度や冷却条件等により変化する。凝固状態によって
は、中心偏析が顕著になったり、鋳片が異常膨張するバ
ルジングや凝固シェルが破れ鋳片内部の溶鋼が流出する
ブレイクアウト等が起こる。
In this continuous casting, the solidification of the molten steel inside the slab drawn from the mold varies depending on the temperature of the molten steel, the speed of drawing the slab, cooling conditions, and the like. Depending on the solidification state, center segregation becomes remarkable, bulging in which the slab abnormally expands, breakout in which the solidified shell is broken and molten steel inside the slab flows out, and the like occur.

【0004】したがって、鋳片の冷却過程における凝固
状態を把握しておくことは、鋳片の品質の改善や生産性
の向上のために極めて重要なことである。
[0004] Therefore, it is extremely important to grasp the solidification state in the process of cooling the slab in order to improve the quality of the slab and the productivity.

【0005】鋳型から引き抜かれた鋳片の内部が完全に
凝固しているか、未凝固部分が残存しているかを検出す
る従来法としては、1)鋲打ち法、2)圧延ロールの負
荷過重からの推定法および3)超音波法がある。
[0005] Conventional methods for detecting whether the inside of a cast slab drawn from a mold is completely solidified or an unsolidified portion remains include: 1) a tacking method, and 2) a load overload of a rolling roll. And 3) an ultrasonic method.

【0006】図4は、従来例の未凝固部検出方法を説明
するための図で、これらの方法について以下に説明す
る。
FIG. 4 is a diagram for explaining a conventional method of detecting an unsolidified portion. These methods will be described below.

【0007】1)鋲打ち法 図4(a)は、鋲打ち法を説明するための図で、鋳片の
側面断面図である。
1) Riveting method FIG. 4A is a diagram for explaining the riveting method, and is a side sectional view of a cast piece.

【0008】鋳片の凝固状態を調べる位置に鋲を打ち込
み、鋳片が完全に凝固してから鋲を打ち込んだ位置を切
断して溶融部が存在していたかを確認する方法である。
鋲を打ち込んだだ時点で、鋳片内部に溶融部分が存在し
ていれば鋲は融け、鋲打ち時点での鋳片内部の溶融状況
が判断できる。
In this method, a rivet is driven into a position where the solidification state of the slab is to be checked, and after the slab is completely solidified, the position where the rivet is driven is cut to check whether a molten portion exists.
If there is a molten portion inside the slab at the time when the rivet is driven, the rivet is melted, and the melting state inside the slab at the time of driving the rivet can be determined.

【0009】2)圧延ロールの負荷荷重からの推定法 図4(b)は、圧延ロールの負荷荷重からの推定法を説
明するための側面断面図である。
2) Method of Estimating from Load Load of Rolls FIG. 4B is a side sectional view for explaining a method of estimating from load loads of the rolls.

【0010】鋳片の測定位置に圧延ロール4を設け負荷
荷重を測定し、その変化をから鋳片内部状況を推定する
方法である。
In this method, a rolling roll 4 is provided at a measurement position of a slab, the applied load is measured, and a change in the applied load is used to estimate a state inside the slab.

【0011】この方法は、直接測定ではなく正確さに欠
けるため実用化に至っていない。
This method has not been put to practical use because it is not a direct measurement but lacks accuracy.

【0012】3)超音波法 図4(c)は、超音波法を説明するための側面断面図で
ある。この方法は、鋳片の厚み方向に横波超音波を入
射、受信できる探触子を設け、透過してきた横波超音波
の強度から鋳片内部の凝固状況を推定する方法である。
しかし、横波が液体中を伝播しない性質を利用している
ため、鋳片内部が完全凝固しているか否かの検出ができ
るのみである。
3) Ultrasonic method FIG. 4C is a side sectional view for explaining the ultrasonic method. This method is a method of providing a probe capable of receiving and receiving transverse ultrasonic waves in the thickness direction of a slab, and estimating the solidification state inside the slab from the intensity of transmitted transverse ultrasonic waves.
However, since the transverse wave does not propagate in the liquid, it can only detect whether or not the inside of the slab is completely solidified.

【0013】近年、連続鋳造の鋳片凝固過程で、内部が
未凝固の状態で鋳片に圧延ロールで圧下を加え、鋳片の
中心偏析を改善する未凝固圧延が試みられるようになっ
た。この圧延では、凝固状態により適正な圧下率で圧延
する必要がある。例えば、所定の圧延する位置での鋳片
内部の溶融部の厚さおよび幅が、適正値にに比べてそれ
らが大きくなっていれば圧下量を増加させることで溶融
部の厚さ、幅を減少させて偏析量を減少させることにな
る。
In recent years, in the process of solidifying a slab in continuous casting, unsolidified rolling has been attempted to reduce the center segregation of the slab by applying rolling reduction to the slab in a state where the inside is unsolidified. In this rolling, it is necessary to perform rolling at an appropriate rolling reduction depending on the solidification state. For example, the thickness and width of the molten portion inside the slab at a predetermined rolling position, if they are larger than appropriate values, increase the rolling reduction to increase the thickness and width of the molten portion. This will reduce the amount of segregation.

【0014】このように、連続鋳造における鋳片の品質
改善、バルジングやブレイクアウト等のトラブル防止等
のためには冷却過程での凝固状態を精度良く把握してお
くことが重要であり、その検出法の開発が望まれてい
る。
As described above, in order to improve the quality of the slab in continuous casting and prevent troubles such as bulging and breakout, it is important to accurately grasp the solidification state in the cooling process. The development of a law is desired.

【0015】[0015]

【発明が解決しようとする課題】本発明は、連続鋳造鋳
片の適切な操業条件をタイムリーに制御し鋳片の品質改
善に必要な凝固過程での鋳片の凝固状態を精度よく測定
する方法を提供することを課題とする。
SUMMARY OF THE INVENTION According to the present invention, an appropriate operating condition of a continuous cast slab is controlled in a timely manner, and the solidification state of the slab in the solidification process required for improving the quality of the slab is accurately measured. It is an object to provide a method.

【0016】[0016]

【課題を解決するための手段】本発明者らは、超音波を
利用して鋳片の凝固状態を検出する方法について種々検
討した結果、下記の知見を得た。
Means for Solving the Problems The present inventors have conducted various studies on a method for detecting the solidification state of a slab using ultrasonic waves, and have obtained the following findings.

【0017】a)鋳片の圧下制御には、鋳片の内部の凝
固状態の把握方法として鋳片の中心固相率を求めるのが
有効である。
A) To control the reduction of the slab, it is effective to determine the center solid fraction of the slab as a method of grasping the solidification state inside the slab.

【0018】中心固相率とは、鋳片中心部の数mmの溶
融相と凝固相が混在する薄い層中での、下記する溶融相
と凝固相の割合である。
The center solid phase ratio is a ratio of the following molten phase and solidified phase in a thin layer of a few mm in which a molten phase and a solidified phase are mixed at the center of a slab.

【0019】中心固相率=凝固相/溶融相 b)横波モードの超音波は、鋳片内部に溶融金属が存在
すれば、それを透過することはできないが、溶融金属が
完全に凝固する前の溶融部の厚さが数mmの凝固相と溶
融相が混在している部分では横波も透過させることがで
きる。
B) Transverse wave mode ultrasonic waves cannot pass through the molten metal if present in the slab, but before the molten metal is completely solidified. In a part where the solidified phase and the molten phase each having a thickness of several mm are mixed, a transverse wave can be transmitted.

【0020】c)横波受信強度は、中心固相率が約0.
25、約0.7および1の場合に急激に変化し、中心固
相率が約0.25から約0.7の範囲では一定となるの
で、受信強度から中心固相率を求めることはできない。
C) The shear wave reception intensity is such that the center solid phase ratio is about 0.5.
25, about 0.7 and 1, it changes abruptly, and becomes constant in the range of about 0.25 to about 0.7, so that the center solid fraction cannot be determined from the reception intensity. .

【0021】d)しかし、横波の透過時間または共鳴周
波数を測定することにより中心固相率を求めることがで
きる。
D) However, the center solid fraction can be determined by measuring the transmission time or resonance frequency of the transverse wave.

【0022】本発明は、このような知見に基づきなされ
たもので、その要旨は下記の通りである。
The present invention has been made based on such findings, and the gist is as follows.

【0023】(1)連続鋳造した鋳片の表面から厚さ方
向に、横波型電磁超音波探触子を用い横波モードの超音
波を入射し、反対面に設けた受信機により透過横波を受
信し、その受信信号の強度がノイズ信号の強度を超えた
部分の受信信号波形を使って、横波が連続鋳造鋳片内を
透過するのに要した時間を測定し、その測定値から、予
め求めておいた連続鋳造鋳片の中心固相率と、横波モー
ドの超音波が連続鋳造鋳片の表面から厚さ方向に入射し
てから鋳片内を透過するのに要する時間との関係に基づ
いて連続鋳造鋳片の中心固相率を求めることを特徴とす
る連続鋳造鋳片の中心固相率検出方法。
(1) A transverse wave mode ultrasonic wave is incident from the surface of a continuously cast slab in the thickness direction using a transverse wave type electromagnetic ultrasonic probe, and a transmitted transverse wave is received by a receiver provided on the opposite surface. Then, using the received signal waveform of the portion where the intensity of the received signal exceeds the intensity of the noise signal, the time required for the transverse wave to pass through the continuous cast slab is measured, and the measured value is obtained in advance. Based on the relationship between the center solid fraction of the continuous cast slab and the time required for the transverse wave mode ultrasonic wave to enter the slab after being incident from the surface of the continuous cast slab in the thickness direction. A method for detecting a center solid phase ratio of a continuous cast slab by calculating a center solid phase ratio of a continuous cast slab.

【0024】ここで、中心固相率とは鋳片中心部の溶融
相と凝固相が混在する領域における凝固相と溶融相との
比、すなわち凝固相/溶融相をいう。
Here, the central solid fraction refers to the ratio of the solidified phase and the molten phase in the region where the molten phase and the solidified phase coexist at the center of the slab, that is, the solidified phase / molten phase.

【0025】(2)連続鋳造した鋳片の表面から厚さ方
向に、横波型電磁超音波探触子を用い横波モードの超音
波を入射し、反対面に設けた受信機により透過横波を受
信し、その受信信号の強度がノイズ信号の強度を超えた
部分の受信信号波形を使って、共鳴周波数を求め、その
共鳴周波数から、予め求めておいた連続鋳造鋳片の中心
固相率と、横波モードの超音波が連続鋳造鋳片の表面か
ら厚さ方向に入射した場合の共鳴周波数との関係に基づ
き連続鋳造鋳片の中心固相率を求めることを特徴とする
連続鋳造鋳片の中心固相率検出方法。
(2) A transverse wave mode ultrasonic wave is incident from the surface of the continuously cast slab in the thickness direction using a transverse wave type electromagnetic ultrasonic probe, and a transmitted transverse wave is received by a receiver provided on the opposite surface. Then, using the received signal waveform of the portion where the intensity of the received signal exceeds the intensity of the noise signal, determine the resonance frequency, from the resonance frequency, and the previously obtained center solid phase ratio of the continuous cast slab, The center of the continuous cast slab, wherein the center solid phase ratio of the continuous cast slab is determined based on the relationship with the resonance frequency when the shear wave mode ultrasonic wave enters from the surface of the continuous cast slab in the thickness direction. Solid phase ratio detection method.

【0026】ここで、中心固相率とは鋳片中心部の溶融
相と凝固相が混在する領域における凝固相と溶融相との
比、すなわち凝固相/溶融相をいう。
Here, the central solid fraction refers to the ratio of the solidified phase to the molten phase in the region where the molten phase and the solidified phase are mixed at the center of the slab, that is, the solidified phase / molten phase.

【0027】以下、本発明の実施形態について詳細に説
明する。
Hereinafter, embodiments of the present invention will be described in detail.

【0028】[0028]

【発明の実施の形態】横波モードの超音波を使用するの
は、横波の鋳片内透過時間または共鳴周波数は、鋳片中
心部の固相率の変化と共に変化するので、中心固相率を
求めるのに適しているためである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The use of the ultrasonic wave in the shear wave mode is based on the fact that the transit time or resonance frequency of the shear wave in the slab changes with the change in the solid fraction at the center of the slab. This is because it is suitable for seeking.

【0029】鋳片内を透過した超音波の強度は、中心固
相率が小さいと小さく、ノイズ信号と区別できないた
め、強度がノイズ信号を超えた部分の受信信号の波形を
使用して、横波の鋳片透過時間または共鳴周波数を求め
る必要がある。なお、中心固相率を求めるのに、鋳片透
過時間と共鳴周波数のどちらを使用しても同じである。
本発明の方法では、中心固相率と鋳片透過時間または中
心固相率と共鳴周波数との関係を、実験により求めてお
かなければならない。その求め方は、鋳片の引き抜き速
度を変えることにより、鋳型より鋳片が出てから超音波
発信位置までの時間を種々変えて超音波の鋳片内透過時
間を測定し、その各測定時における中心固相率を伝熱計
算により求める。
The intensity of the ultrasonic wave transmitted through the slab is small when the central solid phase ratio is small and cannot be distinguished from a noise signal. Slab transmission time or resonance frequency must be determined. It should be noted that the same applies regardless of whether the slab transmission time or the resonance frequency is used to determine the center solid fraction.
In the method of the present invention, the relationship between the central solid fraction and the slab transmission time or the relationship between the central solid fraction and the resonance frequency must be determined by experiments. The method of obtaining it is to vary the time from when the slab comes out of the mold to the ultrasonic transmission position by changing the drawing speed of the slab, measure the ultrasonic transmission time in the slab, and at each measurement Is determined by heat transfer calculation.

【0030】図1は、中心固相率と受信信号強度との関
係を示す図である。
FIG. 1 is a diagram showing the relationship between the center solid fraction and the received signal strength.

【0031】図2は、中心固相率と横波透過時間との関
係を示す図である。
FIG. 2 is a diagram showing the relationship between the center solid fraction and the transverse wave transmission time.

【0032】図3は、中心固相率と共鳴周波数との関係
を示す図である。
FIG. 3 is a diagram showing the relationship between the center solid fraction and the resonance frequency.

【0033】これらの図は、連続鋳造実験装置により低
炭素鋼の厚さ300mmの鋳片を鋳造して得られた曲線
である。受信強度は、図1で矢示する1Vで受信信号が
ノイズ信号を超えおり、1V以上での受信波形を使用し
て透過時間または共鳴周波数を求める。受信強度は、中
心固相率が0.25から0.7の間では変化しない。し
たがって、受信強度からでは中心固相率を求めることは
できない。一方、横波の透過時間は中心固相率が大きく
なるに従い小さくなり、また共鳴周波数は、中心固相率
が大きくなるに従い大きくなる。
These figures are curves obtained by casting a 300 mm thick slab of low carbon steel by a continuous casting experiment apparatus. The received signal exceeds the noise signal at 1 V indicated by an arrow in FIG. 1, and the transmission time or the resonance frequency is obtained using the received waveform at 1 V or more. The reception intensity does not change when the center solid fraction is between 0.25 and 0.7. Therefore, the central solid phase ratio cannot be determined from the reception intensity. On the other hand, the transverse wave transmission time decreases as the central solid fraction increases, and the resonance frequency increases as the central solid fraction increases.

【0034】本発明の方法で電磁超音波探触子を用いる
のは、900℃程度の高温度の鋳片に超音波を入射しな
ければならなく、水、油等の接触媒質を使用する通常の
超音波探触子は使うことが出来ない。そこで、接触媒質
が不要な電磁超音波探触子を用いる。
The use of an electromagnetic ultrasonic probe in the method of the present invention requires that ultrasonic waves be incident on a cast piece having a high temperature of about 900 ° C., and that a couplant such as water or oil is used. Ultrasonic probe can not be used. Therefore, an electromagnetic ultrasonic probe that does not require a couplant is used.

【0035】[0035]

【実施例】実験用連続鋳造設備で、低炭素鋼の溶鋼を用
い、寸法が幅500mm、厚さ300mmの鋳片を鋳造
した。超音波の発受信装置には、横波型電磁超音波探触
子を用い、鋳片の厚さ方向に横波モードの超音波を入射
させ、受信強度を測定した。
EXAMPLE A slab having a width of 500 mm and a thickness of 300 mm was cast using low carbon steel molten steel in an experimental continuous casting facility. A transverse wave type electromagnetic ultrasonic probe was used as an ultrasonic wave transmitting and receiving device, and a transverse wave mode ultrasonic wave was made incident in the thickness direction of the slab to measure the receiving intensity.

【0036】鋳片が、超音波発信位置を透過する時間を
変えるため鋳片の引き抜き速度を制御し、鋳片が鋳型を
出てから超音波発信位置までの時間(以下、鋳込み完了
からの時間と記す)が1000秒から3500秒になる
ようにし、その間の受信強度を測定した。
The drawing speed of the slab is controlled in order to change the time required for the slab to pass through the ultrasonic transmission position, and the time from when the slab exits the mold to the ultrasonic transmission position (hereinafter, the time from the completion of pouring). ) From 1000 seconds to 3500 seconds, and the reception intensity during that time was measured.

【0037】その測定した強度に基づき横波の鋳片透過
時間と共鳴周波数とを求めた。
Based on the measured intensity, the transverse wave slab transmission time and resonance frequency were determined.

【0038】図5は、受信信号の強度と鋳込み完了から
の時間との関係で整理した図である。
FIG. 5 is a diagram showing the relationship between the intensity of the received signal and the time from the completion of the casting.

【0039】受信信号は、鋳込み完了後、約1800秒
後(A点)から、強度1v[受信信号の大きさ(S)/
ノイズ信号の大きさ(N)=2]程度のレベルで5分間
程度検出された。
The received signal has an intensity of 1v [received signal magnitude (S) / about 1800 seconds after completion of casting (point A).
Noise signal magnitude (N) = 2] was detected for about 5 minutes.

【0040】次に、2分間程度で、完全凝固した部分の
最大受信信号強度の8割程度まで大きくなる(B点→C
点)。その後5分〜10分程度かけて最大値に到達して
いる(D点)。
Next, in about 2 minutes, the intensity increases to about 80% of the maximum received signal strength of the completely coagulated portion (point B → C).
point). Thereafter, the maximum value is reached in about 5 to 10 minutes (point D).

【0041】図6は、横波の鋳片透過時間と鋳込み完了
からの時間との関係で整理した図である。透過時間は、
図5のB点以降の波形から求めたものである。
FIG. 6 is a diagram showing the relationship between the slab transmission time of transverse waves and the time from the completion of casting. The transmission time is
It is obtained from the waveform after point B in FIG.

【0042】また、鋳型を出てから測定までの時間10
00〜3500秒の各時間における中心固相率を伝熱計
算により中心固相率を求めた。
Also, the time between the time when the mold is removed and the time when the measurement is performed is 10
The central solid fraction at each time from 00 to 3500 seconds was calculated by heat transfer calculation.

【0043】図7は、上記の伝熱計算により求めた中心
固相率と鋳込み完了からの時間との関係を示す図であ
る。
FIG. 7 is a diagram showing the relationship between the center solid fraction obtained by the above heat transfer calculation and the time from the completion of casting.

【0044】図8は、求めた中心固相率と受信信号強度
および横波透過時間との関係(a)、共鳴周波数との関
係(b)を示す図である。受信強度が1.25v以下で
はノイズ信号のため横波の測定はできなかった。
FIG. 8 is a diagram showing the relationship (a) between the obtained center solid fraction and the received signal strength and the transverse wave transmission time (a), and the relationship (b) to the resonance frequency. When the reception intensity was 1.25 V or less, it was not possible to measure a transverse wave due to a noise signal.

【0045】この図を予め求めておくことにより、実操
業での横波透過時間または共鳴周波数を測定することに
より、中心固相率をもとめることが可能となった。
By obtaining this figure in advance, it becomes possible to determine the center solid fraction by measuring the transverse wave transmission time or the resonance frequency in actual operation.

【0046】[0046]

【発明の効果】本発明の方法によれば、連続鋳造の鋳片
冷却過程において任意な位置での中心固相率を精度よく
求めることができ、鋳片の品質改善や操業でのバルジン
グ等のトラブルを防止することができ安定操業が可能と
なり、その工業的な価値は大きい。
According to the method of the present invention, it is possible to accurately determine the center solid phase ratio at an arbitrary position in the slab cooling process of continuous casting, and to improve the quality of the slab and improve bulging in operation. Trouble can be prevented and stable operation is possible, and its industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】中心固相率と受信信号強度との関係を示す図で
ある。
FIG. 1 is a diagram showing a relationship between a center solid phase ratio and a received signal strength.

【図2】中心固相率と横波透過時間との関係を示す図で
ある。
FIG. 2 is a diagram illustrating a relationship between a center solid fraction and a transverse wave transmission time.

【図3】中心固相率と共鳴周波数との関係を示す図であ
る。
FIG. 3 is a diagram showing a relationship between a center solid fraction and a resonance frequency.

【図4】従来例の未凝固部検出方法を説明するための図
である。
FIG. 4 is a diagram for explaining a conventional method of detecting an unsolidified portion.

【図5】受信信号の強度と鋳込み完了からの時間との関
係で整理した図である。
FIG. 5 is a diagram arranged in relation to the intensity of a received signal and the time from the completion of casting.

【図6】横波の鋳片透過時間と鋳込み完了からの時間と
の関係で整理した図である。
FIG. 6 is a diagram illustrating the relationship between the slab transmission time of transverse waves and the time from the completion of casting.

【図7】計算により求めた固相率と鋳込み完了からの時
間との関係を示す図である。
FIG. 7 is a diagram showing a relationship between a calculated solid phase ratio and a time from completion of casting.

【図8】固相率と受信信号強度および横波透過時間との
関係、共鳴周波数との関係を示す図である。
FIG. 8 is a diagram illustrating a relationship between a solid phase ratio, a received signal strength, a transverse wave transmission time, and a resonance frequency.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】連続鋳造した鋳片の表面から厚さ方向に、
横波型電磁超音波探触子を用い横波モードの超音波を入
射し、反対面に設けた受信機により透過横波を受信し、
その受信信号の強度がノイズ信号の強度を超えた部分の
受信信号波形を使って、横波の連続鋳造鋳片を透過する
のに要した時間を測定し、その測定値から、予め求めて
おいた連続鋳造鋳片の中心固相率と、横波モードの超音
波が連続鋳造鋳片の表面から厚さ方向に入射してから鋳
片を透過するのに要する時間との関係に基づいて連続鋳
造鋳片の中心固相率を求めることを特徴とする連続鋳造
鋳片の中心固相率検出方法。ここで、中心固相率とは鋳
片中心部の溶融相と凝固相が混在する領域における凝固
相と溶融相との比、すなわち凝固相/溶融相をいう。
1. A method for producing a continuously cast slab from a surface thereof in a thickness direction.
A transverse wave mode ultrasonic wave is incident using a transverse wave type electromagnetic ultrasonic probe, and a transmitted transverse wave is received by a receiver provided on the opposite surface,
Using the received signal waveform of the part where the strength of the received signal exceeded the strength of the noise signal, the time required for the transverse wave to pass through the continuous cast slab was measured, and the measured value was determined in advance. Continuous casting is performed based on the relationship between the center solid fraction of the continuous casting slab and the time required for transverse wave mode ultrasonic waves to penetrate through the slab after entering in the thickness direction from the surface of the continuous casting slab. A method for detecting a center solid fraction of a continuously cast slab, wherein a center solid fraction of a piece is obtained. Here, the central solid fraction refers to the ratio of the solidified phase and the molten phase in the region where the molten phase and the solidified phase are mixed at the center of the slab, that is, the solidified phase / molten phase.
【請求項2】連続鋳造した鋳片の表面から厚さ方向に、
横波型電磁超音波探触子を用い横波モードの超音波を入
射し、反対面に設けた受信機により透過横波を受信し、
その受信信号の強度がノイズ信号の強度を超えた部分の
受信信号波形を使って、共鳴周波数を求め、その共鳴周
波数から、予め求めておいた連続鋳造鋳片の中心固相率
と、横波モードの超音波が連続鋳造鋳片の表面から厚さ
方向に入射した場合の共鳴周波数との関係に基づき連続
鋳造鋳片の中心固相率を求めることを特徴とする連続鋳
造鋳片の中心固相率検出方法。ここで、中心固相率とは
鋳片中心部の溶融相と凝固相が混在する領域における凝
固相と溶融相との比、すなわち凝固相/溶融相をいう。
2. A continuous casting slab from the surface thereof in the thickness direction.
A transverse wave mode ultrasonic wave is incident using a transverse wave type electromagnetic ultrasonic probe, and a transmitted transverse wave is received by a receiver provided on the opposite surface,
Using the received signal waveform of the portion where the intensity of the received signal exceeds the intensity of the noise signal, the resonance frequency is determined, and from the resonance frequency, the center solid fraction of the continuous cast slab previously determined and the transverse wave mode The central solid phase of the continuous cast slab is obtained by determining the center solid phase ratio of the continuous cast slab based on the relationship with the resonance frequency when the ultrasonic wave is incident from the surface of the continuous cast slab in the thickness direction Rate detection method. Here, the central solid fraction refers to the ratio of the solidified phase and the molten phase in the region where the molten phase and the solidified phase are mixed at the center of the slab, that is, the solidified phase / molten phase.
JP9002086A 1997-01-09 1997-01-09 Central solid phase rate sensing method for cast piece by continuous casting Pending JPH10197502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9002086A JPH10197502A (en) 1997-01-09 1997-01-09 Central solid phase rate sensing method for cast piece by continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9002086A JPH10197502A (en) 1997-01-09 1997-01-09 Central solid phase rate sensing method for cast piece by continuous casting

Publications (1)

Publication Number Publication Date
JPH10197502A true JPH10197502A (en) 1998-07-31

Family

ID=11519545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9002086A Pending JPH10197502A (en) 1997-01-09 1997-01-09 Central solid phase rate sensing method for cast piece by continuous casting

Country Status (1)

Country Link
JP (1) JPH10197502A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1298429A1 (en) * 2001-04-25 2003-04-02 Nkk Corporation Method of producing continuously cast pieces of steel
WO2008040519A1 (en) * 2006-10-02 2008-04-10 Betriebsforschungsinstitut VDEh-Institut für angewandte Forschung GmbH Method for determining a liquid phase inside a billet already solidified on the surface thereof
JP2010025555A (en) * 2008-07-15 2010-02-04 Daikure Co Ltd Method and device for measuring wall thickness of high temperature vessel
JP2010223635A (en) * 2009-03-19 2010-10-07 Nippon Steel Corp Device and method for measuring phase transformation rate of material
JP2013190223A (en) * 2012-03-12 2013-09-26 Nippon Steel & Sumitomo Metal Measurement device, measurement method, program, and storage medium
WO2015071018A1 (en) * 2013-11-13 2015-05-21 Sms Siemag Ag Method and device for contactless testing of the quality of a metallurgical casting product
JP2015226932A (en) * 2014-06-02 2015-12-17 新日鐵住金株式会社 Solid phase rate calculation method and detection device
CN107389798A (en) * 2017-08-29 2017-11-24 哈尔滨理工大学 Utilize the device and method of ultrasonic wave quick detection metal material semisolid fraction solid
CN109632950A (en) * 2018-12-21 2019-04-16 哈尔滨理工大学 A kind of device and detection method of densimetry detection semi-solid metal slurry solid rate

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1298429A1 (en) * 2001-04-25 2003-04-02 Nkk Corporation Method of producing continuously cast pieces of steel
EP1298429A4 (en) * 2001-04-25 2004-09-29 Jfe Steel Corp Method of producing continuously cast pieces of steel
US6896035B2 (en) 2001-04-25 2005-05-24 Nkk Corporation Manufacturing method for continuously cast product of steel
US7156148B2 (en) 2001-04-25 2007-01-02 Nkk Corporation Manufacturing method for continuously cast product of steel
US7448430B2 (en) 2001-04-25 2008-11-11 Nkk Corporation Manufacturing method for continuously cast product of steel
WO2008040519A1 (en) * 2006-10-02 2008-04-10 Betriebsforschungsinstitut VDEh-Institut für angewandte Forschung GmbH Method for determining a liquid phase inside a billet already solidified on the surface thereof
JP2010025555A (en) * 2008-07-15 2010-02-04 Daikure Co Ltd Method and device for measuring wall thickness of high temperature vessel
JP2010223635A (en) * 2009-03-19 2010-10-07 Nippon Steel Corp Device and method for measuring phase transformation rate of material
JP2013190223A (en) * 2012-03-12 2013-09-26 Nippon Steel & Sumitomo Metal Measurement device, measurement method, program, and storage medium
WO2015071018A1 (en) * 2013-11-13 2015-05-21 Sms Siemag Ag Method and device for contactless testing of the quality of a metallurgical casting product
JP2015226932A (en) * 2014-06-02 2015-12-17 新日鐵住金株式会社 Solid phase rate calculation method and detection device
CN107389798A (en) * 2017-08-29 2017-11-24 哈尔滨理工大学 Utilize the device and method of ultrasonic wave quick detection metal material semisolid fraction solid
CN109632950A (en) * 2018-12-21 2019-04-16 哈尔滨理工大学 A kind of device and detection method of densimetry detection semi-solid metal slurry solid rate

Similar Documents

Publication Publication Date Title
US7156148B2 (en) Manufacturing method for continuously cast product of steel
JPH10197502A (en) Central solid phase rate sensing method for cast piece by continuous casting
JP5522324B1 (en) Steel continuous casting method
JP4501254B2 (en) Method for detecting and controlling solidification completion position of continuous cast slab
JP4483187B2 (en) Manufacturing method of continuous cast slab
Yamauchi et al. Cooling behavior and slab surface quality in continuous casting with alloy 718 mold
JP3757830B2 (en) Manufacturing method of continuous cast slab
JPH10325714A (en) Method and apparatus for detection of shape of unsolidified part of continuous-casting cast piece
US5027883A (en) Process and device for the continuous casting of thin metal products
JP2003103351A (en) Manufacturing method for continuous casting ingot
JPH01127161A (en) Method for measuring profile of crater end solidification in continuous casting
JP2720611B2 (en) Steel continuous casting method
JPS5813260B2 (en) Igata no Shindo Hakeikanshi Ni Yoru Renzokuchi Yuzohou
JPS6123060B2 (en)
JP3251415B2 (en) Slab billing statement adjustment method
JPH05228580A (en) Continuous casting method
JP5455499B2 (en) Continuous casting start determination method and continuous casting start determination device
JPH1183814A (en) Solidification state detecting method for cast piece device therefor
JP2668872B2 (en) Breakout prediction method in continuous casting.
JPS62148065A (en) Continuous casting method
JP3395717B2 (en) Continuous casting method
JP2915544B2 (en) Continuous forging method of slab strand in continuous casting.
JPH0610668B2 (en) Sensor position abnormality detection method for molten metal solidification state detector
JP2000061602A (en) Continuously cast slab and continuous casting method
JP3399085B2 (en) How to start continuous casting

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees