JPS62138390A - Molecular beam epitaxy - Google Patents

Molecular beam epitaxy

Info

Publication number
JPS62138390A
JPS62138390A JP28061285A JP28061285A JPS62138390A JP S62138390 A JPS62138390 A JP S62138390A JP 28061285 A JP28061285 A JP 28061285A JP 28061285 A JP28061285 A JP 28061285A JP S62138390 A JPS62138390 A JP S62138390A
Authority
JP
Japan
Prior art keywords
molecular beam
group
starting material
inp
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28061285A
Other languages
Japanese (ja)
Other versions
JPH0633228B2 (en
Inventor
Taku Matsumoto
卓 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP28061285A priority Critical patent/JPH0633228B2/en
Publication of JPS62138390A publication Critical patent/JPS62138390A/en
Publication of JPH0633228B2 publication Critical patent/JPH0633228B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To enable occurrence of rapid change of intensity of phosphorus molecular beam when a III-V compound semiconductor single crystal is prepd. by the molecular beam epitaxy by using diphosphin as feed for P and decomposing the diphosphin photolytically by the irradiation with ultraviolet rays. CONSTITUTION:A vacuum chamber 1 contg. an InP substrate 2 is evacuated to superhigh vacuum and molecular beam of the Group III starting material is generated by heating the starting material for the Group III element in a starting material cell 4 for the III group material. On one hand, AsH3 as a starting material for the Group V element is introduced from an introducing pipe 5a, which is decomposed thermally in a thermal decomposition furnace 7 to generate As molecular beam. Further, P2H4 is introduced through a gas introducing pipe 5b in the stage of the growth of InP layer, which is irradiated with ultraviolet rays having 100-260nm wavelength generated by a Hg lamp 8 through a light irradiating window 9, generating thus P molecular beam by causing photolysis. By this method, a growth layer having InP/InGaAs superstructure and satisfactory boundary surface is formed on the InP substrate 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、分子線エピタキシャル成長法に関し、特にリ
ン(P)を含有するV族元素化合物と■族元素とを用い
てl−V族化合物半導体結晶を成長する分子線エピタキ
シャル成長法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a molecular beam epitaxial growth method, and particularly relates to a method for growing l-V group compound semiconductors using a group V element compound containing phosphorus (P) and a group II element. This article relates to the molecular beam epitaxial growth method for growing crystals.

:こ従来の技術〕 分子線エピタキシャル法とは、従来超高真空中で、結晶
のそれぞれの構成元素を別々のるつぼに入れ、加熱蒸発
し基板上に単結晶薄膜を成長させる方法である。この分
子線エピタキシャル法は現在最も薄膜の制御が優れた結
晶成長法として期待されている。
: This conventional technique] The molecular beam epitaxial method is a method in which each constituent element of a crystal is placed in a separate crucible in an ultra-high vacuum and heated and evaporated to grow a single crystal thin film on a substrate. This molecular beam epitaxial method is currently expected to be the crystal growth method with the best control over thin films.

しかし従来形の分子線エピタキシャル成長法では主に固
体原料を用いている為に、原料が枯渇し、原料補充の為
に、成長室を大気にさらすということが生じる。このこ
とは成長室を超高真空に戻す為に長時間を費すだけでな
く、エピタキシャル膜の品質という点からも問題である
However, since conventional molecular beam epitaxial growth methods mainly use solid raw materials, the raw materials are depleted and the growth chamber must be exposed to the atmosphere in order to replenish the raw materials. This is a problem not only because it takes a long time to return the growth chamber to ultra-high vacuum, but also from the standpoint of the quality of the epitaxial film.

また、従来形の分子線エピタキシャル成長法は例えばG
、人J2’ As混晶の様なV族元素を一種類しか含ま
ない結晶の成長は良好であるが、例えばTnG。
In addition, the conventional molecular beam epitaxial growth method, for example,
Although the growth of crystals containing only one type of group V element, such as As mixed crystal, is good, for example, TnG.

ASP混晶の様なV族元素を二種類またはそれ以上含む
結晶の成長は困難であった。この原因は、所望の組成比
を有する混晶を得る為には、二種類またはそれ以上のV
族の分子線強度比を正確に制御することが必要である。
It has been difficult to grow crystals containing two or more types of Group V elements, such as ASP mixed crystals. The reason for this is that in order to obtain a mixed crystal with a desired composition ratio, two or more types of V.
It is necessary to precisely control the molecular beam intensity ratio of the groups.

しかしながら■族固体原料3用いる場合、原料の蒸気圧
が高く、分子線強度比の制御か困難てあった。
However, when using Group Ⅰ solid raw material 3, the vapor pressure of the raw material is high, making it difficult to control the molecular beam intensity ratio.

そこで、この様な欠点を補う成長方法として、従来まで
の固体原料にかわって気体原料を用いた分子線エピタキ
シャル成長法が行なわれている。
Therefore, as a growth method to compensate for these drawbacks, a molecular beam epitaxial growth method using a gas source instead of the conventional solid source has been used.

例えば、ニー アール・キャラワ(^、RJ41awa
)により1981年のアプライド・フィジックス・レタ
ー(Applied Physics Iett、pr
s)の第38巻の70]頁に発表されており、As系、
P系の化合物についてはAsH3,P)!3を用いて行
われている。
For example, Ni R Karawa (^, RJ41awa)
) in the 1981 Applied Physics Letters (Applied Physics Iett, pr.
s), Volume 38, page 70], As series,
For P-based compounds, AsH3,P)! This is done using 3.

一般的なAsH3,PH3の導入部の断面図を第2図に
示す。AsH3,P)13については超高真空系の導入
部にてリークバルブ6を介して導入しタンタル製外管1
1内のタンタルフィラメント12を用いて加熱する熱分
解炉(カスセル)にてAs+ 、As2+AS4゜P2
1等の分子線を形成し成長を行なっている。
FIG. 2 shows a cross-sectional view of a typical introduction section for AsH3 and PH3. AsH3, P) 13 is introduced through the leak valve 6 at the introduction part of the ultra-high vacuum system, and the tantalum outer tube 1 is
As+, As2+AS4°P2 in a pyrolysis furnace (cassel) heated using tantalum filament 12 in 1
Growth is performed by forming a first-class molecular beam.

また、エム・ビー・パニツシ、:L (M、B、Pan
1sb)とニス・サムスキー(S、Sumski)は第
3図に示す様な熱分解炉にてAsH3,PH3を分解し
てIflG、^5P系混晶の成長を行ない、1nc、人
sp /1..1’ D Hレーザを試作し、1984
年発行のジャーナル・オフ・アプライド・フィジックス
(Journal of Appiie+I Phys
ics )の第55巻の3571頁に発表している。こ
の熱分解炉は第3図に示すように、アルミナ製抵抗加熱
炉13中にあるガス導入管5の先端にリークする為の穴
かあり、人sthまたはP)13の圧力を変化させて供
給量を制御している。
Also, M, B, Pan
1sb) and Nis-Sumski (S, Sumski) decomposed AsH3 and PH3 in a pyrolysis furnace as shown in Fig. 3 to grow IflG and ^5P-based mixed crystals. .. Prototype of 1' DH laser was produced in 1984.
Journal of Applied Physics (Journal of Appiie + I Phys)
ics), Volume 55, page 3571. As shown in Fig. 3, this pyrolysis furnace has a hole for leakage at the tip of the gas introduction pipe 5 in the alumina resistance heating furnace 13, and the gas is supplied by changing the pressure of the gas (P) 13. The amount is controlled.

このように■族原料として気体を用いた分子線エピタキ
シャル成長法は従来の固体原料の分子線エピタキシャル
法と比べて〜′族の分子線強度を制御することが可能で
、V族元素を2種類以上含む混晶系の成長が可能である
ことが知られている。
In this way, the molecular beam epitaxial growth method using a gas as the Group Ⅰ raw material can control the molecular beam intensity of the ~′ group compared to the conventional molecular beam epitaxial growth method using a solid material, and can grow two or more types of Group V elements. It is known that it is possible to grow mixed crystal systems containing

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来のV族気体原料を用いた分子線エピ
タキシャル法は急激なガス組成の切り替えが困難である
という欠点を有していた。従来の■族気体原料を用いた
分子線エピタキシャル法では、■族元素の組成変化はリ
ークバルブあるいはガス圧力を変化させて行なうが、超
高真空系内の分子線強度は急激には変化しなかった。こ
れは、熱分解炉の出口付近に特にP2.P4が付着、吸
着、再蒸発するという現象が起っており、急激にpH,
流量を断っても、しばら<P2等の分子線が発生してい
る為であると考えられる。この現象はシャッターを用い
てらシャッター上でP4の形で吸着し、また再蒸発を起
こし、完全に防止することは出来なかった。
However, the conventional molecular beam epitaxial method using Group V gas raw materials has the drawback that it is difficult to rapidly switch the gas composition. In the conventional molecular beam epitaxial method using group III gas raw materials, the composition of group III elements is changed by changing the leak valve or gas pressure, but the molecular beam intensity in the ultra-high vacuum system does not change rapidly. Ta. This is especially true for P2. near the exit of the pyrolysis furnace. The phenomenon of P4 adhesion, adsorption, and re-evaporation occurs, and the pH rapidly increases.
This is thought to be due to the fact that even if the flow rate is cut off, molecular beams such as <P2 are generated for a while. When a shutter is used, this phenomenon is caused by adsorption in the form of P4 on the shutter and re-evaporation, and could not be completely prevented.

本発明はV族気体原料を用いた分子線エピタキシャル成
長法の特徴である■族の分子線強度を正確に制御するこ
とが出来るという特徴を生かし、かつ同法の欠点である
急激な■族分千線強度の変化を可能ならしめる分子線エ
ピタキシャル成長法を提供することを目的とする。
The present invention takes advantage of the feature of the molecular beam epitaxial growth method using a group V gas source, which is that it is possible to accurately control the molecular beam intensity of group The purpose of this invention is to provide a molecular beam epitaxial growth method that allows for changes in line intensity.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の分子線エピタキシャル成長法は、リン(P)を
含有するV族元素化合物と■族元素とを用いて[[−V
族化合物半導体結晶を成長する分子線エピタキシャル成
長法において、P供給原料ガスとしてジホスフィン(P
2H4)を用い、波長1100n以上260nm以下の
励起光源を用い光分解させたものを用いることを特徴と
して構成される。
The molecular beam epitaxial growth method of the present invention uses a group V element compound containing phosphorus (P) and a group
In the molecular beam epitaxial growth method for growing group compound semiconductor crystals, diphosphine (P
2H4), which has been photodecomposed using an excitation light source with a wavelength of 1100 nm or more and 260 nm or less.

〔作用〕[Effect]

ジホスフィンはホスフィンと比べて不安定な物質で室温
で紫外線を照射することにより分解することが知られて
いる。川崎によると、P2H4の光分解反応の吸収波長
は260nm以下であり、最大吸収波長は220nm以
下であることが知られている(用崎昌博:応用物理、5
3,1985.603)。なお光励起プロセス用電源と
しては、例えば日経マイクロデバイス、1985年春号
1G1〜78頁に示されているように、現在1000m
以下の波長のものは入手が困難であるのが実状である。
Diphosphine is a more unstable substance than phosphine and is known to be decomposed by irradiation with ultraviolet light at room temperature. According to Kawasaki, it is known that the absorption wavelength of the photolysis reaction of P2H4 is 260 nm or less, and the maximum absorption wavelength is 220 nm or less (Masahiro Yozaki: Applied Physics, 5
3, 1985.603). As a power source for optical excitation process, for example, as shown in Nikkei Microdevice, Spring 1985 issue, 1G1-78, currently 1000 m
The reality is that it is difficult to obtain materials with wavelengths below.

従ってジホスフィンをP供給原料ガスとして前記波長の
光照射を行なうことにより、熱分解炉を用いないで、2
分子線を安定的に得ることが出来る。また光照射は超高
真空系内の空間で行なう為に、熱分解炉の場合の様なP
2.P4の吸着現象は起らない。この為に急激なP分子
線強度の変化が可能となる。
Therefore, by irradiating diphosphine with light of the above wavelength using P feedstock gas, 2
Molecular beams can be stably obtained. In addition, since the light irradiation is carried out in the space within the ultra-high vacuum system, P
2. No adsorption phenomenon of P4 occurs. For this reason, rapid changes in the P molecular beam intensity are possible.

5実施例〕 次に、本発明の実施例について図面を参照して説明する
。第1図は本発明の一実施例を説明するための分子線エ
ピタキシャル成長装置の構成図である。以下第1図を用
いてInP基板上にInP/T、、G。
5 Embodiments Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram of a molecular beam epitaxial growth apparatus for explaining one embodiment of the present invention. In the following, using FIG. 1, InP/T, G is formed on an InP substrate.

AS超格子構造を作成する場合について説明する。The case of creating an AS superlattice structure will be explained.

第1図において、10−9Torr程度の超高真空に排
気された真空チェンバー1内にInP基板2を設置しヒ
ーター3にて基板温度を300℃に設定した。
In FIG. 1, an InP substrate 2 was placed in a vacuum chamber 1 evacuated to an ultra-high vacuum of about 10 −9 Torr, and the substrate temperature was set at 300° C. using a heater 3 .

■族原料は通常のセル4内で高純度1゜Gaを加熱して
分子線を得る。V族元素はAsについてはA5H,を導
入管5aよりリークバルブ6 af:介して超高真空系
内に導入し通常の熱分解炉7にてヒ素分子線を得た。P
についてはP2H4を導入管5bよりリークバルブ6b
を介して超高真空系内に導入し、水銀ランプ8を用いて
光照射窓9を通して紫外線をPa1(4原料ビームに照
射した。
For the group (2) raw material, high purity 1° Ga is heated in an ordinary cell 4 to obtain a molecular beam. As for the V group element, A5H for As was introduced into an ultra-high vacuum system through an inlet pipe 5a through a leak valve 6af:, and an arsenic molecular beam was obtained in an ordinary pyrolysis furnace 7. P
For P2H4, connect it to the leak valve 6b from the inlet pipe 5b.
was introduced into an ultra-high vacuum system through a mercury lamp 8, and the Pa1 (4 raw material beam) was irradiated with ultraviolet rays through a light irradiation window 9 using a mercury lamp 8.

InP層の成長に際しては、G、分子線をシャッター1
0にて遮断し、^5)I3原料はリークバルブを閉め、
さらにシャ・・lターにて遮断した。1nCIA3層成
長に際してはP 2I+ 4原「[はり−クバルブを閉
め遮断し光照射を中断した。As1I3の熱分解炉は7
00℃に設定した。
When growing the InP layer, G and molecular beams are exposed to shutter 1.
Shut off at 0, ^5) Close the leak valve for I3 raw material,
Furthermore, it was shut off at the shutter. When growing the 1nCIA three layer, the P2I+4 source was closed and the light irradiation was interrupted.The As1I3 pyrolysis furnace was
The temperature was set at 00°C.

この様にして50A周期のrnG、人5../InP超
格子構造を20層成長させた。その結果良好な鏡面の成
長層が得られた。
In this way, rnG of 50A cycle, person 5. .. /InP superlattice structure was grown in 20 layers. As a result, a grown layer with a good mirror surface was obtained.

さらに二次イオン質量分析装置(S I M S )に
て深さ方向にAs、 P原子の濃度を測定した結果界面
は非常に良好で、本発明の特徴であるP原子濃度が界面
で急峻に変化していることか確認された。
Furthermore, the concentration of As and P atoms was measured in the depth direction using a secondary ion mass spectrometer (SIMS), and the results showed that the interface was very good. It was confirmed that it had changed.

〔発明の効果〕〔Effect of the invention〕

Pを含有するV族元素化合物と■族元素とを用いて■−
〜′族化合物半導体結晶の分子線エピタキシャル成長を
行なうにあたり、P供給原料ガスとしてP2H4(ジホ
スフィン)を用い波長1100n以上260nm以下の
励起光源を用い超高真空系内の空間で光分解させたもの
を用いているので、急激に■族元素の分子線強度を変化
させた際に熱分解炉を必要としない、従って、リンの吸
着、再蒸発に起因する成長界面でのP原子濃度変化が急
峻にならず広がる現象は存在せず、良好な界面を有する
成長結晶が得られる。
■- Using a group V element compound containing P and a group ■ element
In performing molecular beam epitaxial growth of ~' group compound semiconductor crystals, P2H4 (diphosphine) is used as the P source gas, and the P2H4 (diphosphine) is photodecomposed in a space within an ultra-high vacuum system using an excitation light source with a wavelength of 1100 nm or more and 260 nm or less. Therefore, there is no need for a pyrolysis furnace when the molecular beam intensity of group Ⅰ elements changes rapidly. There is no spreading phenomenon, and a grown crystal with a good interface can be obtained.

【図面の簡単な説明】 第1図は本発明の一実施例を説明するための分子線エピ
タキシャル成長装置の構成図、第2図は従来の分子線エ
ピタキシャル成長装置のAsH3゜PH3の導入部の断
面図、第3図はバニシュ(Pa−nish)の用いた熱
分解炉の断面図である。 1・・・真空チェンバー、2・・・InP基板、3・・
・ヒーター、4・・・■族原料セル、5a、5b・・・
ガス導入管、6a、6b・・・リークバルブ、7・・・
通常の熱分解炉、8・・・水銀ランプ、9・・・光照射
窓、lO・・・シャッター、11・・・タンタル製外管
、12・・・タンタルフィラメント、13・・・アルミ
ナ製抵抗加熱炉。 タシタ/レフィラメント AsH3 PH。 第2図 第3図
[Brief Description of the Drawings] Fig. 1 is a block diagram of a molecular beam epitaxial growth apparatus for explaining an embodiment of the present invention, and Fig. 2 is a cross-sectional view of the AsH3°PH3 introduction part of a conventional molecular beam epitaxial growth apparatus. , FIG. 3 is a sectional view of a pyrolysis furnace used by Pa-nish. 1... Vacuum chamber, 2... InP substrate, 3...
・Heater, 4... Group ■ raw material cell, 5a, 5b...
Gas introduction pipe, 6a, 6b...leak valve, 7...
Ordinary pyrolysis furnace, 8...Mercury lamp, 9...Light irradiation window, lO...Shutter, 11...Tantalum outer tube, 12...Tantalum filament, 13...Alumina resistor heating furnace. Tacita/Refilament AsH3 PH. Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims]  リンを含有するV族元素化合物とIII族元素とを用い
てIII−V族化合物半導体結晶を成長する分子線エピタ
キシャル成長法において、リン供給原料ガスとしてジホ
スフィンを用い、波長100nm以上260nm以下の
励起光源を用い光分解することを特徴とする分子線エピ
タキシャル成長法。
In the molecular beam epitaxial growth method of growing a III-V compound semiconductor crystal using a group V element compound containing phosphorus and a group III element, diphosphine is used as the phosphorus source gas and an excitation light source with a wavelength of 100 nm or more and 260 nm or less is used. A molecular beam epitaxial growth method characterized by photolysis.
JP28061285A 1985-12-12 1985-12-12 Molecular beam epitaxy growth method Expired - Lifetime JPH0633228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28061285A JPH0633228B2 (en) 1985-12-12 1985-12-12 Molecular beam epitaxy growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28061285A JPH0633228B2 (en) 1985-12-12 1985-12-12 Molecular beam epitaxy growth method

Publications (2)

Publication Number Publication Date
JPS62138390A true JPS62138390A (en) 1987-06-22
JPH0633228B2 JPH0633228B2 (en) 1994-05-02

Family

ID=17627463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28061285A Expired - Lifetime JPH0633228B2 (en) 1985-12-12 1985-12-12 Molecular beam epitaxy growth method

Country Status (1)

Country Link
JP (1) JPH0633228B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02188497A (en) * 1989-01-12 1990-07-24 Nec Corp Silicon-molecular-beam growth method
JPH02302394A (en) * 1989-05-18 1990-12-14 Ulvac Corp Film-forming apparatus
JPH08203826A (en) * 1995-01-25 1996-08-09 Nec Corp Compound semiconductor crystal growth system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02188497A (en) * 1989-01-12 1990-07-24 Nec Corp Silicon-molecular-beam growth method
JPH02302394A (en) * 1989-05-18 1990-12-14 Ulvac Corp Film-forming apparatus
JPH08203826A (en) * 1995-01-25 1996-08-09 Nec Corp Compound semiconductor crystal growth system

Also Published As

Publication number Publication date
JPH0633228B2 (en) 1994-05-02

Similar Documents

Publication Publication Date Title
Tischler et al. Self‐limiting mechanism in the atomic layer epitaxy of GaAs
JPS6134929A (en) Growing device of semiconductor device
EP0200766B1 (en) Method of growing crystalline layers by vapour phase epitaxy
JPS6134928A (en) Growing process of element semiconductor single crystal thin film
US6334901B1 (en) Apparatus for forming semiconductor crystal
JPS6134927A (en) Growing process of compound semiconductor single crystal thin film
JPS62138390A (en) Molecular beam epitaxy
GB2170043A (en) Apparatus for the growth of semiconductor crystals
JPH0647515B2 (en) Compound semiconductor epitaxial growth method
EP0288108B1 (en) Electronic device manufacture
RU2023325C1 (en) Process of growing diamond films
JP2821557B2 (en) Method for growing compound semiconductor single crystal thin film
JPS59148325A (en) Method and device for growing single crystal thin film of compound semiconductor
JPH0212814A (en) Crystal growth method of compound semiconductor
JP3182584B2 (en) Compound thin film forming method
JPS6134922A (en) Manufacture of super lattice semiconductor device
JPH0431391A (en) Epitaxial growth
JPH0662356B2 (en) Molecular beam epitaxy growth method
JPS61260622A (en) Growth for gaas single crystal thin film
JPH05226257A (en) Vapor growth method and photo assisted vapor growth apparatus
JPH0442891A (en) Production of semiconductor thin film
JPH0267721A (en) Manufacture of compound semiconductor thin film
JPH0292891A (en) Molecular beam epitaxial growth process and apparatus therefor
JP2620546B2 (en) Method for producing compound semiconductor epitaxy layer
JPS62144320A (en) Manufacture of super-lattice semiconductor