JPS6134928A - Growing process of element semiconductor single crystal thin film - Google Patents

Growing process of element semiconductor single crystal thin film

Info

Publication number
JPS6134928A
JPS6134928A JP15397884A JP15397884A JPS6134928A JP S6134928 A JPS6134928 A JP S6134928A JP 15397884 A JP15397884 A JP 15397884A JP 15397884 A JP15397884 A JP 15397884A JP S6134928 A JPS6134928 A JP S6134928A
Authority
JP
Japan
Prior art keywords
elemental semiconductor
single crystal
growing
crystal thin
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15397884A
Other languages
Japanese (ja)
Other versions
JPH0766909B2 (en
Inventor
Junichi Nishizawa
潤一 西澤
Hitoshi Abe
仁志 阿部
Soubee Suzuki
鈴木 壮兵衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP59153978A priority Critical patent/JPH0766909B2/en
Priority to GB08518833A priority patent/GB2162206B/en
Priority to DE19853526825 priority patent/DE3526825A1/en
Priority to FR858511518A priority patent/FR2578681B1/en
Publication of JPS6134928A publication Critical patent/JPS6134928A/en
Priority to US08/003,308 priority patent/US5294286A/en
Publication of JPH0766909B2 publication Critical patent/JPH0766909B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45531Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making ternary or higher compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/68Crystals with laminate structure, e.g. "superlattices"

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)

Abstract

PURPOSE:To make it feasible to grow single crystal of element semiconductor subject to the precision of monomolecular layer on a substrate by a method wherein pressure inside a growing vessel, heating temperature of substrate and volume of introduced gas are specified. CONSTITUTION:A gate valve 2 is opened to vacuum a growing vessel 1 up to around 10<-7>-10<-8> Pa by an ultrahigh vacuum pump 3 and after heating an Si substrate 12 by a heater 10, one valve 6 is opened to introduce SiH2Cl2 8 for 0.5-10sec within the range boosting the pressure in the growing vessel 1 up to 10<-1>-10<-7> Pa. When, after closing the valve 6 to vacuum the gas inside the growing vessel 1, the other valve 2 is opened to introduce H2 9 for 2-200sec within the range boosting the pressure in the growing vessel 1 up to 10<-1>-10<-7> Pa, one monomolecular layer of Si is grown on the substrate 12. Then epitaxially grown layer of Si with specific thickness may be grown subject to the precision of molecular layer by means of repeating said procedures for growing monomolecular layers one after another.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は元素半導体の単結晶成長層を単分子層オーダー
で形成するのに好適な元素半導体単結晶薄膜の成長法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for growing an elemental semiconductor single crystal thin film suitable for forming a single crystal growth layer of an elemental semiconductor on the order of a monomolecular layer.

[先行技術とその問題点] 従来からSiのような単一の元素よりなる元素半導体の
薄膜結晶を得るための気相エピタキシー技術として、化
学気相成長法(以下、CVD法と呼ぶ)、分子線エピタ
キシー法(以下、MBE法と呼ぶ)、原子層エピタキシ
ー法(以下、ALE法と呼ぶ)などが知られている。し
かし、CVD法はソースとしてSi化合物を水素ガス等
をキャリアとして、同時に反応室へ導入し、熱分解によ
って成長させるため、成長層の品質が悪い。また、単分
子層オーダーの制御が困難である等の欠点がある。
[Prior art and its problems] Chemical vapor deposition (hereinafter referred to as CVD), molecular Line epitaxy method (hereinafter referred to as MBE method), atomic layer epitaxy method (hereinafter referred to as ALE method), etc. are known. However, in the CVD method, a Si compound as a source and hydrogen gas as a carrier are simultaneously introduced into a reaction chamber and grown by thermal decomposition, so the quality of the grown layer is poor. Further, there are drawbacks such as difficulty in controlling the monolayer order.

一方、超高真空を利用した結晶成長法としてよく知られ
るMBE法は、物理吸着を第一段階とするために、結晶
の品質が化学反応を利用した気相成長法に劣る。また、
ソース源自体を成長室の中に設置しているため、ソース
源を加熱して得られる放出ガスと蒸発量の制御、および
、ソースの補給が困難であり、成長速度を長時間一定に
保つことが困難である。また、蒸発物の排気など真空装
置が複雑になる。更には、化合物半導体の化学量論的組
成(ストイキオメトリ−)を精密に制御することが困難
で、結局、高品質の結晶を得ることができない欠点があ
る。
On the other hand, the MBE method, which is well known as a crystal growth method using an ultra-high vacuum, uses physical adsorption as the first step, so the quality of the crystal is inferior to the vapor phase growth method using a chemical reaction. Also,
Since the source itself is installed inside the growth chamber, it is difficult to control the gas released by heating the source and the amount of evaporation, and to replenish the source, making it difficult to maintain the growth rate constant for a long time. is difficult. In addition, the vacuum equipment, such as exhausting evaporated matter, becomes complicated. Furthermore, it is difficult to precisely control the stoichiometric composition (stoichiometry) of the compound semiconductor, and as a result, high quality crystals cannot be obtained.

前記MBE法は同時に各半導体構成元素を真空蒸着する
のであるが、これを改良したのがALE法で、T、5u
ntolaらがU、S、P、 Nn4058430(1
977)で、また、M、PersaらがJ、voc、S
ci、Technol、A2. (1984)、41g
頁で発表しているように化合物の各構成元素を交互に蒸
着している点に特色が有り、I−■、1l−VI、■−
■化合物もしくは酸化物の薄膜成長に好適外技術ではあ
るが、MBE法の延長であり、結晶性には期待が持てな
い。また、ALE法はむしろガラス基板の上に成長する
のが適した技術であり、半導体集積回路等で重要な選択
エピタキシャル成長が困難である。蒸着によるALE法
で無く、化学反応によるALE法を試みられてはいるが
、ZnSのような1l−Vl化合物の多結晶もしくはT
a 202のような化合物のアモルファスであり、単結
晶成長には成功していない。U 、 S 、 P 、、
、Nα4058430で説明されているようにALE法
は化合物の一方の元素の単原子層の上に、他方の元素の
単原子層が結合されていく原理を用いているために、化
合物の薄膜成長法に限られ、SlやGeのような単元素
半導体はALE法によっては成長できない。一方、本願
発明者の内のひとりによる論文(電子材料1981年1
2月号19ページ)にはALE法のSi結晶成長法への
応用への可能性が述べられてはいるが、具体的な成長温
度、ガスの導入量等の情報を与えるものではない。
In the MBE method, each semiconductor component element is vacuum-deposited at the same time, but the ALE method is an improved version of this method.
ntola et al. U, S, P, Nn4058430 (1
977), and M, Persa et al., J, voc, S
ci, Technol, A2. (1984), 41g
As announced on the page, the feature is that each constituent element of the compound is deposited alternately, and I-■, 1l-VI, and ■-
(2) Although it is a technique that is not suitable for growing thin films of compounds or oxides, it is an extension of the MBE method and cannot be expected to improve crystallinity. Furthermore, the ALE method is a technique suitable for growth on a glass substrate, and selective epitaxial growth, which is important in semiconductor integrated circuits, is difficult. Although attempts have been made to use ALE methods based on chemical reactions rather than ALE methods based on vapor deposition, polycrystals of 1l-Vl compounds such as ZnS or T
Compounds like a 202 are amorphous, and single crystal growth has not been successful. U, S, P,,
, Nα4058430, the ALE method uses the principle that a monoatomic layer of one element of a compound is bonded to a monoatomic layer of the other element, so it is a thin film growth method for compounds. Single-element semiconductors such as Sl and Ge cannot be grown by the ALE method. On the other hand, a paper by one of the inventors of the present application (Electronic Materials 1981 1
Although the February issue (page 19) mentions the possibility of applying the ALE method to a Si crystal growth method, it does not provide information on the specific growth temperature, amount of gas introduced, etc.

このように、CVD法やMBE法では化学量論的組成を
満足する高品質の結晶を単分子層オーダーで形成するこ
とが困難な一方、 ALE法では単結晶が得られず、特
にSiやGeのような単元素半導体の成長は原理的に不
可能である欠点があった。
In this way, it is difficult to form high-quality crystals that satisfy the stoichiometric composition on the order of a monomolecular layer using the CVD method or the MBE method, whereas a single crystal cannot be obtained using the ALE method. The drawback was that it was impossible in principle to grow single-element semiconductors such as .

[発明の目的コ 本発明は上記従来技術の欠点を除き、結晶成長層の品質
を改善し、単分子層の精度で成長膜を形成することがで
きる元素半導体の単結晶薄膜の成長法を提供することを
目的とする。
[Purpose of the Invention] The present invention provides a method for growing a single crystal thin film of an elemental semiconductor, which eliminates the drawbacks of the above-mentioned prior art, improves the quality of the crystal growth layer, and allows the growth film to be formed with the precision of a monomolecular layer. The purpose is to

[発明の概要] このため、本発明はALE法では単元素の1原子層を基
板の上に形成していたのに対し、その基板上に成長させ
たい成分元素を含む分子のガスを外部から導入すること
により基板上に結晶を成長させる方法について検討し、
その結果、成長槽内の圧力、基板加熱温度、導入するガ
ス量の最適値を実験的に見い出し、基板上に元素半導体
の単結晶が成長できるようにしたことを特徴としている
[Summary of the Invention] Therefore, unlike the ALE method in which a single atomic layer of a single element is formed on a substrate, the present invention uses a gas containing molecules containing the component elements desired to be grown on the substrate from the outside. We investigated how to grow crystals on a substrate by introducing
As a result, the optimum values for the pressure inside the growth tank, the substrate heating temperature, and the amount of gas to be introduced were experimentally found, making it possible to grow a single crystal of an elemental semiconductor on the substrate.

[発明の実施例コ 以下、本発明の詳細な説明する。[Embodiments of the invention] The present invention will be explained in detail below.

第1図は本発明の一実施例に係る元素半導体単結晶成長
装置の構成図を示したもので、1は成長槽で材質はステ
ンレス等の金属、2はゲートバルブ、3は成長槽1内を
超高真空に排気するための排気装置、4は■族の成分元
素のガス状の化合物を導入するノズル、5はノズル4と
反応するガス状化合物を導入するノズル、6,7はノズ
ル4,5を開閉するバルブ、8の■族は成分元素を含む
ガス状の化合物、9はガス状化合物8と反応するガス状
の化合物、10は基板加熱用のヒーターで石英ガラスに
封入したタングステン(W)線であり、電線等は図示省
略している。11は測温用の熱電対、12は半導体の基
板、13は成長槽内の真空度を測るための圧力計である
FIG. 1 shows a configuration diagram of an elemental semiconductor single crystal growth apparatus according to an embodiment of the present invention, in which 1 is a growth tank made of metal such as stainless steel, 2 is a gate valve, and 3 is inside the growth tank 1. 4 is a nozzle for introducing a gaseous compound of a component element of the group (■); 5 is a nozzle for introducing a gaseous compound that reacts with the nozzle 4; 6 and 7 are nozzles 4; , 5 is a valve that opens and closes, group 8 is a gaseous compound containing component elements, 9 is a gaseous compound that reacts with the gaseous compound 8, 10 is a heater for heating the substrate, and tungsten ( W) wire, and electric wires and the like are not shown. 11 is a thermocouple for temperature measurement, 12 is a semiconductor substrate, and 13 is a pressure gauge for measuring the degree of vacuum in the growth tank.

以上の構成で、■族の元素半導体としてSiの単結晶を
成長させる場合を例にとって説明する。成長槽1内の圧
力、基板12の加熱温度、ガスの導入量等をパラメータ
として結晶成長状態を調べた結果、下記の条件にて結晶
成長させると、高品質の単結晶薄膜を単分子層の精度で
形成できることが実験的に確認できた。即ち、5iの単
結晶を一層ずつ基板12上にエピタキシャル成長させる
には、先ずゲートバルブ2を開けて超高真空排気装置3
により、成長槽1内を10−7〜10−” Pa5ca
l(以下、Paと略す)程度に排気する。次に、Si基
板12を300〜1100℃にヒーター10により加熱
し、Sjを含むガスとして5iH2CQ2(ジクロルシ
ラン)8を成長槽1内の圧力が、10−1−10  ”
 Paになる範囲で、0.5〜10秒間バルブ6を開け
て導入する。その後、バルブ6を閉じて成長槽1内のガ
スを排気後、今度は5i)12c9zと化学反応するガ
スH29を成長槽1内の圧力が10−1〜10  ’ 
Paになる範囲で、2〜200秒間バルブ7を開けて導
入する。これにより、基板12上にSiが1分子層成長
できる。以上の操作を繰り返し、単分子層を次々と成長
させることにより、所望の厚さのSiのエピタキシャル
成長層を単分子層の精度で成長させることができる。尚
、Siを含むガスとして、SiCQ 4.5iHCQ 
3,5ift 4もしくはSiHaとHlの混合ガスな
どを用いることができる。
An example will be described in which a single crystal of Si is grown as a group (Ⅰ) element semiconductor with the above configuration. As a result of examining the crystal growth state using parameters such as the pressure inside the growth tank 1, the heating temperature of the substrate 12, and the amount of gas introduced, it was found that when the crystal is grown under the following conditions, a high quality single crystal thin film can be formed into a monomolecular layer. It was experimentally confirmed that it could be formed with precision. That is, in order to epitaxially grow a 5i single crystal layer by layer on the substrate 12, first open the gate valve 2 and turn on the ultra-high vacuum exhaust device 3.
The inside of the growth tank 1 is set to 10-7 to 10-” Pa5ca
1 (hereinafter abbreviated as Pa). Next, the Si substrate 12 is heated to 300 to 1100°C by the heater 10, and 5iH2CQ2 (dichlorosilane) 8 is added as a gas containing Sj to a pressure in the growth tank 1 of 10-1-10''.
The valve 6 is opened for 0.5 to 10 seconds and the water is introduced within the range of Pa. After that, after closing the valve 6 and exhausting the gas in the growth tank 1, the gas H29 that chemically reacts with 5i) 12c9z is pumped until the pressure in the growth tank 1 is 10-1 to 10'.
The valve 7 is opened for 2 to 200 seconds and the water is introduced within the range of Pa. As a result, one molecular layer of Si can be grown on the substrate 12. By repeating the above operations and growing monomolecular layers one after another, an epitaxial growth layer of Si having a desired thickness can be grown with the precision of a monomolecular layer. In addition, as a gas containing Si, SiCQ 4.5iHCQ
3.5ift 4 or a mixed gas of SiHa and Hl can be used.

第2図は本発明の他の実施例を示したものであり、不純
物添加をするためのものである。14,1.5は不純物
添加に用いるガス状化合物を導入するノズル、16.1
7はノズル14.15を開閉するバルブ、18は■族の
成分元素を含むガス状の化合物、19は■族の成分元素
を含むガス状の化合物である。不純物を添加する以外の
部分は第1図の実施例と同一であるので説明は省略する
FIG. 2 shows another embodiment of the present invention, which is for adding impurities. 14, 1.5 is a nozzle for introducing a gaseous compound used for adding impurities, 16.1
7 is a valve that opens and closes the nozzles 14 and 15; 18 is a gaseous compound containing a component element of group (1); and 19 is a gaseous compound containing a component element of group (2). Since the parts other than the addition of impurities are the same as the embodiment shown in FIG. 1, their explanation will be omitted.

この構成で、n型成長層を形成する場合は、導入ガスと
して5itlzCQz(ジクロルシラン)8、Hl(水
素)9と添加する不純物ガスとしてAs1(s (アル
シン)18の3つのガスを循環式に導入する。また、別
の方法としては5iH2CI228とAsHs 18を
同時に、H2Oとは交互に導入するか、H2OとA、s
H318を同時に、5iH2CQ28とは交互に導入す
ることによって不純物添加ができる。また、H2を導入
しないで、5iH2CQ2とAsH3とを交互に導入す
る繰り返しでもよい。
When forming an n-type growth layer with this configuration, three gases, 5itlzCQz (dichlorosilane) 8 and Hl (hydrogen) 9 as introduced gases, and As1 (s (arsine) 18) as an impurity gas to be added, are introduced in a circulation manner. Another method is to introduce 5iH2CI228 and AsHs 18 at the same time and H2O alternately, or to introduce H2O and A, s
Impurities can be added by simultaneously introducing H318 and alternately with 5iH2CQ28. Alternatively, 5iH2CQ2 and AsH3 may be introduced alternately without introducing H2.

また更に、別の方法として、5i)l 2 CΩ2とH
2とを交互に導入する第1のサイクルと、SiH2CΩ
2とAsH3を同時にH2とは交互に導入する第2のサ
イクルとを、交互に繰り返すことによって、Asのドー
プされた層とドープされない層を交互に周期的に形成す
ることもできる。さらに、5iH2CQ2とPH3(ホ
スフィン)とを同時に、H2とは交互に導入するという
第3のサイクルを加えて、Siより原子半径の大きなA
sのドープされた層、Slより原子半径のノ」1さなP
のドープされた層、Siのみの層を周期的に形成するこ
とにより、不純物原子半径が母体の半導体の原子半径と
異なるために生じる格子歪を補正することも可能である
Furthermore, as another method, 5i) l 2 CΩ2 and H
2 and a first cycle of alternately introducing SiH2CΩ
By alternately repeating a second cycle in which As2 and AsH3 are simultaneously introduced alternately with H2, layers doped with As and undoped layers of As can be formed alternately and periodically. Furthermore, by adding a third cycle in which 5iH2CQ2 and PH3 (phosphine) are introduced at the same time and H2 is introduced alternately, A
A doped layer of s, with an atomic radius of 1" P
It is also possible to correct lattice distortion caused by the impurity atomic radius being different from the base semiconductor atomic radius by periodically forming a doped layer or a Si-only layer.

尚、このときの不純物添加ガスソースとしては、更に、
AsCn3C三塩化ヒ素)、PCQ3(三塩化リン)な
ども用いることができる。
In addition, as the impurity addition gas source at this time,
AsCn3C (arsenic trichloride), PCQ3 (phosphorus trichloride), etc. can also be used.

第3図はSiにSiよりも原子半径の大きいGoとSi
よりも原子半径の小さいBを周期的に一定の比率でドー
プする場合の例を示したものである。同図(a)に示す
ように、先ず、BCf13とSiCΩ4を同時に導入し
、次にH2を導入する。これにより、同図(b)に示す
ように51にBがドープされた1分子層が形成される。
Figure 3 shows Go and Si, which have a larger atomic radius than Si.
This figure shows an example in which B, which has an atomic radius smaller than that of B, is periodically doped at a constant ratio. As shown in FIG. 4(a), first, BCf13 and SiCΩ4 are introduced simultaneously, and then H2 is introduced. As a result, a monomolecular layer 51 doped with B is formed as shown in FIG. 5(b).

続いて、同図(a)に示すシーケンスで5iCQ4を導
入し、排気後、H2を導入する操作を2回繰り返すこと
により、同図(b)に示すようにSi結晶が2分子層形
成される。以下、同様にしてBCQsと5iCQaの導
入、排気後、H2導入操作により、BドープドSi 1
分子層形成。5iCQ4導入、排気後、+(2導入操作
を2回行なうことにより、Siが2分子層形成。GeC
Qaと5iCnaの導入、排気後、H2導入操作により
、GeドープドSi 1分子層が形成される。
Next, by repeating twice the sequence of introducing 5iCQ4, evacuation, and introducing H2 in the sequence shown in the figure (a), two molecular layers of Si crystals are formed as shown in the figure (b). . Thereafter, in the same manner, after introducing BCQs and 5iCQa and evacuation, B-doped Si
Molecular layer formation. After introducing 5iCQ4 and evacuation, +(2 introduction operation is performed twice to form a bimolecular layer of Si.GeC
After introducing Qa and 5iCna and evacuation, a single molecular layer of Ge-doped Si is formed by introducing H2.

次に、p型成長層の形成は、添加する不純物ガスとして
B2H6(ジボラン)19を用N 、 SiHx CQ
 28と829と共に循環式に導入する。別の方法とし
ては5iHxCR28と、B 2 H619とを同時に
して、H2Oとは交互に導入することによって不純物添
加ができる。
Next, the p-type growth layer was formed using B2H6 (diborane)19 as an impurity gas to be added.
28 and 829 in a circulating manner. Another method is to add impurities by simultaneously introducing 5iHxCR28 and B 2 H619 and alternately introducing H2O.

尚、このときの不純物ガスとしてはBCρ3、BBr 
s 、TMG(トリメチルガリウム)、TMII(トリ
メチルアルミニウム)、T−MIn(トリメチルインジ
ュウム)なども用いることができる。
Incidentally, the impurity gases at this time are BCρ3, BBr
s, TMG (trimethyl gallium), TMII (trimethyl aluminum), T-MIn (trimethyl indium), etc. can also be used.

この場合、不純物ガスの導入流量を5iH2CQ28、
H2Oに比べ、例えば10m’ 〜10.−’程小さく
取り、導入時間は0.5〜10秒にすることにより、厚
さ方向に所望の不純物濃度分布を有する分子層エピタキ
シャル成長層が形成できる。また、添加する不純物ガス
の量と時間を調整することにより。
In this case, the flow rate of impurity gas introduced is 5iH2CQ28,
Compared to H2O, for example, 10 m' to 10. -' and the introduction time is set to 0.5 to 10 seconds, a molecular layer epitaxial growth layer having a desired impurity concentration distribution in the thickness direction can be formed. Also, by adjusting the amount and time of the impurity gas added.

ρn接合、不均一不純物密度分布、npn、 npin
、 pnp、pnip等のバイポーラトランジスタ構造
、n”in十、n”n−n十等の電界効果トランジスタ
や静電誘導トランジスタ、pnpnのサイリスタ構造等
を実現できることは勿論である。
ρn junction, non-uniform impurity density distribution, npn, npin
Of course, it is possible to realize bipolar transistor structures such as , pnp, and pnip, field effect transistors and static induction transistors such as n"in 10, n"nn 10, etc., and pnpn thyristor structures.

尚、以上の各実施例においては、いずれも基板12の加
熱源を成長槽1内に設けた例について述べてきたが、例
えば第4図に示すように、加熱源として赤外線ランプ3
oを用い、これを成長槽1外のランプハウス31内に設
け、そのランプハウス31がら出力する赤外線を石英ガ
ラス32を介して基板12に照射することにより、サセ
プター33に保持させた基板12を加熱するようにして
もよい。このようにすれば、成長槽1内から結晶の成長
に必要ない部材を除くことができ、ヒーター加熱に伴う
重金属等の不要なガス成分の発生を未然に防止すること
ができる。
In each of the above embodiments, an example has been described in which the heating source for the substrate 12 is provided in the growth tank 1, but for example, as shown in FIG. 4, an infrared lamp 3 is used as the heating source.
The substrate 12 held on the susceptor 33 is heated using It may also be heated. In this way, members unnecessary for crystal growth can be removed from the inside of the growth tank 1, and generation of unnecessary gas components such as heavy metals due to heater heating can be prevented.

また、成長槽1には、光学系4oを取り付け、その外部
に水銀ランプ、重水素ランプ、Xeランプ、エキシマ−
レーザ、 Arレーザ等の光源41を設け、波長180
〜600nmの光を基板12に照射するようにしてもよ
い。このようにした場合には、基板温度を下げることが
でき、その結果、更に高品質の単結晶を成長させること
ができるようになる。
In addition, an optical system 4o is attached to the growth tank 1, and a mercury lamp, deuterium lamp, Xe lamp, excimer lamp, etc. are installed on the outside of the optical system 4o.
A light source 41 such as a laser or an Ar laser is provided, and a wavelength of 180
The substrate 12 may be irradiated with light of ~600 nm. In this case, the substrate temperature can be lowered, and as a result, a single crystal of even higher quality can be grown.

ところで、以上述べてきた実施例において、超高真空装
置等はイオンポンプ等周知なものを使用することができ
る。また、単結晶基板を出し入れするための補助真空槽
、結晶引出し装置等を付加することは容易にでき、量産
性の優れたものにできることは言う迄もない。更に、結
晶成長に用いるガスは主にSiについて説明をしてきた
が、 Ge等他の■族半導体に適用できることは勿論で
ある。
Incidentally, in the embodiments described above, a well-known ultra-high vacuum device such as an ion pump can be used. Furthermore, it goes without saying that an auxiliary vacuum chamber for loading and unloading the single crystal substrate, a crystal drawing device, etc. can be easily added, and the device can be easily mass-produced. Furthermore, although the gas used for crystal growth has mainly been described with respect to Si, it is of course applicable to other group III semiconductors such as Ge.

また、基板はSlに限らずサファイヤ、スピネル等の基
板でも良い。
Furthermore, the substrate is not limited to Sl, but may be made of sapphire, spinel, or the like.

[発明の効果コ 以上のように本発明によれば、一層ずつ基板上に良質な
元素半導体の単結晶を形成させることができる。また、
不純物導入による母体の半導体単結晶の格子歪の補正を
考慮して不純物の添加を一層ずつ行なうことができるの
で、結晶性を良質に保ちつつ非常に急峻な不純物密度分
布を得ることができる等、非常に高速なトランジスタ、
集積回路、ダイオード、光学素子等の製作に対して優れ
た作用効果を発揮する。
[Effects of the Invention] As described above, according to the present invention, a single crystal of a high-quality elemental semiconductor can be formed layer by layer on a substrate. Also,
Since impurities can be added layer by layer while taking into account the correction of the lattice distortion of the base semiconductor single crystal by introducing impurities, it is possible to obtain a very steep impurity density distribution while maintaining good crystallinity. very fast transistors,
It exhibits excellent effects in the production of integrated circuits, diodes, optical elements, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図はそれぞれ本発明の各実施例に係る結晶
成長装置の構成図、第3図はGeとBとをSiにドープ
する場合の説明図で、(a)はガス導入パルスのシーケ
ンスチャート、(b)はGeとBとがドープされた成長
層の模式図、第4図は本発明の更に別の実施例に係る結
晶成長装置の構成図である。 1・・・成長槽、2・・・ゲートバルブ、3・・・排気
装置、4,5,14.15・・・ノズル、6,7,16
.17・・ バルブ、 8,9,18.19  ・・ガ
ス状化合物、10  ・ヒーター、11・・・熱電対、
12・・・基板、13・・圧力計。 ・−′、\ 代理人 弁理士  紋 1) 誠  1□)−’−/′ 第7図 第2図
FIG. 1 and FIG. 2 are block diagrams of crystal growth apparatuses according to each embodiment of the present invention, and FIG. 3 is an explanatory diagram of doping Si with Ge and B, and (a) shows a gas introduction pulse. (b) is a schematic diagram of a growth layer doped with Ge and B, and FIG. 4 is a configuration diagram of a crystal growth apparatus according to yet another embodiment of the present invention. 1... Growth tank, 2... Gate valve, 3... Exhaust device, 4, 5, 14. 15... Nozzle, 6, 7, 16
.. 17... Valve, 8,9,18.19... Gaseous compound, 10 - Heater, 11... Thermocouple,
12... Board, 13... Pressure gauge.・-',\ Agent Patent attorney Crest 1) Makoto 1□)-'-/' Figure 7 Figure 2

Claims (13)

【特許請求の範囲】[Claims] (1)元素半導体の成分元素を含むガス状分子を成長槽
内の圧力が1〜10^−^6パスカルになる範囲で0.
5〜200秒間基板上に導入し、排気後、前記ガス分子
と化学反応するガス状分子を前記成長槽内の圧力が1〜
10^−^6パスカルになる範囲で0.5〜200秒間
前記基板上に導入し、排気する一連の操作を基板温度3
00〜1100℃で繰り返すことにより、所望の厚さの
元素半導体の単結晶薄膜を単分子層の精度で成長させる
ことを特徴とする元素半導体単結晶薄膜の成長法。
(1) Gaseous molecules containing component elements of an elemental semiconductor are grown at a pressure within the growth tank of 1 to 10^-^6 Pascals.
The gaseous molecules that chemically react with the gas molecules are introduced onto the substrate for 5 to 200 seconds, and after being evacuated, the pressure inside the growth tank is 1 to 1.
A series of operations of introducing and evacuation onto the substrate for 0.5 to 200 seconds in the range of 10^-^6 Pascals to a substrate temperature of 3
1. A method for growing an elemental semiconductor single crystal thin film, which comprises growing a single crystal thin film of an elemental semiconductor to a desired thickness with the precision of a monomolecular layer by repeating the heating at 00 to 1100°C.
(2)特許請求の範囲第1項記載において、前記元素半
導体の不純物元素を含むガス状分子を前記元素半導体の
成分元素を含むガス状分子もしくは前記元素半導体の成
分元素を含むガスと反応するガス状分子のいずれかと同
時もしくは交互に導入することにより、厚さ方向に所望
の不純物濃度分布を有する元素半導体の単結晶薄膜を単
分子層の精度で成長させる元素半導体単結晶薄膜の成長
法。
(2) In claim 1, the gaseous molecules containing impurity elements of the elemental semiconductor react with the gaseous molecules containing the component elements of the elemental semiconductor or the gas containing the component elements of the elemental semiconductor. A method for growing an elemental semiconductor single crystal thin film having a desired impurity concentration distribution in the thickness direction with monomolecular layer precision by introducing simultaneously or alternately with one of the molecules.
(3)特許請求の範囲第1項記載において、前記操作の
繰り返し中に、周期的に、前記元素半導体の成分元素を
含むガス、もしくは前記元素半導体の成分元素を含むガ
スと反応するガス状分子のいずれかと同時に、前記元素
半導体の不純物元素を含む分子を流すことにより、不純
物元素を含む分子層と不純物元素を含まない分子層を周
期的に形成する元素半導体単結晶薄膜の成長法。
(3) In claim 1, gaseous molecules react periodically with a gas containing a component element of the elemental semiconductor or a gas containing a component element of the elemental semiconductor during repetition of the operation. A method for growing an elemental semiconductor single crystal thin film, in which a molecular layer containing an impurity element and a molecular layer not containing an impurity element are periodically formed by flowing molecules containing an impurity element of the elemental semiconductor at the same time as any of the above.
(4)特許請求の範囲第2項または第3項のいずれかの
記載において、少なくとも2種類以上の前記元素半導体
の不純物元素を含むガス状分子を周期的に導入する元素
半導体単結晶薄膜の成長法。
(4) Growth of an elemental semiconductor single crystal thin film according to claim 2 or 3, in which gaseous molecules containing at least two or more types of impurity elements of the elemental semiconductor are periodically introduced. Law.
(5)特許請求の範囲第4項記載において、少なくとも
2種類以上の不純物元素を含むガス状分子を、それぞれ
種類毎に、それぞれ異ったサイクル、もしくは異った時
間で導入することにより、異った分子層に異った種類の
不純物元素を周期的に含ませる元素半導体単結晶薄膜の
成長法。
(5) In claim 4, gaseous molecules containing at least two or more types of impurity elements are introduced in different cycles or at different times for each type. A method for growing single-crystal thin films of elemental semiconductors in which different types of impurity elements are periodically included in different molecular layers.
(6)特許請求の範囲第4項または第5項のいずれかの
記載において、少なくとも2種類以上の不純物元素のう
ち、少なくとも1つの原子半径が元素半導体の原子半径
より大きく、他の残りの不純物元素のうちの少なくとも
1つの原子半径が元素半導体の原子よりも小さい元素半
導体単結晶薄膜の成長法。
(6) In the statement of either claim 4 or 5, at least one of the at least two types of impurity elements has an atomic radius larger than the atomic radius of the elemental semiconductor, and the remaining impurities A method for growing an elemental semiconductor single crystal thin film in which the atomic radius of at least one of the elements is smaller than the atoms of the elemental semiconductor.
(7)特許請求の範囲第4項、第5項、第6項のいずれ
かの記載において、不純物元素のうち少なくとも1つが
IV族元素である元素半導体単結晶薄膜の成長法。
(7) In any one of claims 4, 5, and 6, at least one of the impurity elements is
A method for growing single crystal thin films of elemental semiconductors, which are group IV elements.
(8)特許請求の範囲第4項、第5項、第6項のいずれ
かの記載において、不純物元素が同導電型である元素半
導体単結晶薄膜の成長法。
(8) A method for growing an elemental semiconductor single crystal thin film according to any one of claims 4, 5, and 6, in which the impurity elements are of the same conductivity type.
(9)特許請求の範囲第1項〜第8項のいずれかの記載
において、前記元素半導体がSiである元素半導体単結
晶薄膜の成長法。
(9) A method for growing an elemental semiconductor single crystal thin film according to any one of claims 1 to 8, wherein the elemental semiconductor is Si.
(10)特許請求の範囲第1項〜第8項のいずれかの記
載において、前記半導体の成分元素を含むガス状分子が
SiH_2Cl_2、SiHCl_3、SiCl_4の
うちいずれかであり、前記ガス状分子と化学反応するガ
ス状分子が水素分子である元素半導体単結晶薄膜の成長
法。
(10) In any one of claims 1 to 8, the gaseous molecule containing the component element of the semiconductor is any one of SiH_2Cl_2, SiHCl_3, and SiCl_4, and the gaseous molecule and the chemical A method for growing single crystal thin films of elemental semiconductors in which the reacting gaseous molecules are hydrogen molecules.
(11)特許請求の範囲第1項〜第8項のいずれかの記
載において、前記基板に光照射することを特徴とする元
素半導体単結晶薄膜の成長法。
(11) A method for growing an elemental semiconductor single crystal thin film according to any one of claims 1 to 8, characterized in that the substrate is irradiated with light.
(12)特許請求の範囲第1項〜第8項のいずれかの記
載において、前記基板に少なくとも2種類以上の異なる
波長の光を照射することを特徴とする元素半導体単結晶
薄膜の成長法。
(12) A method for growing an elemental semiconductor single crystal thin film according to any one of claims 1 to 8, characterized in that the substrate is irradiated with light of at least two different wavelengths.
(13)特許請求の範囲第5項記載において、前記異な
る不純物元素の導入時に異なる波長の光を照射すること
を特徴とする元素半導体単結晶薄膜の成長法。
(13) A method for growing an elemental semiconductor single crystal thin film according to claim 5, characterized in that light of different wavelengths is irradiated when introducing the different impurity elements.
JP59153978A 1984-07-26 1984-07-26 Element semiconductor single crystal thin film growth method Expired - Fee Related JPH0766909B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59153978A JPH0766909B2 (en) 1984-07-26 1984-07-26 Element semiconductor single crystal thin film growth method
GB08518833A GB2162206B (en) 1984-07-26 1985-07-25 Process for forming monocrystalline thin film of element semiconductor
DE19853526825 DE3526825A1 (en) 1984-07-26 1985-07-26 METHOD FOR FORMING A MONOCRISTALLINE THIN FILM FROM AN ELEMENT SEMICONDUCTOR
FR858511518A FR2578681B1 (en) 1984-07-26 1985-07-26 PROCESS FOR FORMING A MONOCRYSTALLINE THIN FILM OF SEMICONDUCTOR ELEMENT
US08/003,308 US5294286A (en) 1984-07-26 1993-01-12 Process for forming a thin film of silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59153978A JPH0766909B2 (en) 1984-07-26 1984-07-26 Element semiconductor single crystal thin film growth method

Publications (2)

Publication Number Publication Date
JPS6134928A true JPS6134928A (en) 1986-02-19
JPH0766909B2 JPH0766909B2 (en) 1995-07-19

Family

ID=15574233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59153978A Expired - Fee Related JPH0766909B2 (en) 1984-07-26 1984-07-26 Element semiconductor single crystal thin film growth method

Country Status (4)

Country Link
JP (1) JPH0766909B2 (en)
DE (1) DE3526825A1 (en)
FR (1) FR2578681B1 (en)
GB (1) GB2162206B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370515A (en) * 1986-09-12 1988-03-30 インタ−ナショナル・ビジネス・マシ−ンズ・コ−ポレ−ション Method and apparatus for chemical vapor deposition
JPS63136616A (en) * 1986-11-28 1988-06-08 Res Dev Corp Of Japan Epitaxial crystal growth method for compound semiconductor
JPS6444013A (en) * 1987-08-12 1989-02-16 Seiko Epson Corp Manufacture of silicon thin film
EP0430274A2 (en) * 1989-12-01 1991-06-05 Seiko Instruments Inc. Method of producing bipolar transistor
JPH03215390A (en) * 1990-01-19 1991-09-20 Res Dev Corp Of Japan Method for epitaxial growth and doping of compound crystal
JP2011254063A (en) * 2010-05-01 2011-12-15 Tokyo Electron Ltd Method for forming thin film and film formation apparatus
KR20150075066A (en) 2011-09-30 2015-07-02 도쿄엘렉트론가부시키가이샤 Thin film forming method and film forming apparatus

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8508699D0 (en) * 1985-04-03 1985-05-09 Barr & Stroud Ltd Chemical vapour deposition of products
US5322568A (en) * 1985-12-28 1994-06-21 Canon Kabushiki Kaisha Apparatus for forming deposited film
GB2185758B (en) * 1985-12-28 1990-09-05 Canon Kk Method for forming deposited film
GB2193976B (en) * 1986-03-19 1990-05-30 Gen Electric Plc Process for depositing a polysilicon film on a substrate
JPH08973B2 (en) * 1986-03-31 1996-01-10 キヤノン株式会社 Deposited film formation method
JPS62228471A (en) * 1986-03-31 1987-10-07 Canon Inc Formation of deposited film
AU7077087A (en) * 1986-03-31 1987-10-08 Canon Kabushiki Kaisha Forming a deposited film
US4877650A (en) * 1986-03-31 1989-10-31 Canon Kabushiki Kaisha Method for forming deposited film
GB2191510A (en) * 1986-04-16 1987-12-16 Gen Electric Plc Depositing doped polysilicon films
JPH0639357B2 (en) * 1986-09-08 1994-05-25 新技術開発事業団 Method for growing element semiconductor single crystal thin film
US5246536A (en) * 1986-09-08 1993-09-21 Research Development Corporation Of Japan Method for growing single crystal thin films of element semiconductor
JP2587623B2 (en) * 1986-11-22 1997-03-05 新技術事業団 Epitaxial crystal growth method for compound semiconductor
JP2882605B2 (en) * 1987-08-27 1999-04-12 テキサス インスツルメンツ インコーポレイテッド Continuous growth method of strained layer superlattice structure
DE3741672A1 (en) * 1987-12-09 1989-06-22 Asea Brown Boveri METHOD AND ARRANGEMENT FOR THE SURFACE TREATMENT OF SUBSTRATES
US5338389A (en) * 1990-01-19 1994-08-16 Research Development Corporation Of Japan Method of epitaxially growing compound crystal and doping method therein
US5225366A (en) * 1990-06-22 1993-07-06 The United States Of America As Represented By The Secretary Of The Navy Apparatus for and a method of growing thin films of elemental semiconductors
TW209253B (en) * 1990-09-21 1993-07-11 Nidden Aneruba Kk
DE69233359T2 (en) * 1991-07-16 2005-06-02 Seiko Epson Corp. METHOD FOR PRODUCING A SEMICONDUCTOR THIN LAYER WITH A CHEMICAL GAS PHASE COATING SYSTEM
US7435665B2 (en) 2004-10-06 2008-10-14 Okmetic Oyj CVD doped structures

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898917A (en) * 1981-12-09 1983-06-13 Seiko Epson Corp Atomic layer epitaxial device
JPS58102516A (en) * 1981-12-14 1983-06-18 Seiko Epson Corp Semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1900116C3 (en) * 1969-01-02 1978-10-19 Siemens Ag, 1000 Berlin Und 8000 Muenchen Process for the production of high-purity monocrystalline layers consisting of silicon
SE393967B (en) * 1974-11-29 1977-05-31 Sateko Oy PROCEDURE AND PERFORMANCE OF LAYING BETWEEN THE STORAGE IN A LABOR PACKAGE
DD153899A5 (en) * 1980-02-26 1982-02-10 Lohja Ab Oy METHOD AND DEVICE FOR IMPLEMENTING THE GROWTH OF COMPOSED DUNY LAYERS

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898917A (en) * 1981-12-09 1983-06-13 Seiko Epson Corp Atomic layer epitaxial device
JPS58102516A (en) * 1981-12-14 1983-06-18 Seiko Epson Corp Semiconductor device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370515A (en) * 1986-09-12 1988-03-30 インタ−ナショナル・ビジネス・マシ−ンズ・コ−ポレ−ション Method and apparatus for chemical vapor deposition
JPS63136616A (en) * 1986-11-28 1988-06-08 Res Dev Corp Of Japan Epitaxial crystal growth method for compound semiconductor
JPS6444013A (en) * 1987-08-12 1989-02-16 Seiko Epson Corp Manufacture of silicon thin film
EP0430274A2 (en) * 1989-12-01 1991-06-05 Seiko Instruments Inc. Method of producing bipolar transistor
US5925574A (en) * 1989-12-01 1999-07-20 Seiko Instruments Inc. Method of producing a bipolar transistor
JPH03215390A (en) * 1990-01-19 1991-09-20 Res Dev Corp Of Japan Method for epitaxial growth and doping of compound crystal
JP2011254063A (en) * 2010-05-01 2011-12-15 Tokyo Electron Ltd Method for forming thin film and film formation apparatus
US8728957B2 (en) 2010-05-01 2014-05-20 Tokyo Electron Limited Thin film formation method and film formation apparatus
US9190271B2 (en) 2010-05-01 2015-11-17 Tokyo Electron Limited Thin film formation method
KR20150075066A (en) 2011-09-30 2015-07-02 도쿄엘렉트론가부시키가이샤 Thin film forming method and film forming apparatus
US9145604B2 (en) 2011-09-30 2015-09-29 Tokyo Electron Limited Thin film forming method and film forming apparatus
US9777366B2 (en) 2011-09-30 2017-10-03 Tokyo Electron Limited Thin film forming method

Also Published As

Publication number Publication date
GB8518833D0 (en) 1985-08-29
GB2162206A (en) 1986-01-29
FR2578681A1 (en) 1986-09-12
FR2578681B1 (en) 1990-10-26
JPH0766909B2 (en) 1995-07-19
GB2162206B (en) 1987-05-28
DE3526825A1 (en) 1986-02-06
DE3526825C2 (en) 1993-05-13

Similar Documents

Publication Publication Date Title
JPS6134928A (en) Growing process of element semiconductor single crystal thin film
US5250148A (en) Process for growing GaAs monocrystal film
US7396743B2 (en) Low temperature epitaxial growth of silicon-containing films using UV radiation
US4659401A (en) Growth of epitaxial films by plasma enchanced chemical vapor deposition (PE-CVD)
JPS6134929A (en) Growing device of semiconductor device
JPS62188309A (en) Vapor growth method and equipment therefor
US4773355A (en) Growth of epitaxial films by chemical vapor deposition
US6334901B1 (en) Apparatus for forming semiconductor crystal
JPH0547665A (en) Vapor growth method
GB2162862A (en) Process for forming monocrystalline thin film of compound semiconductor
JPS6134927A (en) Growing process of compound semiconductor single crystal thin film
JP2736655B2 (en) Compound semiconductor crystal growth method
JP2821557B2 (en) Method for growing compound semiconductor single crystal thin film
JP2687371B2 (en) Vapor growth of compound semiconductors
JP2577543B2 (en) Single crystal thin film growth equipment
JPH05186295A (en) Method for growing crystal
JPS61260622A (en) Growth for gaas single crystal thin film
JPH04175299A (en) Compound semiconductor crystal growth and compound semiconductor device
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
JP2567331B2 (en) Method of growing compound semiconductor single crystal thin film
JPH01158721A (en) Method and apparatus for light irradiation type low temperature mocvd
JPH01173708A (en) Semiconductor device
JP2736417B2 (en) Semiconductor element manufacturing method
JPH0547518B2 (en)
JPS647487B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees