JP3182584B2 - Compound thin film forming method - Google Patents

Compound thin film forming method

Info

Publication number
JP3182584B2
JP3182584B2 JP13254892A JP13254892A JP3182584B2 JP 3182584 B2 JP3182584 B2 JP 3182584B2 JP 13254892 A JP13254892 A JP 13254892A JP 13254892 A JP13254892 A JP 13254892A JP 3182584 B2 JP3182584 B2 JP 3182584B2
Authority
JP
Japan
Prior art keywords
thin film
compound
raw material
temperature
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13254892A
Other languages
Japanese (ja)
Other versions
JPH05326412A (en
Inventor
荘八 岩井
克信 青柳
多加志 目黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP13254892A priority Critical patent/JP3182584B2/en
Publication of JPH05326412A publication Critical patent/JPH05326412A/en
Application granted granted Critical
Publication of JP3182584B2 publication Critical patent/JP3182584B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、化合物薄膜形成方法
に関し、特に原子層単位での膜厚制御が可能で、短時間
の基板温度上昇によって高品質な化合物薄膜が得られる
化合物薄膜形成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming a compound thin film, and more particularly to a method of forming a compound thin film capable of controlling a film thickness in atomic layer units and obtaining a high-quality compound thin film by raising the substrate temperature in a short time. Things.

【0002】[0002]

【従来の技術】従来、気相法による化合物半導体薄膜単
結晶成長方法においては、通常、二種類以上の原料を同
時に基板に供給し、反応させる方法が用いられてきた。
例えば、有機金属化合物を原料に用いた気相成長法(M
OVPE)によるGaAs薄膜の結晶成長方法におい
て、ガリウム(Ga)の原料であるトルメチルガリウム
(TMG)とヒ素(As)の原料であるアルシン(As
3)とを同時に基板上に供給して結晶成長を行う方法
が用いられている。この場合、原料の供給量および供給
時間を厳密に制御することによって、基板上の結晶の成
長膜厚の精密な制御が可能になってきた。
2. Description of the Related Art Conventionally, in a method of growing a compound semiconductor thin film single crystal by a vapor phase method, usually, a method of simultaneously supplying two or more kinds of raw materials to a substrate and reacting them is used.
For example, a vapor phase growth method (M
In a method of growing a crystal of a GaAs thin film by OVPE), tolmethylgallium (TMG) as a raw material for gallium (Ga) and arsine (As) as a raw material for arsenic (As) are used.
H 3 ) is simultaneously supplied onto a substrate to perform crystal growth. In this case, by precisely controlling the supply amount and supply time of the raw material, it has become possible to precisely control the thickness of the crystal grown on the substrate.

【0003】なかでも、近年原子層オーダーの膜厚の制
御性を持つ成長方法が研究されており、その方法として
単原子層制御結晶成長法(ALE法)がある。ALE法
は薄膜を構成する原子を含む原料ガスを交互に基板上に
供給することが特徴である。例えば、GaAsの結晶成
長方法においては、TMGとアルシンを交互に供給す
る。適当な結晶成長条件の下では、TMGの供給によっ
て基板面上にモノメチルガリウム(MMG)などの一分
子層吸着が実現され、続いて供給されるアルシンとの反
応によってGaAsの一分子層が形成される。この場
合、原料の供給量によらず原料ガス供給の一サイクル毎
に一分子層の薄膜されるために、結晶の格子定数が分か
っていれば、薄膜の膜厚は成長サイクル数によって精密
に制御できる。
In particular, a growth method having a controllability of a film thickness on the order of an atomic layer has been studied in recent years, and there is a monoatomic layer controlled crystal growth method (ALE method) as the method. The ALE method is characterized in that a source gas containing atoms constituting a thin film is alternately supplied onto a substrate. For example, in a GaAs crystal growth method, TMG and arsine are supplied alternately. Under appropriate crystal growth conditions, TMG supply achieves monolayer adsorption such as monomethylgallium (MMG) on the substrate surface, followed by reaction with arsine to form a GaAs monolayer. You. In this case, a single molecular layer is formed in each cycle of the supply of the raw material gas, regardless of the supply amount of the raw material. Therefore, if the lattice constant of the crystal is known, the thickness of the thin film is precisely controlled by the number of growth cycles. it can.

【0004】前記ALE法では、原料分子の一分子層の
飽和吸着の性質等を利用した自動堆積停止機構が必要で
ある。この自動堆積停止機構とは原料分子が基板上に一
分子層からなる吸着層を形成した後は、続いて供給され
る原料分子は吸着分子により反発される性質等を利用し
て自動的に原料分子の堆積が一分子層で停止されるもの
である。
[0004] The ALE method requires an automatic deposition stopping mechanism utilizing the property of saturated adsorption of a monolayer of a source molecule. This automatic deposition stop mechanism means that after the source molecules form an adsorbed layer consisting of a monolayer on the substrate, the subsequently supplied source molecules are automatically rejected by utilizing the property of being repelled by the adsorbed molecules. The deposition of molecules is stopped at a monolayer.

【0005】従って、この自動堆積停止機構が実現され
るためには基板温度などの結晶成長条件の設定が重要で
ある。例えば、TMG一分子層のみの飽和吸着は基板の
表面温度が約500℃である時に形成され、それ以上の
温度になると多分子層が形成される度合が高くなる。従
来の有機金属化合物を原料に用いたALE法では、結晶
成長温度が低いために原料の分解によって生じる炭素成
分が不純物として結晶中に取り込まれる量が多く、高濃
度の正孔を持つP型半導体になり易い。そのために他の
不純物の導入によるN型半導体の作製及びキャリアー濃
度の制御が困難であるのが大きな欠点となっており、半
導体素子の作製等に対する障害になっている。
Therefore, in order to realize this automatic deposition stopping mechanism, it is important to set crystal growth conditions such as the substrate temperature. For example, the saturated adsorption of only the TMG monolayer is formed when the surface temperature of the substrate is about 500 ° C., and when the temperature is higher than that, the degree of formation of the polylayer increases. In the conventional ALE method using an organometallic compound as a raw material, a large amount of a carbon component generated by decomposition of the raw material is taken into a crystal as an impurity due to a low crystal growth temperature. Easy to be. For this reason, it is a major disadvantage that it is difficult to manufacture an N-type semiconductor and control the carrier concentration by introducing other impurities, which is an obstacle to the manufacture of a semiconductor element and the like.

【0006】結晶中に不純物として取り込まれる炭素成
分量を少なくする方法として、結晶成長時に基板全体の
温度を700℃程度まで定常的に上げておく方法がある
(Appl.Phys.Lett.,Vol.59,No.19,P2397 4 November 19
91)。しかし、この方法では結晶中の炭素は脱離しやす
くなるが、基板温度が高過ぎるため多分子層からなる結
晶が形成しやすくなり一分子層からなる薄膜形成のため
には非常に厳密な原料の供給時間のコントロールが必要
である。
As a method of reducing the amount of a carbon component incorporated as an impurity into a crystal, there is a method of constantly raising the temperature of the entire substrate to about 700 ° C. during crystal growth (Appl. Phys. Lett., Vol. 59, No.19, P2397 4 November 19
91). However, in this method, carbon in the crystal is easily desorbed, but since the substrate temperature is too high, a crystal composed of multi-layers is easily formed, and a very strict raw material is required for forming a thin film composed of one molecular layer. It is necessary to control the supply time.

【0007】[0007]

【発明が解決しようとする課題】前述のように有機金属
化合物を原料に用いるALE法においては、原料分子を
基板表面に吸着させ、表面での原料分子の反応を利用す
るために、分解反応で生じる炭素化合物が結晶表面に多
く存在する。ALE法では一分子層飽和吸着を達成する
ための温度が通常の結晶成長温度に比較して低いため
に、炭素化合物の脱離速度が遅くて基板表面に滞在する
時間が長い。従って、ALE法で作られる結晶は、通常
のMOVPE法で作られる結晶と比較して炭素濃度が大
きいために、他の不純物を導入して電子あるいは正孔濃
度の制御を行うことが困難である。
As described above, in the ALE method using an organometallic compound as a raw material, the raw material molecules are adsorbed on the substrate surface, and the reaction of the raw material molecules on the surface is used. The resulting carbon compounds are abundant on the crystal surface. In the ALE method, since the temperature for achieving monolayer saturated adsorption is lower than the normal crystal growth temperature, the desorption rate of the carbon compound is slow and the time for staying on the substrate surface is long. Therefore, since the crystal formed by the ALE method has a higher carbon concentration than the crystal formed by the normal MOVPE method, it is difficult to control the electron or hole concentration by introducing other impurities. .

【0008】また、前記不具合をなくすために結晶成長
温度を高くすると、多分子層ができ易くなる欠点があ
る。そこで、本発明の目的は、従来の単原子層制御結晶
成長方法を改良して、結晶等の化合物薄膜中の炭素成分
濃度が低減化し、結晶欠陥のない品質が向上した化合物
薄膜の形成方法を提供することである。
Further, when the crystal growth temperature is increased to eliminate the above-mentioned disadvantage, there is a disadvantage that a polymolecular layer is easily formed. Accordingly, an object of the present invention is to improve the conventional monoatomic layer controlled crystal growth method to reduce the carbon component concentration in a compound thin film such as a crystal, and to provide a method of forming a compound thin film having improved quality without crystal defects. To provide.

【0009】[0009]

【課題を解決するための手段】本発明の上記目的は次の
構成によって達成される。すなわち、下記の工程(a)
〜(e)を含む化合物薄膜形成方法である。 (a)定常温度に加熱した基板上に第一原料化合物をパ
ルス状にして供給し、第一原料化合物あるいはその分解
物を一分子層で基板表面に飽和吸着させる工程、 (b)前記第一原料化合物を供給停止した後、所定の時
間をおく工程、 (c)前記第一原料化合物とは異なる第二原料化合物を
基板上にパルス状にして供給し、同時にパルス状の光を
照射して、飽和吸着している第一原料化合物あるいはそ
の分解物からなる分子と反応させて一分子層の化合物薄
膜を形成させる工程、 (d)基板の温度を初期の定常温度まで下降させる工
程、 (e)前記(a)、(b)、(c)および(d)の工程
を複数回繰り返して、所要の厚みの化合物薄膜を形成さ
せる工程。
The above object of the present invention is achieved by the following constitution. That is, the following step (a)
And (e). (A) a step of supplying the first raw material compound in a pulse form onto the substrate heated to a steady temperature, and allowing the first raw material compound or a decomposition product thereof to be saturatedly adsorbed on the substrate surface in a monomolecular layer; At a predetermined time after the supply of the raw material compound is stopped
Step placing between the (c) the supply and the pulsed substrate different second starting compound from the first raw material compound simultaneously pulsed light
Irradiating and reacting with the molecules of the first raw material compound or its decomposed product that is saturated and adsorbed to form a monomolecular compound thin film; and (d) lowering the temperature of the substrate to an initial steady temperature. (E) a step of forming a compound thin film having a required thickness by repeating the steps (a), (b), (c) and (d) a plurality of times.

【0010】[0010]

【0011】本発明の第一原料化合物としては、例え
ば、TMG(トリメチルガリウム)、TEG(トリエチ
ルガリウム)、TMA(トリメチルアルミニウム)、T
MI(トリチメルインジウム)などの第3族原子を含む
原料を用い、第二原料化合物としては、AsH3(アル
シン)、PH3(ホスフィン)等の第5族原子を含む原
料を用いることができる。
The first raw material compound of the present invention includes, for example, TMG (trimethylgallium), TEG (triethylgallium), TMA (trimethylaluminum),
A raw material containing a Group 3 atom, such as MI (trichymel indium), can be used. As the second raw material compound, a raw material containing a Group 5 atom, such as AsH 3 (arsine) or PH 3 (phosphine), can be used. .

【0012】また、本発明の化合物薄膜形成方法によ
り、第一原料化合物の一分子層の飽和吸着が達成される
定常温度は第一原料化合物により多少の差異はあり、そ
れぞれ次の温度付近である。 TMG:約500℃、 TEG:約350℃、 TMA:約500℃、TMI:約360℃
Further, the steady-state temperature at which the monomolecular layer of the first raw material compound is saturated and adsorbed by the method of forming a compound thin film of the present invention is slightly different depending on the first raw material compound, and is approximately the following temperature. . TMG: about 500 ° C, TEG: about 350 ° C, TMA: about 500 ° C, TMI: about 360 ° C

【0013】また、パルス状光ビームによる加熱による
基板表面の温度上昇の例示としては約100℃〜200
℃の範囲である。この例示に限定されるものではない。
なお、この基板表面の温度上昇は数秒間内で行うことが
望ましい。なぜなら、本発明の方法を半導体デバイスに
適用する場合に、例えばGaAs基板上に半導体層を形
成する場合、GaAs基板表面の温度上昇期間が長すぎ
ると基板中のAs成分が脱離する場合があるからであ
る。
Further, about 100 ° C. to 200 DEG as illustrated in temperature rise of the substrate surface by heating due to the pulsed light beam
It is in the range of ° C. It is not limited to this example.
It is desirable that the temperature increase on the substrate surface be performed within a few seconds. This is because, when the method of the present invention is applied to a semiconductor device, for example, when a semiconductor layer is formed on a GaAs substrate, if the temperature rising period of the GaAs substrate surface is too long, the As component in the substrate may be desorbed. Because.

【0014】パルス状の光ビームによる基板の表面の加
熱と同時に、または該加熱より少し遅れて第二原料化合
物を供給して基板表面に吸着された第一原料化合物分子
と反応させる。第二原料化合物は前記定常温度より10
0〜200℃上昇した温度範囲では一分子層より多くは
堆積しないために、第一原料化合物と第二原料化合物か
ら得られる一分子層薄膜、例えばGaAs等の第3族−
第5族化合物の一分子層薄膜が形成される。
[0014] Simultaneously with the heating of the pulse-like surface of the substrate by the light beam, or a little later than the heating by supplying a second starting compound is reacted with the first raw material compound molecules adsorbed on the substrate surface. The second raw material compound is 10
In a temperature range of 0 to 200 ° C., since no more than one molecular layer is deposited, a monolayer thin film obtained from the first raw material compound and the second raw material compound, for example, a Group 3 material such as GaAs.
A monolayer thin film of the group V compound is formed.

【0015】本発明で用いられるパルス状の光ビームと
しては、特に限定はないが、効率良く基板の表面を加熱
できる近赤外線、長波長側の可視光線が好ましい。本発
明の化合物薄膜形成方法は半導体レーザの量子井戸活性
層の膜厚制御等の半導体デバイスの膜厚制御に利用でき
る。また、本発明は結晶性を問題にしない材料、例え
ば、X線導波路材料に一分子層単位で薄膜を形成する場
合に適用できる。
[0015] with <br/> the pulsed light beam used in the present invention is not particularly limited, efficiently near infrared rays can heat the surface of the substrate, the visible light on the long wavelength side is preferable. The compound thin film forming method of the present invention can be used for controlling the thickness of a semiconductor device such as controlling the thickness of a quantum well active layer of a semiconductor laser. Further, the present invention can be applied to a case where a thin film is formed on a material which does not make crystallinity a problem, for example, an X-ray waveguide material in a unit of one molecular layer.

【0016】[0016]

【作用】本発明によれば、基板上に一分子層飽和吸着が
起こる定常温度領域で第一原料化合物を基板上に供給す
ると一分子層飽和吸着が形成される。その後、基板表面
の温度を一定温度上昇させ、前記基板の表面の加熱と同
時に、または該加熱より遅れて第二原料化合物を供給し
て基板表面に吸着された第一原料化合物分子と反応させ
ると、第一原料化合物と第二原料化合物との反応は促進
され、また、第一原料化合物に由来する化合物薄膜形成
に不要な分子または反応によって生じる化合物薄膜形成
に不要な分子である炭素化合物等の脱離を促進させるこ
とができる。
According to the present invention, when the first raw material compound is supplied onto the substrate in a steady temperature region where monolayer saturation adsorption occurs on the substrate, monolayer saturation adsorption is formed. Thereafter, the temperature of the substrate surface is raised by a certain temperature, and simultaneously with or after the heating of the surface of the substrate, the second source compound is supplied to react with the first source compound molecules adsorbed on the substrate surface. The reaction between the first raw material compound and the second raw material compound is accelerated, and a carbon compound or the like that is unnecessary for forming a compound thin film derived from the first raw material compound or unnecessary for forming a compound thin film generated by the reaction. Desorption can be promoted.

【0017】こうして、化合物薄膜中に取り込まれる炭
素成分濃度を大きく減少させることが可能となる。さら
に、化合物薄膜が結晶の場合は基板表面の前記温度上昇
によって結晶表面の原子の動きを促進させることがで
き、結晶欠陥の生成を減少させることもできる。
In this way, it is possible to greatly reduce the concentration of the carbon component taken into the compound thin film. Further, when the compound thin film is a crystal, the movement of atoms on the crystal surface can be promoted by the temperature rise on the substrate surface, and the generation of crystal defects can be reduced.

【0018】また、パルス状の光ビームのパルス幅を短
くすることによって、温度上昇が基板表面の極めて浅い
領域のみに制限されるので、光ビームの照射を停止した
後の基板表面の温度は、基板表面から基板内部への熱拡
散によって定常温度まで急速に下降する。その後、再び
第一原料化合物を供給する。このように基板表面の温度
を急上昇および急冷却させ、第一原料化合物の供給時の
温度を一定にして結晶成長等の化合物薄膜形成を繰り返
すことによって、不純物としての炭素濃度および結晶欠
陥が減少した高品質な化合物薄膜が形成される。
Further, by reducing the pulse width of the pulsed light beam, the temperature rise is limited to only a very shallow region of the substrate surface. Therefore, the temperature of the substrate surface after stopping the irradiation of the light beam becomes The temperature rapidly decreases to a steady temperature due to thermal diffusion from the substrate surface to the inside of the substrate. Thereafter, the first raw material compound is supplied again. As described above, the temperature of the substrate surface was rapidly increased and rapidly cooled, and the compound thin film formation such as crystal growth was repeated while the temperature at the time of supplying the first raw material compound was kept constant, whereby the carbon concentration as an impurity and crystal defects were reduced. A high-quality compound thin film is formed.

【0019】[0019]

【実施例】本発明の実施例を図面とともに説明する。本
実施例は図の装置を用いて、GaAsの化合物薄膜を
形成する方法である。図の装置において、キャリアー
ガスとしての水素ガス1、第一原料化合物としてのトリ
メチルガリウム(TMG)2、第二原料化合物としての
アルシン(AsH)3はそれぞれガスバルブ4を介し
て反応炉5内に供給され、排気口6を通して排気され
る。反応炉5はGaAs基板7の表面を光ビーム(本実
施例では波長500〜2000nmの近赤外線等を用い
た)8で照射するための平坦で透明な石英ガラスからな
る窓9を備え、かつGaAs基板7を一分子層形成のた
めの定常温度(約500℃)に加熱するためのヒーター
10を設けている。反応炉の窓9の外部には、光ビーム
8の照射時間を制御したパルス状の光ビームとするため
のシャッター11を備えている。
An embodiment of the present invention will be described with reference to the drawings. This embodiment using the apparatus of FIG. 2, a method for forming a compound thin film of GaAs. In the apparatus of FIG. 2 , hydrogen gas 1 as a carrier gas, trimethylgallium (TMG) 2 as a first raw material compound, and arsine (AsH 3 ) 3 as a second raw material compound are each supplied to a reaction furnace 5 through a gas valve 4. And exhausted through the exhaust port 6. The reactor 5 has a window 9 made of flat and transparent quartz glass for irradiating the surface of the GaAs substrate 7 with a light beam (in this embodiment, near-infrared light having a wavelength of 500 to 2000 nm) 8 and GaAs. A heater 10 for heating the substrate 7 to a steady temperature (about 500 ° C.) for forming a monolayer is provided. A shutter 11 is provided outside the window 9 of the reaction furnace to control the irradiation time of the light beam 8 into a pulsed light beam.

【0020】この製造装置において、まず反応炉5内の
ヒーター10の上にGaAs基板7を置き、約500℃
の温度に加熱する。水素ガス1を3リットル/分の流量
で流し、反応炉5内を100mbalの一定圧力に保
つ。一サイクル当たり2×10-7モルのTMG2を反応
炉5内に供給する。TMG2の供給後、反応炉5内の基
板7に吸着されないTMG2を水素気流で取り去るため
のパージ時間(1秒)をおく。次いで、シャッター11
の開閉制御によりGaAs基板7表面をパルス状の光ビ
ーム8で照射して、基板7の表面温度を約650℃に上
昇させる。光ビーム8の照射と同時に、一サイクル当た
り3×10-5モルのAsH33をガスバルブ4でパルス
状にして反応炉内に供給する。ついで、再び過剰なAs
3を水素気流で取り去るためのパージ時間(1秒)を
おく。
In this manufacturing apparatus, first, a GaAs substrate 7 is placed on a heater 10 in a reaction
Heat to a temperature of The hydrogen gas 1 is flowed at a flow rate of 3 liter / min, and the inside of the reaction furnace 5 is maintained at a constant pressure of 100 mbal. 2 × 10 −7 mol of TMG2 is supplied into the reactor 5 per cycle. After the supply of TMG2, a purge time (1 second) for removing TMG2 not adsorbed on the substrate 7 in the reaction furnace 5 with a hydrogen stream is set. Next, the shutter 11
Irradiates the surface of the GaAs substrate 7 with a pulsed light beam 8 to control the surface temperature of the substrate 7 to about 650 ° C. Simultaneously with the irradiation of the light beam 8, 3 × 10 −5 mol of AsH 3 per cycle is supplied into the reaction furnace in a pulse form by the gas valve 4. Then again excess As
A purge time (1 second) for removing H 3 with a hydrogen stream is set.

【0021】このように、TMG2とAsH3を交互に
反応炉5内に供給する。光ビーム8による加熱停止後は
基板表面温度が定常温度まで減少した後で、再びTMG
2を供給する。このサイクルを繰り返すことでGaAs
の薄膜を基板7上に製造することができる。なお、この
基板7の加熱温度やTMG2、AsH33のガスなどの
供給量については適宜に変更することができる。
As described above, TMG 2 and AsH 3 are alternately supplied into the reactor 5. After the heating by the light beam 8 is stopped, after the substrate surface temperature decreases to the steady temperature, the TMG is again
Supply 2. By repeating this cycle, GaAs
Can be manufactured on the substrate 7. Incidentally, the supply amount of such heating temperature and TMG2, AsH 3 3 gas of the substrate 7 may be appropriately changed.

【0022】図1は、これらの原料化合物2、3のガス
の供給および光パルスについての時系列を示す。TMG
2を1秒間供給し、基板7表面に飽和吸着させる。そし
て、1秒間のTMG2のパージ時間を置いて光パルス8
を1秒間照射する。この時の基板7の表面温度は、定常
温度(T0:500℃)から(T0+△T:500+15
0℃)まで上昇する。このとき基板7表面に飽和吸着さ
れたTMG2から生成する炭素成分は基板7の表面から
脱離する。
FIG. 1 shows the time series of the gas supply and the light pulse of these starting compounds 2 and 3. TMG
2 is supplied for one second to cause saturated adsorption on the surface of the substrate 7. Then, after a purge time of 1 second TMG2, the light pulse 8
For 1 second. At this time, the surface temperature of the substrate 7 is changed from the steady temperature (T 0 : 500 ° C.) to (T 0 + ΔT: 500 + 15).
0 ° C). At this time, the carbon component generated from the TMG 2 saturated and adsorbed on the surface of the substrate 7 is desorbed from the surface of the substrate 7.

【0023】このことを図で説明する。化合物薄膜の
発光スペクトルの測定から結晶品質の評価を行った。図
に示したように、光パルスを照射しないで350℃で
作製した薄膜からの発光スペクトルのピークは1.47
8eVに現れた。これは炭素不純物による発光ピークに
対応しており炭素濃度が高いことを示す。一方、光パル
スを照射して作製した薄膜からの発光スペクトルのピー
クは高エネルギー領域の1.497eVに現れた。これ
は炭素不純物濃度の低い純度の良い薄膜からの発光に対
応している。従って、光パルス照射によって薄膜中の炭
素成分濃度が著しく減少したことを示している。
[0023] This will be described in Figure 3. Crystal quality was evaluated by measuring the emission spectrum of the compound thin film. Figure
As shown in FIG. 3 , the peak of the emission spectrum from the thin film formed at 350 ° C. without irradiating a light pulse was 1.47.
Appeared at 8 eV. This corresponds to the emission peak due to carbon impurities, indicating that the carbon concentration is high. On the other hand, a peak of an emission spectrum from a thin film formed by irradiation with a light pulse appeared at 1.497 eV in a high energy region. This corresponds to light emission from a high-purity thin film having a low carbon impurity concentration. Therefore, it is shown that the concentration of the carbon component in the thin film was significantly reduced by the light pulse irradiation.

【0024】光ビーム8の照射開始と同時にAsH3
を2秒間供給する。次いで、1秒間のAsH3ガスのパ
ージ時間を置き、この間に基板7表面の温度を定常温度
(T0:500℃)まで下降させる。この様にして一サ
イクルのGaAsの一分子層の結晶成長が終了する。こ
の操作をn回繰り返すことによってn層のGaAs層を
形成させる。
[0024] The irradiation at the same time as the start of AsH 3 3 of the light beam 8
For 2 seconds. Next, a purge time of 1 second of AsH 3 gas is set, during which time the temperature of the surface of the substrate 7 is lowered to a steady temperature (T 0 : 500 ° C.). Thus, one cycle of GaAs monolayer crystal growth is completed. By repeating this operation n times, an n-type GaAs layer is formed.

【0025】[0025]

【0026】この様に、光ビームの照射によって基板7
表面の温度が上昇しても、TMG2の供給時はGaAs
基板7温度を定常温度(T0:約500℃)に保つこと
によって一分子層飽和吸着の条件を維持し、単原子層制
御結晶成長が可能である。このとき、TMG2供給後の
短時間の温度上昇によって結晶の欠陥がなくなり、品質
が向上する。また、発光強度が50倍程に大きくなる結
果が得られた。このことは、結晶品質が向上したことを
示す。なお、本実施例において基板温度の定常温度を約
500℃としたが、これは反応装置の大きさ等の影響で
適宜最適温度を選択することができる。
As described above, the substrate 7 is irradiated with the light beam.
Even when the temperature of the surface rises, GaAs is not supplied when TMG2 is supplied.
By maintaining the temperature of the substrate 7 at a steady temperature (T 0 : about 500 ° C.), the condition of monolayer saturated adsorption is maintained, and monoatomic layer controlled crystal growth is possible. At this time, crystal defects are eliminated due to a short temperature rise after the supply of TMG2, and the quality is improved. In addition, the result that the emission intensity was increased about 50 times was obtained. This indicates that the crystal quality has been improved. In this embodiment, the steady temperature of the substrate is set to about 500 ° C., but the optimum temperature can be appropriately selected depending on the size of the reaction apparatus.

【0027】[0027]

【発明の効果】以上説明した通り、この発明によって優
れた品質を持ち、一分子層オーダーの膜厚制御性を有す
る化合物薄膜の形成が可能になり、さらに次のような効
果がある。 (1)膜厚の制御が一分子層単位で精密にできる。 (2)化合物薄膜が結晶の場合は、その品質が大きく改
善され、例えば量子井戸活性層の膜厚制御が容易にな
り、高性能の半導体レーザ等の半導体デバイスの作製が
容易になる。 (3)本発明によるALE方法は前記半導体素子製造ま
たはX線導波路材料製造等への適用が可能である。
As described above, according to the present invention, it is possible to form a compound thin film having excellent quality and a thickness controllability on the order of one molecular layer, and further has the following effects. (1) The film thickness can be precisely controlled in units of one molecular layer. (2) When the compound thin film is a crystal, the quality is greatly improved, for example, the thickness of the quantum well active layer can be easily controlled, and the manufacture of a high-performance semiconductor device such as a semiconductor laser can be facilitated. (3) The ALE method according to the present invention can be applied to the manufacture of the semiconductor device or the manufacture of the X-ray waveguide material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例の原料ガス供給、光パル
ス、および基板温度を時系列で示した概念図である。
FIG. 1 is a conceptual diagram showing a source gas supply, an optical pulse, and a substrate temperature in a time series according to an embodiment of the present invention.

【図2】 この発明の方法に用いる製造装置の一例を示
した構成図である。
FIG. 2 is a configuration diagram showing an example of a manufacturing apparatus used in the method of the present invention.

【図3】 光パルス照射割合に対する発光スペクトルピ
ーク位置を示した図である。
FIG. 3 is a diagram showing an emission spectrum peak position with respect to a light pulse irradiation ratio.

【符号の説明】[Explanation of symbols]

1…キャリヤーガス(水素ガス)、2…第一原料化合物
(トリメチルガリウム)、3…第二原料化合物(アルシ
ン)、4…ガスバルブ、5…反応炉、6…排気口、7…
GaAs基板、8…光ビーム、9…窓、10…ヒータ
ー、11…シャッター
DESCRIPTION OF SYMBOLS 1 ... Carrier gas (hydrogen gas), 2 ... First raw material compound (trimethylgallium), 3 ... Second raw material compound (arsine), 4 ... Gas valve, 5 ... Reaction furnace, 6 ... Exhaust port, 7 ...
GaAs substrate, 8: light beam, 9: window, 10: heater, 11: shutter

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−264218(JP,A) 特開 昭62−182195(JP,A) 特開 平4−212415(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/205 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-1-264218 (JP, A) JP-A-62-182195 (JP, A) JP-A-4-212415 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01L 21/205

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下記の工程を含むことを特徴とする化合
物薄膜形成方法。 (a)定常温度に加熱した基板上に第一原料化合物をパ
ルス状にして供給し、第一原料化合物あるいはその分解
物を一分子層で基板表面に飽和吸着させる工程、 (b)前記第一原料化合物を供給停止した後、所定の時
間をおく工程、 (c)前記第一原料化合物とは異なる第二原料化合物を
基板上にパルス状にして供給し、同時にパルス状の光を
照射して、飽和吸着している第一原料化合物あるいはそ
の分解物からなる分子と反応させて一分子層の化合物薄
膜を形成させる工程、 (d)基板の温度を初期の定常温度まで下降させる工
程、 (e)前記(a)、(b)、(c)および(d)の工程
を複数回繰り返して、所要の厚みの化合物薄膜を形成さ
せる工程。
1. A method for forming a compound thin film, comprising the following steps. (A) a step of supplying the first raw material compound in a pulse form onto the substrate heated to a steady temperature, and allowing the first raw material compound or a decomposition product thereof to be saturatedly adsorbed on the substrate surface in a monomolecular layer; At a predetermined time after the supply of the raw material compound is stopped
Step placing between the (c) the supply and the pulsed substrate different second starting compound from the first raw material compound simultaneously pulsed light
Irradiating and reacting with the molecules of the first raw material compound or its decomposed product that is saturated and adsorbed to form a monomolecular compound thin film; and (d) lowering the temperature of the substrate to an initial steady temperature. (E) a step of forming a compound thin film having a required thickness by repeating the steps (a), (b), (c) and (d) a plurality of times.
【請求項2】 第一原料化合物の供給による一分子層飽
和吸着が形成された後で、基板表面の温度上昇によって
化合物薄膜形成に不要な分子の脱離を促進させることを
特徴とする請求項1記載の化合物薄膜形成方法。
2. A method according to claim 1, wherein after the monolayer saturated adsorption is formed by supplying the first raw material compound, desorption of molecules unnecessary for forming the compound thin film is promoted by increasing the temperature of the substrate surface. 2. The method for forming a compound thin film according to item 1.
【請求項3】 基板表面の温度上昇によって第二原子化
合物との反応を促進させ、化合物薄膜形成に不要な分子
の脱離を促進させることを特徴とする請求項1記載の化
合物薄膜形成方法。
3. The compound thin film forming method according to claim 1, wherein the reaction with the second atomic compound is promoted by increasing the temperature of the substrate surface, and desorption of molecules unnecessary for forming the compound thin film is promoted.
【請求項4】 基板表面の温度上昇によって基板表面で
の原子の移動を促進させ、化合物薄膜形成時の結晶欠陥
を減少させることを特徴とする請求項1記載の化合物薄
膜形成方法。
4. The compound thin film forming method according to claim 1, wherein the increase in the temperature of the substrate surface promotes the movement of atoms on the substrate surface to reduce crystal defects at the time of forming the compound thin film.
JP13254892A 1992-05-25 1992-05-25 Compound thin film forming method Expired - Fee Related JP3182584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13254892A JP3182584B2 (en) 1992-05-25 1992-05-25 Compound thin film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13254892A JP3182584B2 (en) 1992-05-25 1992-05-25 Compound thin film forming method

Publications (2)

Publication Number Publication Date
JPH05326412A JPH05326412A (en) 1993-12-10
JP3182584B2 true JP3182584B2 (en) 2001-07-03

Family

ID=15083864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13254892A Expired - Fee Related JP3182584B2 (en) 1992-05-25 1992-05-25 Compound thin film forming method

Country Status (1)

Country Link
JP (1) JP3182584B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6538095B2 (en) 1999-10-08 2003-03-25 Mitsui Takada Chemicals Inc. Solvent-free two-component curable adhesive composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7368014B2 (en) 2001-08-09 2008-05-06 Micron Technology, Inc. Variable temperature deposition methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6538095B2 (en) 1999-10-08 2003-03-25 Mitsui Takada Chemicals Inc. Solvent-free two-component curable adhesive composition

Also Published As

Publication number Publication date
JPH05326412A (en) 1993-12-10

Similar Documents

Publication Publication Date Title
DenBaars et al. Atomic layer epitaxy of compound semiconductors with metalorganic precursors
US6334901B1 (en) Apparatus for forming semiconductor crystal
JPH0782991B2 (en) Method of growing compound semiconductor single crystal thin film
JP3182584B2 (en) Compound thin film forming method
US5851297A (en) Method and apparatus for preparing crystalline thin-films for solid-state lasers
JP3731147B2 (en) Ultraviolet light emitter and method for producing the same
US5213654A (en) Vapor-phase epitaxial growth method for semiconductor crystal layers
JP3077781B2 (en) Method for growing indium gallium nitride
JP2821557B2 (en) Method for growing compound semiconductor single crystal thin film
JPH03196643A (en) Vapor phase epitaxy
JP3090232B2 (en) Compound semiconductor thin film formation method
JP2000100728A (en) Crystal growth equipment
JPH0431391A (en) Epitaxial growth
JP2549835B2 (en) Method for manufacturing compound semiconductor thin film
JPH0787179B2 (en) Method for manufacturing superlattice semiconductor device
JPH0212814A (en) Crystal growth method of compound semiconductor
JPH04187597A (en) Production of thin film of gallium nitride
JPH05226257A (en) Vapor growth method and photo assisted vapor growth apparatus
JPH0442891A (en) Production of semiconductor thin film
JPH05186295A (en) Method for growing crystal
JPS61260622A (en) Growth for gaas single crystal thin film
JPH0267721A (en) Manufacture of compound semiconductor thin film
JPH0633228B2 (en) Molecular beam epitaxy growth method
JPH05251369A (en) Organic metal chemical vapor growth method
JPH01117016A (en) Hetero structure forming method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees