JPS61116735A - Built-in resistor of cathode ray tube - Google Patents

Built-in resistor of cathode ray tube

Info

Publication number
JPS61116735A
JPS61116735A JP59237951A JP23795184A JPS61116735A JP S61116735 A JPS61116735 A JP S61116735A JP 59237951 A JP59237951 A JP 59237951A JP 23795184 A JP23795184 A JP 23795184A JP S61116735 A JPS61116735 A JP S61116735A
Authority
JP
Japan
Prior art keywords
resistor
potential difference
built
electrode terminal
resistor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59237951A
Other languages
Japanese (ja)
Other versions
JPH0552621B2 (en
Inventor
Kazuyuki Oota
太田 一幸
Yoshiro Ishikawa
芳朗 石川
Shinobu Mihashi
三橋 忍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP59237951A priority Critical patent/JPS61116735A/en
Publication of JPS61116735A publication Critical patent/JPS61116735A/en
Publication of JPH0552621B2 publication Critical patent/JPH0552621B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/96One or more circuit elements structurally associated with the tube

Abstract

PURPOSE:To suppress a change of resistance value of a resistor layer before and after knocking treatment to the minimum by providing a conductive layer part connected to a terminal on the low pressure side on a high potential difference part on an insulation substrate. CONSTITUTION:A conductive layer part 20 is not connected to a resistor layer 5a' and a U-shaped conductive connection part 22 while being connected to an earthing electrode terminal 4 through a connection part 21. And these partial pressure resistor layer 5' and the conductive layer part 20 are coated with an insulating film 6. When knocking voltage is to be impressed on a high pressure electrode terminal 2, an electric charge amount in the surface part of the insulating film 6 corresponding to the high potential difference part including the largest potential difference position is reduced when the conductive layer part 20 is made to be of earthing potential thus suppressing a rise of surface potential. Thereby, insulation deterioration or damage of an insulating film is prevented to be generated thus being able to suppress a change of resistance value of the resistor layer before and after knocking treatment to the minimum.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、カラー陰極線管等の管体内に、電子銃と共に
組込まれる内蔵抵抗器に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a built-in resistor that is incorporated together with an electron gun into a tube such as a color cathode ray tube.

従来の技術 従来、カラーテレビジョン受像機に用いられるカラー陰
極線管等において、陽極電圧以外に、例えば、コンバー
ジェンス電極やフォーカス電極等に供給される高電圧が
必要とされるものがある。
2. Description of the Related Art Conventionally, in color cathode ray tubes and the like used in color television receivers, in addition to the anode voltage, high voltages are required to be supplied to, for example, convergence electrodes and focus electrodes.

斯かる場合、管体内に電子銃と共に分圧用の抵抗器を内
蔵抵抗器として組込み、これによって陽極電圧を分圧し
て夫々の高電圧を得るようにすることが提案されており
、このように使用される従来の内蔵抵抗器の一例として
、第3図及び第4図に示される如くのものが知られてい
る。
In such cases, it has been proposed to incorporate a resistor for voltage division into the tube together with the electron gun as a built-in resistor, thereby dividing the anode voltage to obtain the respective high voltages. As an example of a conventional built-in resistor, those shown in FIGS. 3 and 4 are known.

第3図は外表部を形成する絶縁被膜上から透視した状態
の従来の内蔵抵抗器7を示し、第4図はこの従来の内蔵
抵抗器7の全体の側面を示す。この第3図及び第4図に
示される内蔵抵抗器7においては、セラミック板等の絶
縁基板1上に、導電層が被着されて形成された端子部、
即ち、陰極線管の陽極電圧が供給される高圧電極端子2
.コンバージェンス電極用の高電圧、即ち、コンバージ
ェンス電圧が得られるコンバージェンス電極端子(以下
、CV電極端子という)3及びアース電極端子4が設け
られ、また、CV電極端子3とアース電極端子4との間
には所要の抵抗値を有するジグザグ状パターンとされた
抵抗体層5aが、高圧電極端子2とCV電極端子3との
間には同じく所要の抵抗値を有する抵抗体層5bが、さ
らに、抵抗体層5a及び5bとCV電極端子3の間に微
調整用抵抗体層5cが、夫々被着されて、分圧抵抗体層
5が形成されている。そして、第3図の斜線部分には、
分圧抵抗体層5を覆って、鉛ガラス等からなる絶縁被膜
6が施されている。なお、微調整用抵抗体層5cは、内
蔵抵抗器7の製造工程においてその一部を削除すること
により、各端子間の抵抗体層5a及び5bの抵抗値を調
整することができるにように設けられている。
FIG. 3 shows the conventional built-in resistor 7 seen through from above the insulating coating forming the outer surface, and FIG. 4 shows a side view of the entire conventional built-in resistor 7. The built-in resistor 7 shown in FIGS. 3 and 4 includes a terminal portion formed by depositing a conductive layer on an insulating substrate 1 such as a ceramic plate,
That is, the high voltage electrode terminal 2 to which the anode voltage of the cathode ray tube is supplied.
.. A convergence electrode terminal (hereinafter referred to as CV electrode terminal) 3 and a ground electrode terminal 4 from which a high voltage for the convergence electrode, that is, a convergence voltage can be obtained, and a ground electrode terminal 4 are provided, and between the CV electrode terminal 3 and the ground electrode terminal 4, , a resistor layer 5a having a zigzag pattern having a required resistance value, a resistor layer 5b having the same required resistance value between the high voltage electrode terminal 2 and the CV electrode terminal 3; A resistor layer 5c for fine adjustment is deposited between the layers 5a and 5b and the CV electrode terminal 3, respectively, to form a voltage dividing resistor layer 5. And in the shaded area in Figure 3,
An insulating coating 6 made of lead glass or the like is applied to cover the voltage dividing resistor layer 5. Note that by removing a portion of the fine adjustment resistor layer 5c during the manufacturing process of the built-in resistor 7, the resistance value of the resistor layers 5a and 5b between each terminal can be adjusted. It is provided.

斯かる構成を有する内蔵抵抗器7がカラー陰極線管に組
込まれた状態を第5図に示す。ここで、陰極線管の管体
8のネック部りa内に電子銃構体9が配置されており、
この電子銃構体9は、3個のカソードKに対して共通に
第1グリツド電極G1、第2グリッド電極G2.第3グ
リツド電極G3、第4グリツド電極G4及び第5グリツ
ド電極G5が順次同軸上に配列されて形成されている。
FIG. 5 shows a state in which the built-in resistor 7 having such a configuration is incorporated into a color cathode ray tube. Here, an electron gun assembly 9 is disposed within the neck portion a of the tube body 8 of the cathode ray tube.
This electron gun assembly 9 includes a first grid electrode G1, a second grid electrode G2 . A third grid electrode G3, a fourth grid electrode G4, and a fifth grid electrode G5 are arranged coaxially in this order.

そして、第5グリツド電極G5の後段には、コンバージ
ェンス手段10が配置されている。各電極Gl、G2.
G3.G4及びG5、及び、コンバージェンス手段10
は、相互に所定の位置関係を保持して、ビーディングガ
ラス11によって機械的に連結されており、第3グリツ
ド電極G3と第5グリツド電極G5とは、導線13によ
って電気的に接続されている。また、コンバージェンス
手段1゜は、導電板14を介して第5グリツド電極G5
に電気的に接続されて相対向する内側偏向電極板10a
及び10bと、その外側にこれら内側偏向電極板10a
及び10bと対向して配置される外側偏向電極板10c
及び10dとを有して形成されている。
A convergence means 10 is arranged after the fifth grid electrode G5. Each electrode Gl, G2.
G3. G4 and G5 and convergence means 10
are mechanically connected by a beading glass 11 while maintaining a predetermined positional relationship with each other, and the third grid electrode G3 and the fifth grid electrode G5 are electrically connected by a conductive wire 13. . Further, the convergence means 1° connects the fifth grid electrode G5 via the conductive plate 14.
inner deflection electrode plates 10a that are electrically connected to and face each other;
and 10b, and these inner deflection electrode plates 10a on the outside thereof.
and an outer deflection electrode plate 10c disposed opposite to 10b.
and 10d.

このような電子銃構体9に対して、第3図及び第4図に
示される如くの内蔵抵抗器7が取り付けられており、こ
の内蔵抵抗器7の高圧電極端子2が第5グ1.ソド電極
G5に導電性取付は片12を介して連結されている。管
体8のファンネル部8bの内壁には、ネック部8aの内
壁にまで伸びるグラファイト導電膜15が被着されてお
り、ファンネル部8bに設けられた高圧供給ボタン、即
ち、陽極ボタン(図示されていない)を通じて陽極電圧
が供給される。そして、導電板14には、導電スプリン
グ16が設けられていて、この導電スプリング16がグ
ラファイト導電膜15に接触することにより、第5グリ
ツド電極G5 、第3グリッド電極G3.コンバージェ
ンス手段10の内側偏向電極板10a及びfob、及び
、内蔵抵抗器7の高圧電極端子2に陽極電圧が供給され
る。
A built-in resistor 7 as shown in FIGS. 3 and 4 is attached to such an electron gun assembly 9, and the high voltage electrode terminal 2 of this built-in resistor 7 is connected to the fifth group 1. A conductive attachment is connected to the electrode G5 via a piece 12. A graphite conductive film 15 extending to the inner wall of the neck portion 8a is adhered to the inner wall of the funnel portion 8b of the tube body 8, and a high-pressure supply button, that is, an anode button (not shown) provided in the funnel portion 8b Anode voltage is supplied through the The conductive plate 14 is provided with a conductive spring 16, and when the conductive spring 16 contacts the graphite conductive film 15, the fifth grid electrode G5, the third grid electrode G3, . An anode voltage is supplied to the inner deflection electrode plate 10 a and the fob of the convergence means 10 and the high voltage electrode terminal 2 of the built-in resistor 7 .

内蔵抵抗器7のCV電極端子3は、導電性取付は片17
を介しコンバージェンス手段lOの外側偏向電極板10
c及び10dに連結され、CV電極端子3に、陽極電圧
が抵抗体層5a及び5bにより分圧されて得られるコン
バージェンス電圧が、外側偏向電極板10C及びlOd
に供給される。
The CV electrode terminal 3 of the built-in resistor 7 is conductive mounted on the piece 17.
through the outer deflection electrode plate 10 of the convergence means lO
c and 10d, and a convergence voltage obtained by dividing the anode voltage by the resistor layers 5a and 5b is connected to the CV electrode terminal 3, and is connected to the outer deflection electrode plate 10C and lOd.
supplied to

また、内蔵抵抗器7のアース電極端子4が、管体8のネ
ック部8aの基部におけるステム18に貫通埋設された
アース電極端子ピン■9に連結され、直接もしくは調整
用外付は抵抗器を介して接地電位点に接続される。
Also, the ground electrode terminal 4 of the built-in resistor 7 is connected to the ground electrode terminal pin 9 embedded through the stem 18 at the base of the neck part 8a of the tube body 8, and the resistor is connected directly or externally for adjustment. connected to ground potential point via.

斯かる陰極線管にあって、例えば、電子銃構体9の各部
に尖鋭な突起部分等があると、実際の使用にあたって不
所望な放電を生じることになる。
If such a cathode ray tube has, for example, sharp protrusions on various parts of the electron gun assembly 9, undesirable discharge will occur during actual use.

そこで、陰極線管の製造過程において、電子銃構体9に
おける尖鋭突起部分等の放電を生じ易い部分については
、予め放電を生じさせて溶解整形すること等により、完
成品とされた後の実際の使用時の動作を安定化すること
を目的としたノッキング処理が行われる。
Therefore, in the manufacturing process of cathode ray tubes, parts of the electron gun assembly 9 that are likely to generate electrical discharges, such as sharp protrusions, are melted and shaped by generating electrical discharge in advance, so that they can be melted and shaped before actual use after the finished product. Knocking processing is performed for the purpose of stabilizing the operation of the engine.

このようなノッキング処理工程においては、例えば、陰
極線管の実働時に比して2〜3倍とされた高電圧(ノッ
キング電圧)が、第3グリツド電極G3 、第5グリツ
ド電極G5及び内蔵抵抗器7の高圧電極端子2に印加さ
れ、また、第1.第2及び第4の各グリッド電極G1.
G2及びG4、及び、内蔵抵抗器7のアース電極端子4
は接地状態とされる。このノッキング処理時には、内蔵
抵抗器7の絶縁被膜6の表面は、一部を除いて、比較的
高い電位に帯電せしめられ、この絶縁被膜6には、特に
、分圧抵抗体層5を形成する抵抗体層5aの低圧側で、
実働時に比して大なる電位差がかかることになる。第6
図は、横軸に内蔵抵抗器7の絶縁基板1上における、低
圧側とされるアース電極端子4からの高圧側とされるC
V電極端子3側への距離りをとり、縦軸に電位Vをとっ
て、ノッキング処理時における内蔵抵抗器7の絶縁被膜
6の表面電位(曲線a)、アース電極端子4とCV電極
端子3との間に配された抵抗体層5aの各部の電位(曲
線b)及び両電位の差(曲mc)を示す。これから明ら
かなように、絶縁基板1上の、高電圧が印加される第3
グリツド電極G3に近接した位置Pにおける、比較的低
電位とされる)10r″1°°″′″*−ro、 t“
tjc41F−N 5 a h1″11′膜6の表面と
の間の電位差が最大となり、従って、この位置(最大電
位差位置)Pで絶縁被膜6に最大の電位差がかかること
になる。このため、第3グリツド電極G3付近で、絶縁
被膜6の耐圧を越える電位がかかって絶縁被膜6の絶縁
劣化もしくは破壊を生じ、その結果、抵抗体層5aが被
害を受けてその抵抗値が著しく変化してしまう虞れがあ
る。
In such a knocking treatment process, for example, a high voltage (knocking voltage) that is two to three times higher than that during actual operation of the cathode ray tube is applied to the third grid electrode G3, the fifth grid electrode G5, and the built-in resistor 7. The voltage is applied to the high voltage electrode terminal 2 of the first . Each of the second and fourth grid electrodes G1.
G2 and G4, and the ground electrode terminal 4 of the built-in resistor 7
is considered to be grounded. During this knocking process, the surface of the insulating coating 6 of the built-in resistor 7, except for a part, is charged to a relatively high potential, and in particular, the voltage dividing resistor layer 5 is formed on this insulating coating 6. On the low voltage side of the resistor layer 5a,
A larger potential difference will be applied than during actual operation. 6th
In the figure, the horizontal axis shows C, which is the high voltage side, from the ground electrode terminal 4, which is the low voltage side, on the insulating substrate 1 of the built-in resistor 7.
Taking the distance to the V electrode terminal 3 side and plotting the potential V on the vertical axis, the surface potential (curve a) of the insulating coating 6 of the built-in resistor 7 during knocking treatment, the ground electrode terminal 4 and the CV electrode terminal 3 The potential of each part of the resistor layer 5a disposed between the curve b (curve b) and the difference between the two potentials (curve mc) are shown. As is clear from this, the third electrode on the insulating substrate 1 to which a high voltage is applied
10r"1°°"'"*-ro, t"
tjc41F-N 5 a h1''11' The potential difference with the surface of the film 6 becomes maximum, and therefore, the maximum potential difference is applied to the insulating coating 6 at this position (maximum potential difference position). In the vicinity of the third grid electrode G3, a potential exceeding the withstand voltage of the insulating coating 6 is applied, causing insulation deterioration or breakdown of the insulating coating 6, and as a result, the resistor layer 5a is damaged and its resistance value changes significantly. There is a risk.

斯かる絶縁劣化もしくは破壊による抵抗体層5aの抵抗
値変化の問題に対しては、絶縁被膜6の厚さを大として
、耐圧を高めることが有利となる。
To solve the problem of the change in resistance value of the resistor layer 5a due to insulation deterioration or breakdown, it is advantageous to increase the thickness of the insulating coating 6 to increase the withstand voltage.

即ち、絶縁被膜6の膜厚を大に形成することで、絶縁被
膜6の絶縁劣化もしくは破壊を阻止し、抵抗体層5aの
抵抗値の変化を抑えることが可能となる。しかしながら
、内蔵抵抗器7にとって絶縁被膜6の膜厚が”無闇に大
とされることはコストの面で不利となり、また、絶縁基
板1と絶縁被膜6との膨張係数の差に起因する内蔵抵抗
器7の全体の反りを生じ、使用時の昇温及び不使用時の
降温の熱サイクルによって絶縁被膜6が絶縁基板1から
剥離する、あるいは亀裂を生じる等の信輔性の低下につ
ながる不都合を伴うことになる。
That is, by forming the insulating film 6 to be thick, it is possible to prevent insulation deterioration or breakdown of the insulating film 6 and to suppress changes in the resistance value of the resistor layer 5a. However, for the built-in resistor 7, increasing the thickness of the insulating coating 6 unnecessarily is disadvantageous in terms of cost. Warping of the entire device 7 occurs, and the insulating coating 6 peels off from the insulating substrate 1 or cracks occur due to the thermal cycle of temperature rise during use and temperature fall when not in use, resulting in inconveniences that lead to a decrease in reliability. It turns out.

そこで、特開昭58−102455号公報に記載されて
いる如くに、上述の問題に対処すべく、絶縁基板上に配
された抵抗体層を覆う絶縁被膜の表面に、低圧側とされ
るアース電極端子に接続された避雷針電極が設けられた
内蔵抵抗器も提案されている。
Therefore, as described in Japanese Patent Application Laid-Open No. 58-102455, in order to deal with the above-mentioned problem, a grounding layer, which is considered to be a low-voltage side, is provided on the surface of an insulating coating covering a resistor layer disposed on an insulating substrate. Built-in resistors have also been proposed with a lightning rod electrode connected to the electrode terminal.

斯かる内蔵抵抗器に゛あっては、陰極線管の電子銃に取
り付けられてノッキング処理が行われる場合、絶縁被膜
表面に設けられた避雷針電極により絶縁被膜の表面の帯
電が低減され、その結果、絶縁被膜の絶縁劣化もしくは
破壊が防止されて、絶縁基板上のアース電極端子とコン
バージェンス電極端子との間に配された抵抗体層の抵抗
値のノンキング処理前後における変化が抑制されること
になる。
When such a built-in resistor is attached to an electron gun of a cathode ray tube and subjected to knocking processing, the lightning rod electrode provided on the surface of the insulation coating reduces the electrical charge on the surface of the insulation coating, and as a result, Insulation deterioration or breakdown of the insulating coating is prevented, and changes in the resistance value of the resistor layer disposed between the ground electrode terminal and the convergence electrode terminal on the insulating substrate before and after the non-king treatment are suppressed.

発明が解決しようとする問題点 しかしながら、上述の如くの避雷針電極を備えた内蔵抵
抗器にあっては、絶縁被膜の表面に避雷針電極が設けら
れるので、絶縁被膜を印刷手法により形成するにあたっ
て工程の複雑化をまねくことになり、また、ノッキング
処理時に避雷針電極を形成する金属材料が蒸発して陰極
線管の管本体のネック部内壁に付着し、その結果、ネッ
ク部内壁に付着した金属材料とネック部との熱膨張係数
の差に起因してネック部に亀裂を生じることになる虞れ
があるという不都合が伴われる。
Problems to be Solved by the Invention However, in the built-in resistor equipped with a lightning rod electrode as described above, since the lightning rod electrode is provided on the surface of the insulating coating, it is difficult to form the insulating coating by printing. In addition, during the knocking process, the metal material forming the lightning rod electrode evaporates and adheres to the inner wall of the neck of the tube body of the cathode ray tube, and as a result, the metal material adhering to the inner wall of the neck and the neck The disadvantage is that there is a risk of cracking in the neck section due to the difference in coefficient of thermal expansion between the neck section and the neck section.

斯かる点に鑑み本発明は、絶縁基板上に所定のパターン
を有した抵抗体層が形成され、この抵抗体層が絶縁被膜
で覆われた構成を有し、陰極線管のノッキング処理時等
においても、絶縁基板上の高電位差部位における抵抗体
層の抵抗値変化を効果的に軽減でき、その結果、ノンキ
ング処理前後等での抵抗体層全体の抵抗値の変化を最小
限に抑えることができ、しかも、製造コストの上昇や製
造工程の複雑化を伴なわず、また、陰極線管のネック部
に損傷を来す虞れがないようにされた陰極線管の内蔵抵
抗器を提供することを目的とする。
In view of this, the present invention has a structure in which a resistor layer having a predetermined pattern is formed on an insulating substrate, and this resistor layer is covered with an insulating film, so that it can be used during knocking treatment of a cathode ray tube, etc. It is also possible to effectively reduce the change in the resistance value of the resistor layer at high potential difference areas on the insulating substrate, and as a result, the change in the resistance value of the entire resistor layer before and after non-king treatment can be minimized. Moreover, it is an object of the present invention to provide a built-in resistor for a cathode ray tube that does not increase manufacturing costs or complicate the manufacturing process, and is free from the risk of damaging the neck of the cathode ray tube. shall be.

問題点を解決するための手段 上述の目的を達成すべく、本発明に係る陰極線管の内蔵
抵抗器は、絶縁基板上に、複数の電極端子と、これら電
極端子のうちの低圧側とされる第1の端子と高圧側とさ
れる第2の端子との間において所定のパターンを有して
配される抵抗体層と、この抵抗体層に接触することなく
配されて上述の第1の端子に接続される導電体層部とが
形成されるとともに、抵抗体層と導電体層部とを被覆す
る絶縁被膜が設けられて構成される。そして、上述の導
電体層部は、絶縁基板上の、この導電体層部がない場合
に絶縁被膜の表面電位と第1及び第2の端子の間の部位
の電位との差が大とされる高電位差部位に配されるもの
とされる。
Means for Solving the Problems In order to achieve the above-mentioned object, the built-in resistor of a cathode ray tube according to the present invention has a plurality of electrode terminals on an insulating substrate and a low voltage side of these electrode terminals. A resistor layer arranged in a predetermined pattern between the first terminal and the second terminal on the high voltage side, and the above-mentioned first resistor layer arranged without contacting this resistor layer. A conductor layer connected to the terminal is formed, and an insulating coating is provided to cover the resistor layer and the conductor layer. The above-mentioned conductor layer portion is such that when there is no conductor layer portion on the insulating substrate, there is a large difference between the surface potential of the insulating coating and the potential of the portion between the first and second terminals. It is assumed that the device is placed at a high potential difference site.

作用 このように構成された本発明に係る陰極線管の内蔵抵抗
器にあっては、陰極線管に電子銃とともに組込まれ、例
えば、陰極線管のノンキング処理に供される場合、高圧
側とされる第2の端子に高圧であるノッキング電圧が供
給されるとともに低圧側とされる第1の端子が接地され
、それにより、第1の端子に接続された導電体層部は接
地電位が与えられる。このため、この導電体層部の位置
、即ち、絶縁基板上の、導電体層部がない場合に絶縁被
膜の表面電位と第1及び第2の端子の間の部位の電位と
の差が大とされる高電位差部位における絶縁被膜の表面
電位の上昇が抑制されて、高電位差部位における絶縁被
膜の表面と絶縁基板との間の電位差、即ち、絶縁被膜に
かかる電位差が低減されることになる。
Function: The built-in resistor of the cathode ray tube according to the present invention configured as described above is incorporated in the cathode ray tube together with the electron gun, and when the cathode ray tube is subjected to non-king treatment, for example, the resistor is installed on the high voltage side. A high knocking voltage is supplied to the second terminal, and the first terminal, which is on the low voltage side, is grounded, so that the conductor layer connected to the first terminal is given a ground potential. Therefore, at the position of this conductor layer, that is, when there is no conductor layer on the insulating substrate, there is a large difference between the surface potential of the insulating coating and the potential of the area between the first and second terminals. The increase in the surface potential of the insulating coating at the high potential difference site is suppressed, and the potential difference between the surface of the insulating coating and the insulating substrate at the high potential difference site, that is, the potential difference applied to the insulating coating is reduced. .

このため、陰極線管のノッキング処理に際しての高電圧
が印加される状況下においても、絶縁被膜の絶縁劣化も
しくは破壊が効果的に回避され、その結果、ノッキング
処理前後での抵抗体層の抵抗値の変化が最小限に抑えら
れる。
Therefore, even under conditions where high voltage is applied during the knocking treatment of cathode ray tubes, insulation deterioration or breakdown of the insulation coating is effectively avoided, and as a result, the resistance value of the resistor layer before and after the knocking treatment is reduced. Changes are kept to a minimum.

実施例 以下、本発明の実施例について図面を参照して述べる。Example Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明に係る陰極線管の内蔵抵抗器の一例を
示す。この例は、第3図及び第4図に示される従来の内
蔵抵抗器7と同様に、絶縁基板上に分圧抵抗体層とこれ
を被覆する絶縁被膜が設けられて形成され、第1図にお
いては、外表部を形成する絶縁被膜上から透視した状態
が示されている。なお、第1図において、第3図及び第
4図に示される各部に対応する部分には第3図及び第4
図と共通の符号を付して示し、それらについての詳細説
明を省略する。
FIG. 1 shows an example of a built-in resistor of a cathode ray tube according to the present invention. Similar to the conventional built-in resistor 7 shown in FIGS. 3 and 4, this example is formed by providing a voltage dividing resistor layer and an insulating film covering this on an insulating substrate. , the state seen through from above the insulating coating forming the outer surface portion is shown. In addition, in FIG. 1, the parts corresponding to the parts shown in FIGS. 3 and 4 are shown in FIGS. 3 and 4.
They are shown with the same reference numerals as those in the figures, and detailed explanation thereof will be omitted.

斯かる第1図に示される例においては、絶1母基板l上
に、高圧電極端子2とCV電極端子3との間に配された
、第3図に示される抵抗体層5b及び微調整用抵抗体層
5cと同様の、抵抗体層5b°及び微調整用抵抗体層5
c” と、CV電極端子3とアース電極端子4との間に
配された、第3図に示される抵抗体層5aに相当する、
その一部に介在せしめられたコ字状の導電性接続部22
を伴い、一定の蛇行幅を有したジグザグ状パターンをも
って配された抵抗体N 5 a ’ とで形成される分
圧抵抗体層5′が設けられている。また、絶縁基板1上
のCV電極端子3とアース電極端子4との間において、
高圧電極端子2.CV電極端子3及びアース電極端子4
と同様に、例えば、極めて低抵抗化された酸化ルテニウ
ムペーストが焼成されて形成された導電体層部20が、
抵抗体層5a”の一部分に介在せしめられたコ字状の導
電性接続部22に対応する位置をもって配されている。
In the example shown in FIG. 1, the resistor layer 5b and fine adjustment shown in FIG. Resistor layer 5b° and fine adjustment resistor layer 5 similar to resistor layer 5c for
c”, which corresponds to the resistor layer 5a shown in FIG. 3 and arranged between the CV electrode terminal 3 and the earth electrode terminal 4,
A U-shaped conductive connection part 22 interposed in a part of it
A voltage dividing resistor layer 5' is provided, which is formed by resistors N5a' arranged in a zigzag pattern having a constant meandering width. Moreover, between the CV electrode terminal 3 and the earth electrode terminal 4 on the insulating substrate 1,
High voltage electrode terminal 2. CV electrode terminal 3 and earth electrode terminal 4
Similarly, for example, the conductor layer portion 20 formed by firing a ruthenium oxide paste with extremely low resistance,
It is arranged at a position corresponding to the U-shaped conductive connection part 22 interposed in a part of the resistor layer 5a''.

この導電体層部20は、抵抗体層5 a+及びコ字状の
導電性接続部22には接触せず、それから伸びる接続部
21を介してアース電極端子4に接続されている。そし
て、これら分圧抵抗体層5′と導電体層部20とが、第
1図において斜線で示される如くの、例えば、鉛ガラス
等からなる絶縁被膜6で覆われている。
This conductor layer portion 20 does not contact the resistor layer 5 a+ and the U-shaped conductive connection portion 22, but is connected to the ground electrode terminal 4 via the connection portion 21 extending therefrom. The voltage dividing resistor layer 5' and the conductor layer 20 are covered with an insulating film 6 made of, for example, lead glass, as shown by diagonal lines in FIG.

ここで、分圧抵抗体N5′は、導電性接続部22の部分
を除き、一様な断面積を有して、均一な材料、例えば、
高抵抗の酸化ルテニウムペースト焼成で形成されており
、導電性接続部22により、夫々の分割部分が互いに接
続されている。
Here, the voltage dividing resistor N5' has a uniform cross-sectional area except for the part of the conductive connection part 22, and is made of a uniform material, for example,
It is formed by firing a high-resistance ruthenium oxide paste, and the respective divided portions are connected to each other by conductive connecting portions 22.

そして、上述の導電性接続部22及び導電体層部20は
、第3図に示される内蔵抵抗器7における最大電位差位
置Pに対応する、第1図の例が、例えば、第5図に示さ
れる如くの陰極線管内に組み込まれて電圧が印加される
とき、導電性接続部22及び導電体層部2oが存在せず
抵抗体層5a”が一様なジグザグ状パターンをもって配
されているとした場合に、絶縁被膜6の表面電位と低圧
側とされるアース電極端子4及び高圧側とされるCV電
極端子3の間の部位の電位との電位差が最大となる位置
である最大電位差位置P′を含む、斯かる電位差が大と
なる高電位差部位に配されている。
The above-mentioned conductive connection portion 22 and conductor layer portion 20 correspond to the maximum potential difference position P in the built-in resistor 7 shown in FIG. 3, and the example shown in FIG. It is assumed that when the cathode ray tube is assembled into a cathode ray tube such as the one shown in FIG. In this case, the maximum potential difference position P' is the position where the potential difference between the surface potential of the insulating coating 6 and the potential between the earth electrode terminal 4, which is the low voltage side, and the CV electrode terminal 3, which is the high voltage side, is maximum. , and is arranged at a high potential difference site where such potential difference is large.

このように構成される第1図に示される例が、第5図に
示される如くの陰極線管の電子銃構体9に従来の内蔵抵
抗器7と同様に取り付けられ、陰極線管がノアキング処
理に供されるに際して、導電体層部20が接続されたア
ース電極端子4が第5図に示される如(のアース電極端
子ピン19に連結されて接地されるとともに高圧電極端
子2にノッキング電圧が印加される場合、絶縁基板1上
の最大電位差位置P゛を含む高電位差部位に配された導
電体層部20が接地電位とされることにより、斯かる最
大電位差位置P゛を含む高電位差部位に対応する絶縁被
膜6の表面部分における帯電t     電荷量が低減
され、絶縁被膜6の最大電位差位置P゛を含む高電位差
部位に対応する部分における表面電位の上昇が抑制され
る。
The example shown in FIG. 1 having such a structure is attached to the electron gun assembly 9 of a cathode ray tube as shown in FIG. When the ground electrode terminal 4 is connected to the conductor layer 20, it is connected to the ground electrode terminal pin 19 and grounded as shown in FIG. 5, and a knocking voltage is applied to the high voltage electrode terminal 2. In this case, by setting the conductive layer portion 20 disposed at a high potential difference site including the maximum potential difference position P'' on the insulating substrate 1 to the ground potential, it corresponds to the high potential difference site including the maximum potential difference position P''. The amount of charge t on the surface portion of the insulating coating 6 is reduced, and an increase in the surface potential at a portion of the insulating coating 6 corresponding to a high potential difference site including the maximum potential difference position P' is suppressed.

斯かる第1図に示される例が取り付けられた電子銃を備
える陰極線管がノッキング処理に供されて、アース電極
端子4が接地され、高圧電極端子2に第5図に示される
内蔵抵抗器7の場合と同様のノッキング電圧が供給され
る場合における絶縁被膜6の表面電位及び抵抗体層5a
’ の各部の電位は、第2図に示される如くとなる。
A cathode ray tube equipped with an electron gun having the example shown in FIG. 1 is subjected to knocking treatment, the earth electrode terminal 4 is grounded, and the built-in resistor 7 shown in FIG. The surface potential of the insulating coating 6 and the resistor layer 5a when the same knocking voltage as in the case of is supplied
The potential at each part of ' is as shown in FIG.

第2図のグラフは、横軸に絶縁基板1上におけるアース
電極端子4からのCV電極端子3側への距離りをとり、
縦軸に電位Vをとるもので、この第2図のグラフにおい
て、絶縁被膜6の表面電位は曲線a゛で示され、接地電
位とされた導電体層部20の影響を受けて絶縁被膜6の
表面における帯電電荷量が低減される結果、最大電位差
位置P゛を含む高電位差部位に対応する部分における電
位上昇が緩やかになるものとされる。また、抵抗体層5
 aI の各部の電位は折線b゛で示され、導電性接続
部22が介在せしめられた最大電位差位置P°を含む高
電位差部位において一定電位を有するものとなる。そし
て、抵抗体層5a’ の各部の電位とそれに対応する絶
縁被膜6の表面電位との差、即ち、絶縁被膜6にかかる
電位差は、曲線C”で示され、最大電位差位置P”を含
む高電位差部位において、絶縁被膜6の表面電位の上昇
が接地電位とされた導電体層部2.0の影響を受けて抑
制されることにより、従来の内蔵抵抗器7の場合におけ
る最大電位差位置Pにおける電位差に比して、著しく低
減されることになる。
In the graph of FIG. 2, the distance from the ground electrode terminal 4 on the insulating substrate 1 to the CV electrode terminal 3 side is plotted on the horizontal axis.
The vertical axis represents the potential V. In the graph of FIG. As a result of the reduction in the amount of charge on the surface, the rise in potential at the portion corresponding to the high potential difference site including the maximum potential difference position P' becomes gradual. In addition, the resistor layer 5
The potential of each part of aI is shown by a broken line b', and has a constant potential at a high potential difference site including the maximum potential difference position P° where the conductive connection part 22 is interposed. The difference between the potential of each part of the resistor layer 5a' and the corresponding surface potential of the insulating coating 6, that is, the potential difference applied to the insulating coating 6, is represented by a curve C'', and the height including the maximum potential difference position P'' is At the potential difference site, the increase in the surface potential of the insulating coating 6 is suppressed under the influence of the conductive layer portion 2.0 set to the ground potential, so that the increase in the surface potential of the insulating coating 6 at the maximum potential difference position P in the case of the conventional built-in resistor 7 is suppressed. This will be significantly reduced compared to the potential difference.

このように、第1図の例にあっては、絶縁基板1上の最
大電位差位置P゛を含む高電位差部位における絶縁被膜
6の表面電位の上昇を抑制して、斯かる部位において絶
縁被膜6にかかる電位差を低減させることができるので
、絶縁被膜6の絶縁劣化もしくは破壊が生じることがな
く、抵抗体層5a’ の大幅な変化が防止されることに
なる。
In this way, in the example shown in FIG. 1, the increase in the surface potential of the insulating coating 6 at a high potential difference location including the maximum potential difference position P' on the insulating substrate 1 is suppressed, and the insulating coating 6 is Since the potential difference applied thereto can be reduced, insulation deterioration or breakdown of the insulating coating 6 will not occur, and significant changes in the resistor layer 5a' will be prevented.

また、絶縁基板1上の最大電位差位置P′を含む高電位
差部位において放電が生じても、放電電流は導電体層部
20を通じて流れ易くなり、抵抗体層5 aI が放電
の影響を受ける確率は著しく低いものとされる。
Furthermore, even if a discharge occurs at a high potential difference site including the maximum potential difference position P' on the insulating substrate 1, the discharge current will easily flow through the conductor layer portion 20, and the probability that the resistor layer 5aI will be affected by the discharge is considered to be extremely low.

なお、上述の本発明に係る陰極線管の内蔵抵抗器の例に
おいては、アース電極端子4に接続される導電体層部2
0が、例えば、低抵抗の酸化ルテニウムペーストで焼成
されて形成されるが、この導電体層部20は、分圧抵抗
体層5°の抵抗値よりも低い抵抗値を有する抵抗材料で
形成されてもよく、斯かる場合には、陰極線管のノンキ
ング処理時等において絶縁基板1上の最大電位差位置P
゛を含む高電位差部位に放電が生じる際に、導電体層部
20を通じて流れる放電電流を低減させることができる
In addition, in the above-described example of the built-in resistor of the cathode ray tube according to the present invention, the conductor layer portion 2 connected to the ground electrode terminal 4
0 is formed by firing a low-resistance ruthenium oxide paste, for example, and this conductor layer portion 20 is formed of a resistive material having a resistance value lower than the resistance value of the voltage-dividing resistor layer 5°. In such a case, the maximum potential difference position P on the insulating substrate 1 during non-king processing of the cathode ray tube, etc.
When a discharge occurs in a high potential difference site including ゛, the discharge current flowing through the conductor layer portion 20 can be reduced.

発明の効果 以上の説明から明らかな如く、本発明に係る陰極線管の
内蔵抵抗器は、陰極線管体内に電子銃と共に組み込まれ
て電圧印加状態とされるとき低圧側とされる第1の端子
及び高圧側とされる第2の端子の間の絶縁基板上に、低
圧側とされる第1の端子に接続された導電体層部が配さ
れ、その位置が、斯かる導電体層部がない場合に絶縁基
板上に配された抵抗体層を被覆する絶縁被膜の表面電位
と第1の端子及び第2の端子の間の部位の電位との差が
大とされる高電位差部位に選定されるので、斯かる高電
位差部位において、絶縁被膜の表面電位の上昇が抑制さ
れ、その結果、絶縁被膜にかかる電位差が効果的に低減
せしめられることになる。
Effects of the Invention As is clear from the above description, the built-in resistor of the cathode ray tube according to the present invention has a first terminal which is installed on the low voltage side when the cathode ray tube is assembled together with the electron gun and is in a voltage application state; A conductor layer connected to the first terminal, which is considered to be a low voltage side, is disposed on an insulating substrate between second terminals, which are considered to be high voltage side, and its position is such that there is no such conductor layer. In some cases, the area is selected as a high potential difference area where the difference between the surface potential of the insulating film covering the resistor layer arranged on the insulating substrate and the potential of the area between the first terminal and the second terminal is large. Therefore, an increase in the surface potential of the insulating coating is suppressed at such a high potential difference site, and as a result, the potential difference applied to the insulating coating is effectively reduced.

そのため、陰極線管のノッキング処理に際して高電圧が
印加される状況下においても、高電位差部位において絶
縁被膜にかかる電位差が絶縁被膜の耐圧を越えないもの
とされ、絶縁被膜の絶縁劣化もしくは破壊の発生が防止
されて、ノッキング処理前後での抵抗体層の抵抗値変化
を最小限に抑制することができる優れた特性を示すもの
となる。
Therefore, even under conditions where high voltage is applied during knocking treatment of cathode ray tubes, the potential difference applied to the insulating coating at the high potential difference area will not exceed the withstand voltage of the insulating coating, and insulation deterioration or breakdown of the insulating coating will not occur. This exhibits an excellent property of suppressing to a minimum the change in resistance value of the resistor layer before and after the knocking treatment.

しかも、絶縁被膜の表面に避雷針電極の如くの金属導電
体が設けられる構成とはされないので、金属導電体が藤
発して陰極線管の管本体のネック部内壁に付着し、それ
が原因とな2ってネック部に亀裂が生じるという事故を
引き起こす虞れがない。
Moreover, since the structure is not such that a metal conductor such as a lightning rod electrode is provided on the surface of the insulating coating, the metal conductor bulges out and adheres to the inner wall of the neck of the tube body of the cathode ray tube, which causes 2 There is no risk of causing an accident in which the neck portion cracks.

さらに、絶縁基板上に導電体層部を形成することは容易
になし得ることであるので、製造工程の複雑化をまねく
ことがなく、安価に製造することができるものとなる利
点を有している。
Furthermore, since it is easy to form a conductor layer on an insulating substrate, it does not complicate the manufacturing process and has the advantage that it can be manufactured at low cost. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る陰極線管の内蔵抵抗器の一例を示
す平面図、第2図は第1図に示される例が陰極線管に組
み込まれた場合の各部における電位関係の説明に供され
る図、第3図及び第4図は従来の陰極線管の内蔵抵抗器
を示す平面図及び側面図、第5図は第3図及び第4図に
示される内蔵抵抗器が組み込まれた陰極線管の要部を示
す概略構成図、第6図は第5図に示される陰極線管内に
おける内蔵抵抗器の各部における電位関係の説明に供さ
れる特性図である。 図中、1は絶縁基板、2は高圧電極端子、3はコンバー
ジェンス電極端子、4はアース電極端子、5”は分圧抵
抗体層、5 al は分圧抵抗体層5゛を構成する抵抗
体層、6は絶縁被膜、9は電子銃構体、20は導電体層
部、21は接続部である。 (構体 第3図 ビ。 第4図 第5図
FIG. 1 is a plan view showing an example of a built-in resistor of a cathode ray tube according to the present invention, and FIG. 2 is an illustration of potential relationships in various parts when the example shown in FIG. 1 is incorporated into a cathode ray tube. Figures 3 and 4 are plan and side views showing the built-in resistor of a conventional cathode ray tube, and Figure 5 is a cathode ray tube incorporating the built-in resistor shown in Figures 3 and 4. FIG. 6 is a characteristic diagram for explaining the potential relationship at each part of the built-in resistor in the cathode ray tube shown in FIG. In the figure, 1 is an insulating substrate, 2 is a high voltage electrode terminal, 3 is a convergence electrode terminal, 4 is a ground electrode terminal, 5'' is a voltage dividing resistor layer, and 5 al is a resistor constituting the voltage dividing resistor layer 5''. 6 is an insulating coating, 9 is an electron gun structure, 20 is a conductive layer portion, and 21 is a connection portion.

Claims (1)

【特許請求の範囲】[Claims] 絶縁基板上に、複数の電極端子と、該電極端子のうちの
低圧側とされる第1の端子と高圧側とされる第2の端子
との間において所定のパターンを有して配される抵抗体
層と、該抵抗体層に接触することなく配されて上記第1
の端子に接続される導電体層部とが形成されるとともに
、上記抵抗体層と上記導電体層部とを被覆する絶縁被膜
が設けられ、上記導電体層部が、上記絶縁基板上の、該
導電体層部がない場合に上記絶縁被膜の表面電位と上記
第1及び第2の端子の間の部位の電位との差が大とされ
る高電位差部位に配されたことを特徴とする陰極線管の
内蔵抵抗器。
A plurality of electrode terminals are arranged on the insulating substrate in a predetermined pattern between a first terminal on the low voltage side and a second terminal on the high voltage side among the electrode terminals. a resistor layer, and the first resistor layer disposed without contacting the resistor layer.
A conductive layer portion connected to the terminal of the insulating substrate is formed, and an insulating coating is provided to cover the resistor layer and the conductive layer portion, and the conductive layer portion is connected to the terminal of the insulating substrate. It is characterized in that it is arranged in a high potential difference region where the difference between the surface potential of the insulating coating and the potential of the region between the first and second terminals is large when the conductor layer portion is not present. Built-in resistor of cathode ray tube.
JP59237951A 1984-11-12 1984-11-12 Built-in resistor of cathode ray tube Granted JPS61116735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59237951A JPS61116735A (en) 1984-11-12 1984-11-12 Built-in resistor of cathode ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59237951A JPS61116735A (en) 1984-11-12 1984-11-12 Built-in resistor of cathode ray tube

Publications (2)

Publication Number Publication Date
JPS61116735A true JPS61116735A (en) 1986-06-04
JPH0552621B2 JPH0552621B2 (en) 1993-08-05

Family

ID=17022880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59237951A Granted JPS61116735A (en) 1984-11-12 1984-11-12 Built-in resistor of cathode ray tube

Country Status (1)

Country Link
JP (1) JPS61116735A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5266431A (en) * 1975-11-28 1977-06-01 Canon Inc Copying machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5266431A (en) * 1975-11-28 1977-06-01 Canon Inc Copying machine

Also Published As

Publication number Publication date
JPH0552621B2 (en) 1993-08-05

Similar Documents

Publication Publication Date Title
CA1160671A (en) Getter support means for cathode ray tubes
KR910009245B1 (en) Resistors for cathode ray tube
KR920005003B1 (en) Resistor performing on the beadglass of crt
JPH09320482A (en) Resistor element and cathode-ray tube
JPS61116735A (en) Built-in resistor of cathode ray tube
US6005472A (en) Inner resistor for cathode-ray tube
US4345185A (en) Cathode ray tube apparatus
KR100659050B1 (en) Electron gun with resistor and capacitor
JPS6313242A (en) Resistor incorporated in cathode-ray tube
JPS60124340A (en) Resistor built in cathode ray tube
JPS60239001A (en) Coating insulating resistor
JPS61250935A (en) Inner resistor of cathode-ray tube
JPS60107242A (en) Built-in resistor of cathode ray tube
JPS61250934A (en) Inner resistor of cathode-ray tube
JP2646578B2 (en) Built-in cathode ray tube low resistance
JPS60124339A (en) Resistor built in cathode ray tube
JPS63184231A (en) Knocking process for cathode-ray tube
JP2607481B2 (en) Cathode ray tube
JP3456799B2 (en) Resistor for cathode ray tube electron gun and method of manufacturing the same
JP2638835B2 (en) Electron gun for cathode ray tube
JPH07123031B2 (en) Cathode ray tube
JPH0334827Y2 (en)
JPS60227342A (en) Cathode-ray tube device
CA1160755A (en) Cathode ray tube apparatus
JPH065224A (en) Resistor built-in crt

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees