JPS6058384B2 - Refrigerant flow control device - Google Patents

Refrigerant flow control device

Info

Publication number
JPS6058384B2
JPS6058384B2 JP56097939A JP9793981A JPS6058384B2 JP S6058384 B2 JPS6058384 B2 JP S6058384B2 JP 56097939 A JP56097939 A JP 56097939A JP 9793981 A JP9793981 A JP 9793981A JP S6058384 B2 JPS6058384 B2 JP S6058384B2
Authority
JP
Japan
Prior art keywords
temperature
response
refrigerant
temperature sensor
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56097939A
Other languages
Japanese (ja)
Other versions
JPS5873A (en
Inventor
勇 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56097939A priority Critical patent/JPS6058384B2/en
Publication of JPS5873A publication Critical patent/JPS5873A/en
Publication of JPS6058384B2 publication Critical patent/JPS6058384B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Air Conditioning Control Device (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 本発明は熱電膨張弁等の電気式膨張弁を用いた冷凍装置
もしくは空調装置において、常に効率の良い冷凍サイク
ルを維持することを目的とするも−ので、冷凍サイクル
の安定状態のみならず、過渡状態や広範な負荷の変動に
対しても冷凍サイクルを最適化するための冷媒流量制御
装置に関するものである。
Detailed Description of the Invention The present invention aims to maintain an efficient refrigeration cycle at all times in a refrigeration system or air conditioner using an electric expansion valve such as a thermoelectric expansion valve. The present invention relates to a refrigerant flow rate control device for optimizing a refrigeration cycle not only in a stable state but also in a transient state and a wide range of load fluctuations.

従来この種制御装置において、例えば蒸発器の入口部お
よび出口部に温度センサを設け、それらの温度センサの
検出した温度の差を求め、この温度差(いわゆる過熱度
に対応)が所定の値に維持されるよう制御装置により膨
張弁への電気信号を制御していた。
Conventionally, in this type of control device, temperature sensors are installed at the inlet and outlet of the evaporator, and the difference between the temperatures detected by these temperature sensors is determined. A control device controlled the electrical signal to the expansion valve so that the expansion valve was maintained.

しカルながら温度差を求めるための2つの温度センサは
、通常メンテナンス、信頼性等の理由で冷媒配管に接触
させて、当該部の冷媒の温度を検”出するようになして
いるため、温度センサの出力する検出信号は、冷媒配管
中の実際の冷媒の変化に対して、時間遅れが生じる。
However, the two temperature sensors used to determine the temperature difference are usually placed in contact with the refrigerant piping for reasons such as maintenance and reliability, and are designed to detect the temperature of the refrigerant in that part. The detection signal output by the sensor has a time delay with respect to the actual change in the refrigerant in the refrigerant pipe.

また冷媒配管の表面温度に対しても、その接触部の熱伝
達ならびに温度センサ自体の熱時定数により時間遅れが
生じる。しかもこの時間遅れの状況は、蒸発器の入口部
(中間部でも可)に設けた温度センサの時間おくれに対
し、蒸発器の出口部(圧縮機の吸入部でも可)に設けた
温度センサの時間おくれが異なつており、後者の方が時
間おくれが大きな値となつている。すなわち、前者は冷
媒配管内部の冷媒の状態がガス・液混相域となつており
、冷媒配管への熱伝達が比較的速く、温度センサの検出
する応管速度もそれに応じて比較的速くなつているが、
後者は冷媒配管中の冷媒の状態が通常の動作においては
、ガス単相域となつており、冷媒配管への熱伝達は非常
に遅くなり、これにより温度センサの検出する応答速度
は非常に遅いものとなつている。このように2つの温度
センサの検出信号は、実際の冷媒温度の変化よりも遅く
、また2つの温度センサで、その時間おくれが異なつた
ものとなつている。
Furthermore, a time delay occurs with respect to the surface temperature of the refrigerant pipe due to heat transfer at the contact portion and the thermal time constant of the temperature sensor itself. Furthermore, this time delay situation is caused by a delay in the temperature sensor installed at the evaporator outlet (or the compressor suction) compared to the time lag of the temperature sensor installed at the evaporator's inlet (or the middle). The time delays are different, with the latter having a larger value. In other words, in the former case, the state of the refrigerant inside the refrigerant pipe is in a gas/liquid multiphase region, and the heat transfer to the refrigerant pipe is relatively fast, and the response speed detected by the temperature sensor is also relatively fast. There are, but
In the latter case, the state of the refrigerant in the refrigerant piping is in the gas single-phase region during normal operation, and heat transfer to the refrigerant piping is extremely slow, resulting in a very slow detection response speed of the temperature sensor. It has become a thing. In this way, the detection signals of the two temperature sensors are slower than the actual change in refrigerant temperature, and the two temperature sensors have different time delays.

例えば、蒸発器入口部の温度センサは、一次おくれと近
似したとき、308程度、蒸発振器出口部の温度センサ
は、6@程度等の時間おくれを有している。したがつて
従来は、以上のような大きな時間おくれを有するととも
に、おくれの程度の異なる2つの検出信号より、単純に
温度差を求め、その温度差を所定値に維持すべく制御を
行なつていた。
For example, the temperature sensor at the evaporator inlet has a time lag of about 308 when approximated to the first-order lag, and the temperature sensor at the evaporator outlet has a time lag of about 6@. Therefore, in the past, the temperature difference was simply determined from two detection signals with a large time lag and different degrees of lag as described above, and control was performed to maintain the temperature difference at a predetermined value. Ta.

またこの温度検出以外に、膨張弁の応答性を含め冷凍サ
イクル自体の応答性が極めて遅いため、総合的に温度セ
ンサがほぼ冷媒の温度と等しい値を出力するには極めて
長い時間(例えば数分程度)を要することとなり、制御
系の安定に時間を要するとともに、また発振、振動状態
に陥いる危険性も高かつた。そこで本発明は前述の温度
センサの応答性の改善により、冷凍サイクルの早期安定
化と、最適制御状態の拡大を図つて、冷凍・空調機器の
効率、いわゆるEER並びにSEERの向上を達成せん
とするものである。特に本発明は蒸発器の入口部(ない
し中間部)に設けた温度センサおよび、蒸発器出口部(
ないし圧縮機吸入部)に設けた温度センサのそれぞれの
応答特性を補償し、冷媒のほぼ対応するようになし、そ
の結果より温度差を求めて、この温度差を所定値に維持
させるよう冷媒流量を制御しようとするものである。
In addition to this temperature detection, the response of the refrigeration cycle itself, including the response of the expansion valve, is extremely slow, so it takes an extremely long time (for example, several minutes) for the temperature sensor to output a value approximately equal to the temperature of the refrigerant. Therefore, it took time to stabilize the control system, and there was also a high risk of oscillation or vibration. Therefore, the present invention aims to improve the efficiency of refrigeration and air conditioning equipment, so-called EER and SEER, by improving the responsiveness of the temperature sensor described above to achieve early stabilization of the refrigeration cycle and expansion of the optimal control state. It is something. In particular, the present invention provides a temperature sensor provided at the inlet portion (or intermediate portion) of the evaporator, and a temperature sensor provided at the evaporator outlet portion (or intermediate portion).
The response characteristics of the temperature sensors installed in the compressor suction section are compensated for, so that they almost correspond to the refrigerant, and the temperature difference is determined from the results, and the refrigerant flow rate is adjusted to maintain this temperature difference at a predetermined value. It is an attempt to control the

以下本発明の冷媒流量制御装置を添付図面に基づ゛いて
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The refrigerant flow rate control device of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明に基づく冷媒流量制御装置の一実施例を
示す回路構成図てあり、図は特に冷房装置に用いた場合
を示している。
FIG. 1 is a circuit diagram showing an embodiment of a refrigerant flow rate control device according to the present invention, and the figure particularly shows the case where the refrigerant flow rate control device is used in a cooling device.

図において、1は圧縮機、2は凝縮器、3は凝縮器2用
の送風機、4は電気信号により弁開度を調節しうる膨張
弁(ここでは熱電膨張弁とする)、5は蒸発器、6は蒸
発器5用の送風機、7は蒸発器5の入口部に設けた温度
センサ、8は圧縮機1の吸入部に設けた温度センサ、9
は温度センサ7の検出する温度信号の応答性を補償する
応答補償回路、10は温度センサ8の検出する温度信号
の応答性を補償する応答補償回路、11は応答補償回路
9および10よりの出力信号を入力し、温度センサ7お
よび9の取付部のそれぞれの冷媒の温度の差を検知し、
その差を所定値に維持するよう膨張弁4に電気信号(直
流電圧)を出力する制御回路である。
In the figure, 1 is a compressor, 2 is a condenser, 3 is a blower for the condenser 2, 4 is an expansion valve whose opening degree can be adjusted by an electric signal (in this case, it is a thermoelectric expansion valve), and 5 is an evaporator. , 6 is a blower for the evaporator 5, 7 is a temperature sensor provided at the inlet of the evaporator 5, 8 is a temperature sensor provided at the suction portion of the compressor 1, 9
10 is a response compensation circuit that compensates for the responsiveness of the temperature signal detected by temperature sensor 8; 11 is an output from response compensation circuits 9 and 10; input the signal, detect the difference in temperature of the refrigerant at the mounting part of the temperature sensors 7 and 9,
This is a control circuit that outputs an electric signal (DC voltage) to the expansion valve 4 to maintain the difference at a predetermined value.

膨張弁4,温度センサ7,8、応答補償回路9,10お
よび制御回路11により冷媒流量制御装置を構成してい
る。以上の構成において、この冷媒サイクルは、圧縮機
1による冷媒の圧縮作用により冷媒が凝縮器2,膨張弁
4,蒸発器5,圧縮機1の吸入部の経路て流れ、蒸発器
5において冷房能力を出力する。
The expansion valve 4, temperature sensors 7, 8, response compensation circuits 9, 10, and control circuit 11 constitute a refrigerant flow rate control device. In the above configuration, in this refrigerant cycle, the refrigerant flows through the condenser 2, the expansion valve 4, the evaporator 5, and the suction section of the compressor 1 due to the compression action of the refrigerant by the compressor 1, and the evaporator 5 has a cooling capacity. Output.

この冷凍サイクルの動作で、蒸発器5内で蒸発した冷媒
が、その出口でほぼ乾燥飽和蒸気となる時、最も適切な
運転状態となる。この時、蒸発器5の内部(中間部)と
出口部のそれぞれの冷媒の温度は、等しい場合である。
そこでこれらの温度を検出し、その温度差がほぼ零とな
るように膨張弁4の開度を調整することが適切てある。
しかし実際の構成上、蒸発器5の内部および蒸発器5よ
り圧縮機1の吸入部までの冷媒配管の抵抗により温度降
下かあり、また膨張弁4の調節過程で圧縮機1が冷媒の
ガス液混相域て吸入して液圧縮するのを防止するため、
通常蒸発器5の入口部ないし中間部の温度と、蒸発器5
の出口部ないし圧縮機1の吸入部の温度との差(通常過
熱度という)を常に所定の値(例えは数℃)となるよう
に制御して、冷凍サイクルの効率の向上と安全性を確保
することが好ましい。そこで第1図に示すごとく、温度
センサ7および9をそれぞれ蒸発器5の入口部及び圧縮
機1の”吸入部の冷媒配管の表面に設け、その位置にお
ける冷媒の温度を検出するようになしている。
In this operation of the refrigeration cycle, when the refrigerant evaporated in the evaporator 5 becomes almost dry saturated vapor at its outlet, the most appropriate operating state is reached. At this time, the temperature of the refrigerant inside (middle part) and the outlet part of the evaporator 5 is equal.
Therefore, it is appropriate to detect these temperatures and adjust the opening degree of the expansion valve 4 so that the temperature difference becomes approximately zero.
However, due to the actual configuration, there is a temperature drop due to the resistance inside the evaporator 5 and the refrigerant piping from the evaporator 5 to the suction part of the compressor 1, and in the process of adjusting the expansion valve 4, the compressor 1 In order to prevent inhalation and liquid compression in the multiphase region,
Normally, the temperature at the inlet or intermediate part of the evaporator 5 and the temperature at the inlet or intermediate part of the evaporator 5
The temperature difference between the outlet part of the compressor 1 and the suction part of the compressor 1 (usually referred to as the degree of superheating) is always controlled to a predetermined value (for example, several degrees Celsius), improving the efficiency and safety of the refrigeration cycle. It is preferable to secure it. Therefore, as shown in FIG. 1, temperature sensors 7 and 9 are installed on the surfaces of the refrigerant pipes at the inlet of the evaporator 5 and the suction section of the compressor 1, respectively, to detect the temperature of the refrigerant at those positions. There is.

しかし温度センサ7,9として感温抵抗素子(サーミス
タ)等を用いるが、これらの温度センサ7,9自体、応
答おくれがあり、また冷媒配管もその内部の冷媒の温度
に対する表面の温度の応答おくれがあり、結局、温度セ
ンサ7,9の出力する検出信号は、冷媒の温度に対して
応答おくれを持つている。第2図にその温度応答特性の
一例を示す。図において、0は温度,tは時間を示し、
θ8・JOGP,θ。3はそれぞれ温度センサ7の取付
部における冷媒の温度,冷媒配管の表面温度,温度セン
サ7の検出する温度であり、またθ,,0sp,0,,
はそれぞれ、温度センサ8の取付部における冷媒の温度
,冷媒配管の表面温度,温度センサ8の検出する温度で
ある。
However, although temperature sensitive resistance elements (thermistors) or the like are used as the temperature sensors 7 and 9, these temperature sensors 7 and 9 themselves have a delay in response, and the refrigerant piping also has a delay in response of the surface temperature to the temperature of the refrigerant inside. As a result, the detection signals output from the temperature sensors 7 and 9 have a lag in response to the temperature of the refrigerant. FIG. 2 shows an example of its temperature response characteristics. In the figure, 0 indicates temperature, t indicates time,
θ8・JOGP, θ. 3 are the refrigerant temperature at the mounting part of the temperature sensor 7, the surface temperature of the refrigerant pipe, and the temperature detected by the temperature sensor 7, and θ,,0sp,0,,
are the temperature of the refrigerant at the attachment part of the temperature sensor 8, the surface temperature of the refrigerant pipe, and the temperature detected by the temperature sensor 8, respectively.

この第2図はこれらの温度信号の応答特性を示しており
、θEP,θSpはθE,θ2に対してやや遅れ、また
0E,,θ,,はθ。P,θSpに対して遅れを生じて
いる。この結果、冷媒の温度θE,θsに対して、温度
センサ7,9の検出する温度信号θ。,,θ,,は図の
ごとく遅れを生じた特性となつている。また、0ssは
θESに比して遅れが大きいが、これは温度センサ7の
取付部の冷媒はガス液混相域(液体の割合が十分大きい
)に対して、温度センサ9の取付部の冷媒はガス単相域
であり、冷媒配管等の熱伝達速度等により差を生じてい
る。このように温度センサ7および8、特に温度センサ
8の応答特性が遅いため、これらの検出信号より、温度
差(過熱度)を求め、膨張弁4の制御をしようとしても
制御上の安定性が良好とならないことが多く、また早期
安定化についても不利となる。
This FIG. 2 shows the response characteristics of these temperature signals. θEP and θSp are slightly delayed from θE and θ2, and 0E,, θ,, is θ. There is a delay with respect to P and θSp. As a result, the temperature signals θ detected by the temperature sensors 7 and 9 with respect to the refrigerant temperatures θE and θs. ,,θ,, have characteristics that cause a delay as shown in the figure. Also, 0ss has a large delay compared to θES, but this is because the refrigerant at the mounting part of the temperature sensor 7 is in the gas-liquid multiphase region (the proportion of liquid is sufficiently large), whereas the refrigerant at the mounting part of the temperature sensor 9 is This is a gas single-phase region, and differences occur depending on the heat transfer rate of refrigerant piping, etc. As described above, since the response characteristics of the temperature sensors 7 and 8, especially the temperature sensor 8, are slow, even if you try to control the expansion valve 4 by determining the temperature difference (degree of superheat) from these detection signals, the stability of the control will be poor. It is often not good, and it is also disadvantageous for early stabilization.

そのため、第1図に示す応答補償回路9および10によ
り、それぞれ、温度センサ7および8の検出する温度信
号θ111.,,θ,,を冷媒の真の温度変化θE,θ
sと同程度にまで応答特性を補償し、その出力を制御回
路11に入力するものである。これにより制御回路11
の入力する温度信号はほぼ冷媒の真の温度と等しくなり
、その値により膨張弁4への電気信号を調節することが
でき、すばやくかつ安定に過熱度を所定値に維持させる
ことが容易となる。さて、第3図は、過熱度の制御に関
するブロック線図を示したものであり、SHdは過熱度
の設定値、SHOは過熱度出力、SHlは温度センサ7
,8によつて検出した信号により得た過熱度、GA(S
)は制御回路11における比例・微分・積分動作等の伝
達関数、Gv(S)は膨張弁4の伝達関数、GE(S)
G,(S)はそれぞれ膨張弁4の出力と、温度θE,θ
sとの伝達関数、GEP(S),Gぉ(S)はそれぞれ
冷媒配管の伝達関数、G5,(S),G8(S)はそれ
ぞれ温度センサ7および8の伝達関数、GEc(S),
Gsc(S)はそれぞれ応答補償回路9,10の伝達関
数とする。
Therefore, the response compensation circuits 9 and 10 shown in FIG. 1 compensate for the temperature signals θ111 . ,,θ, , is the true temperature change θE, θ of the refrigerant
The response characteristics are compensated to the same extent as s, and the output thereof is input to the control circuit 11. As a result, the control circuit 11
The input temperature signal is approximately equal to the true temperature of the refrigerant, and the electric signal to the expansion valve 4 can be adjusted according to that value, making it easy to quickly and stably maintain the degree of superheat at a predetermined value. . Now, FIG. 3 shows a block diagram related to superheat degree control, where SHd is the superheat degree setting value, SHO is the superheat degree output, and SHl is the temperature sensor 7.
, 8, the degree of superheat obtained from the signal detected by GA(S
) is the transfer function of proportional, differential, and integral operations in the control circuit 11, Gv(S) is the transfer function of the expansion valve 4, and GE(S)
G and (S) are the output of the expansion valve 4 and the temperatures θE and θ, respectively.
GEP(S) and G0(S) are the transfer functions of the refrigerant pipes, G5, (S) and G8(S) are the transfer functions of the temperature sensors 7 and 8, respectively, GEc(S),
Gsc(S) is the transfer function of the response compensation circuits 9 and 10, respectively.

ここで応答補償回路9および10の働きにより、それぞ
れの出力信号が0Eおよび0,と等しくなる場合はGE
p(S)・GIcs(S)・GEO(S)=1かつであ
るから、SHdに対するSHOの伝達関数G(S)はで
表わされ、第4図に示すごとくブロック線図で示すこと
ができる。
Here, due to the action of response compensation circuits 9 and 10, if the respective output signals become equal to 0E and 0, GE
Since p(S)・GIcs(S)・GEO(S)=1, the transfer function G(S) of SHO to SHd is expressed as can.

すなわち、この制御系における制御対象の過熱度SHO
の真の値を検出するように応答補償回路9および10を
適切に構成すれば、過熱度に関する制御系は第4図のよ
うな簡単なブロック線図で表現しうることになる。
That is, the superheat degree SHO of the controlled object in this control system
If the response compensation circuits 9 and 10 are appropriately configured to detect the true value of , the control system regarding the degree of superheating can be expressed by a simple block diagram as shown in FIG.

そこでGv(S),および〔G,(S)−GO(S)〕
の各々の値あるいはGv(S) 〔Gs(S)−GE
(S)〕の値を求めることにより、制御系の安定性を得
るための制御回路11における比例・微分・積分動作に
よる伝達関数GA(S)を比較的容易に求めることがで
きるようになり、制御系の解析、設計、特性の向上に大
いに貢献するものである。つぎに応答補償回路9の一実
施例を第5図に示す。
So Gv(S), and [G,(S)-GO(S)]
or Gv(S) [Gs(S)-GE
(S)], it becomes possible to relatively easily determine the transfer function GA(S) based on proportional, differential, and integral operations in the control circuit 11 to obtain stability of the control system. This will greatly contribute to improving the analysis, design, and characteristics of control systems. Next, one embodiment of the response compensation circuit 9 is shown in FIG.

なお応答補償回路10についても同様である。Note that the same applies to the response compensation circuit 10.

第5図において、Vccは直流電源であり、7は温度セ
ンサであり、ここでは負特性感温抵抗素子を用いている
。12は抵抗、13はノイズ吸収用のコンデンサである
In FIG. 5, Vcc is a DC power supply, and 7 is a temperature sensor, in which a negative temperature sensitive resistance element is used. 12 is a resistor, and 13 is a capacitor for noise absorption.

以上により温度センサ7ばよる温度検出部を構成してい
る。ここでその出力される信号電圧■Tは抵抗12の選
定により温度センサ7の検知する温度θESとほぼ直線
関係が得られている。9は応答補償回路、14は演算増
幅器、R1およびC1は応答補償用の抵抗およびコンデ
ンサである。
The above constitutes a temperature detection section based on the temperature sensor 7. Here, the output signal voltage ■T has a substantially linear relationship with the temperature θES detected by the temperature sensor 7 by selecting the resistor 12. 9 is a response compensation circuit, 14 is an operational amplifier, and R1 and C1 are a response compensation resistor and a capacitor.

15および16はそれぞれノイズ抑制用の小容量のコン
デンサおよび低抵抗値の抵抗である。
15 and 16 are a small capacitor and a low resistance value resistor for noise suppression, respectively.

この応答補償回路9はいわゆる比例微分器であり抵抗R
1およびコンデンサC1で与えられる時定数T1=T1
・C1により、その伝達関数G(S)=1+TlSなる
特性を有している。ここで信号電圧■ェが時定数τなる
一次おくれ応答特性であるとき、T1=τとなるように
R1およびC1を選定すると、出力電圧■。
This response compensation circuit 9 is a so-called proportional differentiator with a resistor R
1 and the time constant T1 given by capacitor C1 = T1
- Due to C1, it has the characteristic that the transfer function G(S)=1+TlS. Here, when the signal voltage (I) has a first-order delay response characteristic with a time constant τ, if R1 and C1 are selected so that T1=τ, the output voltage (I).

は、第6図に示すように信号電圧Vτの一次おくれ応答
にかかわらず、ステップ状の出力となる。すなわちこの
ことから冷媒の温度θEに対して温度センサ7の出力す
る温度信号θESが一次おくれ応答であるとき、その伝
達関数はGO,(S)・G6,(S)=±であるから、
出力電圧V。は、温度θ8と同1+τ,一の変化特性と
なる。
As shown in FIG. 6, regardless of the first-order lag response of the signal voltage Vτ, the output is stepped. That is, from this, when the temperature signal θES output by the temperature sensor 7 is a first-order lag response with respect to the refrigerant temperature θE, the transfer function is GO, (S)・G6, (S)=±,
Output voltage V. has a change characteristic of 1+τ, which is the same as the temperature θ8.

更に第7図は応答補償回路の他の実施例であり、抵相只
,,R2、コンデンサCl,C2により応答補償特性を
与え、2次おくれ応答特性を補償回路9″を構成する。
Furthermore, FIG. 7 shows another embodiment of the response compensation circuit, in which a response compensation characteristic is provided by resistors R2, .

この回路は、GEp(S) ・GE3(S)が2次おく
れ応答もしくは高次おけれ応答である場合に、前述の第
5図のように温度0E11とほぼ同一の変化特性を有す
る出力電圧VOを出力することができるものである。以
上本発明を実施例に基づいて説明したが、応答補償回路
9,10の特性として、冷媒の温度06,θ,と同特性
の出力信号を発するように構成した場合を説明したが、
制御回路11の伝達関数GA(S)との関連において、
過補償気味あるいは補償不足気味等になすことも可能で
ある。
In this circuit, when GEp(S) ・GE3(S) is a second-order delay response or a higher-order delay response, the output voltage VO has almost the same change characteristics as the temperature 0E11 as shown in FIG. It is possible to output . The present invention has been described above based on the embodiments, and the case where the response compensation circuits 9 and 10 are configured to emit an output signal having the same characteristics as the refrigerant temperature 06, θ has been described.
In relation to the transfer function GA(S) of the control circuit 11,
It is also possible to slightly overcompensate or undercompensate.

また温度センサ7,8としては信頼性,コスト面で支障
がなけれは応答速度の速いものを使用した方が補償する
度合が小さくてすむ点で好ましい。またこの補償動作に
おいて、むだ時間については補償できないので、温度セ
ンサ7,8はできるだけむだ時間のないものを選定する
必要がある。ただし冷媒配管の応答を含め、やむを得す
多少のむだ時間が生じる場合には、補償動作を過補償気
味となせは、通常ほぼ良好な出力信号を発することがで
きる。また温度センサ7,8は感温抵抗素子以外であつ
ても良い。第1図の実施例は冷房装置に用いたものであ
るが、この他、冷凍装置,ヒートポンプ装置等幅広く使
用しうることは明らかである。
Further, as the temperature sensors 7 and 8, it is preferable to use ones with a fast response speed, as long as there is no problem in terms of reliability and cost, since the degree of compensation can be small. Further, in this compensation operation, it is not possible to compensate for dead time, so it is necessary to select temperature sensors 7 and 8 that have as little dead time as possible. However, if some dead time unavoidably occurs, including the response of the refrigerant piping, it is usually possible to generate a substantially good output signal, even if the compensation operation is slightly overcompensated. Further, the temperature sensors 7 and 8 may be other than temperature-sensitive resistance elements. Although the embodiment shown in FIG. 1 is used in a cooling device, it is clear that the device can be used in a wide range of other applications such as refrigeration devices and heat pump devices.

以上のごとく、本発明の冷媒流量制御装置は、電気信号
によりその弁開度が調節可能な膨張弁を用いて冷媒の流
量を制御して、冷凍サイクルを最適状態に維持するもの
であり、特に冷媒の温度を検知する2つの温度センサよ
り出力される信号の応答特性を補償して、制御動作を速
めて早期安定化を図ることができるものであり、特にい
わゆるSEERの向上に寄与することが期待しうるもの
である。
As described above, the refrigerant flow rate control device of the present invention maintains the refrigeration cycle in an optimal state by controlling the refrigerant flow rate using an expansion valve whose valve opening degree can be adjusted by an electric signal. It compensates for the response characteristics of the signals output from the two temperature sensors that detect the temperature of the refrigerant, speeding up the control operation and achieving early stabilization, and particularly contributing to the improvement of so-called SEER. This is something to be expected.

また装置の構成、特に応答補償回路の構成は極めて簡単
なもので実現できる等の効果も得られるものである。
Further, the device configuration, particularly the response compensation circuit configuration, can be realized with an extremely simple configuration, and other effects can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における冷媒流量制御装置の
一実施を示す構成図、第2図は第1図における動作説明
図、第3図,第4図は制御系のブロック線図、第5図は
本発明の冷媒流量制御装置における応答補償回路の一実
施例を示す回路構成図、第6図は第5図の動作説明図、
第7図は応答補償回路の他の実施例の回路構成図である
。 1・・・・・・圧縮機、4・・・・・・膨張弁、5・・
・・・・蒸発器、7,8・・・・・・第1および第2の
温度センサ、9,10・・・・・・第1および第2の応
答補償回路、11・・制御回路。
FIG. 1 is a configuration diagram showing an implementation of a refrigerant flow rate control device in an embodiment of the present invention, FIG. 2 is an explanatory diagram of the operation in FIG. 1, and FIGS. 3 and 4 are block diagrams of a control system. FIG. 5 is a circuit configuration diagram showing an embodiment of the response compensation circuit in the refrigerant flow rate control device of the present invention, FIG. 6 is an explanatory diagram of the operation of FIG. 5,
FIG. 7 is a circuit diagram of another embodiment of the response compensation circuit. 1... Compressor, 4... Expansion valve, 5...
... Evaporator, 7, 8... First and second temperature sensors, 9, 10... First and second response compensation circuits, 11... Control circuit.

Claims (1)

【特許請求の範囲】 1 電気信号によりその弁開度が調節可能な膨張弁と、
蒸発器の入口乃至中間部に設けられた第1の温度センサ
と、前記蒸発器の出口乃至圧縮機の吸入部に設けられた
第2の温度センサと、前記第1の温度センサの出力する
検出信号の応答特性を補償する第1の応答補償回路と、
前記第2の温度センサの出力する検出信号の応答特性を
補償する第2の応答補償回路と、前記第1及び第2の応
答補償回路の出力する温度信号の差を所定値に保つよう
に前記膨張弁へ電気信号を発する制御回路とにより構成
されたことを特徴とする冷媒流量制御装置。 2 第1及び第2の応答補償回路は、前記第2の応答補
償回路の進み補償動作を、前記第1の応答補償回路の進
み補償動作よりも大きく選定した特許請求の範囲第1項
記載の冷媒流量制御装置。 3 第1及び第2の応答補償回路は、演算増幅器、抵抗
、コンデンサを主体とした比例微分回路により構成した
特許請求の範囲第1項記載の冷媒流量制御装置。
[Claims] 1. An expansion valve whose opening degree can be adjusted by an electric signal;
a first temperature sensor provided at the inlet to the intermediate portion of the evaporator; a second temperature sensor provided at the outlet of the evaporator to the suction portion of the compressor; and a detection output from the first temperature sensor. a first response compensation circuit that compensates for response characteristics of the signal;
a second response compensation circuit that compensates for a response characteristic of a detection signal output by the second temperature sensor; 1. A refrigerant flow rate control device comprising: a control circuit that issues an electric signal to an expansion valve; 2. The first and second response compensation circuits are configured such that the lead compensation operation of the second response compensation circuit is selected to be larger than the lead compensation operation of the first response compensation circuit. Refrigerant flow control device. 3. The refrigerant flow rate control device according to claim 1, wherein the first and second response compensation circuits are constituted by proportional differential circuits mainly consisting of an operational amplifier, a resistor, and a capacitor.
JP56097939A 1981-06-23 1981-06-23 Refrigerant flow control device Expired JPS6058384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56097939A JPS6058384B2 (en) 1981-06-23 1981-06-23 Refrigerant flow control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56097939A JPS6058384B2 (en) 1981-06-23 1981-06-23 Refrigerant flow control device

Publications (2)

Publication Number Publication Date
JPS5873A JPS5873A (en) 1983-01-05
JPS6058384B2 true JPS6058384B2 (en) 1985-12-19

Family

ID=14205629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56097939A Expired JPS6058384B2 (en) 1981-06-23 1981-06-23 Refrigerant flow control device

Country Status (1)

Country Link
JP (1) JPS6058384B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799550B2 (en) * 1984-11-16 1995-10-25 日本信号株式会社 Automatic ticket gate
JPH0268457A (en) * 1988-09-01 1990-03-07 Ulvac Corp Freezing and cooling device for freezed vacuum drying operation

Also Published As

Publication number Publication date
JPS5873A (en) 1983-01-05

Similar Documents

Publication Publication Date Title
US4617804A (en) Refrigerant flow control device
US4848099A (en) Adaptive refrigerant control algorithm
US4244182A (en) Apparatus for controlling refrigerant feed rate in a refrigeration system
KR20010092356A (en) Method for controlling an electronic expansion valve based on cooler pinch and discharge superheat
US7290402B1 (en) Expansion valve control system and method and refrigeration unit employing the same
JP2001124387A (en) Air-conditioning device for vehicle
JPS6058384B2 (en) Refrigerant flow control device
JPS6058383B2 (en) Refrigerant flow control device
JP2982322B2 (en) Automatic temperature control device for absorption refrigerator
JPS6251386B2 (en)
JPS6162770A (en) Method of controlling refrigerating air conditioner
NL8300819A (en) Control system for heat-pump evaporator - limits operational overheating by feedback system to input valve
JPH0714772Y2 (en) Refrigeration cycle
JPS6353454B2 (en)
JP2005106380A (en) Freezing cycle device
JPS5888554A (en) Controller for refrigerating cycle
JPH08327122A (en) Air conditioner
JP7432810B2 (en) Refrigeration cycle equipment
JPS6356465B2 (en)
JPH0464851A (en) Control device for multi-chamber type air conditioner
JPS5823544B2 (en) Refrigerant control device
JPH0524417B2 (en)
JPS59109748A (en) Air conditioner
JPH0212340B2 (en)
JPS611942A (en) Capacity control system of air conditioner