JPS6058383B2 - Refrigerant flow control device - Google Patents

Refrigerant flow control device

Info

Publication number
JPS6058383B2
JPS6058383B2 JP9793881A JP9793881A JPS6058383B2 JP S6058383 B2 JPS6058383 B2 JP S6058383B2 JP 9793881 A JP9793881 A JP 9793881A JP 9793881 A JP9793881 A JP 9793881A JP S6058383 B2 JPS6058383 B2 JP S6058383B2
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
temperature sensor
response
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9793881A
Other languages
Japanese (ja)
Other versions
JPS5872A (en
Inventor
勇 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9793881A priority Critical patent/JPS6058383B2/en
Publication of JPS5872A publication Critical patent/JPS5872A/en
Publication of JPS6058383B2 publication Critical patent/JPS6058383B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 本発明は熱電膨張弁等の電気式膨張弁を用いた冷凍装
置もしくは空調装置において、常に効率の良い冷凍サイ
クルを維持することを目的とするもので、冷凍サイクル
の安定状態のみならず、過渡状態や広範な負荷の変動に
対しても冷凍サイクルを最適化するための冷媒流量制御
装置に関するものである。
Detailed Description of the Invention The present invention aims to maintain a highly efficient refrigeration cycle at all times in a refrigeration system or air conditioner using an electric expansion valve such as a thermoelectric expansion valve. The present invention relates to a refrigerant flow rate control device for optimizing a refrigeration cycle not only under conditions but also under transient conditions and wide-ranging load fluctuations.

従来この種制御装置において、例えば蒸発器の入口部
及び出口部に温度センサを設け、それらの温度センサの
検出した温度の差を求め、この温度差(いわゆる過熱度
に対応)が所定の値に維持されるよう制御装置により膨
張弁への電気信号を制御していた。
Conventionally, in this type of control device, for example, temperature sensors are provided at the inlet and outlet of the evaporator, the difference in temperature detected by these temperature sensors is determined, and this temperature difference (corresponding to the so-called degree of superheating) is determined to reach a predetermined value. A control device controlled the electrical signal to the expansion valve so that the expansion valve was maintained.

しカルながら温度差を求めるための2つの温度センサ
は、通常メンテナンス、信頼性等の理由で冷媒配管に接
触させて、当該部の冷媒の温度を検出するようになして
いるため、温度センサの出力する検出信号は冷媒配管中
の実際の冷媒の変化に対して、時間遅れが生じる。
However, the two temperature sensors used to determine the temperature difference are usually brought into contact with the refrigerant piping to detect the temperature of the refrigerant in that part for reasons such as maintenance and reliability. The output detection signal has a time delay with respect to the actual change in the refrigerant in the refrigerant pipe.

また冷媒配管の表面温度に対してもその接触部の熱伝達
並びに温度センサ自体の熱時定数により時間遅れが生じ
る。しかもこの時間遅れの状況は蒸発器の入口部(中間
部でも可)に設けた温度センサの時間おくれに対し、蒸
発器の出口部(圧縮機の吸入部でも可)に設けた温度セ
ンサの時間おくれが異なつており、後者の方が時間おく
れが大きな値となつている。すなわち、前者は冷媒配管
内部の冷媒の状態が、ガス・液混相域となつており、冷
媒配管への熱伝達が比較的速く、温度センサの検出する
応答速度もそれに応じて比較的速くなつているが、後者
は冷媒配管中の冷媒の状態が通常の動作においてはガス
単相域となつており、冷媒配管への熱伝達は非常に遅く
なり、これにより温度センサの検出する応答速度は非常
に遅いものとなつている。 このように2つの温度セン
サの検出信号は、実際の冷媒温度の変化よりも遅く、ま
た2つの温度センサで、その時間おくれが異なつたもの
となつている。例えば、蒸発器入口部の温度センサは、
一次おくれと近似したとき3囲′程度、蒸発器出口部の
温度センサは6囲′程度、等の時間おくれを有している
。 従つて従来は以上のような大きな時間おくれを有す
るとともにおくれの程度の異なる2つの検出信号より単
純に温度差を求め、その温度差を所定値に維持すべく制
御を行なつていた。
Furthermore, a time delay occurs with respect to the surface temperature of the refrigerant pipe due to heat transfer at the contact portion and the thermal time constant of the temperature sensor itself. Moreover, this time lag situation is caused by the time lag of the temperature sensor installed at the evaporator outlet (or the compressor suction) compared to the time lag of the temperature sensor installed at the evaporator's inlet (or the middle). The delays are different, with the latter having a larger value. In other words, in the former case, the state of the refrigerant inside the refrigerant pipe is in a gas/liquid multiphase region, heat transfer to the refrigerant pipe is relatively fast, and the response speed detected by the temperature sensor is also relatively fast. However, in the latter case, the state of the refrigerant in the refrigerant piping is in the gas single-phase region during normal operation, and the heat transfer to the refrigerant piping is extremely slow.As a result, the response speed detected by the temperature sensor is extremely slow. It is becoming slower. In this way, the detection signals of the two temperature sensors are slower than the actual change in refrigerant temperature, and the two temperature sensors have different time delays. For example, the temperature sensor at the evaporator inlet is
Approximately, the first-order delay has a time lag of about 3', and the temperature sensor at the evaporator outlet has a time lag of about 6'. Therefore, in the past, the temperature difference was simply determined from two detection signals having a large time lag and different degrees of lag as described above, and control was performed to maintain the temperature difference at a predetermined value.

またこの温度検出以外に、膨張弁の応答性を含め冷凍サ
イクル自体の応答性が極めて遅いため総合的に温度セン
サがほぼ冷媒の温度と等しい値を出力するには極めて長
い時間(例えは数分程度)を要することとなり、制御系
の安定に時間を要するとともにまた発振、振動状態に陥
いる確率も高かつた。そこで本発明は前述の温度センサ
の応答性の改善により、冷凍サイクルの早期安定化と、
最適制御状態の拡大を図つて、冷凍・空調機器の効率す
なわちEERならびにSEERの向上を達成せんとする
ものである。特に本発明は蒸発器の出口部(ないし圧縮
機の吸入部)に設けた温度センサの応答特性の補償を行
ない。
In addition to this temperature detection, the response of the refrigeration cycle itself, including the response of the expansion valve, is extremely slow, so it takes an extremely long time (for example, several minutes) for the temperature sensor to output a value approximately equal to the temperature of the refrigerant. Therefore, it took time for the control system to stabilize, and there was also a high probability that the control system would fall into an oscillation or vibration state. Therefore, the present invention achieves early stabilization of the refrigeration cycle by improving the responsiveness of the temperature sensor described above.
The objective is to expand the optimal control state and achieve improvements in the efficiency of refrigeration and air conditioning equipment, that is, the EER and SEER. In particular, the present invention compensates for the response characteristics of a temperature sensor provided at the outlet of the evaporator (or at the suction of the compressor).

蒸発器の入口部(ないし中間部)に設けた温度センサの
応答性と同程度あるいはそれ以上となして、その結果よ
り温度差を求め、この温度差が所定値となるよう制御回
路の動作により膨張弁への電気信号を調節し冷媒流量を
制御しようとするものである。以下本発明の冷媒流量制
御装置を添付図面に基づいて詳細に説明する。
The response is the same as or higher than that of the temperature sensor installed at the inlet (or middle) of the evaporator, and the temperature difference is determined from the results, and the control circuit is operated so that this temperature difference becomes a predetermined value. It attempts to control the refrigerant flow rate by adjusting the electrical signal to the expansion valve. DESCRIPTION OF THE PREFERRED EMBODIMENTS The refrigerant flow rate control device of the present invention will be described in detail below with reference to the accompanying drawings.

第1図は本発明に基づく冷媒流量制御装置の一実施例を
示す構成図であり、図は特に冷房装置に用いた場合を示
している。
FIG. 1 is a block diagram showing an embodiment of a refrigerant flow rate control device according to the present invention, and the figure particularly shows the case where the refrigerant flow rate control device is used in a cooling device.

図において、1は圧縮機、2は凝縮器、3は凝縮器2用
の送風機、4は電気信号により弁開度を調節しうる膨張
弁(ここでは熱電膨張弁とする)、5は蒸発器、6は蒸
発.器5用の送風機であり、以上により冷凍サイクルを
構成する。7及び8はそれぞれ蒸発器5の入口部及び圧
縮機1の吸入部に設けた温度センサ、9は温度センサ8
の検出する温度信号の応答性を補償するための応答補償
回路、10は応答補償回路.9及び温度センサ7よりの
温度信号の差を検知し、その差を所定の値に維持すべく
電気信号を膨張弁4に発する制御回路てある。
In the figure, 1 is a compressor, 2 is a condenser, 3 is a blower for the condenser 2, 4 is an expansion valve whose opening degree can be adjusted by an electric signal (in this case, it is a thermoelectric expansion valve), and 5 is an evaporator. , 6 is evaporation. This is a blower for the container 5, and the above constitutes a refrigeration cycle. 7 and 8 are temperature sensors provided at the inlet of the evaporator 5 and the suction of the compressor 1, respectively; 9 is a temperature sensor 8;
10 is a response compensation circuit for compensating the responsiveness of the temperature signal detected by . A control circuit detects the difference between the temperature signals from the expansion valve 9 and the temperature sensor 7, and issues an electric signal to the expansion valve 4 to maintain the difference at a predetermined value.

膨張弁4、温度センサ7,8、応答補償回路9および制
御回路10により、冷媒流量制御装置を構成している。
以上の構成において、この冷媒サイクルは、圧縮機1に
おける冷媒の圧縮作用により、冷媒が凝縮器2、膨張弁
4、蒸発器5、圧縮機1の吸入部の経路で流れ、蒸発器
5において冷房能力を出力する。この冷媒サイクルの動
作で、蒸発器5内で蒸発した冷媒が、その出口でほぼ乾
燥飽和蒸気となるとき、最も適切な運転状態となる。こ
のとき蒸発器5の内部(中間部)と出口部のそれぞれの
冷媒の温度は等しくなつている。そこで、これらの温度
を検出し、その温度差がほぼ零となるように膨張弁4の
開度を調整することが適切である。しかし実際の構成で
は、蒸発器5の内部および蒸発器5より圧縮機1の吸入
部まての冷媒配管のノ抵抗により温度降下があり、また
膨張弁4の調節過程で、圧縮機1が冷媒のガス液混相域
で吸入して、液圧縮するのを防止するため、通常蒸発器
5の入口部ないし中間部の温度と、蒸発器5の出口部な
いし吸入部の温度との差(通常過熱度という)を常に所
定の値(例えば数℃)となるように制御し、冷凍サイク
ルの効率の向上と、安定性の確保を得ることが好ましい
。そこで第1図に示すごとく、温度センサ7および8を
、それぞれ蒸発器5の入口部および圧縮機1の吸入部の
冷媒配管表面に設け、その位置の温度を検出するように
する。
The expansion valve 4, temperature sensors 7, 8, response compensation circuit 9, and control circuit 10 constitute a refrigerant flow rate control device.
In the above configuration, in this refrigerant cycle, due to the compression action of the refrigerant in the compressor 1, the refrigerant flows through the path of the condenser 2, the expansion valve 4, the evaporator 5, and the suction part of the compressor 1, and the evaporator 5 cools the refrigerant. Output ability. In this operation of the refrigerant cycle, when the refrigerant evaporated in the evaporator 5 becomes almost dry saturated vapor at its outlet, the most appropriate operating state is achieved. At this time, the temperatures of the refrigerant inside the evaporator 5 (in the middle) and at the outlet are equal. Therefore, it is appropriate to detect these temperatures and adjust the opening degree of the expansion valve 4 so that the temperature difference becomes approximately zero. However, in the actual configuration, there is a temperature drop due to the resistance inside the evaporator 5 and the refrigerant piping from the evaporator 5 to the suction part of the compressor 1, and in the process of adjusting the expansion valve 4, the compressor 1 In order to prevent suction and liquid compression in the gas-liquid multiphase region of It is preferable to always control the temperature at a predetermined value (for example, several degrees Celsius) to improve the efficiency of the refrigeration cycle and ensure stability. Therefore, as shown in FIG. 1, temperature sensors 7 and 8 are provided on the surfaces of the refrigerant pipes at the inlet of the evaporator 5 and the suction section of the compressor 1, respectively, to detect the temperature at those positions.

ここで、温度センサ7,8はしばしば感温抵抗素子(サ
ーミスタ)を用いるが、この素子自体に応答遅れがあり
、また冷媒配管も、その内部の冷媒温度に対する表面温
度の応答遅れがあるため、温度センサ7,8の出力する
検出信号は、冷媒の温度に対して応答おくれを持つこと
になる。第2図にその温度応答特性の一例を示す。図に
おいて、θは温度、tは時間を示し、θ。,θEP,E
ESはそれぞれ温度センサ7の取付部における冷媒の温
度、冷媒配管の表面温度、温度センサ7の検出する温度
であり、また0f3,0SP,θSsはそれぞれ温度セ
ンサ8の取付部における冷媒の温度、冷媒配管の表面温
度、温度センサ8の検出する温度てある。この第2図は
、これらの温度信号の応答特性を示しており、θEP,
O,,はθE,O,に対してやや遅れ、またθE,,θ
,,はθ5P,θ,pに対して遅れを生じている。
Here, the temperature sensors 7 and 8 often use temperature-sensitive resistance elements (thermistors), but this element itself has a response delay, and the refrigerant piping also has a response delay in the surface temperature relative to the internal refrigerant temperature. The detection signals output by the temperature sensors 7 and 8 have a response delay with respect to the temperature of the refrigerant. FIG. 2 shows an example of its temperature response characteristics. In the figure, θ indicates temperature, t indicates time, and θ. ,θEP,E
ES is the temperature of the refrigerant at the mounting part of the temperature sensor 7, the surface temperature of the refrigerant piping, and the temperature detected by the temperature sensor 7, respectively, and 0f3, 0SP, and θSs are the temperature of the refrigerant at the mounting part of the temperature sensor 8, and the refrigerant, respectively. There are the surface temperature of the pipe and the temperature detected by the temperature sensor 8. This Figure 2 shows the response characteristics of these temperature signals, θEP,
O,, is slightly delayed from θE,O,, and θE,,θ
, , are delayed with respect to θ5P, θ, p.

この結果、冷媒温度θE,OPに対し、温度センサ7お
よび8の検出する温度信号θE,,Oぉは図のごとく遅
れを生じた特性となつている。またθ$SはθESに比
して遅れが大きいが、これは温度センサ7の取付部の冷
媒がガス液混相域(液の割合が十分に大きい)であるの
に対し、温度センサ8の取付部の冷媒はガス単相域であ
り、冷媒配管等の熱伝達速度等により差を生じている。
このように温度センサ7および8、特に温度センサ8の
応答性が遅いため、これらの検出信号より温度差(過熱
度)を求め、膨張弁4の制御を行なおうとしても、制御
特性が良好とならないことが多く、また早期安定化につ
いても不利となる。
As a result, the temperature signals θE, , O detected by the temperature sensors 7 and 8 are delayed with respect to the refrigerant temperature θE, OP as shown in the figure. Also, θ$S has a large delay compared to θES, but this is because the refrigerant at the mounting part of the temperature sensor 7 is in the gas-liquid multiphase region (the ratio of liquid is sufficiently large), whereas the refrigerant at the mounting part of the temperature sensor 8 The refrigerant in this section is a gas single-phase region, and differences occur depending on the heat transfer rate of the refrigerant piping, etc.
As described above, since the response of temperature sensors 7 and 8, especially temperature sensor 8, is slow, even if you attempt to control the expansion valve 4 by determining the temperature difference (degree of superheat) from these detection signals, the control characteristics may not be good. In many cases, this is not the case, and it is also disadvantageous in terms of early stabilization.

そこで、、応答補償回路9は特に応答性の悪い温度セン
サ8よりの温度信号θ,,を、冷媒の真の温度θ,とほ
ぼ同程度の応答特性となるように補償するものである。
なお、温度センサ7の出力する検出信号は温度センサ8
のそれよりも応答特性が良く、また通常の制御状態では
、第2図に示す程、θ。の変化幅が大きくないのが普通
であり、また0sの変化幅より十分小さいため、ここで
は温度センサ7の検出信号に対する応答の補償を省略し
ている。応答補償回路9の働きで、制御回路11の入力
する温度信号は、ほぼ冷媒の温度に等しくなり、その値
により膨張弁4への電気信号を調節することができ、す
ばやくかつ安定に過熱度を制御することが容易となる。
Therefore, the response compensation circuit 9 compensates the temperature signal θ, which is particularly poor in response, from the temperature sensor 8, so that the response characteristic is approximately the same as the true temperature θ, of the refrigerant.
Note that the detection signal output by the temperature sensor 7 is the same as that of the temperature sensor 8.
The response characteristic is better than that of θ, and under normal control conditions, θ is as high as shown in FIG. Since the variation range of 0s is usually not large and is sufficiently smaller than the variation range of 0s, compensation for the response to the detection signal of the temperature sensor 7 is omitted here. Due to the action of the response compensation circuit 9, the temperature signal input to the control circuit 11 becomes approximately equal to the temperature of the refrigerant, and the electric signal to the expansion valve 4 can be adjusted according to that value, and the degree of superheat can be quickly and stably adjusted. It becomes easier to control.

さて第3図は過熱度の制御に関するブロック線図を示し
たものであり、SHdは過熱度の設定値、SHOは過熱
度出力、SHiは温度センサ7および8の検出信号に基
づく過熱度、GA(S)は制御回路10における比例,
微分,積分動作等の伝達関数、Gv(S)は膨張弁4の
伝達関数、GEl(S),Gs(S)はそれぞれ膨張弁
4の出力と、温度θ。
Now, FIG. 3 shows a block diagram related to the control of the degree of superheat, where SHd is the set value of the degree of superheat, SHO is the degree of superheat output, SHi is the degree of superheat based on the detection signals of temperature sensors 7 and 8, and GA (S) is the proportionality in the control circuit 10;
Transfer functions such as differential and integral operations, Gv(S) are the transfer functions of the expansion valve 4, and GEl(S) and Gs(S) are the output of the expansion valve 4 and the temperature θ, respectively.

,0,との間の伝達関数、GEp(S),G,p(S)
はそれぞれ冷媒配管の伝達関数、GO,(S),Gss
(S)はそれぞれ温度センサ7,8の伝達関数、G,O
(S)は応答補償回路9の伝達関数である。ここで応答
補償回路9の働きによりその出力信号がθsと等しくな
せば、G,p(S) ・Gss(S) ・G,。
, 0, and the transfer function, GEp(S), G,p(S)
are the transfer functions of the refrigerant piping, GO, (S), and Gss, respectively.
(S) are the transfer functions of temperature sensors 7 and 8, G and O, respectively.
(S) is a transfer function of the response compensation circuit 9. Here, if the response compensation circuit 9 makes its output signal equal to θs, then G,p(S) ・Gss(S) ・G,.

(S)=1また、温度センサ7の出力する温度信号00
,は前述の理由により、θES″−θsと近似すると、
GE,(S)・GO,(S)…1であるからSHdに対
するSHOの伝達関数G(S)は、G(s):GAS−
GVSCG3S−GOS〕 1+GA(S)・G
v(S)〔G,(S)−G8(S)〕で表わされ、第4
図に示すごとくブロック線図で示すことができる。
(S)=1 Also, the temperature signal 00 output by the temperature sensor 7
, is approximated as θES″−θs for the reasons mentioned above.
Since GE, (S)・GO, (S)...1, the transfer function G(S) of SHO to SHd is G(s):GAS-
GVSCG3S-GOS〕 1+GA(S)・G
v(S) [G, (S) - G8(S)], and the fourth
It can be shown in a block diagram as shown in the figure.

すなわち、この制御系の制御対象である過熱度SHOと
ほぼ等価な値を検出するように応答補償回路9を適切に
構成し、あるいは近似することができれば、過熱度に関
する制御系は図のように簡単な形に表現できる。
In other words, if the response compensation circuit 9 can be appropriately configured or approximated so as to detect a value almost equivalent to the superheat degree SHO, which is the control target of this control system, the control system regarding the superheat degree will be as shown in the figure. Can be expressed in a simple form.

そこで、Gv(S)および〔G,(S)−GO(S)〕
をそれぞれあるいはGv(S) 〔Gs(S)−GO
(S)〕を求めることにより、制御系の安定性を得るた
めの制御回路10における比例,微分,積分動作による
伝達関数GA(S)を比較的容易に求めることができ、
制御系の解析,設計,特性の向上等に大なる効果を奏す
る。
Therefore, Gv(S) and [G,(S)-GO(S)]
or Gv(S) [Gs(S)-GO
(S)], it is possible to relatively easily obtain the transfer function GA(S) by proportional, differential, and integral operations in the control circuit 10 to obtain stability of the control system.
It has a great effect on the analysis, design, and improvement of characteristics of control systems.

つぎに応答補償回路9の一実施例を第5図に示す。第5
図において、11は直流電源であり、電源電圧Vccを
以下の回路に供給する。8は温度センサであり、ここで
は負特性感温抵抗素子を用いている。
Next, one embodiment of the response compensation circuit 9 is shown in FIG. Fifth
In the figure, 11 is a DC power supply, which supplies power supply voltage Vcc to the following circuits. 8 is a temperature sensor, in which a negative characteristic temperature-sensitive resistance element is used.

12は抵抗、13はノイズ吸収用のコンデンサである。12 is a resistor, and 13 is a capacitor for noise absorption.

以上で温度検出部を構成している。ここでその出力され
る信号電圧Vτは抵抗12の選定により、温度センサ8
の検知する温度θSsとほぼ直線関係が得られている。
9は応答補償回路、14は演算増幅器、R1およびC1
は応答補償用の抵抗及びコンデンサである。15および
16はノイズ制御用の小容量のコンデンサおよび低抵抗
値の抵抗である。
The above constitutes the temperature detection section. Here, the output signal voltage Vτ is determined by the temperature sensor 8 depending on the selection of the resistor 12.
An almost linear relationship is obtained with the temperature θSs detected by .
9 is a response compensation circuit, 14 is an operational amplifier, R1 and C1
are the resistance and capacitor for response compensation. 15 and 16 are small-capacity capacitors and low-resistance resistors for noise control.

この応答補償回路9はいわゆる比例微分器であり、時定
数T1=R1・C1で、伝達関数G1(S)=1+Tl
Slなる特性を有している。ここで信号電圧■τが時定
数τなる一次おくれ・応答特性であるとき、T1=τと
なるようなR1およびC1を選定すると、出力電圧VO
は、第6図に示すように信号電圧■Tの一次おくれ応答
にかかわらず、ステップ状の出力となる。
This response compensation circuit 9 is a so-called proportional differentiator, with a time constant T1=R1・C1 and a transfer function G1(S)=1+Tl.
It has the property of Sl. Here, when the signal voltage ■τ has a first-order delay/response characteristic with a time constant τ, if R1 and C1 are selected such that T1=τ, the output voltage VO
As shown in FIG. 6, regardless of the first-order lag response of the signal voltage ■T, a step-like output is obtained.

すなわちこのことから冷媒の温度0,に対して温度セン
サ8の出力する温度信号θSsが一次おくれ応答である
とき、その伝達関数はGsp(S)・G9(S)=±で
あるから、出力電圧VOは温度θ3と同一1+τSの変
化特性となる。
In other words, from this, when the temperature signal θSs output by the temperature sensor 8 is a first-order lag response with respect to the refrigerant temperature 0, its transfer function is Gsp(S)・G9(S)=±, so the output voltage VO has the same change characteristic of 1+τS as the temperature θ3.

さらに第7図は応答補償回路の他の実施例であり、抵拍
只,,R2、コンデンサCl,C2により応答補償特性
を与え、2次おくれ応答特性を補償する応答補償回路9
″を構成する。
Furthermore, FIG. 7 shows another embodiment of the response compensation circuit, in which the response compensation circuit 9 provides response compensation characteristics using resistors, R2, and capacitors Cl, C2 to compensate for quadratic lag response characteristics.
Configure ″.

この回路はGsp(S)・Gss(S)が2次おくれ応
答もしくは高次おくれ応答である場合に、前述の第5図
のように温度03とほぼ同一の変化特性を有する出力電
圧■0を出力することができるものである。以上本発明
を実施例に基づいて説明したが、応答補償回路9の特性
として冷媒の温度011:,θ,を同特性の出力信号を
発するように構成した場合を説明したが、制御回路10
の伝達関数GA(S)との関連において、過補償気味あ
るいは補償不足気味等に有することも可能である。例え
は温度θεの検出のおくれと同程度に補償し、GA(S
)を決める方法も行なえる。また温度センサ7,8とし
ては信頼性,コスト面で支障がなければ応答速度の速い
ものを使用した方が補償する度合が小さくてすむ点で好
ましい。またこの補償動作において、むだ時間について
は補償できないので、温度センサ7,8はできるだけむ
だ時間のないものを選定する必要がある。ただし冷媒配
管の応答を含め、やむを得ず多少のむだ時間が生じる場
合には、補償動作を過補償気味となせば、通常ほぼ良好
な出力信号を発することができる。また温度センサ7,
8は感温抵抗素子以外であつても良い。第1図の実施例
は冷房装置に用いたものであるが、この他冷凍装置、ヒ
ートポンプ装置などに幅広く使用できる。以上のごとく
、本発明に基づく冷媒流量制御装置は、電気信号により
その弁開度が調節可能な膨張弁を用いて、冷媒の流量を
制御して冷凍サイクルを最適化するものであり、特に応
答特性の遅い蒸発器出口部ないし圧縮機の吸入部に設け
られた温度センサよりの温度信号を補償して、制御動作
を速めて早期安定化を図ることができるものである。
When Gsp(S)/Gss(S) is a second-order lag response or a higher-order lag response, this circuit generates an output voltage ■0 that has almost the same change characteristics as the temperature 03 as shown in Figure 5 above. It is something that can be output. The present invention has been described above based on embodiments, and a case has been described in which the response compensation circuit 9 is configured to emit an output signal having the same characteristics when the temperature of the refrigerant is 011:, θ.
In relation to the transfer function GA(S), it is also possible to have a tendency toward overcompensation or undercompensation. For example, the delay in detecting temperature θε is compensated for to the same extent as GA(S
) can also be determined. Further, as the temperature sensors 7 and 8, it is preferable to use ones with a fast response speed, as long as there is no problem in terms of reliability and cost, since the degree of compensation can be small. Further, in this compensation operation, it is not possible to compensate for dead time, so it is necessary to select temperature sensors 7 and 8 that have as little dead time as possible. However, if some dead time inevitably occurs, including the response of the refrigerant piping, if the compensation operation is made to be slightly overcompensated, it is usually possible to generate a substantially good output signal. Also, the temperature sensor 7,
8 may be other than a temperature sensitive resistance element. Although the embodiment shown in FIG. 1 is used in a cooling device, it can be used in a wide range of other applications such as refrigeration devices and heat pump devices. As described above, the refrigerant flow rate control device based on the present invention optimizes the refrigeration cycle by controlling the refrigerant flow rate using an expansion valve whose valve opening degree can be adjusted by an electric signal, and particularly improves response. By compensating for the temperature signal from the temperature sensor provided at the evaporator outlet or the compressor suction, which has slow characteristics, it is possible to speed up the control operation and achieve early stabilization.

これによりいわゆるSEERの向上に寄与することが期
待でき、その効果は大なるものがある。
This can be expected to contribute to an improvement in so-called SEER, and the effect is significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に基づく冷媒流量制御装置の一実施を示
す回路構成図、第2図は第1図における動作説明図、第
3図,第4図は制御系のブロック線図、第5図は本発明
の冷媒流量制御装置における応答補償回路の回路構成図
、第6図は第5図の動作説明図、第7図は応答補償回路
の他の実施例の回路構成図である。 1・・・・・・圧縮機、4・・・・・・膨張弁、5・・
・・・・蒸発器、7,8・・・・・・第1および第2の
温度センサ、9・・・・・応答補償回路、10・・・・
・・制御回路。
FIG. 1 is a circuit configuration diagram showing an implementation of the refrigerant flow rate control device based on the present invention, FIG. 2 is an explanatory diagram of the operation in FIG. 1, FIGS. 3 and 4 are block diagrams of the control system, and FIG. 6 is a circuit configuration diagram of a response compensation circuit in the refrigerant flow rate control device of the present invention, FIG. 6 is an explanatory diagram of the operation of FIG. 5, and FIG. 7 is a circuit diagram of another embodiment of the response compensation circuit. 1... Compressor, 4... Expansion valve, 5...
... Evaporator, 7, 8... First and second temperature sensors, 9... Response compensation circuit, 10...
...Control circuit.

Claims (1)

【特許請求の範囲】 1 電気信号によりその弁開度が調節可能な膨張弁と、
蒸発器の入口乃至中間部に設けられた第1の温度センサ
と、前記蒸発器の出口乃至圧縮機の吸入部に設けられた
第2の温度センサと、前記第2の温度センサの出力する
検出信号の応答特性を補償する応答補償回路と、前記第
1の温度センサの出力する検出信号及び前記応答補償回
路の出力信号との差より温度差信号を得、その値を所定
値に保つように前記膨張弁へ電気信号を発する制御回路
とにより構成されたことを特徴とする冷媒流量制御装置
。 2 応答補償回路を、演算増幅器、抵抗、コンデンサを
主体とした比例微分回路により構成した特許請求の範囲
第1項記載の冷媒流量制御装置。
[Claims] 1. An expansion valve whose opening degree can be adjusted by an electric signal;
a first temperature sensor provided at the inlet of the evaporator or an intermediate portion; a second temperature sensor provided at the outlet of the evaporator or the suction portion of the compressor; and a detection output from the second temperature sensor. A response compensation circuit that compensates for the response characteristics of the signal, and a temperature difference signal obtained from the difference between the detection signal outputted by the first temperature sensor and the output signal of the response compensation circuit, and the value thereof is maintained at a predetermined value. A refrigerant flow rate control device comprising: a control circuit that issues an electric signal to the expansion valve; 2. The refrigerant flow rate control device according to claim 1, wherein the response compensation circuit is constituted by a proportional differential circuit mainly composed of an operational amplifier, a resistor, and a capacitor.
JP9793881A 1981-06-23 1981-06-23 Refrigerant flow control device Expired JPS6058383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9793881A JPS6058383B2 (en) 1981-06-23 1981-06-23 Refrigerant flow control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9793881A JPS6058383B2 (en) 1981-06-23 1981-06-23 Refrigerant flow control device

Publications (2)

Publication Number Publication Date
JPS5872A JPS5872A (en) 1983-01-05
JPS6058383B2 true JPS6058383B2 (en) 1985-12-19

Family

ID=14205602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9793881A Expired JPS6058383B2 (en) 1981-06-23 1981-06-23 Refrigerant flow control device

Country Status (1)

Country Link
JP (1) JPS6058383B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03129486U (en) * 1990-04-12 1991-12-26
JPH051423Y2 (en) * 1986-05-31 1993-01-14

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4612900A (en) * 1984-02-24 1986-09-23 Mitsubishi Denki Kabushiki Kaisha Engine operating parameter control apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051423Y2 (en) * 1986-05-31 1993-01-14
JPH03129486U (en) * 1990-04-12 1991-12-26

Also Published As

Publication number Publication date
JPS5872A (en) 1983-01-05

Similar Documents

Publication Publication Date Title
KR100423681B1 (en) Method for controlling an electronic expansion valve based on cooler pinch and discharge superheat
US4617804A (en) Refrigerant flow control device
JP2634139B2 (en) Refrigeration apparatus and control method thereof
US7290402B1 (en) Expansion valve control system and method and refrigeration unit employing the same
JP2001124387A (en) Air-conditioning device for vehicle
JPS6058383B2 (en) Refrigerant flow control device
JP2982322B2 (en) Automatic temperature control device for absorption refrigerator
JPS6058384B2 (en) Refrigerant flow control device
JPS6251386B2 (en)
JP3413047B2 (en) Refrigeration cycle
JP2504997Y2 (en) Air conditioner
JPS6162770A (en) Method of controlling refrigerating air conditioner
KR100557038B1 (en) Method for Controlling Expansion Valve of Heat pump
JP2005106380A (en) Freezing cycle device
JPH0714772Y2 (en) Refrigeration cycle
JPS6356465B2 (en)
JPS6189455A (en) Flow controller for refrigerant in refrigeration cycle
JPS5888554A (en) Controller for refrigerating cycle
JPS5823544B2 (en) Refrigerant control device
JPH055417Y2 (en)
JPS6353459B2 (en)
JPH0510183Y2 (en)
JPS5880468A (en) Controller for refrigerant of air conditioner
JPH0573981B2 (en)
JPS6155022B2 (en)