JPS59109748A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPS59109748A
JPS59109748A JP21870882A JP21870882A JPS59109748A JP S59109748 A JPS59109748 A JP S59109748A JP 21870882 A JP21870882 A JP 21870882A JP 21870882 A JP21870882 A JP 21870882A JP S59109748 A JPS59109748 A JP S59109748A
Authority
JP
Japan
Prior art keywords
pressure
air conditioner
temperature
detection means
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21870882A
Other languages
Japanese (ja)
Inventor
康雄 中島
信 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP21870882A priority Critical patent/JPS59109748A/en
Publication of JPS59109748A publication Critical patent/JPS59109748A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は空気調和機、特にその冷媒制御に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air conditioner, particularly to its refrigerant control.

従来、空気調和機の冷媒制御においては、毛細管あるい
は温度式膨張弁を使用するのが一般的であυ、毛細管は
設計条件において最適な運転となるように選定するが、
設計条件が異ると必ずしも最適な運転とはならない。又
、温度式膨張弁の場合には圧IM磯の吸入冷媒のスーパ
ーヒート(以下SRという。)を一定に保つように冷媒
制御を行うが、SHを一定に保つことは必ずしも最適な
制御とはならない。ここで最適な制御というのは、広範
囲の運転条件下で液バツク運転をしない、吐出圧力(高
圧)を一定値以下に抑える、あるいは吐出冷媒温度を一
定値以下に抑えるという、冷媒回路を保護する上で最低
限必要な条件を満足するだけでなく、必要に応じて能力
を最大とする制御あるいはエネルギ消費効率(EER=
能か久方)を最大とする制御をいう。
Conventionally, in the refrigerant control of air conditioners, it is common to use capillary tubes or thermostatic expansion valves.
Different design conditions will not necessarily result in optimal operation. In addition, in the case of a thermostatic expansion valve, refrigerant control is performed to keep the superheat (hereinafter referred to as SR) of the suction refrigerant constant, but keeping SH constant is not necessarily optimal control. No. The optimal control here means protecting the refrigerant circuit by not performing liquid backup operation under a wide range of operating conditions, keeping the discharge pressure (high pressure) below a certain value, or keeping the discharge refrigerant temperature below a certain value. In addition to satisfying the minimum requirements above, control or energy consumption efficiency (EER =
This refers to control that maximizes the performance (noh or kukata).

本発明は上記のことを考慮して成されたものであシ、従
来の毛細管方式あるいは温度式膨張弁方式では不可能で
あった冷媒の最適制御を可能とする空気調和機を提供す
ることを目的とする。
The present invention has been made in consideration of the above, and it is an object of the present invention to provide an air conditioner that enables optimal control of refrigerant, which was not possible with conventional capillary tube systems or thermostatic expansion valve systems. purpose.

以下本発明の実施例を図面とともに説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図において、5は圧縮機で、圧縮機5には凝縮器6
、膨張弁7および蒸発器8を配管を介して順次接続して
通常の冷凍サイクル(冷媒回路)を構成する。又、圧縮
機5の吐出配管2(篩圧部)に圧力センサ10aを設け
るとともに凝縮器6の出口配管3に温度センサllaを
設け、かつ圧縮機5の吸入記音1(低圧部)に圧力セン
サ10bおよび温度センサllbを設け、各センサ10
a。
In FIG. 1, 5 is a compressor, and the compressor 5 has a condenser 6.
, the expansion valve 7 and the evaporator 8 are sequentially connected via piping to constitute a normal refrigeration cycle (refrigerant circuit). Further, a pressure sensor 10a is provided in the discharge pipe 2 (sieve pressure part) of the compressor 5, a temperature sensor 11a is provided in the outlet pipe 3 of the condenser 6, and a pressure sensor 10a is provided in the suction pipe 1 (low pressure part) of the compressor 5. A sensor 10b and a temperature sensor llb are provided, and each sensor 10
a.

10b、lla、llbの出力信号を制御器9に加え、
この制御器9の信号によシ膨張弁7を制御す゛るように
している。4は蒸発器8の入口配管を示す。
10b, lla, llb output signals to the controller 9,
The expansion valve 7 is controlled by the signal from the controller 9. 4 indicates an inlet pipe of the evaporator 8.

又、第2図はモリエル線図を示し、状態1〜4は第1図
の配管1〜4に対応している。状態1における圧力P、
は圧力センサ10bによって測定され、エンタルピー1
1は温度センサllbによって測定された温度T1と圧
力P1によって演算される。
Further, FIG. 2 shows a Mollier diagram, and states 1 to 4 correspond to pipes 1 to 4 in FIG. 1. Pressure P in state 1,
is measured by the pressure sensor 10b, and the enthalpy 1
1 is calculated from the temperature T1 and pressure P1 measured by the temperature sensor llb.

状態3における圧力は状態2における圧力P、と同じで
あるので圧力センサ10aによシ測定され、エンタルピ
ーi3は温度センサllaによって測定された温度T3
と圧力P2によって演算される。従って、エンタルピー
1..1.は次式で表わされる。
Since the pressure in state 3 is the same as the pressure P in state 2, it is measured by the pressure sensor 10a, and the enthalpy i3 is equal to the temperature T3 measured by the temperature sensor lla.
and pressure P2. Therefore, enthalpy 1. .. 1. is expressed by the following equation.

L= f+ (Pr r TI ) is= f2(P2 t Ts ) 又、圧縮機5は吸入冷媒温度T2、吸入圧力PIおよび
吐出圧力P、が決まればその冷媒循環量Gおよび入力W
を演算することができる。従って、G、Wは次式で表わ
される。
L= f+ (Pr TI ) is= f2 (P2 t Ts ) In addition, once the suction refrigerant temperature T2, suction pressure PI, and discharge pressure P are determined, the compressor 5 calculates the refrigerant circulation amount G and input W.
can be calculated. Therefore, G and W are expressed by the following equations.

G=fsCPs、P2.TI) W=f4(PI、Pl、TI) さらに、上記の4つの式から壁気調和機の能力Qおよび
エネルギー消費効率EEEを次式によシ求めることがで
きる。
G=fsCPs, P2. TI) W=f4(PI, Pl, TI) Furthermore, from the above four equations, the capacity Q and energy consumption efficiency EEE of the wall air conditioner can be determined by the following equation.

Q=GX (t、 −12) EER=Q/W これらの演算は制御器9によシ行い、制御器9はこの演
算結果に基いて膨張弁7に駆動信号を加える。
Q=GX (t, -12) EER=Q/W These calculations are performed by the controller 9, and the controller 9 applies a drive signal to the expansion valve 7 based on the calculation results.

次にこれらの制御機能を持つ空気調和機を最適制御する
アルゴリズムは棟々考えられるが、代表的な制御方法と
して、壁調する部屋の室温と設定温度との差が大きいと
きは能力が最大となる制σ1jを行い、室温が設定温度
に近づくとEERが最大となる制御を行う方法がある。
Next, there are many algorithms that can be considered to optimally control an air conditioner with these control functions, but as a typical control method, when there is a large difference between the room temperature in the room where the walls are controlled and the set temperature, the capacity is maximized. There is a method of controlling σ1j such that the EER becomes maximum when the room temperature approaches the set temperature.

EERが最大となる運転制御をするときのアルゴリズム
の例を第3図のフローチャートによって説明する。まず
、運転開始するとSR=2degに設定し、各部の温K
 Tt 、Tsおよび圧力R、Ptを測定し、EERを
演算する。次にSHを4 deg 、 6 degと変
化させて各々の1!;ERを演算し、EERが最大とな
るSHを決定する。この際、2〜6 degの範囲で2
次曲線で近似し、SRを決定する。そして、決定したS
Hで運転する。又、外気温度の変化を考慮して30分あ
るいは1時間といった一定時間経過後は初期設定に戻シ
、再度最適SHを決定し、運転を継続する。
An example of an algorithm for controlling operation to maximize EER will be explained with reference to the flowchart in FIG. First, when starting operation, set SR = 2deg, and set the temperature of each part to K.
Measure Tt, Ts, pressure R, and Pt, and calculate EER. Next, change SH to 4 deg and 6 deg, and each 1! ;Calculate ER and determine SH with the maximum EER. At this time, 2 in the range of 2 to 6 degrees
Approximate with the following curve to determine SR. And decided S
Drive on H. Also, after a certain period of time such as 30 minutes or 1 hour has passed, taking into account changes in the outside temperature, the system returns to the initial settings, determines the optimum SH again, and continues operation.

尚、第3図で示すアルゴリズムは一例であシ、制御器9
に高度の演算機能を持たせることによりSHの初期設定
の運転状態から直接最適SHを決定するようにすること
もできる。もちろん、能力Qが最大となるよう制御する
こともできる。又、圧力センサ10a、10bの代りに
凝縮器6および蒸発器8に温度センサを設けて餅縮温度
および桟発温度を測定し、これらの温度から圧力を演算
することも可能である。
Note that the algorithm shown in FIG. 3 is just an example, and the controller 9
It is also possible to directly determine the optimum SH from the initial setting operating state of the SH by providing an advanced calculation function to the SH. Of course, it is also possible to control so that the ability Q is maximized. It is also possible to provide temperature sensors in the condenser 6 and evaporator 8 in place of the pressure sensors 10a and 10b to measure the condensation temperature and the temperature at which the rice cake rises, and calculate the pressure from these temperatures.

以上のように本発明においては、冷媒回路の高圧部およ
び低圧部の圧力を圧力検出手段により夫々検出するとと
もに凝縮器の出口側温度および圧縮器の吸入側温度を温
度検出手段によシ夫々検出し、これらの検出手段の検出
信号に対応して制御器によシ空気調オロ磯の能力やエネ
ルギー消費効率を演算し、この演算結果に基いて弁機構
を制御するようにしておシ、従来達成できなかった空気
調和機の最適な冷媒制御を実現することがで、きる。
As described above, in the present invention, the pressures in the high pressure section and the low pressure section of the refrigerant circuit are detected by the pressure detection means, and the temperature at the outlet side of the condenser and the temperature at the suction side of the compressor are respectively detected by the temperature detection means. However, in response to the detection signals of these detection means, the controller calculates the capacity and energy consumption efficiency of the air conditioner, and the valve mechanism is controlled based on the calculation results. By achieving optimal refrigerant control for air conditioners, which was previously impossible to achieve, this can be achieved.

尚、本発明はインバータを用いて圧縮器の能力を可変と
した空気調和機にも有効に適用できる。
Note that the present invention can also be effectively applied to an air conditioner in which the capacity of the compressor is variable using an inverter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る空気調和様の構成図、第2図は本
発明に係る空気調和機の特性を示すモリニル勝因、第3
図は本発明に係る空気調和機のアルゴリズムの一例を示
すフローチャートである。 1・・・吸入配管、2・・・吐出配管、3・・・凝縮器
出口配管、4・・・蒸発器入口配管、5・・・圧縮器、
6・・・凝縮器、7・−・膨張弁、8・・・蒸発器、9
・・・制御器、10 a 、 10 b =−圧力セン
サ、11 a 、 1 l b 一温度センサ。 代理人   葛  野  信  − 第itg KCQI/に9 第3図 46sH
Fig. 1 is a configuration diagram of an air conditioner according to the present invention, Fig. 2 is a diagram showing the characteristics of the air conditioner according to the present invention;
The figure is a flowchart showing an example of the algorithm of the air conditioner according to the present invention. 1... Suction piping, 2... Discharge piping, 3... Condenser outlet piping, 4... Evaporator inlet piping, 5... Compressor,
6... Condenser, 7... Expansion valve, 8... Evaporator, 9
...controller, 10a, 10b=-pressure sensor, 11a, 1lb - temperature sensor. Agent Makoto Kuzuno - No. 1 itg KCQI/Ni 9 Fig. 3 46sH

Claims (4)

【特許請求の範囲】[Claims] (1)圧縮機と凝縮器と蒸発器を配管により接続した冷
媒回路と、冷媒回路の高圧部および低圧部の圧力を夫々
検出する各圧力検出手段と、凝縮器の出口側温度および
圧縮器の吸入側温度を夫々検出する各温度検出手段と、
冷媒回路に挿設された弁機構と、各圧力検出手段および
各温度検出手段の出力信号を受けて膨張弁を制御する制
御器を備えたことを特徴とする空気調和機。
(1) A refrigerant circuit in which the compressor, condenser, and evaporator are connected by piping, pressure detection means for detecting the pressure in the high pressure part and low pressure part of the refrigerant circuit, and the temperature on the outlet side of the condenser and the pressure of the compressor. temperature detection means for respectively detecting the suction side temperature;
An air conditioner comprising: a valve mechanism inserted into a refrigerant circuit; and a controller that controls an expansion valve in response to output signals from each pressure detection means and each temperature detection means.
(2)制御器は、空気調和機の能力が最大となるよう弁
機構を制御するようにしたことを特徴とする特許請求の
範囲第1項記載の空気調和機。
(2) The air conditioner according to claim 1, wherein the controller controls the valve mechanism so that the capacity of the air conditioner is maximized.
(3)制御器は、エネルギー消費効率が最大となるよう
弁機構を制御するようにしたことを特徴とする特許請求
の範囲第1項記載の空気調和機。
(3) The air conditioner according to claim 1, wherein the controller controls the valve mechanism so that energy consumption efficiency is maximized.
(4)各圧力検出手段は、前記高圧部および低圧部の圧
力を夫々直接検出する各圧力センサとしたこと全特徴と
する特許請求の範囲第1〜3項のいずれかに記載の空気
調和機。 (5ン各圧力検出手段は、凝縮器の凝縮温度および蒸発
器の蒸発温度を夫々検出して前記高圧部および低圧部の
圧力を間接的に検出する各温度センサとしたことを特徴
とする特許請求の範囲第1〜3項のいずれかに記載の空
気調和機。
(4) The air conditioner according to any one of claims 1 to 3, wherein each pressure detection means is a pressure sensor that directly detects the pressure in the high pressure section and the low pressure section, respectively. . (A patent characterized in that each pressure detection means is a temperature sensor that indirectly detects the pressure in the high pressure section and the low pressure section by detecting the condensation temperature of the condenser and the evaporation temperature of the evaporator, respectively. An air conditioner according to any one of claims 1 to 3.
JP21870882A 1982-12-14 1982-12-14 Air conditioner Pending JPS59109748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21870882A JPS59109748A (en) 1982-12-14 1982-12-14 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21870882A JPS59109748A (en) 1982-12-14 1982-12-14 Air conditioner

Publications (1)

Publication Number Publication Date
JPS59109748A true JPS59109748A (en) 1984-06-25

Family

ID=16724176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21870882A Pending JPS59109748A (en) 1982-12-14 1982-12-14 Air conditioner

Country Status (1)

Country Link
JP (1) JPS59109748A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272822A (en) * 1992-03-24 1993-10-22 Daikin Ind Ltd Freezer
WO2017109905A1 (en) * 2015-12-24 2017-06-29 三菱電機株式会社 Air-conditioning/hot-water supplying combined system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272822A (en) * 1992-03-24 1993-10-22 Daikin Ind Ltd Freezer
WO2017109905A1 (en) * 2015-12-24 2017-06-29 三菱電機株式会社 Air-conditioning/hot-water supplying combined system
GB2561095A (en) * 2015-12-24 2018-10-03 Mitsubishi Electric Corp Air-conditioning/hot-water supplying combined system
GB2561095B (en) * 2015-12-24 2020-04-22 Mitsubishi Electric Corp Air-conditioning hot-water supply combined system

Similar Documents

Publication Publication Date Title
US4498310A (en) Heat pump system
JP2005121361A (en) Controller and method for controlling degree of superheat in heat pump system
JP2003314907A (en) Control apparatus of expansion valve
JP3086813B2 (en) Control method of electronic expansion valve in air conditioner
JPH0498040A (en) Operation control device for air conditioner
JP3218419B2 (en) Air conditioner
JPS59109748A (en) Air conditioner
JPH1030853A (en) Controller for air conditioner
JPH0239179Y2 (en)
JPH1137531A (en) Device for controlling refrigerant heating type inverter air conditioner
JPH0799287B2 (en) Air conditioner
JP2757685B2 (en) Operation control device for air conditioner
JPS5912942B2 (en) Refrigeration equipment
JP3353367B2 (en) Air conditioner
JP2755037B2 (en) Refrigeration equipment
JPH03213957A (en) Air conditioner
JPS62299660A (en) Air conditioner
JPS6332272A (en) Refrigerator
JPH0135261B2 (en)
JPH085184A (en) Multi-room type air conditioner
JPS58127055A (en) Controller for refrigeration circuit
JPH04359762A (en) Air conditioner
JPS63259353A (en) Refrigerator
JPS63290368A (en) Heat pump type air conditioner
JPS5995349A (en) Controller for electric type expansion valve