JPS60179709A - Optical coupling device - Google Patents

Optical coupling device

Info

Publication number
JPS60179709A
JPS60179709A JP3512784A JP3512784A JPS60179709A JP S60179709 A JPS60179709 A JP S60179709A JP 3512784 A JP3512784 A JP 3512784A JP 3512784 A JP3512784 A JP 3512784A JP S60179709 A JPS60179709 A JP S60179709A
Authority
JP
Japan
Prior art keywords
optical coupling
light
semiconductor laser
interval
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3512784A
Other languages
Japanese (ja)
Inventor
Hideo Kuwabara
秀夫 桑原
Terumi Chikama
輝美 近間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3512784A priority Critical patent/JPS60179709A/en
Publication of JPS60179709A publication Critical patent/JPS60179709A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
    • G02B6/4203Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To prevent generation of interferential distortion and noise in transmitting signal light, by setting the interval between the laser light emitting surface of a semiconductor laser and the reflecting surface of the laser light to a specific length. CONSTITUTION:The interval L between the laser light emitting surface of a semiconductor laser and reflecting surface of the laser light is set so as to satisfy the formula I . An optical coupling section is composed of a semiconductor laser 15, laser light emitting surface 15a, active layer 15b, optical fiber 16, light receiving surface 16a, convergent lens 17, and front spherical section 18 of the optical fiber 16. The optical coupling device of this invention is formed by constituting the optical coupling section in the same way as applied to conventional ones and by positioning and fixing each section by means of well known fitting structures. The interval L is set to a value which satisfies the Formula I and, at the same time, the convergent lens 17 or front spherical part 18 having a focal length corresponding to the interval L is selected.

Description

【発明の詳細な説明】 (イ)発明の技術分野 本発明は半導体レーザと光ファイバとの光結合装置に関
し、特に、光結合部における半導体レーザのレーザ光出
射面と、光結合回路中の反射面(光ファイバの受光面、
その他)との間隔を反射光による悪影響を防止し得る適
正距離に設定した光結合装置に関するものである。
Detailed Description of the Invention (a) Technical Field of the Invention The present invention relates to an optical coupling device between a semiconductor laser and an optical fiber, and particularly relates to a laser beam emitting surface of a semiconductor laser in an optical coupling section and a reflection in an optical coupling circuit. surface (receiving surface of optical fiber,
This invention relates to an optical coupling device in which the distance between the light beam and the light source (others) is set at an appropriate distance to prevent the adverse effects of reflected light.

(ロ)技術の背景 光通信伝送システムには半導体レーザと光ファイバとの
光結合装置が多用されている。この半導体レーザと光フ
ァイバとの光結合は光通信伝送システムを作るうえで非
常に重要である。すなわち、低損失の光ファイバが作ら
れても、光結合部において、発光素子である半導体レー
ザと、光ファイバとの結合が悪い場合には伝送効率が極
端に低下することになる。このため、半導体レーザから
の出射光を効率良く光ファイバに入射させる目的で、光
結合部の光結合回路において集束レンズを用いたシ、光
ファイバの先端形状(受光部の形状)を工夫する等のこ
とが試みられている。しかしながら、この種の光結合装
置としては、伝送効率が良好であると共に、伝送される
信号光が良質のもの、すなわち可干渉性の歪、あるいは
雑音が発生せず安定した信号光を伝送し得るものである
ことが望まれている。
(b) Background of the Technology Optical coupling devices between semiconductor lasers and optical fibers are often used in optical communication transmission systems. This optical coupling between a semiconductor laser and an optical fiber is very important in creating an optical communication transmission system. That is, even if a low-loss optical fiber is made, if the coupling between the semiconductor laser, which is a light emitting element, and the optical fiber is poor at the optical coupling part, the transmission efficiency will be extremely reduced. For this reason, in order to efficiently input the light emitted from the semiconductor laser into the optical fiber, it is necessary to use a focusing lens in the optical coupling circuit of the optical coupling section, or to devise the shape of the tip of the optical fiber (the shape of the light receiving section). is being attempted. However, this type of optical coupling device has good transmission efficiency and the transmitted signal light is of good quality, that is, it is capable of transmitting stable signal light without coherent distortion or noise. It is hoped that it will be something.

eう従来技術と問題点 従来の光結合装置は、半導体レーザと光ファイバとの光
結合部において、半導体レーザの出射レーザ光をできる
だけ効率良く光ファイバに入射させる目的で、レンズを
その焦点距離によって定められる位置に単に配置して光
結合回路が構成されたもので、半導体レーザのレーザ光
出射面から、このレーザ光の反射面(光ファイバの受光
面、半導体レーザのパッケージの光透過窓等)までの距
離(間隔)に関係する反射光の可干渉性という、観点か
らの考慮がなされていなかった。従って、従来の光結合
装置は、半導体レーザの特性が反射光によシ変化される
場合が多いという問題や、光結合回路中における反射光
によシ伝送信号光に可干渉性の歪や雑音が発生し易いと
いう問題があった。
Prior Art and Problems Conventional optical coupling devices have a conventional optical coupling device in which a lens is connected to a lens according to its focal length in an optical coupling section between a semiconductor laser and an optical fiber, in order to input the laser light emitted from the semiconductor laser into the optical fiber as efficiently as possible. An optical coupling circuit is constructed by simply placing it at a predetermined position, and it connects the laser light emitting surface of the semiconductor laser to the reflecting surface of this laser light (the light receiving surface of an optical fiber, the light transmitting window of the semiconductor laser package, etc.) No consideration was given to the coherence of the reflected light, which is related to the distance (interval) between the two. Therefore, conventional optical coupling devices have the problem that the characteristics of the semiconductor laser are often changed by the reflected light, and the reflected light in the optical coupling circuit causes coherent distortion and noise in the transmitted signal light. There was a problem in that it was easy for this to occur.

(→発明の目的 本発明の目的は、上記従来技術の問題点に鑑み、半導体
レーザと光ファイバとの光結合部におけるレーザ光出射
面と、とのレーザ光の反射面(光ファイバの受光面等)
との間隔を、半導体レーザの反射光による特性の変化、
光結合回路中の反射光による可干渉性が最小になるよう
な間隔に設定し、伝送信号光における干渉性歪、雑音の
発生を抑え得る光結合装置を提供することにある。
(→Purpose of the Invention In view of the problems of the prior art described above, the object of the present invention is to etc)
change in characteristics due to reflected light of the semiconductor laser,
An object of the present invention is to provide an optical coupling device that can suppress interference distortion and noise in transmitted signal light by setting intervals such that the coherence due to reflected light in an optical coupling circuit is minimized.

((ホ)発明の構成 そして、上記目的を達成するために、本発明に依れば、
光結合装置における半導体レーザと光ファイバとの光結
合部において、前記半導体レーザのレーザ光出射面と、
前記レーザ光の反射面との間隔をLとしたとき、このL
が、 但し、 C:光速(3X 108m/ s、 )、Δシt;縦モ
ード間隔に相当する周波数差、m ;整数(0、1、2
、3、4、−)、x ニー0.25<X<0.25なる
範囲の数値、となるように設定したことを特徴とする光
結合装置が提供される。
((E) Structure of the invention And in order to achieve the above object, according to the present invention,
In an optical coupling section between a semiconductor laser and an optical fiber in an optical coupling device, a laser light emitting surface of the semiconductor laser;
When the distance between the laser beam and the reflective surface is L, this L
However, C: speed of light (3X 108 m/s, ), Δsit: frequency difference corresponding to longitudinal mode interval, m: integer (0, 1, 2
, 3, 4, -), x knee 0.25<X<0.25.

(へ)発明の実施例 以下、本発明の実施例を図面に基づいて詳細に説明する
(F) Embodiments of the Invention Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第1図から第4図は本発明の詳細な説明するだめの図で
ある。第1図から第3図は本発明の詳細な説明のための
図であシ、第4図は本発明の実施例の要部、すなわち光
結合部を示す図である。
1 to 4 are detailed illustrations of the present invention. 1 to 3 are diagrams for explaining the present invention in detail, and FIG. 4 is a diagram showing a main part of an embodiment of the present invention, that is, an optical coupling section.

半導体レーザは、通常、高速変調(例えば、数10〜数
100 MHz 、又は数10〜数100 Mb/s 
)を行なりて使用される。そして、このような高速変調
を行なうと、半導体レーザは、第1図に示すように、縦
多モード発振する。第1図は横軸に波長(λ)領域をと
シ、縦軸に光パワーをとった場合の縦多モードの発振ス
ペクトルを示す図である。
Semiconductor lasers usually have high-speed modulation (for example, several tens to several hundred MHz, or several tens to several hundred Mb/s).
) is used. When such high-speed modulation is performed, the semiconductor laser oscillates in longitudinal multimodes, as shown in FIG. FIG. 1 is a diagram showing the oscillation spectrum of a longitudinal multimode when the horizontal axis represents the wavelength (λ) region and the vertical axis represents the optical power.

同図において、Δλtは縦多モード相互間隔、すなわち
、波長差を示し、符号11,12,13は各縦モードを
示している。この縦モード間隔(Δλt)に相当する周
波数差ΔνLは、次式、 dνZ =+ 22 dλt・・・・・・・・・・・・
・・・・・・(1)、但し、C:光速(3X108ル4
)Fλ:波長、からめられる。尚、上記(1)式のdν
tはΔνLであシ、dλtは第1図のΔλtでちる。例
えば、波長が0.8μm帯のGaAtAs/GaAs半
導体レーザでは、ΔI/lが約200 GHz程度であ
る。
In the figure, Δλt indicates the interval between longitudinal multimodes, that is, the wavelength difference, and numerals 11, 12, and 13 indicate each longitudinal mode. The frequency difference ΔνL corresponding to this longitudinal mode spacing (Δλt) is calculated by the following formula, dνZ = + 22 dλt...
・・・・・・(1), However, C: Speed of light (3X108 le 4
) Fλ: Wavelength, entangled. In addition, dν in the above equation (1)
t is ΔνL, and dλt is Δλt in FIG. For example, in a GaAtAs/GaAs semiconductor laser having a wavelength of 0.8 μm, ΔI/l is about 200 GHz.

第2図は光結合部における光結合回路内の光の反射状態
の説明図である。同図において、符号15は半導体レー
ザ、15aはレーザ光出射面、16は光ファイバ、16
aは受光面を示し、Lはレーザ光出射面15aと受光面
16aとの間隔(距離)を示している。同図において、
半導体レーザ15から出射される光Pの一部が受光面1
6a(この場合反射面の役割も兼ねる)によって反射さ
れた帰還反射光R′は、出射面15aによって反射され
た反射光Rに対して間隔りの往復分、すなわち距離2L
に相当する時間だけ遅れて半導体レーザ15に帰還する
。また、出射光Pの大部分は光ファイバ16へ直接透過
光(入射光)Tとして伝送されるが、その一部は受光面
16aと出射面15aとにそれぞれ反射されてから光フ
ァイバ16へ透過する反射透過光T′として伝送される
FIG. 2 is an explanatory diagram of the reflection state of light within the optical coupling circuit in the optical coupling section. In the same figure, reference numeral 15 is a semiconductor laser, 15a is a laser beam emitting surface, 16 is an optical fiber, 16
a indicates a light receiving surface, and L indicates an interval (distance) between the laser beam emitting surface 15a and the light receiving surface 16a. In the same figure,
A part of the light P emitted from the semiconductor laser 15 is transmitted to the light receiving surface 1.
6a (which also serves as a reflecting surface in this case) returns the reflected light R' reflected by the output surface 15a by a round trip distance, that is, a distance of 2L from the reflected light R reflected by the exit surface 15a.
It returns to the semiconductor laser 15 with a delay of a time corresponding to . Further, most of the output light P is directly transmitted to the optical fiber 16 as transmitted light (incident light) T, but a part of it is reflected by the light receiving surface 16a and the output surface 15a and then transmitted to the optical fiber 16. It is transmitted as reflected and transmitted light T'.

この反射透過光T′と上述の帰還反射光R′の遅れ時L 間τはτ−−(但し、Lは上記の間隔、Cは光速)であ
る。この遅れ時間τだけおくれだ帰還反射光R′と反射
光R相互間、及び反射透過光T′と直接透過光T相互間
における可干渉度(コヒーレンス度)はコヒーレンス関
数C(τ)で表わされる。
The delay time L between this reflected and transmitted light T' and the above-mentioned feedback reflected light R' is τ-- (where L is the above-mentioned interval and C is the speed of light). The degree of coherence between the returned reflected light R' and the reflected light R that are delayed by this delay time τ, and between the reflected transmitted light T' and the directly transmitted light T is expressed by a coherence function C(τ). .

第3図は横軸に遅れ時間τをと9、縦軸に可干渉!(コ
ヒーレンス度)ヲトって示したコヒーレンス関数C(τ
)の線図である。同図に示すように、縦多モードを発振
している半導体レーザでは可干渉度は周期的に複数のピ
ーク(pt +p2 +p3・・・)をもった状態にな
る。そして、これらのピーク(pl。
In Figure 3, the horizontal axis shows the delay time τ9, and the vertical axis shows interference! (degree of coherence) The coherence function C (τ
). As shown in the figure, in a semiconductor laser that oscillates in longitudinal multi-mode, the coherence degree periodically has a plurality of peaks (pt + p2 + p3 . . . ). And these peaks (pl.

p21P3・・・)の高さは減衰関数e−r T (但
し、γは1本の縦モードの幅、第1図参照)で示され、
次第に減衰する。さて、各ピークに対するτの値は、ピ
ークI)1でτ−0、ピークp2でτ−1/Δシt1 
ピークp3でτ=2/Δνt、・・・となる。そして、
これm=0.1,2.3・・・〕において可干渉度が最
小(はとんど0に近い)になる。従って、遅れ時間りを
選定すれば、前出の第2図におけるRとR′間、゛及び
Tと77間における干渉を最小に抑えることができる。
p21P3...) is shown by the attenuation function e-rT (where γ is the width of one longitudinal mode, see Figure 1),
Attenuates gradually. Now, the value of τ for each peak is τ-0 for peak I)1 and τ-1/Δsit1 for peak p2.
At peak p3, τ=2/Δνt, . and,
When m=0.1, 2.3, . . . ], the degree of coherence becomes minimum (nearly close to 0). Therefore, by selecting the delay time, interference between R and R', and between T and 77 in FIG. 2 can be minimized.

このような最小可干渉度が得られる間隔りは、 L = −’−” (2m +1 ) ・・・・・・・
・・・・・・・・(2)4Δνを 但し、C:光速(3×108Iv/S)、Δシt;縦モ
ード間隔に相当する周波数差、m ;整数(0,1,2
,3,・・・)、によってめられる。
The spacing at which such minimum coherence can be obtained is L = −'−” (2m +1) ・・・・・・・・・
・・・・・・・・・(2) 4Δν, where C: speed of light (3×108Iv/S), Δsit: frequency difference corresponding to longitudinal mode interval, m: integer (0, 1, 2
,3,...).

しかし、第3図における各ピーク(p1+ P2+p3
+・・・)相互間の中点、つ0前述のτ−両(2m+1
)の前後においても可干渉度が非常に小さいので、この
前後におけるτの所定範囲内に相当する間隔りを選定し
ても実際上は差支えない。従って、実用可能な間隔りは
、前記(2)式よシ範囲の広い次式、L=、、’し7(
2m+1+x) ・・・・・・・・・・・・・・・ (
3)但し、x : 0.25(x(0,25なる範囲の
数値、によってめられる。
However, each peak in Figure 3 (p1+P2+p3
+...) the midpoint between them, 0 the aforementioned τ-both (2m+1
Since the degree of coherence is very small before and after ), there is no problem in practice even if the interval corresponding to the predetermined range of τ is selected before and after this. Therefore, the practical spacing is the following equation, which has a wider range than equation (2) above, L=,,'7(
2m+1+x) ・・・・・・・・・・・・・・・ (
3) However, x: 0.25 (measured by x (a numerical value in the range of 0, 25).

第4図(a) 、 (b) 、 (e) 、 (d)は
上述の(3)式によって間隔りを選定して設定した本発
明の光結合装置の実施例の要部す々わち光結合部を概略
的に示す図である。これらの図において、符号15け半
導体レーザ、15aはレーザ光出射面、15bは活性層
、16は光ファイバ、16aは受光面(この場合は反射
面としても作用する)、17は集束レンズ、18は光フ
ァイバ(16)の先球部(球レンズに相当)、19は半
導体レーザ(15)がパッケージ等に内設された場合の
光透過窓をそれぞれ示す。そして、これらの各図に示す
光結合部の構成自体は従来と同様でアシ、各部分は公知
の取付構造によって位置決め固定されることによシ光結
合装置が形成される。従って、光結合装置の全体図は省
略されている。これらの各実施例は間隔りを上述の(3
)式を満足する値に設定し、かつこの間隔りに対応する
焦点距離を有する集束レンズ17又は先球部18を選定
して構成したことを特徴としている。尚、(C)図にお
ける間隔L′は、光透過窓190反射面までの間隔を示
し、もう1つの間隔りと区別するために付したもので、
実質的には間隔りと同様であって、上述の(3)式から
められるものである。また、前出の第2図の反射光R、
R’は半導体レーザ15内部の光との干渉を示し、弱い
反射に対しても非常に敏感に半導体レーザ15の特性を
変化させる。そして、第2図の透過光T 、 T’は光
ファイバ16への透過光と1+信号光として伝送される
FIGS. 4(a), (b), (e), and (d) show the main parts of the embodiment of the optical coupling device of the present invention, in which the spacing is selected and set according to the above-mentioned formula (3). FIG. 3 is a diagram schematically showing an optical coupling section. In these figures, 15 is a semiconductor laser, 15a is a laser beam emitting surface, 15b is an active layer, 16 is an optical fiber, 16a is a light receiving surface (in this case, it also acts as a reflective surface), 17 is a focusing lens, and 18 Reference numeral 19 indicates a spherical tip of the optical fiber (16) (corresponding to a spherical lens), and 19 indicates a light transmission window when the semiconductor laser (15) is installed in a package or the like. The structure of the optical coupling section shown in each of these figures is the same as the conventional one, and each part is positioned and fixed by a known mounting structure to form an optical coupling device. Therefore, an overall view of the optical coupling device is omitted. Each of these embodiments sets the spacing to (3
) is set to a value that satisfies the equation, and the converging lens 17 or the spherical tip 18 is selected and configured to have a focal length corresponding to this interval. Note that the interval L' in the diagram (C) indicates the interval to the reflective surface of the light transmission window 190, and is added to distinguish it from another interval.
This is substantially the same as the interval and can be determined from the above equation (3). In addition, the reflected light R in FIG. 2 mentioned above,
R' indicates interference with light inside the semiconductor laser 15, and changes the characteristics of the semiconductor laser 15 very sensitively even to weak reflection. The transmitted lights T 1 and T' in FIG. 2 are transmitted to the optical fiber 16 as transmitted light and 1+ signal light.

(ト)発明の構成 以上、詳細に説明したように、本発明の光結合装置は、
その光結合部における半導体レーザのレーザ光出射面と
、前記レーザ光の反射面との間隔りを上述の(3)式に
よって設定することによシ、伝送信号光の光パワーの伝
送効率を良好に保つと共に、半導体レーザの反射光によ
る特性の変化、及び伝送信号光における干渉性歪、雑音
の発生を最小成に抑えることができ高品質の信号光を伝
送することができるという効果大なるものがあり、装置
の性能向上に寄与するものである。
(G) Structure of the Invention As explained above in detail, the optical coupling device of the present invention includes:
By setting the distance between the laser light emitting surface of the semiconductor laser and the laser light reflecting surface in the optical coupling part according to the above equation (3), the transmission efficiency of the optical power of the transmitted signal light can be improved. In addition, it is highly effective in that changes in characteristics due to reflected light from the semiconductor laser, as well as interference distortion and noise in the transmitted signal light, can be suppressed to a minimum, making it possible to transmit high-quality signal light. This contributes to improving the performance of the device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第3図は本発明の詳細な説明図であって、第
1図は半導体レーザの縦多モード発振のスペクトルを示
す図、第2図は光結合部における光結合回路内の光の反
射状態の説明図、第3図はコヒーレンス関数C(τ)の
線図、第4図(a) 、 (b) 。 (c) 、 (d)は本発明に依る光結合装置の実施例
の要部(光結合部)を示す図である。 15・・・半導体レーザ、15=a・・・レーザ光出射
面、16・・・光ファイバ、16a・・・受光面(この
場合は反射面としても作用する)、17・・・集束レン
ズ、18・・・先球部(球レンズに相当)、19・・・
半導体レーザ(15)のパッケージの光透過窓(この場
合は、反射面としても作用する)、L・・・半導体レー
ザ(15)のレーザ光出射面(15a)と、レーザ光の
反射面との間隔(距離)、c・・・光速(3刈08+v
’s)、Δνt・・・縦モード間隔に相当する周波数差
、m・・・整数(0,1,2,3,・・・)、x・・・
−0,25(x(0,25なる範囲の数値。 特許出願人 富士通株式会社 特許出願代理人 弁理士 青 木 朗 弁理士 西 舘 和 之 弁理士 内 1) 幸 男 弁理士 山 口 昭 之 弗2図 第3図 第4図 手続補正書 昭和60年 9月 7日 特許庁長官 志 賀 学 殿 1、事件の表示 昭和59年 特許願 第035127号2、発明の名称 光結合装置 3、補正をする者 事件との関係 特許出願人 名称 C522)富士通株式会社 4、代理人 (外3 名) 5、補正の対象 +11 明細書の「発明の詳細な説明」の欄6 補正の
内容
1 to 3 are detailed explanatory diagrams of the present invention, in which FIG. 1 shows the spectrum of longitudinal multimode oscillation of a semiconductor laser, and FIG. 2 shows the light inside the optical coupling circuit in the optical coupling section. Fig. 3 is a diagram of the coherence function C(τ), Fig. 4 (a) and (b). (c) and (d) are diagrams showing a main part (optical coupling section) of an embodiment of the optical coupling device according to the present invention. 15... Semiconductor laser, 15=a... Laser light emitting surface, 16... Optical fiber, 16a... Light receiving surface (also acts as a reflecting surface in this case), 17... Focusing lens, 18... Spherical tip (corresponding to a spherical lens), 19...
Light transmitting window of the package of the semiconductor laser (15) (in this case, also acts as a reflecting surface), L... between the laser light emitting surface (15a) of the semiconductor laser (15) and the laser light reflecting surface. Interval (distance), c...speed of light (3 cut 08 + v
's), Δνt... Frequency difference corresponding to the longitudinal mode interval, m... Integer (0, 1, 2, 3,...), x...
-0,25 (x (numerical value in the range of 0,25) Patent applicant Fujitsu Limited Patent agent Akira Aoki Patent attorney Kazuyuki Nishidate Patent attorney 1) Yukio Patent attorney Akiyuki Yamaguchi 2 Figure 3 Figure 4 Procedural amendment September 7, 1985 Manabu Shiga, Commissioner of the Japan Patent Office 1, Indication of the case 1981 Patent application No. 035127 2, Title of invention Optical coupling device 3, Amendment Relationship with the case involving the person who filed the patent application Patent applicant name C522) Fujitsu Ltd. 4. Agent (3 others) 5. Subject of amendment + 11 "Detailed description of the invention" column 6 of the specification Contents of amendment

Claims (1)

【特許請求の範囲】 1、光結合装置における半導体レーザと光ファイバとの
光結合部において、前記半導体レーザのレーザ光出射面
と、前記レーザ光の反射面との間隔をLとしたとき、と
のしが、 1=可(2″+1+゛)・ 但し、 C;光速(3×108Iv/s)、 Δシt;縦モード間隔に相当する周波数差、m :整数
(0,1,2,3,4,・・・)x ;−0,25(x
(0,25なる範囲の数値、となるように設定したこと
を特徴とする光結合装置酸。
[Claims] 1. In an optical coupling part between a semiconductor laser and an optical fiber in an optical coupling device, when L is the distance between the laser beam emitting surface of the semiconductor laser and the reflecting surface of the laser beam, Noshiga, 1=possible (2″+1+゛)・However, C: Speed of light (3×108 Iv/s), Δsit: Frequency difference corresponding to longitudinal mode interval, m: Integer (0, 1, 2, 3,4,...)x ;-0,25(x
(A photocoupler acid characterized by being set to have a numerical value in the range of 0.25.
JP3512784A 1984-02-28 1984-02-28 Optical coupling device Pending JPS60179709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3512784A JPS60179709A (en) 1984-02-28 1984-02-28 Optical coupling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3512784A JPS60179709A (en) 1984-02-28 1984-02-28 Optical coupling device

Publications (1)

Publication Number Publication Date
JPS60179709A true JPS60179709A (en) 1985-09-13

Family

ID=12433266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3512784A Pending JPS60179709A (en) 1984-02-28 1984-02-28 Optical coupling device

Country Status (1)

Country Link
JP (1) JPS60179709A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107045163A (en) * 2016-02-05 2017-08-15 苏州旭创科技有限公司 Optical module and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548993A (en) * 1978-10-04 1980-04-08 Nec Corp Semiconductor laser device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548993A (en) * 1978-10-04 1980-04-08 Nec Corp Semiconductor laser device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107045163A (en) * 2016-02-05 2017-08-15 苏州旭创科技有限公司 Optical module and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3534550B2 (en) OTDR device
US4807954A (en) Optical coupling device
CA2064719C (en) Interferometer utilizing superfluorescent optical source
JPS60115277A (en) Fiber optical amplifier
CA1243767A (en) Coupled cavity laser
JPS5847349A (en) Light signal multiplexing system
US4873697A (en) Narrowband laser transmitter having an external resonator from which the output power can be taken
US4867517A (en) Fail-safe acousto-optic T-couplers for optical communication networks
JPH03504540A (en) Stabilized laser fiber launcher
JPS60179709A (en) Optical coupling device
US6600767B1 (en) Free space laser with self-aligned fiber output
JP6540310B2 (en) Fiber optic terminal
JP2554772B2 (en) Laser pulse stretcher
JPH01196189A (en) Tunable optical fiber raman laser
JP3412584B2 (en) External cavity type semiconductor laser
JPS5958886A (en) Single mode semiconductor laser diode
JPH05323404A (en) Optical wavelength conversion element
JPS60133776A (en) Semiconductor laser device
JPH09153659A (en) Light-emitting element module
JP2009139395A (en) Wavelength conversion laser beam source
JPH09269428A (en) Reflective return light compensation circuit
JPH04111381A (en) Semiconductor laser apparatus
JPH01215082A (en) Semiconductor laser module
JP2001021772A (en) Laser diode module
JPS6043679B2 (en) Semiconductor laser device with coupling circuit