JPH09269428A - Reflective return light compensation circuit - Google Patents

Reflective return light compensation circuit

Info

Publication number
JPH09269428A
JPH09269428A JP8077220A JP7722096A JPH09269428A JP H09269428 A JPH09269428 A JP H09269428A JP 8077220 A JP8077220 A JP 8077220A JP 7722096 A JP7722096 A JP 7722096A JP H09269428 A JPH09269428 A JP H09269428A
Authority
JP
Japan
Prior art keywords
light
branch
return light
optical fiber
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8077220A
Other languages
Japanese (ja)
Inventor
Yokutou Kou
翊東 黄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8077220A priority Critical patent/JPH09269428A/en
Publication of JPH09269428A publication Critical patent/JPH09269428A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4207Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback

Abstract

PROBLEM TO BE SOLVED: To provide a compensation circuit capable of eliminating reflective return light from an optical fiber to a semiconductor laser without using an optical isolator. SOLUTION: This circuit is constituted so that outgoing beam from the semiconductor laser is divided by a Y branch coupler 3, and one side branch A is connected to a communicating optical fiber of an optical fiber communication system 5, and the other side branch B is connected to a light reflection circuit 4. In the regular optical fiber communication system 5, the reflective return light 6 from an optical connector, etc., occurs. By making incident compensation light 7 of the same intensity as/a phase opposite to the reflective return light 6 returned to the branch A on the branch B of the Y branch coupler 3, since the total light power of the reflective return light 6 is radiated to the outside of the Y branch coupler 3 as the result of multiplex-/interference, the reflective return light isn't made incident on the semiconductor laser 1 as a result. That is, the reflective return light 6 from the optical fiber is canceled, and is prevented from again making incident it on the semiconductor laser 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は反射戻り光補償回路
に係り、特に光ファイバ通信システム等において光ファ
イバからの反射戻り光による悪影響を解消するための反
射戻り光補償回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflected return light compensation circuit, and more particularly to a reflected return light compensation circuit for eliminating the adverse effect of reflected return light from an optical fiber in an optical fiber communication system or the like.

【0002】[0002]

【従来の技術】半導体レーザは現在、超高速及び長距離
の光ファイバ通信用光源として多く用いられている。し
かしながら、半導体レーザは、光ファイバからのごく僅
かの反射戻り光により、半導体レーザ内部で雑音を生
じ、伝送符号誤りを発生させるという問題がある。従っ
て、従来の半導体レーザモジュールでは、半導体レーザ
への反射戻り光を除去するための反射戻り光補償回路と
して光アイソレータを用いている。この光アイソレータ
は、一般的にはファラデー効果を示す磁気光学結晶を、
透過光の偏光方向が45°ずれた2つの偏光子で挟む構
成であり、一方向にのみ光を透過させ、反対方向への光
は遮断する特性を有するため、半導体レーザから光ファ
イバへ光を伝送させ、光ファイバからの反射戻り光を除
去できる。
2. Description of the Related Art Semiconductor lasers are now widely used as light sources for ultrafast and long-distance optical fiber communications. However, the semiconductor laser has a problem that a slight amount of reflected return light from the optical fiber causes noise inside the semiconductor laser to cause a transmission code error. Therefore, in the conventional semiconductor laser module, an optical isolator is used as a reflected return light compensation circuit for removing the reflected return light to the semiconductor laser. This optical isolator is a magneto-optical crystal that generally exhibits the Faraday effect.
It is a structure sandwiched by two polarizers with the polarization direction of transmitted light deviated by 45 °. It has the property of transmitting light only in one direction and blocking light in the opposite direction. Therefore, light is transmitted from the semiconductor laser to the optical fiber. The reflected return light from the optical fiber can be removed by transmitting.

【0003】[0003]

【発明が解決しようとする課題】しかるに、上記の従来
の反射戻り光補償回路である光アイソレータは、磁石を
含め磁気光学結晶と2つの偏光子からなる最小4つの部
品より構成されているため、材料の加工や組立に多数の
工数を要し、高価であり、信頼性や安定性に乏しいとい
う欠点がある。
However, the above-mentioned optical isolator which is the conventional reflection / return light compensation circuit is composed of a minimum of four components including a magneto-optical crystal including magnets and two polarizers. There are drawbacks that it requires a lot of man-hours for processing and assembling materials, is expensive, and lacks reliability and stability.

【0004】本発明は上記の点に鑑みなされたもので、
光アイソレータを用いることなく光ファイバから半導体
レーザへの反射戻り光を除去し得る反射戻り光補償回路
を提供することを目的とする。
[0004] The present invention has been made in view of the above points,
An object of the present invention is to provide a reflected return light compensation circuit that can remove reflected return light from an optical fiber to a semiconductor laser without using an optical isolator.

【0005】[0005]

【課題を解決するための手段】本発明は上記の目的を達
成するため、光源からの光を第1の光と第2の光の2つ
に分岐し、少なくとも第1の光は光ファイバへ伝送する
Y分岐カプラーと、Y分岐カプラーにより分岐された第
2の光が入射され、入射光の強度及び位相を調整してY
分岐カプラーの第2の光分岐出力側へ戻す光反射回路と
を有する構成としたものである。
In order to achieve the above object, the present invention splits light from a light source into two lights, a first light and a second light, and at least the first light is directed to an optical fiber. The transmitted Y-branch coupler and the second light branched by the Y-branch coupler are incident, and the intensity and phase of the incident light are adjusted to adjust the Y-branch.
And a light reflection circuit for returning the light to the second optical branch output side of the branch coupler.

【0006】図1は本発明になる反射戻り光補償回路の
原理構成図を示す。光源である半導体レーザ1のレーザ
活性層2からの出力光パワーはY分岐光カプラー3によ
り第1の光と第2の光の2つに分岐され、第1の光は光
ファイバ通信システム5の光ファイバに入射され、第2
の光は光反射回路4に入射される。従って、光ファイバ
通信システム5の光ファイバからの反射戻り光6と、光
反射回路4からの第2の光の強度及び位相を調整した補
償光7とはY分岐カプラー3により合波・干渉され、半
導体レーザ1に導かれる。
FIG. 1 is a block diagram showing the principle of a reflected return light compensation circuit according to the present invention. The output light power from the laser active layer 2 of the semiconductor laser 1 which is a light source is branched into two lights, a first light and a second light, by the Y-branching optical coupler 3, and the first light is transmitted by the optical fiber communication system 5. Incident on the optical fiber, second
Light is incident on the light reflection circuit 4. Therefore, the reflected return light 6 from the optical fiber of the optical fiber communication system 5 and the compensation light 7 from which the intensity and phase of the second light from the light reflection circuit 4 are adjusted are combined and interfered by the Y branch coupler 3. , To the semiconductor laser 1.

【0007】図2は本発明の構成に用いる単一モードY
分岐カプラーの合波・干渉原理を示す。簡単のためにY
分岐カプラー3によるY分岐の光パワーの分岐比を50
%/50%の3dBカプラーと考える。また、このY分
岐光カプラー3の各分岐及び入出力導波路はすべて単一
モード導波路であるとする。分岐A、Bから入射する電
界振幅を各々Ea 、Eb とする。
FIG. 2 shows a single mode Y used in the construction of the present invention.
The multiplexing / interference principle of the branch coupler is shown. Y for simplicity
The branching ratio of the optical power of the Y branch by the branching coupler 3 is set to 50.
% / 50% 3 dB coupler. Further, each branch and the input / output waveguide of this Y-branch optical coupler 3 are assumed to be single mode waveguides. The electric field amplitudes incident from the branches A and B are E a and E b , respectively.

【0008】図2(a)に示すように、分岐A及びBか
ら振幅の等しい(Ea =Eb )光が同相で入射したと
き、分岐点では偶モードの導波光が励起されるが、図2
(b)のように逆相で入射したときには、分岐点では奇
モードの導波光が励起される。偶モードの光はそのまま
導波されて出力されるのに対し、奇モードの光はY分岐
のテーパ導波路中を伝搬する過程で放射され、出力とし
ては出てこない。すなわち、Y分岐カプラー3のA分岐
に入射する光と同じ強度、逆位相の光をY分岐カプラー
3のB分岐に入射してやることにより、Y分岐カプラー
3の合波・干渉効果により、合波された奇対称モードは
カットオフとなるため、出力端に出てくる光パワーはゼ
ロとなる。
As shown in FIG. 2 (a), when light with the same amplitude (E a = E b ) enters from the branches A and B in the same phase, even-mode guided light is excited at the branch point. Figure 2
When incident in the opposite phase as in (b), the odd-mode guided light is excited at the branch point. The even mode light is directly guided and output, whereas the odd mode light is radiated in the process of propagating in the Y-branched tapered waveguide and is not output as an output. That is, light having the same intensity and opposite phase to the light incident on the A branch of the Y branch coupler 3 is incident on the B branch of the Y branch coupler 3 so that they are combined by the combining / interference effect of the Y branch coupler 3. Since the odd symmetry mode is cut off, the optical power output at the output end becomes zero.

【0009】本発明では図1に示すように、半導体レー
ザからの出力光がY分岐カプラー3により分割され、一
方の分岐Aは比較ファイバ通信システム5の通信用光フ
ァイバに接続されており、もう一方の分岐Bは光反射回
路4に接続された構成となっている。通常の光ファイバ
通信システム5では、光コネクタ等からの反射戻り光が
発生するため、この場合図1に示すように光ファイバか
らある強度である位相を有する反射戻り光6が分岐Aに
戻ってくる。
In the present invention, as shown in FIG. 1, the output light from the semiconductor laser is split by the Y branch coupler 3, one branch A is connected to the communication optical fiber of the comparison fiber communication system 5, and One branch B is connected to the light reflection circuit 4. In the ordinary optical fiber communication system 5, since the reflected return light from the optical connector or the like is generated, in this case, the reflected return light 6 having a certain intensity phase returns from the optical fiber to the branch A as shown in FIG. come.

【0010】この時、Y分岐カプラー3の分岐Bに分岐
Aに戻ってきた上記反射戻り光6と同強度、逆位相の補
償光7を入射してやることにより、合波・干渉の結果、
反射戻り光6の全光パワーがY分岐カプラー3の外へ放
射されるため、結果として、半導体レーザ1には反射戻
り光が入射されない。すなわち、光ファイバからの反射
戻り光6を解消し、半導体レーザ1に再入射させないこ
とが可能となる。光反射回路4はこのように反射戻り光
6と同強度、逆位相の補償光7を発生させる機能を有す
るものである。
At this time, the compensating light 7 having the same intensity and opposite phase as the reflected return light 6 returning to the branch A is input to the branch B of the Y-branch coupler 3 so that as a result of the combining / interference,
Since the total optical power of the reflected return light 6 is radiated to the outside of the Y branch coupler 3, as a result, the reflected return light is not incident on the semiconductor laser 1. That is, it becomes possible to eliminate the reflected return light 6 from the optical fiber and prevent it from re-incident on the semiconductor laser 1. The light reflection circuit 4 thus has a function of generating the compensating light 7 having the same intensity and the opposite phase as the reflected return light 6.

【0011】[0011]

【発明の実施の形態】次に、本発明の実施の形態につい
て説明する。図3は本発明の第1の実施の形態の構成図
を示す。同図中、図1と同一構成部分には同一符号を付
してある。この実施の形態は、図3に示すように、半導
体レーザ1がファイバ型Y分岐カプラー10のA分岐と
単一モードファイバ11を介して光ファイバ通信システ
ム5に接続される一方、ファイバ型Y分岐カプラー10
のB分岐、位相制御器12、光アッテネータ13及び補
償光反射鏡14に接続された構成である。位相制御器1
2、光アッテネータ13及び補償光反射鏡14は前記光
反射回路4を構成している。
Next, an embodiment of the present invention will be described. FIG. 3 shows a block diagram of the first embodiment of the present invention. In the figure, the same components as those in FIG. 1 are denoted by the same reference numerals. In this embodiment, as shown in FIG. 3, a semiconductor laser 1 is connected to an optical fiber communication system 5 via an A branch of a fiber type Y branch coupler 10 and a single mode fiber 11, while a fiber type Y branch is connected. Coupler 10
The B branch, the phase controller 12, the optical attenuator 13, and the compensation light reflecting mirror 14 are connected. Phase controller 1
2. The light attenuator 13 and the compensation light reflecting mirror 14 constitute the light reflecting circuit 4.

【0012】ファイバ型Y分岐カプラー10のパワー分
岐比は、光ファイバ側のA分岐と反射回路側のB分岐に
各々100:1の比で分割されるものを用いている。フ
ァイバ型Y分岐カプラー10に入射される光の位相及び
強度は、位相制御器12及び光アッテネータ13を用い
て制御できるような構成となっている。補償光反射鏡1
4としては、反射率98%の光ファイバ型のもの(光フ
ァイバ端面に金を蒸着してあるもの、例えばHP製の8
156オプション203)を用いている。また、光アッ
テネータ13も市販されているもの(例えば応用光電製
のMPCA1300)を用いている。
The power branching ratio of the fiber type Y branching coupler 10 is such that it is divided into A branch on the optical fiber side and B branch on the reflecting circuit side at a ratio of 100: 1. The phase and intensity of the light incident on the fiber type Y-branch coupler 10 can be controlled by using the phase controller 12 and the optical attenuator 13. Compensation light reflector 1
4 is an optical fiber type having a reflectance of 98% (an optical fiber end face having gold vapor-deposited thereon, for example, HP-made 8
156 option 203) is used. Further, as the optical attenuator 13, a commercially available one (for example, MPCA1300 manufactured by Applied Optoelectronics) is used.

【0013】次に、この実施の形態の動作について説明
する。半導体レーザ1のレーザ活性層2から出射された
レーザ光は、ファイバ型Y分岐カプラー10により2分
岐され、一方は単一モードファイバ11を通して光ファ
イバ通信システム5に入射されて用いられると共に、そ
の光コネクタ等からの反射戻り光が発生する。この反射
戻り光6は、単一モードファイバ11を通してファイバ
型Y分岐カプラー10のA分岐に入射する。
Next, the operation of this embodiment will be described. The laser light emitted from the laser active layer 2 of the semiconductor laser 1 is branched into two by a fiber type Y-branch coupler 10, one of which is used by being incident on an optical fiber communication system 5 through a single mode fiber 11 and used. Reflected return light from the connector etc. is generated. The reflected return light 6 is incident on the A branch of the fiber type Y branch coupler 10 through the single mode fiber 11.

【0014】一方、ファイバ型Y分岐カプラー10によ
り2分岐されたもう一方の光は、位相制御器12、光ア
ッテネータ13を通して補償光反射鏡14に入射されて
反射される。この反射光は、光アッテネータ13で前記
反射戻り光6の振幅と同じ強度に調整され、更に位相制
御器12により反射戻り光6と逆位相の補償光15とさ
れた後、ファイバ型Y分岐カプラー10のA分岐に入射
する。
On the other hand, the other light split into two by the fiber type Y branch coupler 10 is made incident on the compensation light reflecting mirror 14 through the phase controller 12 and the optical attenuator 13 and reflected. The reflected light is adjusted to have the same intensity as the amplitude of the reflected return light 6 by the optical attenuator 13, and is further converted into the compensation light 15 having a phase opposite to that of the reflected return light 6 by the phase controller 12, and then the fiber type Y branch coupler. It is incident on the A branch of 10.

【0015】ファイバ型Y分岐カプラー10のA分岐に
入射する反射戻り光6と同じ強度、逆位相の補償光15
がY分岐カプラー10のB分岐に入射されることによ
り、Y分岐カプラー10の合波・干渉効果により、反射
戻り光6は補償光15により打ち消されるため、出力端
に出てくる光パワーはゼロとなる。このように、この実
施の形態によれば、光アイソレータを用いなくとも半導
体レーザ1への反射戻り光を解消できる。
Compensation light 15 having the same intensity and opposite phase as the reflected return light 6 incident on the A branch of the fiber type Y branch coupler 10.
Is incident on the B-branch of the Y-branch coupler 10, the reflected return light 6 is canceled by the compensating light 15 due to the multiplexing / interference effect of the Y-branch coupler 10, and the optical power output to the output end is zero. Becomes Thus, according to this embodiment, the reflected light returning to the semiconductor laser 1 can be eliminated without using an optical isolator.

【0016】図4は本発明の第2の実施の形態の構成図
を示す。同図中、図3と同一構成部分には同一符号を付
し、その説明を省略する。図4に示す第2の実施の形態
では、レーザ活性層2とY分岐カプラーとが一体化した
集積型の光部品20を用いた点に特徴がある。この実施
の形態も第1の実施の形態と同様の動作を行い、第1の
実施の形態と同様の特長を有する。
FIG. 4 shows a block diagram of the second embodiment of the present invention. 3, the same components as those of FIG. 3 are denoted by the same reference numerals, and the description thereof will be omitted. The second embodiment shown in FIG. 4 is characterized in that an integrated optical component 20 in which the laser active layer 2 and the Y branch coupler are integrated is used. This embodiment also operates similarly to the first embodiment and has the same features as the first embodiment.

【0017】なお、本発明は以上の実施の形態に限定さ
れるものではなく、例えば光アッテネータ13と位相制
御器12の接続順序は図3及び図4のそれと逆であって
もよい。
The present invention is not limited to the above embodiment, and for example, the connection order of the optical attenuator 13 and the phase controller 12 may be the reverse of that shown in FIGS.

【0018】[0018]

【発明の効果】以上説明したように、本発明によれば、
光反射回路により光ファイバからの反射戻り光と同強
度、逆位相の補償光を発生させて、Y分岐カプラーの光
反射回路への分岐出力側に戻すようにしたため、Y分岐
カプラーの合波・干渉特性を利用し、光アイソレータを
用いることなく、光ファイバ通信システムから半導体レ
ーザへの反射戻り光を解消し、半導体レーザの安定動作
を実現することができる。
As described above, according to the present invention,
The light reflection circuit generates compensation light having the same intensity and opposite phase as the reflected return light from the optical fiber and returning it to the branch output side of the Y branch coupler to the light reflection circuit. By utilizing the interference characteristics, it is possible to eliminate the reflected return light from the optical fiber communication system to the semiconductor laser without using an optical isolator, and to realize stable operation of the semiconductor laser.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理構成図である。FIG. 1 is a principle configuration diagram of the present invention.

【図2】本発明の原理説明図である。FIG. 2 is a diagram illustrating the principle of the present invention.

【図3】本発明の第1の実施の形態の構成図である。FIG. 3 is a configuration diagram of a first embodiment of the present invention.

【図4】本発明の第2の実施の形態の構成図である。FIG. 4 is a configuration diagram of a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 半導体レーザ 2 レーザ活性層 3 Y分岐カプラー 4 光反射回路 5 光ファイバ通信システム 6 反射戻り光 10 ファイバ型Y分岐カプラー 11 単一モードファイバ 12 位相制御器 13 光アッテネータ 14 補償光反射鏡 15 補償光 20 半導体レーザ・Y分岐カプラー一体化光学部品 1 semiconductor laser 2 laser active layer 3 Y branch coupler 4 optical reflection circuit 5 optical fiber communication system 6 reflected return light 10 fiber type Y branch coupler 11 single-mode fiber 12 phase controller 13 optical attenuator 14 compensation optical reflector 15 compensation light 20 Semiconductor laser / Y-branch coupler integrated optical component

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光源からの光を第1の光と第2の光の2
つに分岐し、少なくとも第1の光は光ファイバへ伝送す
るY分岐カプラーと、 前記Y分岐カプラーにより分岐された第2の光が入射さ
れ、該入射光の強度及び位相を調整して前記Y分岐カプ
ラーの第2の光分岐出力側へ戻す光反射回路とを有する
ことを特徴とする反射戻り光補償回路。
1. Light from a light source is divided into first light and second light.
Y-branch coupler that splits at least the first light into an optical fiber and second light that is branched by the Y-branch coupler are incident, and the intensity and phase of the incident light are adjusted to control the Y-branch. And a light reflection circuit for returning the light to the second optical branch output side of the branch coupler.
【請求項2】 前記光反射回路は、前記第2の光を反射
する反射鏡と、該反射鏡からの反射光の強度を調整する
光アッテネータ及び該反射光の位相を調整する位相制御
器からなる光強度及び位相制御調整回路とからなること
を特徴とする請求項1記載の反射戻り光補償回路。
2. The light reflecting circuit includes a reflecting mirror that reflects the second light, an optical attenuator that adjusts the intensity of the reflected light from the reflecting mirror, and a phase controller that adjusts the phase of the reflected light. The reflected return light compensating circuit according to claim 1, further comprising a light intensity and phase control adjusting circuit.
JP8077220A 1996-03-29 1996-03-29 Reflective return light compensation circuit Pending JPH09269428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8077220A JPH09269428A (en) 1996-03-29 1996-03-29 Reflective return light compensation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8077220A JPH09269428A (en) 1996-03-29 1996-03-29 Reflective return light compensation circuit

Publications (1)

Publication Number Publication Date
JPH09269428A true JPH09269428A (en) 1997-10-14

Family

ID=13627776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8077220A Pending JPH09269428A (en) 1996-03-29 1996-03-29 Reflective return light compensation circuit

Country Status (1)

Country Link
JP (1) JPH09269428A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133099A1 (en) * 2012-03-08 2013-09-12 独立行政法人産業技術総合研究所 Light source circuit and light source device equipped with same
WO2014156885A1 (en) * 2013-03-25 2014-10-02 技術研究組合光電子融合基盤技術研究所 Optical circuit
JP2016191817A (en) * 2015-03-31 2016-11-10 日本電気株式会社 Optical integrated circuit, and control method of optical integrated circuit
WO2019030019A1 (en) * 2017-08-10 2019-02-14 Sicoya Gmbh Optical signal generator comprising a phase shifter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238889A (en) * 1988-07-28 1990-02-08 Sony Corp Laser doppler speedometer
JPH03259203A (en) * 1990-03-09 1991-11-19 Sony Corp Optical waveguide device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238889A (en) * 1988-07-28 1990-02-08 Sony Corp Laser doppler speedometer
JPH03259203A (en) * 1990-03-09 1991-11-19 Sony Corp Optical waveguide device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133099A1 (en) * 2012-03-08 2013-09-12 独立行政法人産業技術総合研究所 Light source circuit and light source device equipped with same
JPWO2013133099A1 (en) * 2012-03-08 2015-07-30 国立研究開発法人産業技術総合研究所 Light source circuit and light source device having the same
US9151894B2 (en) 2012-03-08 2015-10-06 National Institute Of Advanced Industrial Science And Technology Light source circuit and light source device equipped with same
WO2014156885A1 (en) * 2013-03-25 2014-10-02 技術研究組合光電子融合基盤技術研究所 Optical circuit
EP2980618A4 (en) * 2013-03-25 2016-12-07 Photonics Electronics Technology Res Ass Optical circuit
US9519115B2 (en) 2013-03-25 2016-12-13 Photonics Electronics Technology Research Association Optical circuit
JPWO2014156885A1 (en) * 2013-03-25 2017-02-16 技術研究組合光電子融合基盤技術研究所 Optical circuit
JP2016191817A (en) * 2015-03-31 2016-11-10 日本電気株式会社 Optical integrated circuit, and control method of optical integrated circuit
WO2019030019A1 (en) * 2017-08-10 2019-02-14 Sicoya Gmbh Optical signal generator comprising a phase shifter
US10514584B2 (en) 2017-08-10 2019-12-24 Sicoya Gmbh Optical signal generator comprising a phase shifter

Similar Documents

Publication Publication Date Title
US5572357A (en) Optical system for amplifying signal light
US5259044A (en) Mach-Zehnder optical modulator with monitoring function of output light
EP0806824B1 (en) Apparatus and method for a single-port modulator having amplification
CN110459956B (en) Narrow linewidth tunable laser
US20050135733A1 (en) Integrated optical loop mirror
US6683902B1 (en) Semiconductor laser module
JPH07318986A (en) Waveguide type optical switch
JPH06331837A (en) Optical device
US6882764B1 (en) Polarization independent packaging for polarization sensitive optical waveguide amplifier
US20080231861A1 (en) Polarization Maintaining Optical Delay Circuit
JPH11119275A (en) Wavelength converter
US6330089B1 (en) Optical time-division multiplexing transmitter module
JPH09269428A (en) Reflective return light compensation circuit
EP3179645B1 (en) Optical signal modulation apparatus and system
JP4022792B2 (en) Semiconductor optical amplifier
JP3206618B2 (en) Optical logic device using polarization
RU2051472C1 (en) Light-emitting transmitter and communication system
JP2000010137A (en) Wavelength converter
JP4208126B2 (en) Gain clamp optical amplifier module
JP3583841B2 (en) Optical device for monitoring
US20030030905A1 (en) Polarized wave coupling optical isolator
US5276749A (en) Optical reflective star device having one or more orthogonal polarization reflectors
JPH0293623A (en) Reflection type optical amplifier
JPS63221692A (en) Semiconductor light amplifier
JPH06308560A (en) Optical semiconductor element utilizing polarization