JPS60136615A - Fluid bearing construction - Google Patents

Fluid bearing construction

Info

Publication number
JPS60136615A
JPS60136615A JP24208283A JP24208283A JPS60136615A JP S60136615 A JPS60136615 A JP S60136615A JP 24208283 A JP24208283 A JP 24208283A JP 24208283 A JP24208283 A JP 24208283A JP S60136615 A JPS60136615 A JP S60136615A
Authority
JP
Japan
Prior art keywords
foil
bearing
pressure
bearing surface
damp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24208283A
Other languages
Japanese (ja)
Other versions
JPS6331001B2 (en
Inventor
Takashi Sugita
杉田 孝志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP24208283A priority Critical patent/JPS60136615A/en
Publication of JPS60136615A publication Critical patent/JPS60136615A/en
Publication of JPS6331001B2 publication Critical patent/JPS6331001B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/042Sliding-contact bearings for exclusively rotary movement for axial load only with flexible leaves to create hydrodynamic wedge, e.g. axial foil bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/024Sliding-contact bearings for exclusively rotary movement for radial load only with flexible leaves to create hydrodynamic wedge, e.g. radial foil bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)

Abstract

PURPOSE:To improve stability at a high speed by providing a bearing foil on which a pressure releasing passage is formed, a damp foil for damping vibration, between said bearing foil and a supporting surface, and a spring foil for resiliently supporting said damp foil on said supporting surface. CONSTITUTION:A bearing foil 3 is provided close to a rotary shaft 1, to form a gas film on a bearing surface 3a on the inner periphery of the foil 3. More than one small hole 8, as a pressure releasing passage, is formed through the bearing foil 3 in the board thickness direction, nearly at the center in the axial direction of the rotary shaft. A damp foil 4 is provided on the bearing-foil 3 supporting surface 2a side, and a vacant space H is formed between this damp foil 4 and the outside of the bearing foil 3, to admit the surplus pressure of the gas film on the bearing surface 3a through the small holes 8, fulfilling a vibration damping function. Furthermore, a spring foil 5, which resiliently supports the damp foil 4, is provided on the damp-foil 4 supporting surface 2a side.

Description

【発明の詳細な説明】 [発明の技術分野〕 本発明はガス、油、水、蒸気等の流体軸受構造に係り、
特に弾性フォイルを利用したフォイル軸受において、優
れた高速安定性を発揮できる流体軸受構造に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a hydrodynamic bearing structure for gas, oil, water, steam, etc.
In particular, the present invention relates to a hydrodynamic bearing structure that can exhibit excellent high-speed stability in foil bearings that utilize elastic foils.

[発明の技術的背景とその問題点] 流体軸受は回転軸と軸受面との間に高圧な流体膜を形成
してこの流体膜圧力により回転軸を支持する方式の軸受
であり、特にガス軸受は摩擦損失が少なく高負荷能力を
有する特長があり、ターボ圧縮機、ターボ膨張機、ター
ボチャージャ、ターボ冷凍機等の高速回転軸の軸受とし
て極めて有効なものである。
[Technical background of the invention and its problems] A fluid bearing is a type of bearing that forms a high-pressure fluid film between a rotating shaft and a bearing surface and supports the rotating shaft using this fluid film pressure. It has the characteristics of low friction loss and high load capacity, and is extremely effective as a bearing for high-speed rotating shafts of turbo compressors, turbo expanders, turbo chargers, turbo refrigerators, etc.

このガス軸受としては剛体軸受とフォイル軸受とが知ら
れている。剛体軸受では軸変形等に起因してガス膜の破
断を生じるため、現在フォイル軸受が研究開発されてい
る。
Rigid bearings and foil bearings are known as gas bearings. In rigid bearings, the gas film breaks due to shaft deformation, etc., so foil bearings are currently being researched and developed.

本願出願人も先にフォイル軸受の基本構造について提案
し、優れた性能を発揮することを見出した。
The applicant of this application also previously proposed the basic structure of a foil bearing and found that it exhibits excellent performance.

ところで、一般にガス軸受にあっては軸受面の形式がブ
レーン、スパイラルグループ、ポケッ1へ型等の高負荷
容量型の場合、高速回転域で自励振動を誘起し不安定と
なる。この現象はガス膜の圧縮性と軸受形状に起因する
もので高負荷容量型の軸受では避けられない問題である
が、回転軸の高速化の要請からその改善が望まれている
By the way, in general, when the bearing surface type of a gas bearing is a high load capacity type such as a brane, spiral group, or pocket 1 type, self-excited vibration is induced in the high speed rotation range and the bearing surface becomes unstable. This phenomenon is caused by the compressibility of the gas film and the shape of the bearing, and is an unavoidable problem in high-load-capacity bearings, but improvements are desired in view of the need for faster rotating shafts.

[発明の目的] 本発明は上述したような問題点に鑑みて創案されたもの
であり、その目的はフォイル軸受において優れた高速安
定性を発揮できる流体軸受構造を提供するにある。
[Object of the Invention] The present invention was devised in view of the above-mentioned problems, and its purpose is to provide a hydrodynamic bearing structure that can exhibit excellent high-speed stability in a foil bearing.

[発明の概要] 上記目的は、本発明によれば次のような構成により達成
される。
[Summary of the Invention] According to the present invention, the above object is achieved by the following configuration.

即ち支承面上に弾性フォイルが積層されて形成され、流
体膜圧力により回転軸を支承するための流体軸受におい
て、軸受面上に流体膜を形成するための軸受フォイルと
、上記軸受面上の流体膜圧力を規制するために該圧力を
解放する圧力解放路と、上記支承面と上記軸受フォイル
との間に設けられ、上記圧力解放路から解放される圧力
を導入して制振させるダンプフォイルと、該ダンプフォ
イルを上記支承面上に弾性支持するためのバネフ[発明
の実施例] 以下に本発明の好適一実施例を添付図面に従って詳述す
る。本実施例にあっては流体軸受としてジャーナルガス
軸受が例示されている。
That is, in a fluid bearing that is formed by laminating elastic foils on a bearing surface and supports a rotating shaft by fluid film pressure, the bearing foil forms a fluid film on the bearing surface and the fluid on the bearing surface. a pressure release path that releases pressure in order to regulate membrane pressure; and a dump foil that is provided between the bearing surface and the bearing foil and that introduces the pressure released from the pressure release path to damp vibration. , a springf for elastically supporting the dump foil on the support surface [Embodiment of the Invention] A preferred embodiment of the present invention will be described below in detail with reference to the accompanying drawings. In this embodiment, a journal gas bearing is exemplified as the fluid bearing.

第1図に示すように、1はターボ圧縮機等の回転軸であ
り、この回転軸1の外周にはこれを囲繞して環状の軸受
ケース2が設けられている。そして回転軸1と軸受ケー
ス2内周の支承面2aとの間にはガス膜圧力により回転
軸1を支承するための弾性フォイル3.4.5が積層し
て設けられる。
As shown in FIG. 1, 1 is a rotating shaft of a turbo compressor or the like, and an annular bearing case 2 is provided around the outer periphery of this rotating shaft 1. As shown in FIG. Between the rotating shaft 1 and the bearing surface 2a on the inner circumference of the bearing case 2, elastic foils 3.4.5 for supporting the rotating shaft 1 by gas film pressure are laminated.

これら弾性フォイル3.4.5は第2図に示すように、
それらの一端が固定片6に接合されて一体化され、この
固定片6が支承面2に回転軸方向に沿って形成された係
合溝7に係止されて取り付けられる。
These elastic foils 3.4.5 are shown in FIG.
One end thereof is joined to a fixed piece 6 to be integrated, and this fixed piece 6 is engaged and attached to an engagement groove 7 formed in the support surface 2 along the direction of the rotation axis.

3は最も回転軸1に近接させて設けられ、その内周の軸
受面3a上にガス膜を形成するための軸受フォイルであ
る。図示例にあっては軸受面3aが平滑に形成されたプ
レーン状のものが示されているが、この他スパイラルグ
ループ、テーパランド、ポケット等の加工が施されたも
のであっても良い。
A bearing foil 3 is provided closest to the rotating shaft 1 and is used to form a gas film on the inner circumferential bearing surface 3a. In the illustrated example, a plain bearing surface 3a with a smooth bearing surface is shown, but it may also be formed with spiral groups, tapered lands, pockets, etc.

特にこの軸受フォイル3には回転軸方向略巾央で板厚方
向に貫通させて圧力解放路たる細孔8・・・が複数形成
される。この細孔8・・・は軸受面3a上に形成される
ガス膜の余剰圧力を解放して軸受面3a上のガス膜圧力
を蜆制し、過剰な昇圧を抑制づるように構成される。
In particular, a plurality of small holes 8 serving as pressure release passages are formed in the bearing foil 3 at approximately the center of its width in the direction of the rotation axis and extending through the plate thickness direction. The pores 8 are configured to release the excess pressure of the gas film formed on the bearing surface 3a, thereby controlling the pressure of the gas film on the bearing surface 3a, thereby suppressing excessive pressure rise.

他方5は支承面2a上に設番プられ、軸受フォイル3に
作用するガス膜圧力を支承面2aから弾発支持するため
に後述するダンプフォイル4を弾性支持するバネフォイ
ルである。バネフォイル5はM3図に示すように細長い
矩形状に形成され、その長手方向に所定ピッチ毎に折曲
溝58・・・が形成される。そしてこのバネフォイル5
は第4図に示すように支承面2aに沿って折り曲げ加工
される。
The other 5 is a spring foil which is arranged on the bearing surface 2a and elastically supports a dump foil 4, which will be described later, in order to resiliently support the gas film pressure acting on the bearing foil 3 from the bearing surface 2a. The spring foil 5 is formed into an elongated rectangular shape as shown in Fig. M3, and bent grooves 58 are formed at predetermined pitches in the longitudinal direction. And this spring foil 5
is bent along the bearing surface 2a as shown in FIG.

これら支承面2aに配設されるバネフォイル5と回転軸
1側に配設される軸受フォイル3との間にはダンプフォ
イル4が設けられる。このダンプフォイル4は、その外
周にバネフォイル5が摩擦接触されると共に、内周は細
孔8・・・が形成された軸受フォイル3の外周に臨ませ
られる。そして、これらフォイル3.5相互間の空隙H
に細孔8・・・から圧力が導入されるように構成される
。 即ちダンプフォイル4は軸受フォイル3の外側に空
隙1−1を形成し、この空m l−1内に圧力解放路た
る細孔8・・・から軸受面3aのガス膜の余剰圧力を導
入させて制振機能を発揮するように構成される。本実施
例にあっては空隙側内周面がプレーン状に形成されたも
のが示されている。
A dump foil 4 is provided between the spring foil 5 disposed on the support surface 2a and the bearing foil 3 disposed on the rotating shaft 1 side. The spring foil 5 is brought into frictional contact with the outer periphery of the dump foil 4, and the inner periphery faces the outer periphery of the bearing foil 3 in which pores 8 are formed. And the air gap H between these foils 3.5
The structure is such that pressure is introduced from the pores 8... into the pores 8. That is, the dump foil 4 forms a void 1-1 on the outside of the bearing foil 3, and the excess pressure of the gas film on the bearing surface 3a is introduced into the void ml-1 from the pores 8 serving as pressure release paths. It is configured to exhibit a vibration damping function. In this embodiment, the inner circumferential surface on the gap side is formed into a plain shape.

次に本発明の作用について述べる。Next, the operation of the present invention will be described.

第1図及び第5図に示すように、回転軸1が矢印の方向
に速度Vで回転すると回転軸1周囲のガスの粘性に基づ
く巻き込み作用により軸受フォイル3と回転軸1との間
に荷重Wを支えるためのガス膜が相当の膜厚りで形成さ
れる。
As shown in FIGS. 1 and 5, when the rotating shaft 1 rotates at a speed V in the direction of the arrow, a load is applied between the bearing foil 3 and the rotating shaft 1 due to the entrainment action based on the viscosity of the gas around the rotating shaft 1. A gas film for supporting W is formed with a considerable thickness.

本実施例で示したプレーンなジャーナル軸受にあっては
外部減衰があまり大きくない場合1次危険速度の2倍以
上でホワールと呼ばれる自励振動が発生し不安定となる
。この現蒙はガス膜の膜厚りに発生する過剰なガス膜圧
力による軸偏心量の減少に基づくものである。
In the plain journal bearing shown in this embodiment, if the external damping is not very large, self-excited vibration called whirl will occur at twice or more the primary critical speed, making it unstable. This phenomenon is based on the reduction in shaft eccentricity due to excessive gas film pressure that occurs due to the thickness of the gas film.

本発明は圧力解放路(本実施例にあっては細孔8・・・
)どダンプフォイル4とにより、過剰なガス膜圧力の発
生を規ちりすると共に、解放させた圧力を外部減衰とし
て有効に活用して制振効果を発揮させるものである。
The present invention has a pressure release path (in this embodiment, the pore 8...
) The damping foil 4 controls the generation of excessive gas film pressure, and the released pressure is effectively used as external damping to exert a damping effect.

即ち軸受面3a上で発生するガス膜圧力の一部は細孔8
・・・を介してダンプフォイル4と軸受フォイルaとの
間の空隙1−1に流入する。従って可及的にガス膜圧力
の過剰な上昇を規制できる。
In other words, part of the gas film pressure generated on the bearing surface 3a is absorbed by the pores 8.
... flows into the gap 1-1 between the dump foil 4 and the bearing foil a. Therefore, an excessive increase in gas membrane pressure can be controlled as much as possible.

また解放された圧力が導入された空隙Hは、膜厚り方向
のスクイズフィルムダンパとして機能し制振効果を発揮
する。この作用は弾性フォイル3゜4.5という構成要
素によって発揮されるものであり、高速域において顕著
な効果を秦する。また回転軸1が水平方向に置かれたジ
ャーナル軸受の場合、反負荷側の軸受面(第1図におい
て、上方の軸受面)は逆クサビ状(回転方向に末広がり
)のガス膜が形成されて負圧が発生する傾向がある。
In addition, the void H into which the released pressure is introduced functions as a squeeze film damper in the film thickness direction and exhibits a vibration damping effect. This effect is exerted by the elastic foil component of 3°4.5, and has a remarkable effect in the high speed range. In addition, in the case of a journal bearing in which the rotating shaft 1 is placed horizontally, an inverted wedge-shaped gas film (spreading toward the end in the rotational direction) is formed on the bearing surface on the anti-load side (the upper bearing surface in Fig. 1). Negative pressure tends to occur.

この場合負圧により回転軸1を持ち上げる力が作用して
不安定化に進むことになる。これに対し本発明にあって
は圧力解放路(細孔8・・・)により負圧発生を防止す
ることもできる。
In this case, the negative pressure acts to lift the rotating shaft 1, leading to instability. On the other hand, in the present invention, the generation of negative pressure can also be prevented by the pressure release path (pores 8...).

これらの相乗効果により高負荷容量の動圧型ガス軸受の
長所を損なうことなく高速回転まで安定させることがで
きる。従ってターボ機械等高速回転機器の高効率化を図
り得る。
These synergistic effects make it possible to stabilize rotations up to high speeds without sacrificing the advantages of high load capacity dynamic pressure type gas bearings. Therefore, it is possible to improve the efficiency of high-speed rotating equipment such as turbo machinery.

また圧力解放路たる細孔8・・・を形成したことにより
軸受面3a上に溜まり易かった塵等も圧力の解放に伴な
わせて軸受面3a外へ除去さすることができ、信頼性も
向上できる。
Furthermore, by forming the pores 8, which serve as pressure release channels, dust, etc. that tend to accumulate on the bearing surface 3a can be removed to the outside of the bearing surface 3a as the pressure is released, improving reliability. You can improve.

また、本発明の軸受構造は変形可能な弾性フォイル3,
4.5によって構成されるため、回転軸1の熱変形、遠
心膨張にも対応できる。
The bearing structure of the present invention also includes a deformable elastic foil 3,
4.5, it can also cope with thermal deformation and centrifugal expansion of the rotating shaft 1.

尚、以上の説明にあっては軸受フォイル3とダンプフォ
イル4とで構成される空隙1−1は、細孔8・・・を流
体絞りとして給気させる局所的な自戒絞り型静圧ガス軸
受として機能させ、これを分布して配置させることによ
って高速安定化に寄与するものである。自戒絞り型静圧
ガス軸受は静圧ガス軸受の中にあってガス流量が小さな
形式の−っであり、軸受フォイル3の上面に形成させる
ガス族の負荷能力の低下を制限1ノつつ余剰圧ノ〕を解
放できるものである。この機能は軸受フォイル3とダン
プフォイル4とが弾性に富むフォイルで形成されている
ことにより発揮される特性であり、剛体軸受にない特長
である。
In the above explanation, the gap 1-1 formed by the bearing foil 3 and the dump foil 4 is a local self-restriction type static pressure gas bearing that supplies air using the pores 8 as fluid restrictors. By distributing and arranging them, it contributes to high-speed stabilization. The self-throttling type static pressure gas bearing is a type of static pressure gas bearing with a small gas flow rate, and it limits the drop in the load capacity of the gas group formed on the upper surface of the bearing foil 3 while also reducing excess pressure. ] can be released. This function is achieved by the fact that the bearing foil 3 and the dump foil 4 are made of highly elastic foils, and is a feature not found in rigid bearings.

また小型高速で低荷重のa−夕等を支持するフォイルガ
ス軸受の構成としては次のようにしても効果がある。低
荷重の場合には自戒絞り型静圧ガス軸受の部分を局所的
なポケット付オリフィス絞り型または表面絞り型の静圧
ガス軸受としガス流量を増加させて空隙Hをより能動的
な局所的に分布した静圧軸受として機能させ、減衰能力
を高め安定性を向上させることができる。
Furthermore, the following configuration of a foil gas bearing for supporting small, high-speed, low-load vehicles, etc. is also effective. In the case of low loads, the self-restriction type static pressure gas bearing can be replaced with a locally pocketed orifice restriction type or surface restriction type static pressure gas bearing to increase the gas flow rate and fill the air gap H more actively and locally. It can function as a distributed hydrostatic bearing, increasing damping capacity and improving stability.

ポケット又は表面絞りはダンプフォイル4、軸受フォイ
ル3のダンプフォイル側面いずれに形成しても良い。
The pocket or surface aperture may be formed on either the dump foil 4 or the dump foil side surface of the bearing foil 3.

[変形実施例コ 第6図〜第19図には上記実施例の変形例が示されてい
る。
[Modifications] Figures 6 to 19 show modifications of the above embodiment.

第6図〜第9図に示すものは、上記実施例において折曲
形成したバネフォイルに代替させて以下のように構成し
た弾発体9を採用したものである。
What is shown in FIGS. 6 to 9 employs an elastic body 9 constructed as follows in place of the bent spring foil in the above embodiment.

弾発体9は第8図に示すように、バネフォイル5と格子
状フォイル1Oとからなり、格子状フォイル10にはそ
の長手方向に沿って等間隔で縦格子状にm11・・・が
段けられており、バネフォイル5は格子状フォイル1O
の歯11・・・が交互にその表裏に瑛れるように組み付
けられる。他の構成は上記実施例と同様である。
As shown in FIG. 8, the projectile body 9 consists of a spring foil 5 and a lattice foil 1O, and the lattice foil 10 has m11... arranged in a vertical lattice at regular intervals along its longitudinal direction. The spring foil 5 is a lattice foil 1O.
The teeth 11 are assembled so that they are alternately placed on the front and back sides. The other configurations are the same as those of the above embodiment.

第10図及び第11図に示すものは、上記実施例におい
てプレーン状の軸受面で形成した軸受フォイルに代替し
て軸受面3aに回転軸の回転方向Vに沿って側部から中
央部に向けて軸受面3aより6だ【プ深く加工されたへ
リングボーン状のグループ12・・・を形成したもので
ある。本実施例にあっは、圧力解放路は軸受面3aの中
央部に周方向に沿って板厚方向に貫通させて形成した複
数の細孔8・・・と、これら細孔8・・・とグループの
中央部側端部(グループエンド)12a・・・どの間に
形成された絞り通路13・・・とから構成される。また
図示しないが絞り通路を省略して直接グループエンド1
2a・・・に細孔を形成しても良い。
10 and 11, instead of the bearing foil formed of a plain bearing surface in the above embodiment, the bearing surface 3a is oriented from the side to the center along the rotational direction V of the rotating shaft. A herringbone-shaped group 12 is machined deeper than the bearing surface 3a. In this embodiment, the pressure release path includes a plurality of pores 8 formed in the central part of the bearing surface 3a along the circumferential direction and through the plate thickness direction, and these pores 8 . It is composed of a central end of the group (group end) 12a, and a throttle passage 13 formed between. Also, although not shown, the throttle passage is omitted and the group end 1 is directly connected.
Pores may be formed in 2a...

このように軸受面3aにグループを形成したガス軸受に
あっては(後述するスパイラルグループ型、ポケット型
も同様である。)、上述したブレーン型の軸受が軸受面
と回転軸との間に形成されるくさび状ガス膜による圧力
発生機構を有しているのに対し、グループ12・・・に
沿うガスの巻き込み作用によって昇圧する一種の粘性ポ
ンプ様の圧力発生機構を備えている。従って軸受面3a
と回転軸1とを同軸で構成しても昇圧機能を発揮する。
In gas bearings in which groups are formed on the bearing surface 3a in this way (the same applies to the spiral group type and pocket type described later), the above-mentioned brane type bearing is formed between the bearing surface and the rotating shaft. On the other hand, it has a pressure generating mechanism similar to a viscous pump that increases the pressure by entraining action of gas along the groups 12... Therefore, bearing surface 3a
Even if the rotary shaft 1 and the rotary shaft 1 are configured coaxially, the boosting function can be achieved.

即ち、回転軸1が回転するとガスは軸受面3aの外方へ
解放されたグループ12・・・の一端12bからグルー
プ12・・・内に巻ぎ込まれてゆ(。巻き込まれたガス
は順次グループ12・・・内で減速され順次圧力が高め
られてゆく。そしてグループエンド12a・・・で最大
圧力を発生しガス膜を形成してゆく。
That is, when the rotating shaft 1 rotates, gas is drawn into the group 12 from one end 12b of the group 12 released outward from the bearing surface 3a. The pressure is gradually increased within the groups 12..., and the maximum pressure is generated at the group ends 12a, forming a gas film.

このグループ型軸受も高負荷能力を有するものであるが
、上述したブレーン型軸受と同様、高速域で不安定とな
る。これに対し本発明にあっては余剰圧力をグループエ
ンド12a・・・から較り通路13・・・及び細孔8・
・・を介して解放できるので自励振動の発生を抑止でき
ると共に、更に解放された圧力を空隙卜1で外部減衰と
してのスクイズダンパ作用に利用して大幅に安定性を向
上させることができる。
This group type bearing also has a high load capacity, but like the brane type bearing described above, it becomes unstable at high speeds. On the other hand, in the present invention, the excess pressure is removed from the group ends 12a... and the passages 13... and the pores 8...
Since the pressure can be released through the air gap 1, the generation of self-excited vibration can be suppressed, and the released pressure can be used for the squeeze damper function as external damping in the air gap 1, thereby greatly improving stability.

第12図〜第18図に示すものはスラストガス軸受に本
発明を適用した場合が示されている。第12図において
、14は回転軸のスラストカラーであり、スラストカラ
ー14はV方向に回転している。また、スラストカラー
14のスラスト荷重Wをガス膜を形成して支承すべく、
スラストカラー14に臨ませこれに対向させて軸受ケー
ス2が設けられると共に、軸受ケース2の支承面2aに
は回転軸を囲繞する環状の弾性フォイル3,4゜15.
16.5が取り付りられている。これら弾性フォイル3
.4,15.16..5は、スラストカラー14側から
軸受ケース2に向かって軸受フォイル3.ダンプフォイ
ル4、くし形フォイル15、バネフォイル5、くし形フ
ォイル16を順次積層させて5枚設けられる。これらフ
ォイル3゜4.15.16.5はいずれも環状をなし、
それらの平面図を第13図〜第17図に夫々示す。
12 to 18 show the case where the present invention is applied to a thrust gas bearing. In FIG. 12, 14 is a thrust collar of a rotating shaft, and the thrust collar 14 is rotating in the V direction. In addition, in order to support the thrust load W of the thrust collar 14 by forming a gas film,
A bearing case 2 is provided facing and facing the thrust collar 14, and the bearing surface 2a of the bearing case 2 is provided with annular elastic foils 3, 4.15.
16.5 is installed. These elastic foils3
.. 4,15.16. .. 5 is a bearing foil 3.5 facing the bearing case 2 from the thrust collar 14 side. Five dump foils 4, comb foils 15, spring foils 5, and comb foils 16 are sequentially laminated. These foils 3゜4.15.16.5 are all annular,
Their plan views are shown in FIGS. 13 to 17, respectively.

軸受フォイル3は、その表面が軸受面3aを成し、この
軸受面3aにはガス膜圧力発生のためのスパイラル状の
溝、すなわちスパイラルグループ12が形成されている
。また、軸受フォイル3には、くし形フォイル15等、
他のフォイルと重ね合せた状態で固定するための取付孔
3bが、その外周部に適宜間隔にて複数設けられている
(図示例では6個)。またダンプフォイル4.バネフォ
イル5にも同様にその外周部に取付孔4a、5aが設け
られている。
The surface of the bearing foil 3 forms a bearing surface 3a, and a spiral groove, ie, a spiral group 12, for generating gas film pressure is formed on this bearing surface 3a. In addition, the bearing foil 3 includes a comb-shaped foil 15, etc.
A plurality of attachment holes 3b for fixing the foil in a stacked state with another foil are provided on the outer circumference thereof at appropriate intervals (six holes in the illustrated example). Also dump foil 4. Similarly, the spring foil 5 is provided with mounting holes 4a and 5a on its outer circumference.

くし形フォイル15は、リング状の外周部15bとその
内周面より径方向にくし形フォイル15中心に向って延
出された(し歯15Cとからなり、くし歯15cは外周
部15bに沿って等ピッチにて複数、放射状に設けられ
ている。更に、くし形フォイル15の外周部151)に
は、取付孔15aが設けられている。また(し形フォイ
ル16も、くし形フォイル15と同一形状、寸法であり
、外周部16tlとこれに等ピッチにてくし歯160が
設けられると共に、取付孔16aを有している。
The comb-shaped foil 15 consists of a ring-shaped outer peripheral part 15b and a ring-shaped outer peripheral part 15b extending radially from the inner peripheral surface toward the center of the comb-shaped foil 15 (the comb teeth 15C extend along the outer peripheral part 15b). A plurality of mounting holes 15a are provided radially at equal pitches.Furthermore, mounting holes 15a are provided in the outer peripheral portion 151) of the comb-shaped foil 15. The comb-shaped foil 16 also has the same shape and dimensions as the comb-shaped foil 15, and has comb teeth 160 provided at an equal pitch on the outer peripheral portion 16tl, as well as attachment holes 16a.

くし形フォイル15とくし形フォイル16との構造上の
相違は、くし歯15C,16Cに対する取付孔15a、
16aの加工位置のずれにある。即ち、取付孔15a、
16aは、等ピッチにて設けられたくし歯15C,16
Gに対して互いに 1/2ピツチずらして設けられてい
る。それ故、軸受フォイル3、ダンプフォイル4.くし
形フォイル15、バネフォイル5、くし形フォイル1G
がそれら取付孔3a 、 4a 、 15a 、 5a
 、 16aを一致させて軸受ケース2に5枚重ねて取
り付けられたどきに、第12図示すように、くし歯15
Cと16cどが周方向に沿ってバネフォイル5の両面に
交互に 1/2ビツヂで配置されることになる。
The structural difference between the comb-shaped foil 15 and the comb-shaped foil 16 is that the mounting holes 15a for the comb teeth 15C and 16C,
There is a shift in the processing position of 16a. That is, the mounting hole 15a,
16a are comb teeth 15C and 16 provided at equal pitches.
They are provided so as to be shifted by 1/2 pitch from each other with respect to G. Therefore, bearing foil 3, dumping foil 4. Comb-shaped foil 15, spring foil 5, comb-shaped foil 1G
These mounting holes 3a, 4a, 15a, 5a
, 16a are aligned and attached to the bearing case 2 in a stacked manner, as shown in FIG. 12, the comb teeth 15
C and 16c are alternately arranged at 1/2 bits on both sides of the spring foil 5 along the circumferential direction.

このようなスラストガス軸受において第18図に示すよ
うにスパイラルグループ12・・・のグループエンド1
2a・・・に細孔8が形成され、この細孔8・・・は問
FJf I−1に連通されて上記実施例と同様な効果を
奏するものである。
In such a thrust gas bearing, as shown in FIG. 18, the group end 1 of the spiral group 12...
A pore 8 is formed in 2a..., and this pore 8... communicates with the FJf I-1 to produce the same effect as in the above embodiment.

尚、第19図にはスパイラルクループに代替させてポケ
ット型グループ17が示されている。
In addition, FIG. 19 shows a pocket type group 17 in place of the spiral croup.

また図示しないが円錐面軸受にも適用することができる
Although not shown, the present invention can also be applied to a conical bearing.

ところで上記実施例及び変形実施例において、軸受フォ
イル3の軸受面やダンプフォイル4の表面加工はフォト
エツチング等により容易にでき、量産性、コストメリッ
トに優れるものである。
Incidentally, in the above-mentioned embodiments and modified embodiments, the bearing surface of the bearing foil 3 and the surface processing of the dump foil 4 can be easily performed by photo-etching or the like, and are excellent in mass production and cost advantages.

尚、上記実施例及び変形実施例にあってはガスを利用し
た流体軸受を例示して説明したが、油、水、水蒸気等を
利用した流体軸受であっても同様な効果を奏する。
In the above embodiments and modified embodiments, a fluid bearing that uses gas has been exemplified and explained, but a fluid bearing that uses oil, water, steam, or the like can have similar effects.

[発明の効果] 以上要するに本発明によれば次のような優れた効果を発
揮する。
[Effects of the Invention] In summary, the present invention exhibits the following excellent effects.

(1) 軸受面上の流体膜圧力の過剰な上昇を規制する
ために余剰圧力を解放する圧力解放路と、この圧力解放
路から解放される圧力を導入して軸受フォイルとの間に
スクイズダンパを構成するダンプフォイルどを佑えたこ
とにより自励振動の発生を抑止して優れた高速安定性を
発揮できる。
(1) In order to control an excessive rise in fluid film pressure on the bearing surface, a squeeze damper is installed between a pressure release path that releases excess pressure and the bearing foil by introducing the pressure released from this pressure release path. By using the dump foil etc. that make up the structure, it is possible to suppress the occurrence of self-excited vibration and achieve excellent high-speed stability.

(?) また圧力解放路により流体中に含まれる塵等の
異物を軸受面から除去でき軸受機能の信頼性を向上し得
る。
(?) Also, the pressure release path can remove foreign matter such as dust contained in the fluid from the bearing surface, improving the reliability of the bearing function.

(3) 圧力解放路はフォトエツチングにより簡単且つ
安価に形成できる。
(3) The pressure release path can be easily and inexpensively formed by photoetching.

(4) 負荷能力の低下が少ない。(4) There is little decrease in load capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の好適一実施例を示す正面断面図、第2
図は軸受構成部材の斜視図、第3図はバネフォイルを示
す斜視図、第4図はバネフォイルの折曲状態を示す斜視
図、第5図は第1図の周方向の展開断面図、第6図は変
形実施例を示す正面断面図第7図は軸受構成部材の斜視
図、第8図は弾発体の組立状態を示す平面図、第9図は
第6図の周方向展開断面図、第10図はへリングボーン
状の軸受フォイルを示す斜視図、第11図は第10図に
おけるA部拡大平面図、第12図はスラスト軸受に適用
した場合の一部側断面図、第13図はスパイラルグルー
プ状のスラスト用軸受フォイルを示す平面図、第14図
はダンプフォイルを示す平面図、第15図はくし形フォ
イルを示す平面図、第16図はバネフォイルを示す平面
図、第17図は他のくし形フォイルを示す平面図、第1
8図は第13図におけるB部拡大平面図、第19図はポ
ケット型グループを有する軸受フォイルを示す一部斜視
図である。 図中、1は回転軸、2aは支承面、3は軸受フォイル、
3aは軸受面、4はダンプフォイル、5はバネフォイル
、8,13は圧力解放路として例示した細孔及び絞り通
路である。 特許出願人 石川島播磨重工業株式会社代理人弁理士 
絹 谷 信 雄 第16区
FIG. 1 is a front sectional view showing a preferred embodiment of the present invention, and FIG.
3 is a perspective view of a spring foil, FIG. 4 is a perspective view of a bent state of the spring foil, FIG. 5 is a developed cross-sectional view in the circumferential direction of FIG. 7 is a perspective view of the bearing component, FIG. 8 is a plan view showing the assembled state of the projectile body, FIG. 9 is a developed sectional view in the circumferential direction of FIG. 6, Fig. 10 is a perspective view showing a herringbone-shaped bearing foil, Fig. 11 is an enlarged plan view of section A in Fig. 10, Fig. 12 is a partial side sectional view when applied to a thrust bearing, Fig. 13 14 is a plan view showing a dump foil, FIG. 15 is a plan view showing a comb-shaped foil, FIG. 16 is a plan view showing a spring foil, and FIG. 17 is a plan view showing a spiral group thrust bearing foil. Plan view showing another comb foil, 1st
FIG. 8 is an enlarged plan view of section B in FIG. 13, and FIG. 19 is a partial perspective view showing a bearing foil having pocket-type groups. In the figure, 1 is the rotating shaft, 2a is the bearing surface, 3 is the bearing foil,
3a is a bearing surface, 4 is a dump foil, 5 is a spring foil, and 8 and 13 are pores and throttle passages illustrated as pressure release passages. Patent applicant: Patent attorney representing Ishikawajima-Harima Heavy Industries Co., Ltd.
Nobuo Kinuya 16th Ward

Claims (1)

【特許請求の範囲】[Claims] 支承面上に弾性フォイルが積層されて形成され、流体膜
圧力により回転軸を支承するための流体軸受において、
軸受面上に流体膜を形成するための軸受フォイルと、上
記軸受面上の流体膜圧力を規制するために該圧力を解放
する圧力解放路と、上記支承面と上記軸受フォイルとの
間に設けられ、上記圧力解放路から解放圧力を導入して
制振させるダンプフォイルと、該ダンプフォイルを上記
支承面上に弾性支持するためのバネフォイルとを備えた
ことを特徴とする流体軸受構造。
In a fluid bearing that is formed by laminating an elastic foil on a bearing surface and supports a rotating shaft by fluid film pressure,
a bearing foil for forming a fluid film on the bearing surface; a pressure release path for regulating the pressure of the fluid film on the bearing surface; and a pressure release path provided between the bearing surface and the bearing foil. 1. A fluid bearing structure comprising: a dump foil for damping vibration by introducing release pressure from the pressure release path; and a spring foil for elastically supporting the dump foil on the support surface.
JP24208283A 1983-12-23 1983-12-23 Fluid bearing construction Granted JPS60136615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24208283A JPS60136615A (en) 1983-12-23 1983-12-23 Fluid bearing construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24208283A JPS60136615A (en) 1983-12-23 1983-12-23 Fluid bearing construction

Publications (2)

Publication Number Publication Date
JPS60136615A true JPS60136615A (en) 1985-07-20
JPS6331001B2 JPS6331001B2 (en) 1988-06-22

Family

ID=17084017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24208283A Granted JPS60136615A (en) 1983-12-23 1983-12-23 Fluid bearing construction

Country Status (1)

Country Link
JP (1) JPS60136615A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237112A (en) * 1986-04-08 1987-10-17 Eagle Ind Co Ltd Bearing
FR2761428A1 (en) * 1997-03-28 1998-10-02 Mohawk Innovative Tech Inc Hydrodynamic journal bearing used e.g. for cryogenic turbo-rotors, or aircraft cabin pressurising units
WO2006014659A1 (en) * 2004-07-20 2006-02-09 Honeywell International Inc. Hydrodynamic journal foil bearing
WO2006018915A1 (en) * 2004-08-17 2006-02-23 Kawasaki Jukogyo Kabushiki Kaisha Vibration damping mechanism for bearing
JP2009057992A (en) * 2007-08-30 2009-03-19 Ntn Corp Multilayer foil bearing assembly
JP2012241775A (en) * 2011-05-18 2012-12-10 Ihi Corp Radial foil bearing
US9915286B2 (en) * 2014-02-18 2018-03-13 Ihi Corporation Radial foil bearing
CN110594290A (en) * 2019-08-30 2019-12-20 广州市昊志机电股份有限公司 Flat foil assembly, gas dynamic pressure bearing and high-speed motor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547121Y2 (en) * 1989-01-31 1993-12-10
JP5487766B2 (en) * 2009-07-09 2014-05-07 株式会社島津製作所 Dynamic pressure gas bearing

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237112A (en) * 1986-04-08 1987-10-17 Eagle Ind Co Ltd Bearing
JPH0220851B2 (en) * 1986-04-08 1990-05-10 Eagle Ind Co Ltd
FR2761428A1 (en) * 1997-03-28 1998-10-02 Mohawk Innovative Tech Inc Hydrodynamic journal bearing used e.g. for cryogenic turbo-rotors, or aircraft cabin pressurising units
WO2006014659A1 (en) * 2004-07-20 2006-02-09 Honeywell International Inc. Hydrodynamic journal foil bearing
US7553086B2 (en) 2004-07-20 2009-06-30 Honeywell International Inc. Hydrodynamic journal bearing
WO2006018915A1 (en) * 2004-08-17 2006-02-23 Kawasaki Jukogyo Kabushiki Kaisha Vibration damping mechanism for bearing
US7628542B2 (en) 2004-08-17 2009-12-08 Kawasaki Jukogyo Kabushiki Kaisha Bearing vibration damping mechanism
JP2009057992A (en) * 2007-08-30 2009-03-19 Ntn Corp Multilayer foil bearing assembly
JP2012241775A (en) * 2011-05-18 2012-12-10 Ihi Corp Radial foil bearing
US9915286B2 (en) * 2014-02-18 2018-03-13 Ihi Corporation Radial foil bearing
CN110594290A (en) * 2019-08-30 2019-12-20 广州市昊志机电股份有限公司 Flat foil assembly, gas dynamic pressure bearing and high-speed motor
CN110594290B (en) * 2019-08-30 2021-03-05 广州市昊志机电股份有限公司 Flat foil assembly, gas dynamic pressure bearing and high-speed motor

Also Published As

Publication number Publication date
JPS6331001B2 (en) 1988-06-22

Similar Documents

Publication Publication Date Title
US3467451A (en) Resiliently mounted bearing arrangements
EP2733371B1 (en) Rotor support structures including anisotropic foil bearings or anisotropic bearing housings and methods for controlling non-synchronous vibrations of rotating machinery using the same
US6135639A (en) Fixed arc squeeze film bearing damper
KR100963523B1 (en) Hybrid air foil journal bearings with external hydrostatic pressure supplies
US4415280A (en) Hydrodynamic fluid film bearing
US20070047858A1 (en) Foil journal bearing with bilinear stiffness spring
JP5276414B2 (en) Followable hybrid gas journal bearings using an integral wire mesh damper
JPH0112968B2 (en)
JPS60263723A (en) Compression film damper
WO1991009212A1 (en) Multi-film bearing damper
KR20150074036A (en) Fluid film hydrodynamic flexure pivot tilting pad semi-floating ring journal bearing with compliant dampers
US9797303B2 (en) Turbocharger with thrust bearing providing combined journal and thrust bearing functions
JPS60136615A (en) Fluid bearing construction
JPS6125930B2 (en)
CN102483091A (en) An axial gas thrust bearing for rotors in rotating machinery
JPS58160619A (en) Structure of gas bearing
KR100413060B1 (en) High load capacity smart foil journal bearing with semi-active dampers
JPS6132164Y2 (en)
JPS6239287B2 (en)
JPS6215540Y2 (en)
JPH0510529B2 (en)
JPS6174910A (en) Hydraulic bearing structure
JPH0128336Y2 (en)
JPS60172721A (en) Foil thrust bearing
JPS6262018A (en) Fluid bearing construction