JPS58160619A - Structure of gas bearing - Google Patents

Structure of gas bearing

Info

Publication number
JPS58160619A
JPS58160619A JP57040157A JP4015782A JPS58160619A JP S58160619 A JPS58160619 A JP S58160619A JP 57040157 A JP57040157 A JP 57040157A JP 4015782 A JP4015782 A JP 4015782A JP S58160619 A JPS58160619 A JP S58160619A
Authority
JP
Japan
Prior art keywords
foil
shaft
bearing
pieces
piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57040157A
Other languages
Japanese (ja)
Inventor
Takashi Sugita
杉田 孝志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP57040157A priority Critical patent/JPS58160619A/en
Publication of JPS58160619A publication Critical patent/JPS58160619A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/042Sliding-contact bearings for exclusively rotary movement for axial load only with flexible leaves to create hydrodynamic wedge, e.g. axial foil bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/024Sliding-contact bearings for exclusively rotary movement for radial load only with flexible leaves to create hydrodynamic wedge, e.g. radial foil bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/02Assembling sliding-contact bearings

Abstract

PURPOSE:To secure high speed stability of a bearing by engaging ridge engagement parts of a foil of almost cup-like section with engagement grooves on the inner periphery of a bearing case and having a foil piece to overlap an adjacent foil. CONSTITUTION:The plural number of engagement grooves 11 are formed at appropriate intervals along the peripheral direction on the inner peripheral surface of a bearing case 8. On the other hand, after forming ridge engagement part 13 in the central part of a foil 12, the foil 12 of almost cup-like section is formed with a spring-like and arc-shaped foil piece 15 arranged on its both sides. The engagement part 13 of the foil is engaged with engagement groove 11 of the bearing case 8 so that foil pieces 15a, 15b cover a shaft 9 along the peripheral direction. The foil pieces overlap each other in such a manner as a foil piece 15a on the rotating direction side of the shaft is closer to the shaft core than a foil piece 15b on the contrary side of the rotating direction of a neighboring foil.

Description

【発明の詳細な説明】 本発明は新規なガス軸受構造に係り、特にばね要素を重
合させることにより高速回転体を安定に支持することが
できる高性能のガス軸受構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel gas bearing structure, and more particularly to a high-performance gas bearing structure capable of stably supporting a high-speed rotating body by polymerizing spring elements.

一般に、オイルよりもガスの方が粘性が低いため、ガス
軸受構造はターボ圧縮機、ターボ膨張機、ターボチャー
ジャー等の高速ターボ機械あるいは冷凍機等に幅広く使
用されて利得が大きい。ガス軸受の性能を向上させるた
めには軸受と軸との隙間である軸受隙間を小さくすれば
良いことが知られているが、物理的に自ずと限界があっ
た。
Generally, gas has a lower viscosity than oil, so the gas bearing structure is widely used in high-speed turbo machines such as turbo compressors, turbo expanders, and turbo chargers, or refrigerators, and has a large gain. It is known that in order to improve the performance of gas bearings, it is sufficient to reduce the bearing gap, which is the gap between the bearing and the shaft, but there is a physical limit to this.

第1図が従来のフォイル軸受を例示する図である。第1
図のフォイル軸受は米国特許第3382014号に係り
、軸受ケース1の内周面に一端を係合し他端を軸2の一
部を囲繞すべく軸2の回転方向に延出したフォイル3を
複数個(図示の例では8個)設け、各フォイル3の先端
が隣接するフォイル3に接触Xするように構成したもの
である。しかして、フォイルとフォイルの接触点Xにお
けるクーロン摩擦により軸2の振動によるガス膜力の変
動を減衰させ、軸回転の安定を図っておりフォイル軸受
としては比較的優れた性能と実績を有している。
FIG. 1 is a diagram illustrating a conventional foil bearing. 1st
The foil bearing shown in the figure is disclosed in U.S. Pat. No. 3,382,014, and includes a foil 3 which has one end engaged with the inner peripheral surface of the bearing case 1 and whose other end extends in the direction of rotation of the shaft 2 so as to partially surround the shaft 2. A plurality of foils (eight in the illustrated example) are provided, and the tip of each foil 3 is configured to come into contact with the adjacent foil 3. Therefore, Coulomb friction at the contact point X between the foils damps the fluctuations in the gas film force caused by the vibration of the shaft 2, stabilizing the shaft rotation, and has a relatively excellent performance and track record as a foil bearing. ing.

しかしながら、次のような欠点がある。However, it has the following drawbacks.

(1)減衰要素がフォイルとフォイルの接触点における
クーロン摩擦が主体的であるために高速安定に欠ける。
(1) High-speed stability is lacking because the damping element is mainly caused by Coulomb friction at the contact point between the foils.

(2)上記接触点におけるフォイルの摩耗、損傷が生じ
易く、このため耐久性に問題がある。
(2) The foil at the contact point is likely to be worn and damaged, and therefore there is a problem in durability.

(3)  フォイルが軸を当初締着する状態を呈するだ
め起動トルクが大きい。
(3) The starting torque is large because the foil initially tightens the shaft.

そこで、本発明者は従来のガス軸受構造における間′照
点に鑑み、これを有効に解決すべく本発明を創案するに
至ったものである。
Therefore, in view of the shortcomings in the conventional gas bearing structure, the present inventor has devised the present invention in order to effectively solve this problem.

本発明の目的とするところは、軸回転の高速安定性を可
及的に向上せしめ、広範な環境温度にも耐え、部品点数
を減らし小型化でき、かつ量産性に富みコスト低減を図
れるとともに組立、分解を容易にすることができるガス
軸受構造を提供するにある。
The purpose of the present invention is to improve the high-speed stability of shaft rotation as much as possible, to withstand a wide range of environmental temperatures, to reduce the number of parts and reduce the size, and to facilitate mass production and reduce costs. , to provide a gas bearing structure that can be easily disassembled.

本発明は、かかる目的を達成すべく次のように□ 構成したものである。In order to achieve this object, the present invention is as follows. It is composed of

即ち、軸の荷重を支持するジャーナル又はスラスト軸受
の・軸受ケースの内周面、に、この内周面の周方向に沿
って適宜の間隔を隔てて複数の係合溝が形成されている
。一方、フォイルの中央幅方向全長に亘って湾曲させて
突条の係合部を形成し、この係合部の形成により保合部
を境に両側に二分割されて出来たフォイルの各々をばね
性の弧状フォイル片又は平板状フォイル片とする断面略
盃形のフォイルが形成されている。そしてこのフォイル
はその保合部を上記軸受ケースの内周面の各係合溝に係
合され、フォイル片が軸を周方向に沿って覆うように配
設されている。このように配設されたフォイルのフォイ
ル片は、軸の回転方向側のフォイル片が隣り合うフォイ
ルの反回転方向側のフォイル片よりも軸心側に来るよう
に互に重合され、この重合したフォイル片のばね作用並
びに互に離反するときに生じるスクイズ作用およびクー
ロン摩擦により径方向のガス膜力変動を吸収するように
なっている。また、重合した各コイル片同士及びフォイ
ル片と上記軸受ケース内周面との間には適宜の空隙が形
成されているのでダンピング効果がある。もってジャー
ナル又はスラスト軸の高速安定性を向上させるように構
成されている。
That is, a plurality of engagement grooves are formed at appropriate intervals along the circumferential direction of the inner circumferential surface of the journal or thrust bearing that supports the load of the shaft. On the other hand, the foil is curved over its entire length in the central width direction to form an engaging part of the protrusion, and by forming this engaging part, each of the foils, which are divided into two parts on both sides with the retaining part as a border, becomes a spring. A foil having a substantially cup-shaped cross section is formed as a circular arc-shaped foil piece or a flat foil piece. The retaining portion of the foil is engaged with each engagement groove on the inner circumferential surface of the bearing case, and the foil piece is disposed so as to cover the shaft along the circumferential direction. The foil pieces of the foils arranged in this way are overlapped with each other so that the foil pieces on the rotational side of the shaft are closer to the axis center than the foil pieces on the opposite rotational side of the adjacent foil, and Fluctuations in the gas film force in the radial direction are absorbed by the spring action of the foil pieces, as well as the squeezing action and Coulomb friction that occur when they separate from each other. Further, since appropriate gaps are formed between the overlapping coil pieces and between the foil pieces and the inner circumferential surface of the bearing case, there is a damping effect. This structure improves the high-speed stability of the journal or thrust shaft.

又、上記構成において、軸受ケースの内周面を円錐形と
するとともに、この円錐形に合わせるべくフォイルを上
記円錐面に沿って分割して円錐割形状とし、円錐形フォ
イルガス軸受を形成し、この円錐割形状をしたフォイル
片の剛性を、各部のガス膜圧力が大径側〜と小径側とは
異なるので、それに対応するように大径側から小径側に
向けて順次小さくすべく、フォイル片の厚さを変化させ
るか又はスリットを設け、径方向及び軸方向ρ荷重を共
に安定に支持し、もって円錐形軸受に支持される軸の高
速安定性を向上させるように構成されている。
Further, in the above configuration, the inner circumferential surface of the bearing case is formed into a conical shape, and the foil is divided along the conical surface to form a conical split shape to fit the conical shape, thereby forming a conical foil gas bearing. Since the gas film pressure at each part is different between the large-diameter side and the small-diameter side, the rigidity of this cone-shaped foil piece is made to gradually decrease from the large-diameter side to the small-diameter side. The thickness of the piece is varied or slits are provided to stably support both radial and axial ρ loads, thereby improving the high-speed stability of the shaft supported by the conical bearing.

以下、本発明に係るガス軸受構造の好適一実施例を添付
図面に従って説明する。
Hereinafter, a preferred embodiment of the gas bearing structure according to the present invention will be described with reference to the accompanying drawings.

第2図、第5図及び第6図は本発明のガスジャーナル軸
受における実施例であり、第3図及び第4図は第2図の
ガスジャーナル軸受の構成要素となるフォイルの斜視図
である。また、第7図及び第8図はスラスト軸受に適用
した実施例を示す図である。
2, 5, and 6 are examples of the gas journal bearing of the present invention, and FIGS. 3 and 4 are perspective views of foils that are constituent elements of the gas journal bearing in FIG. 2. . Moreover, FIGS. 7 and 8 are diagrams showing an embodiment applied to a thrust bearing.

第2図において、8は軸9の径方向の荷重を支持するジ
ャーナル軸受ケースであり、その軸受ケースの内周面1
0の周方向に沿って適宜の間隔を隔てて複数の係合溝1
1が軸方向に形成されている。ここでは、係合溝11は
ありみぞとして4個形成された場合を例示している。
In FIG. 2, reference numeral 8 denotes a journal bearing case that supports the load in the radial direction of the shaft 9, and the inner circumferential surface 1 of the bearing case
A plurality of engagement grooves 1 are arranged at appropriate intervals along the circumferential direction of the
1 is formed in the axial direction. Here, a case is illustrated in which four engaging grooves 11 are formed as dovetail grooves.

上記保合溝11に係合されるフォイル12は第3図及び
第4図に示すごとく、一枚の厚さが均一な長方形板ばね
をその#1ぼ中央幅方向に亘り湾曲させて保合溝11に
係合するように保合部13を形成し、この形成した係合
部13の両側に延びるフォイル片15a、15bを同一
の弧状面となして、断面略盃状に加工成形されたもので
ある。形状は対称ではなく一方のフォイル片15aが他
方15bよシも幾分長くなって、後述するフォイル片1
5同士の重合面積を大きくするようにしである。第4図
のフォイル12は一方のフォイル片15aの立上シ部に
傾斜辺16を設けて、剛性を弱め、ガス膜の形成を高め
るようになっている。
As shown in FIGS. 3 and 4, the foil 12 that is engaged with the retaining groove 11 is a rectangular plate spring with a uniform thickness that is curved across its center width direction. A retaining part 13 is formed so as to engage with the groove 11, and the foil pieces 15a and 15b extending on both sides of the formed engaging part 13 are made into the same arcuate surface, and are processed and formed into a substantially cup-shaped cross section. It is something. The shape is not symmetrical, and one foil piece 15a is somewhat longer than the other foil piece 15b, which will be described later.
This is to increase the area of polymerization between 5 molecules. The foil 12 shown in FIG. 4 has an inclined side 16 on the upright portion of one foil piece 15a to weaken the rigidity and enhance the formation of a gas film.

なお、フォイル12はばね鋼に耐摩耗表面処理、例えば
テフロンコーティングまたはセラミックをプラズマコー
ティングしたもの等を使用する。
The foil 12 is made of spring steel subjected to wear-resistant surface treatment, such as Teflon coating or ceramic plasma coating.

上述のように加工成形されたフォイル12は、第2図に
示すごとく、軸90回転方向ω側のフォイル片15aが
隣接するフォイル120反回転方向側のフォイル片15
bよシも軸心側へ来るように各フォイル片15は互に重
合されるようになっている。従って軸心側から回転方向
ωに沿ってフォイル片15を見ると、上記各フォイル片
15との重合による継ぎ目17は表面には現われず、す
べて裏面に隠されることとなる。また、図示のごとく長
い方のフォイル片15aを回転方向側に、短い方のフォ
イル片15bを反回転方向側に向けであるので、前述の
ように各フォイル片15を互に段違いに重合させること
により重合面積を大きくとれ、特にこの例示では短い方
のフォイル片15bのすべてが重合された恰好になって
いる。
As shown in FIG. 2, the foil 12 processed and formed as described above has the foil piece 15a on the side of the rotational direction ω of the shaft 90 adjacent to the foil piece 120 and the foil piece 15 on the opposite side of the rotational direction.
The foil pieces 15 are overlapped with each other so that the b-side also comes to the axial center side. Therefore, when the foil piece 15 is viewed from the axis side along the rotational direction ω, the seams 17 due to the overlap with each of the foil pieces 15 do not appear on the front surface, but are all hidden on the back surface. Further, as shown in the figure, since the longer foil piece 15a is oriented toward the rotation direction and the shorter foil piece 15b is oriented toward the counter-rotation direction, the foil pieces 15 can be overlapped at different levels as described above. This allows the polymerization area to be increased, and in particular, in this example, all of the shorter foil pieces 15b are polymerized.

ジャーナル軸受ケース8の内径は軸9径とフォイル12
板厚の四倍の和よりも若干大きくなるように加工されて
おり、このようなジャーナル軸受に軸9を挿入すること
にょシ、第2図に示すごと<、軸9t−yオイル片15
a1フォイル片15 aとフォイル片15b及びフォイ
ル片15bと軸受ケース内周面1oの三箇所は互に若干
の接触をしつつ空隙A、B、Cをそれぞれ有する構成と
なっている。
The inner diameter of the journal bearing case 8 is the diameter of the shaft 9 and the foil 12.
The shaft 9 is machined to be slightly larger than the sum of four times the plate thickness, and when inserting the shaft 9 into such a journal bearing, as shown in FIG.
The a1 foil piece 15a and the foil piece 15b and the foil piece 15b and the inner peripheral surface 1o of the bearing case are configured to slightly contact each other and have gaps A, B, and C, respectively.

第5図に示すジャーナル軸受は軸受ケース18の内周面
に円形の係合溝21を形成するとともに、この係合溝2
1に合致させるべくフォイル22の係合部23も円形に
湾曲形成したものである。また、第6図に示すジャーナ
ル軸受は、フォイル片25を図示するごとく、一方のフ
ォイル片25aはそのまま軸受ケース24の内周面に円
形の保合部26より延出されているが、他方のフォイル
片25bが一旦一方のフォイル片25aに沿っテ延出さ
れ、重合した後折り返され今度は逆方向に延出するとい
う、全く非対称に成形したものである。
The journal bearing shown in FIG. 5 has a circular engagement groove 21 formed on the inner circumferential surface of the bearing case 18.
1, the engaging portion 23 of the foil 22 is also formed into a circular curve. Further, in the journal bearing shown in FIG. 6, as shown in FIG. 6, one foil piece 25a extends from the circular retaining part 26 on the inner peripheral surface of the bearing case 24, while the other foil piece 25a The foil piece 25b is once extended along one foil piece 25a, overlapped, then folded back and then extended in the opposite direction, which is completely asymmetrically formed.

このような非対称に成形することにより、フォイル片2
5が軸27を均一な空隙Aを保持して囲繞する軸受面積
を増加し、かつ、フォイル片25同志の重合面積も大き
くして高性能化を図らんとしたものである。
By forming this asymmetrically, the foil piece 2
5 increases the bearing area surrounding the shaft 27 by maintaining a uniform gap A, and also increases the overlapping area of the foil pieces 25 to improve performance.

第7図及び第8図は本発明をスラストガス軸受に適用し
た実施例を示す図である。
FIG. 7 and FIG. 8 are diagrams showing an embodiment in which the present invention is applied to a thrust gas bearing.

図に示すごとく、スラスト軸受ケース28と軸に固着し
たカラー29との間にフォイル33が配置されている。
As shown, a foil 33 is disposed between the thrust bearing case 28 and a collar 29 fixed to the shaft.

この軸受ケース28の上面は山形状をなしその稜辺が径
方向に放射状に形成されている。隣り合う支持片3o同
十間の溝は保合溝31となるべくありみそとして形成さ
れ、この保合溝31に扇形状の平面フォイル片32を有
するフォイル33の係合部34を係合させ、隣接するフ
ォイル片32が支持片3o上で互に重合するように組み
立てられている。ジャーナル軸受との本質的な構造上の
相異点は、フォイル片32と支持片30との空隙CKあ
る。かがる空隙は、ジャーナル軸受では主として後述す
るスクイズ作用が目的であるのに対して、スラスト軸受
における上記空隙Cは支持片3oにより径方向の線状支
点となつており、上記フォイル片32の重合が弾性面テ
イルテイングパッド軸受としてのピボット的役割を主と
して受持ち、カラー29とフォイル片32との間の空隙
Aにおいて回転方向を向いたくさび状ガス膜の形成を促
進し軸の負荷容量増大の効果をもたらすように構成され
そいる・ 以上の構成よりなる本発明の作用について第2図を例に
とり述べる。
The upper surface of this bearing case 28 is mountain-shaped, and its edges are formed radially in the radial direction. The grooves between the adjacent support pieces 3o are formed as dovetail grooves 31, and the engagement portion 34 of the foil 33 having the fan-shaped planar foil piece 32 is engaged with the engagement groove 31. Adjacent foil pieces 32 are assembled so as to overlap each other on the support piece 3o. The essential structural difference from the journal bearing is the gap CK between the foil piece 32 and the support piece 30. In journal bearings, the purpose of the caving gap is mainly for the squeezing action described later, whereas in thrust bearings, the gap C serves as a linear fulcrum in the radial direction by the support piece 3o, and the foil piece 32 The polymerization mainly plays a pivot role as an elastic surface tailing pad bearing, promoting the formation of a wedge-shaped gas film oriented in the direction of rotation in the gap A between the collar 29 and the foil piece 32, increasing the load capacity of the shaft. DESCRIPTION OF THE PREFERRED EMBODIMENTS The operation of the present invention having the above structure will be described using FIG. 2 as an example.

同図において、軸9が矢印ω方向に回転することにより
気体の粘性に基づき保合部13内の空間35にある気体
が巻き込まれ軸9と7才イル片15aとの空隙Aにおい
て、気体の粘性に基づく作用により、圧力が発生する。
In the figure, when the shaft 9 rotates in the direction of the arrow ω, the gas in the space 35 in the retaining portion 13 is drawn in due to the viscosity of the gas, and the gas is trapped in the gap A between the shaft 9 and the 7-year-old coil piece 15a. Pressure is generated due to viscosity-based effects.

フォイル片15aはフォイル片15bと重合し工、バネ
機能を有するが、上記、空隙。Aの発生圧力と!I′J
シ合うべく径方向外方に変位し、空隙Ai/cガス膜を
形成するに至る。よって、フォイル片、7.5aと軸9
によって形成される空隙A部が当ガス軸受の潤滑気体膜
となり、軸に作用する径方向4力と釣り合うべき、気体
膜圧力が各々の空隙A部に生成されるものである。しか
して、ここで軸9に変動外力が作用した場合に本軸受の
特長が発揮されるものであり、フォイルの作用かばね要
素、クーロン摩擦のみに依る場合には上記変動外力を十
分に減衰し得す、高速安定性が余り良くない。
The foil piece 15a overlaps with the foil piece 15b and has a spring function, but there is no void as described above. The generated pressure of A! I'J
They are displaced radially outward to fit together, forming a gap Ai/c gas film. Thus, the foil piece 7.5a and the shaft 9
The air gap A formed by this becomes a lubricating gas film for the gas bearing, and gas film pressure is generated in each air gap A to balance the four radial forces acting on the shaft. However, when a fluctuating external force is applied to the shaft 9, the features of this bearing are exhibited, and if it relies only on the action of the foil, the spring element, or Coulomb friction, the fluctuating external force cannot be sufficiently damped. Yes, high speed stability is not very good.

そこで本発明では、上述したように軸9とフォイル片1
5.との空隙A、フォイル片15.とフォイル片15b
との空@B及びフォイル片15bと軸受ケース内周面1
0との空隙Cを形成することによシ、軸9が変動した場
合にこれらの空隙A。
Therefore, in the present invention, as described above, the shaft 9 and the foil piece 1
5. Air gap A with foil piece 15. and foil piece 15b
empty @B and foil piece 15b and bearing case inner peripheral surface 1
By forming gaps C with 0, these gaps A when the axis 9 is varied.

B、Cに存在するガスがスクイズ作用により空隙より押
し出され、この押し出された分だけ軸変動外力を吸収し
、変動を減衰するようにしたのである。従って第6図の
ジャーナル軸受のようにフォイル片25.とフォイル片
25bとの重合面積が大きければ大きい程、スクイズ作
用面積が大きくなり押し出されるガス量が多くなるので
より減衰効果を大ならしめることができる。これはまた
、空一層の数を多くすること、換言すればフォイル片同
士の重ね合せの数を多ぐすることによっても同じことが
いえるのである。
The gas present in B and C is pushed out from the gap by the squeezing action, and the external force due to shaft fluctuation is absorbed by the amount of gas pushed out, thereby attenuating the fluctuation. Therefore, as in the journal bearing shown in FIG. 6, the foil piece 25. The larger the overlapping area between the foil piece 25b and the foil piece 25b, the larger the squeezing action area and the larger the amount of gas to be pushed out, so that the damping effect can be increased. The same thing can also be said by increasing the number of empty layers, in other words, by increasing the number of overlapping foil pieces.

一方、カスが空隙A、B、Cよシ押し出されるというこ
とは、逆に空隙に存するガス膜圧が大きくなシ、変位す
る側と軸9の反対側の空隙のガス膜圧が小さくなるとい
うことであるから、変位側の空隙ガス膜圧により軸9を
反変位方向に押しゃシ軸変位舎是正する。この是正は、
ガス膜圧が空隙面積に比例して大きくなることから、フ
ォイル片15の重合面積が大きければ大きいほど有効に
行なわれることになる。
On the other hand, the fact that the debris is pushed out through the gaps A, B, and C means that the gas film pressure existing in the gaps becomes large, and the gas film pressure in the gaps on the opposite side of the axis 9 from the side of displacement becomes small. Therefore, the shaft 9 is pushed in the opposite direction by the gap gas film pressure on the displacement side to correct the displacement of the shaft shaft. This correction is
Since the gas film pressure increases in proportion to the void area, the larger the overlapping area of the foil pieces 15, the more effectively the overlapping process will be performed.

マタ、上記スクイズ作用の減衰性に加えて、フォイル片
のばね作用も径方向のカとじて独自に作用することによ
り減衰性を発揮し得、しかも、空隙B及びCにおいては
軸変動外力が加わったときこの力に約9合うべくフォイ
ル片15は更に外方へ変位しこれら空隙B、Cを挾める
のでスクイズ作用を一層助長する。そして、このフォイ
ル片15の変位時には、三箇所の空隙B、cが互に若干
の接触をしていることによりクーロン摩擦が発生し、こ
の発生したクーロン摩擦からも軸変動に減衰効果を付与
する。
In addition to the damping effect of the above-mentioned squeeze action, the spring action of the foil piece can also exert damping property by independently acting together with the force in the radial direction. At this time, the foil piece 15 is further displaced outward to match this force by approximately 9 degrees, and pinches the gaps B and C, thereby further promoting the squeezing action. When the foil piece 15 is displaced, Coulomb friction is generated due to slight contact between the three spaces B and c, and this generated Coulomb friction also has a damping effect on the shaft fluctuation. .

このように、軸9に変動外力が作用した場合には、空隙
A、B、Cに存在する気体のスクイズ作用による減衰性
と、フォイル片15a、15bによるクーロン摩擦減衰
並びにフォイル片15の重合げね性により安定した軸受
面ガス膜が形成され、振動減衰効果が発揮されるので、
軸−軸受系の高速安定化を達成することができるもので
ある。このような作用効果は、第7図及び第8図に示し
たスラスト軸受構造についても同様である。
In this way, when a fluctuating external force acts on the shaft 9, there is a damping effect due to the squeezing action of the gas existing in the gaps A, B, and C, Coulomb friction damping due to the foil pieces 15a and 15b, and polymerization of the foil pieces 15. Due to its elasticity, a stable gas film is formed on the bearing surface and a vibration damping effect is achieved.
This makes it possible to achieve high-speed stabilization of the shaft-bearing system. Such effects are the same for the thrust bearing structures shown in FIGS. 7 and 8.

第9図乃至第11図は本発明を円錐形ガス軸受に適用し
た実施例を示し、第12図乃至第15図はその構成要素
であるフォイルの各種実施例を示すものである。
9 to 11 show an embodiment in which the present invention is applied to a conical gas bearing, and FIGS. 12 to 15 show various embodiments of foils that are the constituent elements thereof.

第9図乃至第11図において、36は円錐形の内周面3
7を有する円錐形軸受ケースであり、円錐状に製作され
た軸38の径方向および軸方向の荷重を支持するように
構成されている。この円錐形軸受ケース36の内周面3
8には、この内周面の周方向に沿って適宜の間隔を隔て
て複数の円形の係合溝39が軸方向に形成されている。
In FIGS. 9 to 11, 36 is a conical inner peripheral surface 3.
7 and is configured to support the radial and axial loads of a conically constructed shaft 38. Inner peripheral surface 3 of this conical bearing case 36
8, a plurality of circular engagement grooves 39 are formed in the axial direction at appropriate intervals along the circumferential direction of the inner peripheral surface.

フォイル40は第13図に示すごとく、円錐形の軸38
に合わせるべく、円錐面を周方向に沿って軸方向に分割
した円錐割形状をしておシ、中実軸方向に湾曲形成した
係合部41を有し、この保合部41の両側をばね性の7
才イル片42としている。このフォイル40はその係合
部41を上記係合溝39に係合させフォイル片42が隣
接するフォイル片42と互に重合して軸38を周方向に
沿って覆うように組み立てられる。そして、フォイル片
42の重合順序は軸38の回転方向ω側のフォイル片4
2が常に軸心側になるように重ね合わされている。
The foil 40 is attached to a conical shaft 38 as shown in FIG.
In order to fit this, it has a conical split shape in which the conical surface is divided in the axial direction along the circumferential direction, and has an engaging part 41 that is curved in the direction of the solid axis. Springy 7
It has a total of 42 pieces. The foil 40 is assembled so that its engaging portion 41 is engaged with the engaging groove 39 and the foil pieces 42 overlap with adjacent foil pieces 42 to cover the shaft 38 along the circumferential direction. The overlapping order of the foil pieces 42 is as follows: the foil pieces 42 on the rotational direction ω side of the shaft 38
2 are always placed on top of each other so that they are always on the axis side.

上記構成による作用は既述のジャーナル軸受あるいはス
ラスト軸受と同様に空隙A、B、Cに存在する気体のス
クイズ作用による減衰性と、フォイル片42によるクー
ロ/摩擦減衰、並びにフォイル片42の重ね合せばね!
により安定した軸受面ガス膜が空隙A部に形成され、振
動減衰効果を発揮し軸3日と軸受系の高速安定化を達成
できるものである。
The effects of the above structure include the damping effect due to the squeezing action of the gas existing in the gaps A, B, and C, as well as the couloid/friction damping provided by the foil pieces 42, as well as the overlapping of the foil pieces 42, similar to the journal bearings or thrust bearings described above. Spring!
As a result, a stable gas film on the bearing surface is formed in the gap A, exhibiting a vibration damping effect, and achieving high-speed stabilization of the bearing system within 3 days.

しかしながら、上述の機能を十分に発揮させるためには
軸38とフォイル片42との空隙Aである軸受部に発生
するガス膜圧力に対応して適切なフォイル40ないしフ
ォイル片42の剛性を選択することが重要である。周知
のようにガス膜において発生する圧力の大きさは相対速
度(周速)に比例的な関係があり、本軸受のごとく円錐
面状の軸受では円錐軸38の大径R+側と小径R2側と
では、同一回転数で回転しても発生するガス膜圧力に差
異を生じることになる。すなわち、小径R2側は大径R
I側よりもガス膜圧力が小さくなるのである。従って、
これに対応してフォイル剛性の大きさを適切に選ぶ必要
がある。これより、第12図に示すような板厚一様の板
ばね−を単に円錐割形状に形成したフォイル40では、
小径側フォイル片42の剛性が大径側のそれよりもむし
ろ大きくなってしまう欠点が生じてしまうことになる。
However, in order to fully demonstrate the above-mentioned function, an appropriate rigidity of the foil 40 or foil piece 42 must be selected in accordance with the gas film pressure generated in the bearing portion, which is the gap A between the shaft 38 and the foil piece 42. This is very important. As is well known, the magnitude of the pressure generated in the gas film is proportional to the relative speed (circumferential speed), and in a conical bearing like this bearing, the large diameter R+ side and the small diameter R2 side of the conical shaft 38 Therefore, even when rotating at the same rotation speed, there will be a difference in the gas film pressure generated. In other words, the small diameter R2 side is the large diameter R2 side.
The gas film pressure is smaller than that on the I side. Therefore,
Corresponding to this, it is necessary to appropriately select the foil stiffness. From this, in the foil 40 shown in FIG. 12, which is a plate spring with uniform plate thickness simply formed into a conical split shape,
This results in a drawback that the rigidity of the foil piece 42 on the small diameter side is rather greater than that on the large diameter side.

そこで、この欠点を回避するフォイルとして   !第
13図乃至第15図に三つの実施例を示している。
So, as a foil to avoid this drawback! Three embodiments are shown in FIGS. 13 to 15.

第13図に示すフォイル43は、軸方向に沿ってフォイ
ル43又はフォイル片44の板厚を、大径側のフォイル
厚みtlよシも小径側のフォイル厚みt2が連続的に小
さくなるように変化させたものであり、これによりフォ
イル剛性をガス膜圧力と対応させるようにしである。
The foil 43 shown in FIG. 13 changes the thickness of the foil 43 or foil piece 44 along the axial direction so that the foil thickness tl on the large diameter side and the foil thickness t2 on the small diameter side continuously decrease. This allows the foil stiffness to correspond to the gas film pressure.

第14図に示す二番目の実施例は、フォイル片45の一
部に軸心と直角方向に適宜な長さの切欠き状のスリット
46を複数本設けた構造である。
The second embodiment shown in FIG. 14 has a structure in which a plurality of cut-out slits 46 of appropriate length are provided in a part of the foil piece 45 in a direction perpendicular to the axis.

このスリット46を設けたフォイル片45は、隣接した
フォイル47のフォイル片45と互に重合されるとき軸
心寄りとなる側のフォイル片45゜ではなく、これをバ
ックアップするこれとは反対側のフォイル片45bの小
径側に主として設けるものであり、複数のスリット46
長は小径側に行くに従って長くしである。しかして、組
み立てられたフォイル軸受の小径側フォイル剛性の過大
化を回避させている。
The foil piece 45 provided with this slit 46 is not the foil piece 45° on the side that is closer to the axis when overlapped with the foil piece 45 of the adjacent foil 47, but the foil piece 45 on the opposite side that backs up this. It is mainly provided on the small diameter side of the foil piece 45b, and a plurality of slits 46
The length increases toward the small diameter side. In this way, the stiffness of the foils on the small diameter side of the assembled foil bearing is prevented from becoming excessively large.

第15図に示す第三の実施例は、第14図の実施例に加
えて軸心寄りとなる側のフォイル片45aにも同様の切
欠き状のスリット4Bを設けた構造で、このスリット4
8によりフォイル片45、を部分的に複数個(図の場合
は五個)に分割させ、円錐径に応じて適宜なフォイル剛
性が得られるようになっている。また、図は省略するが
、第14図の場合とは逆に、軸心寄りとなる反対側のフ
ォイル片45.に第15図に示したスリット48を設け
る場合にも同様の効果が期待できる。
The third embodiment shown in FIG. 15 has a structure in which, in addition to the embodiment shown in FIG.
8, the foil piece 45 is partially divided into a plurality of pieces (five pieces in the case of the figure), so that appropriate foil rigidity can be obtained depending on the cone diameter. Although not shown, contrary to the case shown in FIG. 14, the foil piece 45 on the opposite side is closer to the axis. A similar effect can be expected when the slit 48 shown in FIG. 15 is provided.

さらに、上記各実施例とは異なり一枚のフォイルではな
く、フォイルの厚みが異なる複数個の径を変えた短い長
さの分割フォイルを製作し、これら分割フォイルを順次
係合溝に係合して組み込むことにより第15図の構造と
均等な機能を持たせることもできる。
Furthermore, unlike the above embodiments, instead of using a single foil, a plurality of short length divided foils with different thicknesses and different diameters are manufactured, and these divided foils are sequentially engaged with the engagement grooves. It is also possible to provide the same function as the structure shown in FIG. 15 by incorporating the same.

以上述べたように本発明によれば次のような優れた効果
を発揮する。
As described above, the present invention exhibits the following excellent effects.

(1)重合した各フォイル片と軸受面との間に適宜の空
隙を形成したことにより、二重乃至三重のスクイズ減衰
作用がありジャーナル軸受又はスラスト軸の軸−軸受系
の高速安定化を図ることができ、また起動トルクを小さ
くすることができる。
(1) By forming an appropriate gap between each overlapped foil piece and the bearing surface, there is a double or triple squeeze damping effect, and the shaft-bearing system of the journal bearing or thrust shaft is stabilized at high speed. It is also possible to reduce the starting torque.

(2)隣接するフォイル片を互に重合させることによシ
、二重げね作用が働らきフォイル片の変形を均等化でき
、軸受面ガス膜の安定化が図れ負荷能力を高めることが
できる。また、二次的作用になるがフォイル片の接触に
よりクーロン摩擦減衰も付加され、軸変動の一層の安定
化を達成することができる。
(2) By polymerizing adjacent foil pieces, a double spring action is activated, which equalizes the deformation of the foil pieces, stabilizes the gas film on the bearing surface, and increases load capacity. . In addition, Coulomb friction damping is also added due to the contact of the foil pieces, which is a secondary effect, and further stabilization of shaft fluctuations can be achieved.

(3)  フォイル片は弾性の軸受面を形成するので、
剛体テイルテイングパッドに比し、異物の侵入に対して
の損傷が少ない。
(3) Since the foil piece forms an elastic bearing surface,
Less damage from intrusion of foreign objects than rigid tailing pads.

(4)軸受面が弾性を有するので軸変動に対する減衰作
用が、温度の変化による軸及び軸受の収縮あるいは膨張
による寸法変化に対しても影響が少なく、適用温度範囲
が広い。
(4) Since the bearing surface has elasticity, the damping effect against shaft fluctuations has little effect on dimensional changes due to contraction or expansion of the shaft and bearing due to temperature changes, and the applicable temperature range is wide.

(5)係合溝に係合部を係合させるだけで軸受面にフォ
イルを組み込むことができるので組立が容易である。。
(5) Assembly is easy because the foil can be incorporated into the bearing surface simply by engaging the engaging portion with the engaging groove. .

(6)軸受ケースの内周面を円錐形にするとともに、フ
ォイルを円錐割形状としたことにより、ジャーナル、ス
ラスト両軸受の機能を単一の軸受で有する円錐形軸受の
軸−軸受系の高速安定化を図ることができる。
(6) By making the inner circumferential surface of the bearing case conical and the foil having a conical split shape, a single bearing functions as both a journal and a thrust bearing, resulting in a high-speed shaft-bearing system. Stabilization can be achieved.

(7)  また、単一の軸受で両機能を有することによ
り構成部品点数及びメカニカルロスが少なく、軸の剛性
も大きくすることができ危険速度を上げることができる
(7) In addition, by having both functions with a single bearing, the number of component parts and mechanical loss are reduced, and the rigidity of the shaft can be increased, making it possible to increase the critical speed.

(8)  円錐割形状をしたフォイル片の剛性を大径側
より小径側に向けて順次小としたことにより、フォイル
片の変形を均等化でき円錐軸受面ガス膜を安定化し、負
荷能力を高め高性能化を達成することができる。
(8) By decreasing the rigidity of the cone-shaped foil piece from the large diameter side to the small diameter side, the deformation of the foil piece can be equalized, the gas film on the conical bearing surface can be stabilized, and the load capacity can be increased. High performance can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のガス軸受構造を示す横断面図、第2図は
本発明のガス軸受構造の適用例を示すジャーナルガス軸
受構造の横断面図、第3図及び第4図は第2図のジャー
ナルガス軸受構造の要素となるフォイルの斜視図、第5
図及び第6図はジャーナルガス軸受構造の変形例を示す
横断面図、第7図は本発明のガス軸受構造の他の適用例
を示すスラスト軸受の斜視図、第8図はカラー軸を追加
した第7図の展開側面図、第9図乃至第11図は本発明
のガス軸受構造の別な適用例を示す円錐形ガス軸受構造
であり、平面図、第9図のXI−)i線断面図及び底面
図、第12図は同円錐形ガス軸受構造の要素となるフォ
イル原型の斜視図、第13図乃至第15図は具体的なフ
ォイル態様を示す斜視図である。 なお、図中8はジャーナル軸受ケース、9は軸、10は
軸受ケース内周面、11は係合溝、12はフォイル、1
3は係合部、15a、15bはフォイル片、18はジャ
ーナル軸受ケース、19は軸受ケース内周面、21は係
合溝、22はフォイル、23は係合部、24はジャーナ
ル軸受ケース、25a、25bはフォイル片、26は係
合溝、27は軸、28はスラスト軸受ケース、29はカ
ラー、31は係合溝、32はフォイル片、33はフォイ
ル、34は係合部1,36は円錐形軸受ケース、37は
軸受ケース内周面、38は円錐状の軸、39は係合溝、
40はフォイル、41は係合部、42はフォイル片、4
3はフォイル、44はフォイル片、45a、45bはフ
ォイル片、46は切欠キ状のスリット、47はフォイル
、4Bは切欠き状のスリット、A、B及びCは空隙、ω
は回転方向である。 特許 出願人 石川島播磨重工業株式会社代理人弁理士
  絹 谷 信 雄 第5図 第6図 第7図 第8図
FIG. 1 is a cross-sectional view showing a conventional gas bearing structure, FIG. 2 is a cross-sectional view of a journal gas bearing structure showing an application example of the gas bearing structure of the present invention, and FIGS. 3 and 4 are FIG. Perspective view of the foil that is an element of the journal gas bearing structure of
6 and 6 are cross-sectional views showing modified examples of the journal gas bearing structure, FIG. 7 is a perspective view of a thrust bearing showing another application example of the gas bearing structure of the present invention, and FIG. 8 is a collar shaft added. The developed side view of FIG. 7 and FIGS. 9 to 11 show a conical gas bearing structure showing another application example of the gas bearing structure of the present invention. A sectional view and a bottom view, FIG. 12 is a perspective view of a foil prototype that is an element of the conical gas bearing structure, and FIGS. 13 to 15 are perspective views showing specific foil forms. In the figure, 8 is a journal bearing case, 9 is a shaft, 10 is an inner peripheral surface of the bearing case, 11 is an engagement groove, 12 is a foil, 1
3 is an engaging portion, 15a, 15b are foil pieces, 18 is a journal bearing case, 19 is an inner peripheral surface of the bearing case, 21 is an engaging groove, 22 is a foil, 23 is an engaging portion, 24 is a journal bearing case, 25a , 25b is a foil piece, 26 is an engagement groove, 27 is a shaft, 28 is a thrust bearing case, 29 is a collar, 31 is an engagement groove, 32 is a foil piece, 33 is a foil, 34 is an engagement part 1, and 36 is a A conical bearing case, 37 is an inner peripheral surface of the bearing case, 38 is a conical shaft, 39 is an engagement groove,
40 is a foil, 41 is an engaging portion, 42 is a foil piece, 4
3 is a foil, 44 is a foil piece, 45a and 45b are foil pieces, 46 is a notch-shaped slit, 47 is a foil, 4B is a notch-shaped slit, A, B and C are voids, ω
is the direction of rotation. Patent Applicant Ishikawajima Harima Heavy Industries Co., Ltd. Representative Patent Attorney Nobuo Kinutani Figure 5 Figure 6 Figure 7 Figure 8

Claims (2)

【特許請求の範囲】[Claims] (1)軸の荷重を支持する軸受ケースの内周面に、この
内周面の周方向に沿って適宜の間隔を隔てて複数の保合
溝を形成し、両側にフォイル片を形成したフォイルの中
央に係合部を設け、この係合部を上記保合溝に係合させ
上記フォイル片が軸を周方向に沿って覆うように配設し
、上記軸の回転方向側のフォイル片が隣接するフォイル
の反回転方向側のフォイル片よりも軸心寄りとなるよう
にフォイル片を互に重合させ、この重合した各フォイル
片と上記軸受ケースの内周面との間に適宜の空隙を形成
して、軸の高速安定を図るようにしたことを特徴とする
ガス軸受構造。
(1) Foil in which multiple retaining grooves are formed at appropriate intervals along the circumferential direction of the inner peripheral surface of the bearing case that supports the load of the shaft, and foil pieces are formed on both sides. An engaging portion is provided in the center of the shaft, and the engaging portion is engaged with the retaining groove so that the foil piece covers the shaft along the circumferential direction, and the foil piece on the rotational direction side of the shaft is arranged such that the foil piece covers the shaft along the circumferential direction. The foil pieces are overlapped with each other so that they are closer to the axis than the foil pieces on the opposite side of the rotation direction of the adjacent foils, and an appropriate gap is created between each of the overlapped foil pieces and the inner peripheral surface of the bearing case. A gas bearing structure characterized in that the shaft is formed to stabilize the shaft at high speed.
(2)軸の荷重を支持する軸受ケースの内周面に、この
内周面の周方向に沿って適宜の間隔を隔てて複数の係合
溝を形成し、両側にフォイル片を形成したフォイルの中
央に保合部を設け、この番台部を上記保合溝に係合させ
フォイル片が軸を周方向に沿って覆うように配設し、上
記軸の回転方向側のフォイル片が隣接するフォイルの反
回転方向側のフォイル片よりも軸心寄りとなるようにフ
ォイル片を互に重合させ、この重合した各フォイル片と
上記軸受ケースの内周面との間に適宜の空隙を形成した
ガス軸受構造において、上記軸受ケースの内周面を円錐
形とするとともに、この円錐形の軸受ケースの内周面に
合わせるべく上記フォイルを円錐面を周方向に沿って分
割した円錐割形状とし、この円錐割形状をしたフォイル
片の剛性を大径側より小径側に向けて順次小としたこと
を特徴とするガス軸゛受構造。
(2) Foil in which multiple engagement grooves are formed at appropriate intervals along the circumferential direction of the inner circumferential surface of the bearing case that supports the load of the shaft, and foil pieces are formed on both sides. A retaining part is provided in the center of the shaft, and this guide part is engaged with the retaining groove, and the foil pieces are arranged so as to cover the shaft along the circumferential direction, and the foil pieces on the rotational direction side of the shaft are adjacent to each other. The foil pieces were overlapped with each other so that they were closer to the axis than the foil pieces on the opposite side of the rotation direction, and an appropriate gap was formed between each of the overlapped foil pieces and the inner peripheral surface of the bearing case. In the gas bearing structure, the inner circumferential surface of the bearing case is formed into a conical shape, and the foil is formed into a conical split shape in which the conical surface is divided along the circumferential direction in order to match the inner circumferential surface of the conical bearing case; A gas shaft bearing structure characterized in that the rigidity of the conically split foil piece is gradually decreased from the large diameter side to the small diameter side.
JP57040157A 1982-03-16 1982-03-16 Structure of gas bearing Pending JPS58160619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57040157A JPS58160619A (en) 1982-03-16 1982-03-16 Structure of gas bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57040157A JPS58160619A (en) 1982-03-16 1982-03-16 Structure of gas bearing

Publications (1)

Publication Number Publication Date
JPS58160619A true JPS58160619A (en) 1983-09-24

Family

ID=12572926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57040157A Pending JPS58160619A (en) 1982-03-16 1982-03-16 Structure of gas bearing

Country Status (1)

Country Link
JP (1) JPS58160619A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231012A (en) * 1984-04-30 1985-11-16 Shimadzu Corp Foil bearing
JPS61103010A (en) * 1984-10-24 1986-05-21 Nippon Seiko Kk Wheel bearing and manufacture thereof
FR2587068A1 (en) * 1985-09-04 1987-03-13 United Technologies Corp HYDRODYNAMIC FLUID FILM BEARING
WO1997000385A1 (en) * 1995-06-15 1997-01-03 R & D Dynamics Corporation Hydrodynamic fluid film bearing
KR20010001167A (en) * 1999-06-02 2001-01-05 구자홍 Bearing for turbo compressor
EP1566556A2 (en) * 2004-02-19 2005-08-24 R & D Dynamics Corporation Hydrodynamic fluid film bearing having a key-less foil
JP2007531847A (en) * 2004-03-18 2007-11-08 プラクスエア・テクノロジー・インコーポレイテッド Free piston with time-varying non-contact seal
JP2008125826A (en) * 2006-11-21 2008-06-05 Japana Co Ltd Angle adjuster for golf club shaft
WO2008148800A1 (en) * 2007-06-04 2008-12-11 Leuven Air Bearings N.V. Conical fluid bearings
JP2011169413A (en) * 2010-02-19 2011-09-01 Honda Motor Co Ltd Dynamic pressure gas journal bearing
US8029194B2 (en) 2007-06-18 2011-10-04 R&D Dynamics Corporation Restrained, reverse multi-pad bearing assembly
KR101070887B1 (en) * 2004-03-31 2011-10-06 삼성테크윈 주식회사 Air foil bearing
JP2013047555A (en) * 2011-08-29 2013-03-07 Ntn Corp Foil bearing
JP2016048074A (en) * 2014-08-27 2016-04-07 Ntn株式会社 Foil bearing and foil provided thereto
US9915286B2 (en) * 2014-02-18 2018-03-13 Ihi Corporation Radial foil bearing
KR101968658B1 (en) * 2018-11-23 2019-04-12 (주) 터보맥스 Bi-directional foil bearing
WO2020137513A1 (en) * 2018-12-25 2020-07-02 株式会社Ihi Thrust foil bearing and method for manufacturing base plate of thrust foil bearing
WO2020192880A1 (en) * 2019-03-22 2020-10-01 Bladon Jets Holdings Limited Compliant foil radial bearing
WO2022107534A1 (en) * 2020-11-17 2022-05-27 株式会社Ihi Thrust air bearing
CN114992232A (en) * 2022-04-12 2022-09-02 中船重工(重庆)西南装备研究院有限公司 Thrust foil gas bearing and assembling method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143356A (en) * 1976-05-24 1977-11-29 Garrett Corp Foll bearing and method of same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143356A (en) * 1976-05-24 1977-11-29 Garrett Corp Foll bearing and method of same

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231012A (en) * 1984-04-30 1985-11-16 Shimadzu Corp Foil bearing
JPH0668286B2 (en) * 1984-04-30 1994-08-31 株式会社島津製作所 Oil bearing
JPS61103010A (en) * 1984-10-24 1986-05-21 Nippon Seiko Kk Wheel bearing and manufacture thereof
FR2587068A1 (en) * 1985-09-04 1987-03-13 United Technologies Corp HYDRODYNAMIC FLUID FILM BEARING
WO1997000385A1 (en) * 1995-06-15 1997-01-03 R & D Dynamics Corporation Hydrodynamic fluid film bearing
US5634723A (en) * 1995-06-15 1997-06-03 R & D Dynamics Corporation Hydrodynamic fluid film bearing
KR20010001167A (en) * 1999-06-02 2001-01-05 구자홍 Bearing for turbo compressor
EP1566556A2 (en) * 2004-02-19 2005-08-24 R & D Dynamics Corporation Hydrodynamic fluid film bearing having a key-less foil
EP1566556A3 (en) * 2004-02-19 2006-03-01 R & D Dynamics Corporation Hydrodynamic fluid film bearing having a key-less foil
US7070330B2 (en) 2004-02-19 2006-07-04 R & D Dynamics Corporation Hydrodynamic fluid film bearing having a key-less foil
JP2007531847A (en) * 2004-03-18 2007-11-08 プラクスエア・テクノロジー・インコーポレイテッド Free piston with time-varying non-contact seal
KR101070887B1 (en) * 2004-03-31 2011-10-06 삼성테크윈 주식회사 Air foil bearing
JP2008125826A (en) * 2006-11-21 2008-06-05 Japana Co Ltd Angle adjuster for golf club shaft
WO2008148800A1 (en) * 2007-06-04 2008-12-11 Leuven Air Bearings N.V. Conical fluid bearings
US8029194B2 (en) 2007-06-18 2011-10-04 R&D Dynamics Corporation Restrained, reverse multi-pad bearing assembly
JP2011169413A (en) * 2010-02-19 2011-09-01 Honda Motor Co Ltd Dynamic pressure gas journal bearing
JP2013047555A (en) * 2011-08-29 2013-03-07 Ntn Corp Foil bearing
US9915286B2 (en) * 2014-02-18 2018-03-13 Ihi Corporation Radial foil bearing
JP2016048074A (en) * 2014-08-27 2016-04-07 Ntn株式会社 Foil bearing and foil provided thereto
KR101968658B1 (en) * 2018-11-23 2019-04-12 (주) 터보맥스 Bi-directional foil bearing
WO2020137513A1 (en) * 2018-12-25 2020-07-02 株式会社Ihi Thrust foil bearing and method for manufacturing base plate of thrust foil bearing
US11867226B2 (en) 2018-12-25 2024-01-09 Ihi Corporation Thrust foil bearing and method for manufacturing base plate of thrust foil bearing
WO2020192880A1 (en) * 2019-03-22 2020-10-01 Bladon Jets Holdings Limited Compliant foil radial bearing
JP2022534129A (en) * 2019-03-22 2022-07-27 ブラドン ジェッツ ホールディングス リミテッド Flexible foil radial bearing
US11808299B2 (en) 2019-03-22 2023-11-07 Bladon Jets Holdings Limited Compliant foil radial bearing
WO2022107534A1 (en) * 2020-11-17 2022-05-27 株式会社Ihi Thrust air bearing
CN114992232A (en) * 2022-04-12 2022-09-02 中船重工(重庆)西南装备研究院有限公司 Thrust foil gas bearing and assembling method thereof

Similar Documents

Publication Publication Date Title
JPS58160619A (en) Structure of gas bearing
KR100365806B1 (en) Gas dynamic foil bearing
US5961217A (en) High load capacity compliant foil hydrodynamic thrust bearing
US6964522B2 (en) Hydrodynamic journal foil bearing system
US20010028752A1 (en) Fluid bearing having a foil assembly
JP4502548B2 (en) Foil type hydrodynamic bearing
US4133585A (en) Resilient foil journal bearing
US4549821A (en) Foil bearing
KR102456838B1 (en) Air foil journal bearing
CN105874229B (en) Thrust bearing
JPS5899515A (en) Hydrodynamic fluid film type bearing
EP1208308A1 (en) Foil thrust bearing
JPS59197614A (en) Bearing construction
JPH0342255Y2 (en)
JPS6215540Y2 (en)
JPS6132164Y2 (en)
JPS6331001B2 (en)
KR101070887B1 (en) Air foil bearing
JPH0147649B2 (en)
KR20220034647A (en) Air foil thrust bearing
JPH0211615Y2 (en)
JPH0520606B2 (en)
JPS6165908A (en) Dynamic pressure type thrust bearing
JPH0211613Y2 (en)
JP2553853Y2 (en) Thrust bearing device