JPH0510529B2 - - Google Patents

Info

Publication number
JPH0510529B2
JPH0510529B2 JP59206275A JP20627584A JPH0510529B2 JP H0510529 B2 JPH0510529 B2 JP H0510529B2 JP 59206275 A JP59206275 A JP 59206275A JP 20627584 A JP20627584 A JP 20627584A JP H0510529 B2 JPH0510529 B2 JP H0510529B2
Authority
JP
Japan
Prior art keywords
oil
bearing
seal
shaft
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59206275A
Other languages
Japanese (ja)
Other versions
JPS6184415A (en
Inventor
Takashi Sugita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP59206275A priority Critical patent/JPS6184415A/en
Publication of JPS6184415A publication Critical patent/JPS6184415A/en
Publication of JPH0510529B2 publication Critical patent/JPH0510529B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/024Sliding-contact bearings for exclusively rotary movement for radial load only with flexible leaves to create hydrodynamic wedge, e.g. radial foil bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Sealing Of Bearings (AREA)
  • Support Of The Bearing (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は軸シールを有する弾性フオイル軸受構
造に係り、特に一枚のフオイル素材の表・裏に加
工を施して軸受と軸シールとを一体化させて軸受
構造の簡素化をはかつたものに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an elastic foil bearing structure having a shaft seal, and in particular, a structure in which the bearing and shaft seal are integrated by processing the front and back sides of a single foil material. This invention relates to a bearing structure that is simplified by simplifying the bearing structure.

[従来の技術] 従来、回転軸を支承する機能を有する動圧型流
体軸受と回転軸を非接触で密封する機能を有する
動圧型軸シールとはその機能・構造が異なるとこ
ろから別体構造であり、一体化したものは未だ存
在していない。まして先に本発明者が新規に発明
したフオイル軸受構造にあつてはなおさらであ
る。
[Prior Art] Conventionally, a hydrodynamic fluid bearing that has the function of supporting a rotating shaft and a hydrodynamic shaft seal that has the function of sealing the rotating shaft without contact have been constructed separately because their functions and structures are different. , nothing that has been unified yet exists. This is especially true for the foil bearing structure newly invented by the present inventor.

[発明が解決しようとする問題点] 従来は軸受と軸シールとが別体であつたので、
回転軸の軸方向長さが長くなつて軽量化が阻害さ
れると共に回転軸の剛性の低下をもたらし、十分
な高速化・高性能化を得ることができなかつた。
[Problems to be solved by the invention] Conventionally, the bearing and the shaft seal were separate parts.
The length of the rotating shaft in the axial direction becomes long, which hinders weight reduction and also causes a decrease in the rigidity of the rotating shaft, making it impossible to obtain sufficient speed and performance.

[発明の目的] 本発明は軸受と軸シールとを一体化して小型軽
量化をはかると共に回転軸の剛性を上げてより大
きな高速化・高性能化が達成できる軸シール付フ
オイル軸受構造を得ようとするものである。
[Purpose of the invention] The present invention aims to provide a foil bearing structure with a shaft seal that can achieve greater speed and performance by integrating a bearing and a shaft seal to reduce size and weight, and increase the rigidity of the rotating shaft. That is.

[発明の概要] 上記目的に沿う本発明の構成は、一枚の弾性フ
オイル素材の幅方向に軸受部と軸シール部とを隣
接して一体に設けるべく、長さ方向に軸受部及び
シール部の要素たるベアリングフオイル又はシー
ルフオイル部、ダンプフオイル部、スプリングフ
オイル部を順にそれぞれ並列且つ連続して設けて
軸シール付弾性フオイル体を形成し、この軸シー
ル付弾性フオイル体を回転軸とケースの支承面と
のすき間に上記順序で巻回し、3層に積層して構
成したものである。これにより、軸受部は流体膜
圧力を発生して軸荷重を支承する一方、軸シール
部は弾性的に変位して軸を密封できるようにし、
高温(低温)、高速で安定した軸機能、軸シール
機能を発揮し得るようにしたものである。
[Summary of the Invention] The structure of the present invention in accordance with the above object is such that the bearing part and the shaft seal part are integrally provided adjacent to each other in the width direction of a single piece of elastic foil material. A bearing oil or seal oil part, a dump oil part, and a spring oil part, which are the elements of the shaft seal, are provided in parallel and in succession in order to form an elastic foil body with a shaft seal, and this elastic foil body with a shaft seal is connected to the rotating shaft. It is constructed by winding it in the above order in the gap between it and the supporting surface of the case, and stacking it in three layers. As a result, the bearing section generates fluid film pressure to support the shaft load, while the shaft seal section elastically displaces to seal the shaft.
It is designed to exhibit stable shaft function and shaft sealing function at high temperatures (low temperatures) and high speeds.

[実施例] 本発明の実施例を第1図〜第4図に基づいて説
明すれば以下の通りである。
[Example] An example of the present invention will be described below based on FIGS. 1 to 4.

第2図イ,ニに示す如く、一枚の可撓性を有す
る弾性フオイル素材の幅方向は軸受部aと軸シー
ル部bとに分かれている。長さ方向は、軸受部a
にあつてはロ矢視断面図である同図ロに示す如く
右から順にベアリングフオイル部Ba、ダンプフ
オイル部Da、スプリングフオイル部Saが又軸シ
ール部bにあつてはハ矢視断面図である同図ハに
示す如く、シールフオイル部Lb、ダンプフオイ
ル部Db、スプリングフオイル部Sbが連続形成し
てある。すなわち、一枚のフオイル素材からこれ
の表面および裏面に加工を施して軸受部aと軸シ
ール部bとを並列に一体成形した弾性フオイル体
1を得ている。この弾性フオイル体1の各部の長
さは後述のケース支承面を一周する円筒の周長に
相当し、幅長さは軸支承と軸シールをするに必要
な長さとしている。又、軸受部aと軸シール部b
とに分けた幅方向の中間部に、長さ方向に適宜の
間隔を開けて複数の通気孔2,2…を穿設し、軸
受部aの両端圧力(幅方向圧力)を均等化させ
る。
As shown in FIGS. 2A and 2D, a sheet of flexible elastic foil material is divided into a bearing part a and a shaft seal part b in the width direction. In the length direction, bearing part a
In the case of the shaft seal part b, it is a sectional view taken in the direction of arrow B.As shown in FIG. As shown in Figure C, a seal oil portion Lb, a damp oil portion Db, and a spring oil portion Sb are continuously formed. That is, by processing the front and back surfaces of a single sheet of foil material, an elastic foil body 1 is obtained in which a bearing portion a and a shaft seal portion b are integrally molded in parallel. The length of each part of this elastic foil body 1 corresponds to the circumferential length of a cylinder that goes around the case supporting surface, which will be described later, and the width is set to be the length necessary for shaft support and shaft sealing. Also, the bearing part a and the shaft seal part b
A plurality of ventilation holes 2, 2, . . . are bored at appropriate intervals in the length direction in the middle part in the width direction, which is divided into two parts, to equalize the pressure at both ends (width direction pressure) of the bearing part a.

幅方向に分けたうちの軸受部aのベアリングフ
オイル部Baは第2図イで示す外表面と同様に同
図ニで示す如く内表面がフラツトなプレーン型が
例示してあり、このフラツトな内表面には適宜な
耐摩耗処理を施してある。なお、ベアリングフオ
イル部Baの形式は図示例のものに限らず、スパ
イラルグルーブ、ヘリングボーン、ステツプ型、
ポケツト型等任意である。また、ベアリングフオ
イル部Baは、図示する如く、幅方向中央で長さ
方向に適宜の間隔を隔てて高速安定化させるため
の複数の圧力解放路3を有している。この圧力解
放路3は、外表面側に穿設した大径なポケツト4
と内表面側に穿設した小径なオリフイス5とから
成り、内表面側圧力をオリフイス5からポケツト
4に導き外表面側に大きな力で解放する。
The bearing foil part Ba of the bearing part a, which is divided in the width direction, is of a plain type with a flat inner surface as shown in Fig. 2 D, similar to the outer surface shown in Fig. 2 A, and this flat Appropriate wear-resistant treatment is applied to the inner surface. The type of bearing oil part Ba is not limited to the one shown in the illustration, but may include spiral groove, herringbone, step type,
Pocket type etc. are optional. Further, as shown in the figure, the bearing oil portion Ba has a plurality of pressure release passages 3 at appropriate intervals in the length direction at the center in the width direction for stabilizing high speed. This pressure release path 3 is a large diameter pocket 4 bored on the outer surface side.
and a small-diameter orifice 5 bored on the inner surface side, and the inner surface pressure is guided from the orifice 5 to the pocket 4 and released with a large force on the outer surface side.

ベアリングフオイル部Baに連続するダンプフ
オイル部Daとスプリングフオイル部Saとはその
外表面に幅方向全長を横切り且つ長さ方向に適宜
の間隔を隔てて(上記解放路3よりも更に短いピ
ツチで)形成したバネ要素となる線状の支持突起
6,6…を複数本有している。ダンプフオイル部
Daとスプリングフオイル部Saとの境界は支持突
起6のピツチbの1.5倍としてある。スプリング
フオイル部Saの外表面端部は係止固定用のキー
7を有している。かくして、スプリングフオイル
部Saとダンプフオイル部Daとはキー7を除けば
全く同一形状をしている。
A dump oil portion Da and a spring oil portion Sa, which are continuous with the bearing oil portion Ba, are provided on their outer surfaces across the entire length in the width direction and at appropriate intervals in the length direction (with shorter pitches than the above-mentioned release path 3). ) It has a plurality of linear support protrusions 6, 6, . . . that serve as spring elements formed therein. Dump oil section
The boundary between Da and the spring oil portion Sa is set to be 1.5 times the pitch b of the support protrusion 6. The outer surface end of the spring oil portion Sa has a key 7 for locking and fixing. Thus, the spring oil portion Sa and the damp oil portion Da have exactly the same shape except for the key 7.

一方、幅方向に分けたうちの軸シール部bのシ
ールフオイル部Lbは、ベアリングフオイル部Ba
と同様に内表面がフラツトなプレーン型を例示し
てあり、実質的なシール面を軸シール部bの幅方
向全長より狭くするため両端を削つて断面凸形状
をしている。この凸形状のシール凸面には適宜な
耐摩耗処理を施してある。
On the other hand, the seal oil part Lb of the shaft seal part b divided in the width direction is the bearing oil part Ba.
Similarly, a plain type with a flat inner surface is illustrated, and in order to make the actual sealing surface narrower than the entire length in the width direction of the shaft seal portion b, both ends are shaved to form a convex cross-section. Appropriate anti-wear treatment is applied to the convex surface of this convex seal.

シールフオイル部Lbに連続するダンプフオイ
ル部Dbとスプリングフオイル部Sbとはその外表
面に梯子状の突起を有している。すなわち、所定
深さの矩形状凹部8,8…を長さ方向に適宜の間
隔を隔てて複数個形成することにより、シール性
を確保するための幅方向両端の残部9,10と矩
形状凹部8,8間に残つた線状の支持突起11と
から成る梯子状の突起を形成している。この梯子
状の突起のうちの線状支持突起11のピツチは軸
受部aの支持突起6と同様にバネ要素となるが、
軸受部aの支持突起6のピツチよりも大きくとつ
て、バネ性を相対的に低く設定している。図示例
では軸受部aの2倍に設定してある。なお、軸シ
ール部bのスプリングフオイルSbの外表面端部
は軸受部aの場合と異なり、シール性を保持する
ためにこれを阻害するキーは有さない。上述した
フオイル面の加工はフオトエツチング等の公知の
技術によつて一工程で行なうことができる。
The dump oil portion Db and the spring oil portion Sb, which are continuous with the seal oil portion Lb, have ladder-like protrusions on their outer surfaces. That is, by forming a plurality of rectangular recesses 8, 8... having a predetermined depth at appropriate intervals in the length direction, the remaining parts 9, 10 at both ends in the width direction and the rectangular recesses are formed to ensure sealing performance. A ladder-like protrusion is formed by the linear support protrusion 11 remaining between the protrusions 8 and 8. The pitch of the linear support protrusion 11 of this ladder-like protrusion becomes a spring element like the support protrusion 6 of the bearing part a,
The pitch is larger than the pitch of the support projections 6 of the bearing part a, and the springiness is set relatively low. In the illustrated example, the width is set to twice that of the bearing portion a. Note that, unlike the case of the bearing part a, the outer surface end of the spring oil Sb of the shaft seal part b does not have a key that inhibits this in order to maintain sealing performance. The above-described processing of the foil surface can be carried out in one step by a known technique such as photoetching.

第3図、第4図に示す如く、上述した一枚のフ
オイル素材から成形した弾性フオイル体1をベア
リングフオイル部Ba、シールフオイル部Lb、ダ
ンプフオイル部Da,Db、スプリングフオイル部
Sa,Sbの順で巻回し、回転軸12とケース支承
面13との間に積層する。すなわち、弾性フオイ
ル体1を三重巻きの円筒に形成して、軸受部aに
あつては第3図に示す如く、径方向外方に向かつ
てベアリングフオイル部Ba、ダンプフオイル部
Da、スプリングフオイル部Saを順に重ね、ベア
リングフオイル部Baをダンプフオイル部Daに密
接するとともに、圧力解放路3がダンプフオイル
部Daの支持突起6,6間に来るように、また、
ダンプフオイル部Daの支持突起6がスプリング
フオイル部Saの支持突起6,6間に来るように
各部の相互位置を調整する。この調整により軸シ
ール部bは第4図に示す如く自動的にダンプフオ
イル部Dbの支持突起11がスプリングフオイル
部Sbの支持突起11,11間に来るように積層
されることになる。
As shown in FIGS. 3 and 4, the elastic foil body 1 molded from the single foil material described above is assembled into a bearing foil part Ba, a sealing oil part Lb, a dump oil part Da, Db, and a spring foil part.
Sa and Sb are wound in this order and stacked between the rotating shaft 12 and the case support surface 13. That is, the elastic foil body 1 is formed into a triple-wound cylinder, and in the case of the bearing part a, as shown in FIG. 3, as shown in FIG.
Da and the spring oil part Sa are stacked one on top of the other in order, and the bearing oil part Ba is brought into close contact with the dump oil part Da, and the pressure release path 3 is placed between the support protrusions 6, 6 of the dump oil part Da.
The mutual positions of each part are adjusted so that the support protrusion 6 of the dump oil part Da is located between the support protrusions 6, 6 of the spring oil part Sa. By this adjustment, the shaft seal portion b is automatically stacked so that the support protrusion 11 of the dump oil portion Db is located between the support protrusions 11, 11 of the spring oil portion Sb, as shown in FIG.

そして、第1図に示す如く、ケース支承面13
の軸方向に軸受部aの幅長さだけキー溝15を設
け、このキー溝15に軸受部端部の係止固定用キ
ー7を挿入し、取付板16で押えて、弾性フオイ
ル体1の軸廻り方向と軸方向との移動を規制する
ことによつて軸シール付フオイル軸受構造を構成
する。
Then, as shown in FIG.
A key groove 15 is provided in the axial direction by the width of the bearing part a, and the key 7 for locking and fixing the end of the bearing part is inserted into this key groove 15, and is pressed with the mounting plate 16 to secure the elastic foil body 1. A oil bearing structure with a shaft seal is constructed by restricting movement around the shaft and in the axial direction.

このように本実施例の軸シール付フオイル軸受
構造は、軸受部aおよび軸シール部bを3重層か
らなるフオイル構造とし、各層間にバネ要素、ダ
ンピング要素、軸受要素、シール要素をケース支
承面13の周方向に配置してなる。
In this way, the oil bearing structure with a shaft seal of this embodiment has a bearing part a and a shaft seal part b having a three-layered oil structure, and between each layer a spring element, a damping element, a bearing element, and a sealing element are arranged on the case supporting surface. 13 are arranged in the circumferential direction.

さて、上記のような構成による本実施例の作用
を説明する。
Now, the operation of this embodiment with the above configuration will be explained.

本実施例の軸受ならびに軸シールの作動原理
は、作動流体(気体または液体)の粘性が支配的
な流体潤滑に基づく機能により軸受部aが軸受す
き間を生成させて回転軸12を支持する一方、軸
シール部bが軸シールすき間を生成させて回転軸
12との接触を回避しつつシールする非接触型の
軸受・軸シールである。
The operating principle of the bearing and shaft seal of this embodiment is that the bearing part a supports the rotating shaft 12 by creating a bearing clearance by a function based on fluid lubrication in which the viscosity of the working fluid (gas or liquid) is dominant; The shaft seal part b is a non-contact type bearing/shaft seal that creates a shaft seal gap and seals while avoiding contact with the rotating shaft 12.

すなわち、回転軸12を支持する弾性フオイル
体1の軸受部aは軸荷重の大きさに対応して軸が
偏心すると、回転軸12とベアリングフオイル部
Baとの間を軸受すき間Gaにくさび膜を発生して
流体膜圧を形成し、この流体膜圧が軸荷重を支持
するのである。ところで、回転軸12が高速回転
すると軸受すき間Gaの流体膜圧が昇圧する。
That is, when the shaft is eccentric in response to the magnitude of the shaft load, the bearing portion a of the elastic foil body 1 that supports the rotating shaft 12 will disturb the rotating shaft 12 and the bearing foil portion.
A wedge film is generated in the bearing gap Ga between Ba and a fluid film pressure, and this fluid film pressure supports the shaft load. By the way, when the rotating shaft 12 rotates at high speed, the fluid film pressure in the bearing gap Ga increases.

この昇圧流体膜圧の一部は圧力解放路3からこ
れに密接しているダンプフオイル部Daの内表面
に導かれて解放する。この圧力解放は小径なオリ
フイス5から大径なポケツト4を経由して行なわ
れるため、ダンプフオイル部Da内表面に径方向
外方へ大きな力が作用し、その内表面を局部変形
させて変形局部に流体溜りを形成する。したがつ
て、ダンプフオイル部Daにスクイズ膜ダンパ作
用が生じて軸振動を制振させる。一方、解放され
なかつた昇圧流体膜圧はベアリングフオイル部
Baを介してダンプフオイル部Daの全周に作用す
るので、その外表面に設けた支持突起6がスプリ
ングフオイル部Saの支持突起6,6間の内表面
を径方向外方へ押し出す。このためスプリングフ
オイル部Saは周方向に波状変形してバネ機能を
発揮する。したがつて、ダンプフオイル部Daは
ケース支承面13上に弾性支持されることにな
り、軸の遠心変形、熱変形を許容する。このよう
にして流体膜圧自信によるダンピング要素、バネ
要素に加えて、フオイル積層構造の軸受部aによ
るダンピング機能、バネ機能が発揮されるので、
高速・高温(低温)においても回転軸12を安定
に支持することができる。
A part of this increased fluid film pressure is guided from the pressure release path 3 to the inner surface of the damp oil portion Da that is in close contact with the pressure release path 3, and is released therefrom. Since this pressure release is performed from the small diameter orifice 5 to the large diameter pocket 4, a large force acts radially outward on the inner surface of the dump oil portion Da, locally deforming the inner surface and causing the deformed local area. Forms a fluid reservoir. Therefore, a squeeze film damper action occurs in the damp oil portion Da to damp the shaft vibration. On the other hand, the unreleased pressurized fluid film pressure is
Since it acts on the entire circumference of the dump oil portion Da via Ba, the support protrusion 6 provided on the outer surface pushes the inner surface between the support protrusions 6, 6 of the spring oil portion Sa radially outward. For this reason, the spring oil portion Sa is deformed into a wave shape in the circumferential direction and exhibits a spring function. Therefore, the dump oil portion Da is elastically supported on the case support surface 13, allowing centrifugal deformation and thermal deformation of the shaft. In this way, in addition to the damping element and spring element due to the fluid film pressure itself, the damping function and spring function are exerted by the bearing part a of the foil laminated structure.
The rotating shaft 12 can be stably supported even at high speeds and high temperatures (low temperatures).

また、回転軸12をシールする弾性フオイル体
1の軸シール部bは回転軸2の偏心に対応してシ
ール部自信がくさび膜を形成しつつ弾性的に変位
して軸シール部bへの接触を回避しつつ回転軸1
2をシールする。すなわち、支持突起6,6間の
凹部が幅方向に解放している軸受部aの場合と異
なり、軸シール部bの矩形状凹部8は両端の残部
9,10により幅方向が閉塞しているため、ダン
プフオイル部Dbとスプリングフオイル部Saとの
夫々の矩形状凹部8に、もともと流体溜りが存在
する。それ故、回転軸12とシールフオイル部
Lbとの間のシールすき間のGbに昇圧流体膜圧が
発生してシールフオイル部Lbを径方向外方へ押
圧すると、スプリングフオイル部Sbの波状変形
が起きてバネ機能を発揮するとともに、矩形状凹
部8,8内の流体が圧搾されてスクイズ膜ダンパ
作用が生じる。しかも、軸シール部bのバネ要素
となる支持突起11のピツチが軸受部aのそれよ
りも大きくとつてバネ性を相対的に低く設定して
あるので、軸振動や軸膨張が生じても回転軸12
と接触することなく、きわめて小さなシールすき
間を安定に保持することができる。図示例の軸シ
ール部bは単なる円筒面のシールのクリアランス
シールであり、この場合、シール性能と等価なも
れ量は差圧に比例し、シールすき間の3乗に反比
例する特性があることから、きわめて小さなシー
ルすき間を保持できることは、シール性能が格段
に向上することを意味する。このようにしてフオ
イル積層構造の軸シール部bによるダンピング機
能、バネ機能が流体膜圧による機能に加えて発揮
されるので、高速・高温(低温)においても接触
や抱き付きのない安定したシール性能を得ること
ができる。
In addition, the shaft seal portion b of the elastic foil body 1 that seals the rotating shaft 12 is elastically displaced while forming a wedge film in response to the eccentricity of the rotating shaft 2, and comes into contact with the shaft seal portion b. Rotating axis 1 while avoiding
Seal 2. That is, unlike the case of the bearing part a where the recess between the support protrusions 6 and 6 is open in the width direction, the rectangular recess 8 of the shaft seal part b is closed in the width direction by the remaining parts 9 and 10 at both ends. Therefore, fluid pools originally exist in the rectangular recesses 8 of the dump oil portion Db and the spring oil portion Sa. Therefore, the rotating shaft 12 and the seal oil section
When pressurized fluid film pressure is generated in Gb in the seal gap between Gb and Lb and presses the seal oil part Lb radially outward, the spring oil part Sb undergoes wave-like deformation and exhibits a spring function. The fluid within the rectangular recesses 8, 8 is squeezed to create a squeeze membrane damper effect. Furthermore, the pitch of the support protrusion 11, which serves as the spring element of the shaft seal part b, is larger than that of the bearing part a, so that the springiness is set relatively low, so even if shaft vibration or shaft expansion occurs, the support projection 11 will not rotate. axis 12
It is possible to stably maintain an extremely small seal gap without contacting the seal. The shaft seal part b in the illustrated example is simply a clearance seal of a cylindrical surface seal, and in this case, the leakage amount equivalent to the sealing performance is proportional to the differential pressure and is inversely proportional to the cube of the seal gap. , being able to maintain an extremely small seal gap means that the sealing performance is significantly improved. In this way, the damping function and spring function of the shaft seal part b of the foil laminated structure are exhibited in addition to the function of the fluid film pressure, so stable sealing performance without contact or clinging is achieved even at high speeds and high temperatures (low temperatures). can be obtained.

このように、本実施例によれば上述した軸受部
aと軸シール部bとヲ一片のフオイル素材から形
成し、しかも素材表面の加工はフオトエツチング
等公知の技術によつて一工程で行なうことができ
るので、量産性があり、非常に低コストで製作す
ることができる。そして、組立てに際しても3重
巻きにして回転軸12とケース支承面13との間
に挿入すれば、弾性フオイル体1自身が有するバ
ネ性により拡開してスプリングフオイル部Sa,
Sbがケース支承面13にぴつたり当接し、これ
に伴ない他のフオイル部も自動的に周方向の位置
調整がなされるので、積層フオイル同士の位置調
整を個別的に行なう必要がなくなり、組立作業が
極めて容易になる。
As described above, according to this embodiment, the above-mentioned bearing part a and shaft seal part b are formed from a single piece of foil material, and the surface of the material is processed in one step by a known technique such as photo etching. Therefore, it is mass-producible and can be manufactured at a very low cost. When assembling, if it is triple-wound and inserted between the rotating shaft 12 and the case support surface 13, it will expand due to the springiness of the elastic foil body 1 itself and the spring foil portion Sa,
Sb comes into tight contact with the case support surface 13, and the other foil parts are also automatically adjusted in circumferential position accordingly, eliminating the need to individually adjust the position of laminated foils, and assembling. Work becomes extremely easy.

また、組立てられた軸受構造はフオイル構造で
あるため小型軽量であると共に高速・高温(低
温)おいても安定した軸受機能、軸シール機能を
発揮できる。したがつて、特に高温または低温の
気体をプロセス流体とするターボ圧縮機、ターボ
膨張機、ターボチヤージヤ、ターボ冷凍機等の高
速回転するターボ機械に適用して高効率化を得る
ことができる。
Furthermore, since the assembled bearing structure is a foil structure, it is small and lightweight, and can exhibit stable bearing and shaft sealing functions even at high speeds and high temperatures (low temperatures). Therefore, high efficiency can be obtained especially when applied to high-speed rotating turbomachines such as turbo compressors, turbo expanders, turbochargers, and turbo refrigerators that use high-temperature or low-temperature gas as a process fluid.

なお、フオイル構造であることにより異物の侵
入に強いという副次的効果もある。
The foil structure also has the secondary effect of being resistant to foreign matter intrusion.

第5図及び第6図は軸シール部bの形式が単な
る円筒面のプレーン型である第1図の実施例の変
形例を示すもので、シール面に複数個のグルーブ
加工を施してある。すなわち第5図のものとはシ
ールフオイル部Lbのシール凸面にその長さ方向
にスパイラルグルーブ18を等間隔で複数個刻設
してあり、第6図のものはシールフオイル部Lb
ではなくシール部の回転軸12にスパイラルグル
ーブ18を刻設してあつて、スパイラルグルーブ
18によるポンピング作用によりシール効果を高
める構造になつている。スパイラルグルーブ18
の方向は、高圧側と低圧側および回転方向を定め
て設計することが望ましく、図示例ではP1>P2
とし矢印の如く回転軸12が回転する場合を示し
ている。
5 and 6 show a modification of the embodiment shown in FIG. 1 in which the shaft seal portion b is of a plain type with a simple cylindrical surface, and the sealing surface is machined with a plurality of grooves. That is, the one in Fig. 5 has a plurality of spiral grooves 18 carved at equal intervals in the length direction on the seal convex surface of the seal oil part Lb, and the one in Fig. 6 has a seal oil part Lb.
Rather, a spiral groove 18 is carved into the rotating shaft 12 of the seal portion, and the pumping action of the spiral groove 18 enhances the sealing effect. spiral groove 18
It is desirable to design the direction by determining the high pressure side, low pressure side, and rotation direction, and in the illustrated example, P 1 > P 2
The figure shows the case where the rotating shaft 12 rotates as indicated by the arrow.

これによれば、回転軸12が回転するとシール
部を挟んで流体は差圧によりP1→P2へ流れよう
とするがスパイルグルーブ18のポンピング作用
により低圧のP2側の流体を高圧のP1側へ移送す
る機能が発揮され、シール性能の積極的な向上を
図ることができる。特に、ポンピング作用は高速
になる程大きくなるので、高速時のシール効果は
著大である。
According to this, when the rotary shaft 12 rotates, fluid tries to flow from P 1 to P 2 across the seal portion due to the differential pressure, but due to the pumping action of the spill groove 18, the fluid on the low pressure P 2 side is transferred to the high pressure P The function of transferring to the 1st side is demonstrated, and the sealing performance can be actively improved. In particular, since the pumping action increases as the speed increases, the sealing effect at high speeds is significant.

なお、P2>P1の場合には、図示していないが、
スパイラルグルーブ18を第5図、第6図とは逆
向きに設けるとともにランド部19を反対側端部
に設ければよい。
Note that in the case of P 2 > P 1 , although not shown,
The spiral groove 18 may be provided in the opposite direction to that shown in FIGS. 5 and 6, and the land portion 19 may be provided at the opposite end.

[発明の効果] 以上要するに本発明によれば次のような優れた
効果を発揮する。
[Effects of the Invention] In summary, the present invention exhibits the following excellent effects.

(1) 軸受部と軸シール部とが一枚の弾性フオイル
に一体化して形成されているので、固定側の小
型軽量化をはかることができると共に、回転軸
の軸方向長さを短縮 できて回転側の重量の軽減化と剛性の向上をも
はかることができる。したがつて回転機械の高
速化、高性能化を著しく高めることができる。
(1) Since the bearing part and the shaft seal part are integrated into a single piece of elastic foil, the fixed side can be made smaller and lighter, and the axial length of the rotating shaft can be shortened. It is also possible to reduce the weight on the rotating side and improve rigidity. Therefore, the speed and performance of rotating machinery can be significantly increased.

(2) 軸受部および軸シール部をフオイル構造とし
たことにより、回転軸の遠心膨張、熱膨張に充
分対応できて、すき間を小さく設計しても従来
問題となついた接触や抱き付きを発生すること
なく、高温(低温)高速で安定かつ安全に機能
することができる。
(2) By using a foil structure for the bearing part and shaft seal part, it can sufficiently cope with the centrifugal expansion and thermal expansion of the rotating shaft, and even if the gap is designed to be small, contact and clinging, which were common problems in the past, will not occur. It can function stably and safely at high temperatures (low temperatures) and high speeds without any problems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る軸シール付フオイル軸受
構造の好適一実施例を示す一部展開状態を含む側
断面図、第2図は第1図の主要部となる弾性フオ
イル体の周方向の展開図、第3図は第1図の矢
視断面図であつて軸受部の正断面図、第4図は第
1図の矢視断面図であつて軸シール部の正断面
図、第5図及び第6図は本発明の変形例を示す一
部展開状態を含む側断面図である。 図中、1は弾性フオイル体、3は圧力解放路、
12は回転軸、13はケース支承面、aは軸受
部、bは軸シール部、Baはベアリングフオイル
部、Daはダンプフオイル部、Saはスプリングフ
オイル部、Lbはシールフオイル部、Dbはダンプ
フオイル部、Sbはスプリングフオイル部である。
FIG. 1 is a side sectional view, partially unfolded, showing a preferred embodiment of the oil bearing structure with a shaft seal according to the present invention, and FIG. 2 is a circumferential view of the elastic foil body, which is the main part of FIG. 3 is a sectional view taken in the direction of the arrows in FIG. 1, and is a front sectional view of the bearing portion; FIG. 6 and 6 are side sectional views showing a modified example of the present invention, including a partially expanded state. In the figure, 1 is an elastic foil body, 3 is a pressure release path,
12 is the rotating shaft, 13 is the case support surface, a is the bearing part, b is the shaft seal part, Ba is the bearing oil part, Da is the dump oil part, Sa is the spring oil part, Lb is the seal oil part, and Db is the seal oil part. The dump oil part and Sb are the spring oil part.

Claims (1)

【特許請求の範囲】[Claims] 1 流体膜圧を形成すると共に流体膜圧を解放す
る圧力解放路を有するベアリングフオイル部、圧
力解放路から解放される流体膜圧を受圧して制振
するダンプフオイル部、ダンプフオイル部を弾性
支持するスプリングフオイル部を順に連続形成し
た弾性フオイル軸受部と、流体膜圧を形成するシ
ールフオイル部、シールフオイル部を制振するダ
ンプフオイル部、ダンプフオイル部を弾性支持す
るスプリングフオイル部を順に連続形成した弾性
フオイル軸シール部とを並列に一体成形してなる
弾性フオイル体を、回転軸とケース支承面との間
に上記連続形成の順で巻回して積層したことを特
徴とする軸シール付フオイル軸受構造。
1. A bearing oil section that forms a fluid film pressure and has a pressure release path that releases the fluid film pressure, a damp oil section that receives the fluid film pressure released from the pressure release path and damps vibrations, and elastically supports the dump oil section. An elastic foil bearing part in which a spring oil part is formed in sequence, a seal oil part that forms a fluid film pressure, a damp oil part that dampens vibration of the seal oil part, and a spring oil part that elastically supports the dump oil part are successively formed. With a shaft seal, characterized in that an elastic foil body formed by integrally molding the formed elastic foil shaft seal portion in parallel is wound and laminated between the rotating shaft and the case support surface in the above continuous formation order. Oil bearing structure.
JP59206275A 1984-10-03 1984-10-03 Foil bearing structure with axis seal Granted JPS6184415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59206275A JPS6184415A (en) 1984-10-03 1984-10-03 Foil bearing structure with axis seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59206275A JPS6184415A (en) 1984-10-03 1984-10-03 Foil bearing structure with axis seal

Publications (2)

Publication Number Publication Date
JPS6184415A JPS6184415A (en) 1986-04-30
JPH0510529B2 true JPH0510529B2 (en) 1993-02-10

Family

ID=16520623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59206275A Granted JPS6184415A (en) 1984-10-03 1984-10-03 Foil bearing structure with axis seal

Country Status (1)

Country Link
JP (1) JPS6184415A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6347520A (en) * 1986-08-13 1988-02-29 Ishikawajima Harima Heavy Ind Co Ltd Foil journal bearing
JPH01242817A (en) * 1988-03-23 1989-09-27 Osaka Sangyo Univ Hydrodynamic foil bearing
DE4030996A1 (en) * 1990-10-01 1992-04-02 Happich Gmbh Gebr GUARD DEVICE
KR100938919B1 (en) * 2007-08-22 2010-01-28 한국기계연구원 Foil bearing forming grooves
JP5760680B2 (en) * 2011-05-18 2015-08-12 株式会社Ihi Radial foil bearing
WO2015026655A1 (en) * 2013-08-20 2015-02-26 Borgwarner Inc. Air bearing arrangement

Also Published As

Publication number Publication date
JPS6184415A (en) 1986-04-30

Similar Documents

Publication Publication Date Title
CA1219150A (en) Squeeze film damper
US5902049A (en) High load capacity compliant foil hydrodynamic journal bearing
US5915841A (en) Compliant foil fluid film radial bearing
US4415280A (en) Hydrodynamic fluid film bearing
US4992024A (en) Multi-film fluid bearing damper
US4624583A (en) Foil thrust bearing
US20070047858A1 (en) Foil journal bearing with bilinear stiffness spring
US4808070A (en) Fluid bearing
JP5276414B2 (en) Followable hybrid gas journal bearings using an integral wire mesh damper
CA2152789C (en) Pressure damper seals
US6190048B1 (en) Compliant foil fluid film radial bearing
KR100413060B1 (en) High load capacity smart foil journal bearing with semi-active dampers
JPS58160619A (en) Structure of gas bearing
US4315660A (en) Aerodynamic multiple-wedge resilient bearing
JPH0510529B2 (en)
KR102463091B1 (en) Hybrid Fluid Film Bearing
JPS6331001B2 (en)
US5707064A (en) Modulated pressure damper seal
JPS6132164Y2 (en)
JPS6215540Y2 (en)
JPH0510528B2 (en)
JPH0128336Y2 (en)
JPH0571830B2 (en)
JPH0128337Y2 (en)
JPH0520606B2 (en)