JPS59217941A - Cathode-ray tube for light source - Google Patents

Cathode-ray tube for light source

Info

Publication number
JPS59217941A
JPS59217941A JP9364083A JP9364083A JPS59217941A JP S59217941 A JPS59217941 A JP S59217941A JP 9364083 A JP9364083 A JP 9364083A JP 9364083 A JP9364083 A JP 9364083A JP S59217941 A JPS59217941 A JP S59217941A
Authority
JP
Japan
Prior art keywords
phosphor
light source
ray tube
cathode ray
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9364083A
Other languages
Japanese (ja)
Inventor
Seihachiro Hayashi
林 清八郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9364083A priority Critical patent/JPS59217941A/en
Publication of JPS59217941A publication Critical patent/JPS59217941A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J63/00Cathode-ray or electron-stream lamps
    • H01J63/06Lamps with luminescent screen excited by the ray or stream

Landscapes

  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

PURPOSE:To reduce the manufacturing time of a phosphor screen and its material by dividing a specified length section that is stretched toward the other end side from the glass inner wall of a face section into two or more sections and individually screening and separating each divided face section. CONSTITUTION:A glass tube main frame 1 has the 29phi cylindrical screen size and a phosphor screen section that is divided into three at equal intervals of 120 deg. from the central part of an axis by a glass plate 53. Each is fully separated by the glass plate 53 for dividing and screening and the thickness of the plate 53 is the same as the main frame 1. A specified quantity of an aqueous solution 52 as an electrolyte is injected simultaneously into the three-divided main frame 1 from an injection nozzle 51 and subsequently suspensions 62a to 62c in which a green phosphor 3a, blue phosphor 3b, and red phosphor 3c are dispersed separately are quickly injected simultaneously into an aqueous solution as a bonding agent from injection nozzles 61a to 61c. Furthermore, supernatant liquid is exhausted and the phosphor is made to adhere to. As a result, the production time of a phosphor screen and its material can be reduced and a cathode-ray tube for a light source that can improve the resolution of a giant display unit can be obtained.

Description

【発明の詳細な説明】 この発明はディスプレイ装置などに使用される光源用陰
極線管に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cathode ray tube for a light source used in display devices and the like.

ティスフレイの多様化に伴い、巨大ディスプレイ装置が
種々開発されているが、カラー表示や動画の再現に適し
た方法として、三原色の絵素1つ1つを1本の陰極線管
におきかえ、数万本〜数十万本の陰極線管を用いて行な
う方法がある。このような陰極線管は光源用陰極線管と
呼ばれ、いわば発光素子とも表現できるものである。
With the diversification of Tisfrei, various giant display devices have been developed, but as a method suitable for color display and video reproduction, each of the three primary color picture elements is replaced with a single cathode ray tube, and tens of thousands of display devices are developed. There is a method that uses ~100,000 cathode ray tubes. Such a cathode ray tube is called a light source cathode ray tube, and can also be described as a light emitting element.

光源用陰極線管の構造の一例を第1図に示す。An example of the structure of a cathode ray tube for a light source is shown in FIG.

同図において(1)は真空外囲器を構成する円筒状のガ
ラス管本体で、そのフェース部(2)には緑、青モしく
は赤に発光するいずれか1種の螢光体(3)が被着され
ている。上記螢光体(8)の内面(こは、いゎ1φルメ
タμバツクと称されるアルミニウムの蒸着膜(4)が形
成されており、さらに導通を目的とする内部導電膜とし
てグラファイト膜(5)が塗布きれている。(6)は信
号に対応して電子を発射し螢光体を発光させるための電
子銃である。
In the figure, (1) is the cylindrical glass tube body that constitutes the vacuum envelope, and its face (2) is equipped with one type of phosphor (3) that emits green, bluish, or red light. ) is coated. An aluminum vapor-deposited film (4) called a 1φ metal μ back is formed on the inner surface of the phosphor (8), and a graphite film (5) is further formed as an internal conductive film for the purpose of electrical continuity. ) is completely coated. (6) is an electron gun that emits electrons in response to a signal to cause the phosphor to emit light.

つぎにこの様な光源用陰極線管の製造方法を第2図(a
)ないし第2図(0)にしたがって説明する。まず〜螢
光体(8)を被着するガラス管本体(1)の内面を滓化
水素酸水溶液、水酸化ナトリウム水溶液、および純水を
用いて洗浄する。つぎに、第2図(a)のように、たと
えば電解質として酢酸バリウムの水溶液を所定量注入し
、そののちに接着剤としての水ガラスの水溶液に所定の
螢光体(3)を分散させた懸濁液を注入し、所定時間静
置して螢光体(3)を沈澱させる。螢光体(3)が沈澱
したあと、ガラス管本体(1)をゆっくり傾動させて上
澄液を排出し、脱湿エヤーによって乾燥させ螢光体(3
)の被着を完了する。このような方法は一般に沈降法と
呼ばれている。この沈降法によって螢光体(8)を被着
した後、上記メタlレバツクを行なうが、螢光体(3)
に直接アルミニウムの蒸着を行なうと、連続した蒸着被
膜が形成されないので、螢光体(3)の上にごく薄い有
機被膜を形成したフィルミングを行なったのちアルミニ
ウムを蒸着している。すなわちまず螢光面を純水などで
湿潤状態とし、螢光体(8)の大部分を、第2図(1+
)のように、水膜(7)で覆ったのち、アクリル樹脂を
主成分とするトルエン、酢酸エチルなどの有機溶剤ラッ
カを吹きつけ、水膜(γ)の上にごく薄いラッカ被膜(
8)を形成する。つづいて不必要な領域のラッカ被膜(
8)を第2図(Q)に示すように、ノズ/I/Qυから
一定圧力で流出する純水(ホ)によって除去する。これ
は螢光体(8)の被着されていない領域にラッカ皮膜を
形成すると、この領域に蒸着されたアルミニウム膜があ
とのベーキング工程で火ぶくれを起し、ガラス壁から剥
れることを防ぐために行なうものである。つぎに脱湿エ
ヤーなどを利用して螢光面を乾燥し、所定領域にグラフ
ァイト膜(5)を塗布して−これを同様に乾燥する。最
後にアルミニウムの蒸着を行ない、アルミニウム蒸着膜
(4)を形成したのち、螢光面形成時に使用した有機質
拐料を約400℃のベーキングにより分解除去して螢光
面の形成を完了する。螢光面の形成を完了した管本体(
1)には、さらに電子銃を溶着封止り、管本体(1)の
内部を真空に排気して電子銃(6)の活性化を行ない第
1図に示す完成品を亀る。
Next, the manufacturing method of such a cathode ray tube for light source is shown in Figure 2 (a).
) to FIG. 2(0). First, the inner surface of the glass tube body (1) to which the phosphor (8) is attached is cleaned using a hydrofluoric acid aqueous solution, a sodium hydroxide aqueous solution, and pure water. Next, as shown in FIG. 2(a), for example, a predetermined amount of an aqueous solution of barium acetate as an electrolyte is injected, and then a predetermined phosphor (3) is dispersed in an aqueous solution of water glass as an adhesive. The suspension is injected and allowed to stand for a predetermined period of time to precipitate the phosphor (3). After the phosphor (3) has precipitated, the glass tube body (1) is slowly tilted to drain the supernatant liquid, and the phosphor (3) is dried with dehumidifying air.
) is completed. Such a method is generally called a sedimentation method. After the phosphor (8) is deposited by this sedimentation method, the metal reversal described above is carried out, but the phosphor (3)
If aluminum is directly vapor-deposited on the phosphor (3), a continuous vapor-deposited film will not be formed, so a very thin organic film is formed on the phosphor (3) and then aluminum is vapor-deposited. That is, first, the phosphor surface is moistened with pure water, etc., and most of the phosphor (8) is soaked in the phosphor (1+
), after covering it with a water film (7), spray an organic solvent lacquer such as toluene or ethyl acetate containing acrylic resin as the main component to form a very thin lacquer film (7) on the water film (γ).
8). Next, apply a lacquer coating to unnecessary areas (
8) is removed by pure water (E) flowing out from the nozzle/I/Qυ at a constant pressure, as shown in FIG. 2 (Q). This is because if a lacquer film is formed on the uncoated areas of the phosphor (8), the aluminum film deposited on these areas will blister during the subsequent baking process and peel off from the glass wall. This is done to prevent it. Next, the fluorescent surface is dried using a dehumidifying air or the like, and a graphite film (5) is applied to a predetermined area and dried in the same manner. Finally, aluminum is vapor-deposited to form an aluminum vapor-deposited film (4), and then the organic particles used in forming the fluorescent surface are decomposed and removed by baking at about 400° C. to complete the formation of the fluorescent surface. The tube body with the fluorescent surface completed (
In step 1), the electron gun is further welded and sealed, the inside of the tube body (1) is evacuated, and the electron gun (6) is activated to produce the finished product shown in FIG.

上記の方法で製造された光源用陰(他線管は巨大ディス
プレイの三原色の絵素として、第6図に示すように、緑
色に発光する陰極線管Hが2本、そり、数万本〜数十万
本配置される。このように、緑色に発光する陰極線管O
I)の配置比率が大きいのは、鮮明度を支配する分解能
を向上させるためである。光源用陰極線管の画面サイズ
は20φ、 29’ 。
As shown in Figure 6, there are two cathode ray tubes H that emit green light, and tens of thousands to several tens of thousands of cathode ray tubes manufactured by the above method. 100,000 cathode ray tubes are arranged in this way.
The reason why the arrangement ratio of I) is large is to improve the resolution that governs sharpness. The screen size of the light source cathode ray tube is 20φ, 29'.

667と種々作られており、これは設置場所や屋内用、
屋外用と用途により使いわけられている。また、緑、青
、赤それぞれの光源用陰極線管の配置111隔Vi40
〜451mあり、ディスプレイの画面サイズとも関連す
るが、画質のよい解像度を得るには70m〜200mの
遠距離が必要となる。又、光源用陰極線管の配置間隔を
小さくすると多少は解像度向上に寄与するがディスプレ
イの画面サイズの単位価格が高価なものとなり、根本的
な解像度向上の解決法とけならない。近日その解決法と
して緑色に発光する陰極線管争υが2本、そして、青色
に発光する陰極線管e樽と赤色に発光する陰極線管−が
それぞれ1本づつ総計4本で1組となっていたものを、
1本の光源用陰極線管の画面を6分割したデルタ配置の
6色管で構成するために、いわゆるスラリ法や、印刷法
などを利用して螢光体を塗布し、それぞれの区分に緑、
青、赤色発光色の螢光面を形成させたものが種々開発さ
れている。これは、多色表示型光源用陰極線と称され、
これを使用した巨大ディスプレーの陰極線管配置を第4
図に示した。しかし多色表示型光源用陰極線管の螢光面
形成時においては、沈降法による螢光体の塗布がいまだ
実施されていない。
667 and various types are made, which are suitable for installation locations, indoor use,
They are used for outdoor use and for different purposes. In addition, the arrangement of cathode ray tubes for green, blue, and red light sources is 111 intervals Vi40.
The distance is ~451m, and although this is related to the screen size of the display, a long distance of 70m to 200m is required to obtain good resolution. Further, reducing the arrangement interval of the light source cathode ray tubes contributes to improving the resolution to some extent, but the unit cost of the screen size of the display becomes expensive, and it is not a fundamental solution to improving the resolution. Recently, as a solution to this problem, two cathode ray tubes that emit green light, one cathode ray tube e-barrel that emits blue light, and one cathode ray tube that emits red light become a set of four. Things,
In order to construct the screen of a single light source cathode ray tube with six color tubes in a delta arrangement, a phosphor is coated using a so-called slurry method or a printing method, and each section is colored green, green, etc.
Various devices have been developed that have fluorescent surfaces that emit blue and red colors. This is called cathode ray for multicolor display type light source.
The fourth cathode ray tube arrangement for a giant display using this
Shown in the figure. However, when forming a fluorescent surface of a cathode ray tube for a multicolor display type light source, coating of a phosphor by a precipitation method has not yet been carried out.

この発明は、この点に着目し、ガラス管本体の螢光面を
、連続して複数区画に分割し、各分割されたフェース部
をそれぞれ遮蔽して独立させることにより、上記沈降法
による螢光体の塗布を容易に行なうことのできるものを
提供することを目的とする。
The present invention has focused on this point, and by continuously dividing the fluorescent surface of the glass tube body into a plurality of sections and shielding each divided face part to make it independent, the fluorescent light produced by the above-mentioned sedimentation method can be improved. The purpose is to provide something that can be easily applied to the body.

以下この発明の実施例を図面にしたがって説明する。Embodiments of the present invention will be described below with reference to the drawings.

画面サイズは円筒状の29φでこれは従来品と同じであ
るが、螢光面部は、第5図に図示するように、ガラス板
6Iによって管軸中心部から1206の等間隔で6分割
され、かつ、分割遮蔽用のガラス板輪によりそれぞれが
完全に独立されている。この場合、ガラス板輪の肉厚は
、ガラス管本体(1)と同じ厚みとし、ここでは1.5
 tan f採用した。
The screen size is cylindrical and has a diameter of 29 mm, which is the same as the conventional product, but the fluorescent surface section is divided into six equal intervals of 1206 from the center of the tube axis by a glass plate 6I, as shown in FIG. Moreover, each is completely independent from the other by a glass plate ring for dividing and shielding. In this case, the wall thickness of the glass plate ring is the same as that of the glass tube body (1), here 1.5
Tan f was adopted.

このような光源用陰極線管には、つぎの手順によって螢
光面が形成される。
A fluorescent surface is formed on such a light source cathode ray tube by the following procedure.

すなわら・ガラス管本体(1)の内面を、従来品と同様
に滓化水素酸水溶液、水酸化ナトリウム水溶液および純
水を用いて洗浄する。つぎに電解質として酢酸バリウム
の水溶液−を所定量、それぞれ6分割されたガラス管本
体(1)に注入ノズル争υより同時に注入する。その後
すみやかに、接着剤としての水ガラスの水溶液に縁壁光
体(6a)、前壁光体(3b)、赤蛍光体(6c)をそ
れぞれ別々に分散させた懸濁液(62&)、(62b)
、(62c)を注入ノズ/’(61a)、(61b)、
(61c)から同時に注入する。この場合のガラス板輪
の高さは、酢酸バリウム水溶液−と螢光体を懸濁させた
水ガラス水溶液の総注入量より余裕を持った高さにして
おく。なぜならば、他の懸濁液の飛散混入を防止するた
めである。その状態を第6図に示す。この後、約15分
間の静置時間を置き、それぞれの螢光体が沈澱したあと
管本体(1)をゆっくり傾動させて、それぞれの上澄液
を排出する。次に脱湿エヤーにより螢光面を乾燥させ螢
光体(8)の被着を完了する。つぎにそれぞれの螢光面
を純水などで湿潤状態とし螢光体(8)の大部分を水膜
(7)で積った後、アクリル樹脂を主成分とする有機溶
剤ラッカを各分割部ごとにスプレーノズルを設はスプレ
にてラッカ被膜(8) Kl’形成する。その後トリミ
ングと称し不必要領域のラッカ被膜(8)を各分割部ご
とにノズ/I/ψ0を設はノズIvHから一定圧力で流
出する純水(イ)によって除失後、脱湿工〒−などで螢
光面を乾燥しグラファイト膜(5)を塗布する。このグ
ラファイト膜(5)は分割しゃへいガラス板輪には塗布
せず、管壁で電子銃(6)側のみとする(第1図、第2
図(&) 、 (b) @ (Q)参照)。アIレミニ
ウムの蒸着も、各分割部ごとに蒸発源を設はアルs ニ
ウム蒸着膜(4)を形成する。さらに螢光面形成時に使
用した有機質材料を約400℃のベーキングにより分解
除去して螢光面の形成を完了する。
That is, the inner surface of the glass tube body (1) is cleaned using a hydrofluoric acid aqueous solution, a sodium hydroxide aqueous solution, and pure water in the same manner as in conventional products. Next, a predetermined amount of an aqueous solution of barium acetate as an electrolyte is simultaneously injected into each of the six divided glass tube bodies (1) through injection nozzles. Immediately thereafter, a suspension (62&) of an edge wall light (6a), a front wall light (3b), and a red phosphor (6c) separately dispersed in an aqueous solution of water glass as an adhesive, ( 62b)
, (62c) injecting nozzle/'(61a), (61b),
(61c) and inject at the same time. In this case, the height of the glass plate ring is set to be higher than the total injection amount of the barium acetate aqueous solution and the water glass aqueous solution in which the phosphor is suspended. This is to prevent other suspensions from scattering and mixing. The state is shown in FIG. Thereafter, the tube is allowed to stand for about 15 minutes, and after each phosphor has precipitated, the tube body (1) is slowly tilted to drain each supernatant liquid. Next, the fluorescent surface is dried with dehumidifying air to complete the application of the fluorescent material (8). Next, each fluorescent surface is moistened with pure water, etc., and most of the fluorescent material (8) is covered with a water film (7), and then an organic solvent lacquer containing acrylic resin as the main component is applied to each divided portion. Set up a spray nozzle for each and spray to form a lacquer coating (8) Kl'. After that, the lacquer film (8) in unnecessary areas is removed by the pure water (A) flowing out at a constant pressure from the nozzle IvH at a constant pressure by setting a nozzle /I/ψ0 for each divided part, which is called trimming, and then dehumidification is carried out. Dry the fluorescent surface using a method such as drying and apply a graphite film (5). This graphite film (5) is not applied to the divided shielding glass ring, but only to the electron gun (6) side of the tube wall (Figs. 1 and 2).
(See figure (&), (b) @ (Q)). For aluminum vapor deposition, an evaporation source is provided for each divided portion to form an aluminum vapor deposition film (4). Further, the organic material used in forming the fluorescent surface is decomposed and removed by baking at about 400° C. to complete the formation of the fluorescent surface.

こうして螢光面の形成を完了した管本体(1)には、緑
、青および赤色発光螢光面専用の電子銃(6)を溶着封
止し、しかる後、管本体(1)の内部全真空排気してそ
れぞれの電子銃(6)の活性化を行ない完成品を得る(
第1図参照)。
An electron gun (6) dedicated to green, blue and red emitting fluorescent surfaces is welded and sealed to the tube body (1) on which the fluorescent surface has been formed, and then the entire interior of the tube body (1) is sealed. Evacuate and activate each electron gun (6) to obtain a finished product (
(See Figure 1).

このようにして得られた多色表示型光源用陰極線管を巨
大ディスプレイ装置に従来と同様の40〜45■間隔に
配置しても最適視認距離が70m以内と近距離となり解
像度が大幅に向上した。
Even if the cathode ray tubes for the multicolor display type light source obtained in this way were placed on a huge display device at 40 to 45 cm intervals, as in the past, the optimal viewing distance was within 70 m, which resulted in a significant improvement in resolution. .

上記実施例では、画面サイズを29φとしたが、20φ
、60φなどのものにおいても、螢光面部を分割すれば
同様の効果がある。壕だ、管軸中心より120’おきに
デルタ状に6分割したもの以外に、縦分割してもよく、
その他種々の応用が可能である。螢光面形成時において
も沈降法のみならず、スラリー法による内部露光、外部
露光などにも応用できる。
In the above embodiment, the screen size was 29φ, but 20φ
, 60φ, etc., the same effect can be obtained by dividing the fluorescent surface portion. In addition to dividing the trench into 6 parts in a delta shape every 120' from the center of the pipe axis, it may also be divided vertically.
Various other applications are possible. When forming a fluorescent surface, it can be applied not only to the sedimentation method but also to internal exposure and external exposure using the slurry method.

以上詳述したように、この発明による多色表示型光源用
陰極線管によれば、ガラス管本体の螢光面部を分割する
手法により従来の単色光源用陰極線管を製造するのに比
較し螢光面形成時間および材料が半減できるばかりでな
く、巨大ディスプレイ装置においては解像度の向上によ
り、近距離用として屋内用−屋外広告用、移動用と幅広
く利用できる利点がある。
As described in detail above, the cathode ray tube for a multicolor display type light source according to the present invention has a method of dividing the fluorescent surface portion of the glass tube body to achieve a higher level of fluorescent light than a conventional cathode ray tube for a monochromatic light source. Not only can the surface forming time and materials be halved, but the improved resolution of a giant display device has the advantage of allowing it to be used in a wide range of applications, including short-distance use, indoor and outdoor advertising, and mobile use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光源用陰極線管の一例を示す断面図、第
2図(&) l (b) I (Q)は光源用陰極線管
の製造過程を説明するための断面または拡大した説明図
、第5図は単色表示型光源用陰極線管を巨大ディスプレ
イに配置した時の部分概略図、第4図は多色表示型光源
用陰極線管を巨大ディスプレイに配置した時の部分概略
図、第5図及び第6図はこの発明による多色表示型光源
用陰極線管の螢光面部1青法を示す説略図である。 (1)・・・ガラス管本体、(2)・・・フェース部、
(3)・・・螢光体、(6)・・・電子銃、輪・・・ガ
ラス板。 なお、図中、同一符号は同一または相当部分を示す。 代理人大岩増雄 第1図 第2図(b) 第3図 第4図 第5図 手続補正書(自発) 11、Jよ、リ 8..24゜ 1切T長宮殿 明の名利; 光源用陰極線管 正をする者 代表者片山仁八部 5、補正の対象 明細書の「発明の詳細な説明」の欄。 6、補正の内容 A、明細書: (1)第2頁第15行目、第7頁第2行目;「綿化水素
」とあるのを「弗化水素」と補正します。 (2)第3頁第14行目〜同頁第16行目、第3頁第1
9行口、第8頁第2行目〜同頁第4行目;「ラッカ」と
あるのを「ラッカー」と補正します。 (3)第5頁第16行目; 「スラリ法」とあるのを「スラリー法」と補正します。 (4)第5頁第20行目; 「ディスプレー」とあるのを「ディスプレイ」と補正し
ます。 (5)第8頁第3行目; 「スプレ」とあるのを「スプレー」と補正します。 (6)第9頁第5行目; 「30メ」とあるのを「36メ」と補正します。 (7)第9頁第1O行目; 「内部露光」とあるのを「内部露光」と補正します。 以上
Figure 1 is a cross-sectional view showing an example of a conventional cathode ray tube for light sources, and Figure 2 (&) l (b) I (Q) is a cross-sectional or enlarged explanatory view for explaining the manufacturing process of a cathode ray tube for light sources. , Fig. 5 is a partial schematic diagram when a cathode ray tube for a monochrome display type light source is arranged on a huge display, Fig. 4 is a partial schematic diagram when a cathode ray tube for a multicolor display type light source is arranged on a huge display, Fig. 5 6 are explanatory diagrams showing the blue method of the fluorescent surface portion 1 of the cathode ray tube for a multicolor display type light source according to the present invention. (1)...Glass tube body, (2)...Face part,
(3)...Fluorescent material, (6)...Electron gun, ring...Glass plate. In addition, in the figures, the same reference numerals indicate the same or corresponding parts. Agent Masuo Oiwa Figure 1 Figure 2 (b) Figure 3 Figure 4 Figure 5 Procedural amendment (voluntary) 11. J, Li 8. .. 24゜1-cut T Name and benefits of Akira Nagamiya; representative of the company that calibrates cathode ray tubes for light sources, Hitoshi Katayama, Part 5, ``Detailed Description of the Invention'' column of the specification subject to amendment. 6. Contents of amendment A. Specification: (1) Page 2, line 15, page 7, line 2; "Hydrogen cotton oxide" will be corrected to "hydrogen fluoride." (2) Page 3, line 14 to page 16, page 3, line 1
Starting line 9, page 8, line 2 to line 4 of the same page; "Rakka" is corrected to "lacquer." (3) Page 5, line 16; “Slurry method” should be corrected to “Slurry method.” (4) Page 5, line 20; Correct "display" to "display". (5) Page 8, line 3; Correct "spray" to "spray". (6) Page 9, line 5; Correct "30 meters" to "36 meters". (7) Page 9, line 1 O: Correct "internal exposure" to "internal exposure."that's all

Claims (1)

【特許請求の範囲】[Claims] (1)真空外囲器を414成するガラス管本体の少なく
とも一端フエース部に螢光面を有し、他端に電子銃を封
じてなる光源用陰極線管において、上記フェース部ガラ
ス内壁から他端側に向って延びる所定長さ部分を複数区
画に分割し、各分割されたフェース部をそれぞれ遮蔽し
て独立させたことを特徴とする光源用陰極線管。
(1) In a cathode ray tube for a light source, in which a glass tube body forming a vacuum envelope has a fluorescent surface on at least one end face portion and an electron gun is sealed at the other end, the other end is formed from the inner glass wall of the face portion. 1. A cathode ray tube for a light source, characterized in that a portion of a predetermined length extending toward the side is divided into a plurality of sections, and each divided face portion is shielded and made independent.
JP9364083A 1983-05-25 1983-05-25 Cathode-ray tube for light source Pending JPS59217941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9364083A JPS59217941A (en) 1983-05-25 1983-05-25 Cathode-ray tube for light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9364083A JPS59217941A (en) 1983-05-25 1983-05-25 Cathode-ray tube for light source

Publications (1)

Publication Number Publication Date
JPS59217941A true JPS59217941A (en) 1984-12-08

Family

ID=14087951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9364083A Pending JPS59217941A (en) 1983-05-25 1983-05-25 Cathode-ray tube for light source

Country Status (1)

Country Link
JP (1) JPS59217941A (en)

Similar Documents

Publication Publication Date Title
US5693438A (en) Method of manufacturing a flat panel field emission display having auto gettering
GB1036859A (en) Improvements in and relating to charge image storage apparatus
US3821009A (en) Method of aluminizing a cathode-ray tube screen
US3714490A (en) Luminescent screen comprising phosphor cores luminescent in first color and phosphor coatings luminescent in second color
JPS601735B2 (en) cathode ray tube
KR860001673B1 (en) Formation of fluorescent screen for cathode-ray tube
JPS59217941A (en) Cathode-ray tube for light source
US5723170A (en) Method of forming fluorescent screen of cathode ray tube
JPH11283530A (en) Cathode-ray tube and its manufacture
US4806823A (en) Method of manufacturing an electron beam tube and electron beam tube thus manufactured
JPS59214130A (en) Manufacture of cathode ray tube for light source
US4463075A (en) Process for forming conductive bridge in cathode ray tubes
US5820921A (en) Method of producing a cathode ray tube
JPS5835860A (en) Crt for light source
JPS6329947B2 (en)
JPS5897237A (en) Manufacture of light source cathode ray tube
JPS62229737A (en) Color picture tube
JPH08315731A (en) Manufacture of cathode ray tube
KR100250196B1 (en) Method for forming a fluorescent film
KR940007646B1 (en) Filming compound and fluorescent layer manufacturing method using it
JPS636980B2 (en)
JPH08293251A (en) Preparation of fluorescent film of color cathode-ray tube
JPS6084737A (en) Production of cathode-ray tube for light source
JPS58214268A (en) Cathode-ray tube for light source
JPS585946A (en) Manufacture of cathode-ray tube