JPS5835860A - Crt for light source - Google Patents

Crt for light source

Info

Publication number
JPS5835860A
JPS5835860A JP13522781A JP13522781A JPS5835860A JP S5835860 A JPS5835860 A JP S5835860A JP 13522781 A JP13522781 A JP 13522781A JP 13522781 A JP13522781 A JP 13522781A JP S5835860 A JPS5835860 A JP S5835860A
Authority
JP
Japan
Prior art keywords
phosphor
light source
cathode ray
particle size
ray tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13522781A
Other languages
Japanese (ja)
Other versions
JPH0311057B2 (en
Inventor
Seihachiro Hayashi
林 清八郎
Yasuo Ueha
上羽 保雄
Kotoji Fujiwara
藤原 琴二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13522781A priority Critical patent/JPS5835860A/en
Publication of JPS5835860A publication Critical patent/JPS5835860A/en
Publication of JPH0311057B2 publication Critical patent/JPH0311057B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J63/00Cathode-ray or electron-stream lamps
    • H01J63/02Details, e.g. electrode, gas filling, shape of vessel
    • H01J63/04Vessels provided with luminescent coatings; Selection of materials for the coatings

Abstract

PURPOSE:To suppress the light output reduction of a light source CRT by using a blue luminous material with a large particle size to produce a phosphor screen. CONSTITUTION:The inner surface of a glass tube body 1 is washed with caustic soda, fluorine acid, then pure water. Next, an aqueous solution of barium acetate of 0.05% is injected. Furthermore, a suspension which a blue luminous material (ZnS:Ag) 3 with an average particle size of 16mu is dispersed at 8mg/cm<2> relative to the face area in water glass with a SiO2 density of 0.7% is injected, and it is left tranquil for 15-20min to allow a phospor 3 to precipitate. Next, after the phosphor 3 has precipitated, the supernatant fluid 11 is discharged by an inclination of the tube body 1, and the phosphor 3 is dried with the dehumidified air to complete its coating. A subsequent process is quite the same as the conventional method. The light output reduction of the blue luminous material (ZnS:Ag) with a large particle size thus coated as mentioned above is suppressed to about 30% in 1000hr compared with that of conventional ones.

Description

【発明の詳細な説明】 この発明はディスプレイ装置などに一月される光源用陰
極線管に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cathode ray tube for a light source used in display devices and the like.

ディスプレイの多様化に伴い、巨大ディスプレイ装置が
種々開発されている。カラー表示や動画の再現に適し九
方法として、三原色の絵素一つ一つを1本の陰極線管に
おきかえ数万本〜数十万本の陰極線管を用いて行なう方
法がある。このような陰極線管は光源用陰極線管と呼ば
れ、いわば発光素子とも表現できるものである。その構
造の一例を第1図に示す。
With the diversification of displays, various giant display devices have been developed. Nine methods suitable for color display and video reproduction include replacing each picture element of the three primary colors with a single cathode ray tube, using tens of thousands to hundreds of thousands of cathode ray tubes. Such a cathode ray tube is called a light source cathode ray tube, and can also be described as a light emitting element. An example of its structure is shown in FIG.

同図において、円筒状のガラス製の管本体(1)のフェ
ース部(2)には緑、實もしくは赤に発光するいずれか
一種の螢光体(3)が被着されている。前記螢光体(3
)には、いわゆるメタルバックと称するアルミニウムの
蒸着膜(4)が施されておシ、さらに導通を目的とする
内部塗装膜としてグラファイト膜(5)が塗布されてい
る。(6)は信号に対応して電子を発射し螢光体<a)
を発光させるための電子銃である。
In the figure, a face portion (2) of a cylindrical glass tube body (1) is coated with one type of phosphor (3) that emits green, real or red light. The phosphor (3
) is coated with a vapor-deposited aluminum film (4) called a metal back, and is further coated with a graphite film (5) as an internal coating film for the purpose of electrical conduction. (6) is a fluorescent material <a) that emits electrons in response to a signal.
This is an electron gun for emitting light.

つぎにこのような光源用陰極線管の製造方法を第2図(
、k)〜(9により説明する。
Next, the manufacturing method of such a cathode ray tube for light source is shown in Figure 2 (
, k) to (9).

まず螢光体(3)を被着する管本体a)の内面を、弗化
水素酸水溶液、水酸化ナトリウム水溶液、そして純水を
用いて洗浄する。しかる後、たとえば、電解質として酢
酸バリウムの水溶液を所定量注入した後、接着剤として
の水ガラスの水溶液に所定の螢光体(8)を分散させ九
懸濁液を注入し、所定時間静置して螢光体(3)を沈澱
させる。螢光体(3)が沈澱した後、第2図に)のよう
に管本体α)を傾動させて上澄液(II)を排出し、脱
湿エヤーにて乾燥させて螢光体(3)の被着を完了する
First, the inner surface of the tube body a) on which the phosphor (3) is attached is cleaned using a hydrofluoric acid aqueous solution, a sodium hydroxide aqueous solution, and pure water. After that, for example, after injecting a predetermined amount of an aqueous solution of barium acetate as an electrolyte, a suspension of a predetermined phosphor (8) dispersed in an aqueous solution of water glass as an adhesive is injected, and the mixture is allowed to stand for a predetermined period of time. to precipitate the phosphor (3). After the phosphor (3) is precipitated, the tube body α) is tilted as shown in Fig. 2) to drain the supernatant liquid (II), dried with a dehumidifying air, and the phosphor (3) is deposited. ) completes the deposition.

このような方法は一般に沈降法と呼ばれている。Such a method is generally called a sedimentation method.

螢光体(3)を被着した後、前記メタルバックを行なう
が、螢光体(3) K [接アルミニウムの蒸着を行な
うと連続し九蒸着皮膜が形成されないので、フィルミン
グと称して螢光体(3)の上にごく薄い有機皮膜を形成
した後にアルミニウムを蒸着している。
After the phosphor (3) has been deposited, the metal backing is performed, but since a continuous vapor-deposited film is not formed when the phosphor (3) is vapor-deposited with aluminum, it is called filming. After forming a very thin organic film on the light body (3), aluminum is vapor-deposited.

すなわち、まず螢光面を純水などで湿潤状態とし螢光体
(3)の大部分を第z@CB)に示すように水膜(7)
で覆った後、アクリル樹脂を主成分とするトルエン、酢
酸エチル等の有機溶剤ラッカーを吹きつけると水膜(7
)の上にごく薄いラッカー皮膜(8)が形成される。続
いて、不必要な領域のラッカー皮膜(8)を、第2図(
C) K示すようにノズル(9)から一定圧力で流出す
る純水Q□によって除去する。これは螢光体(3)の被
着されていない領域にラッカー皮ME(8)を形成する
と、この領域に蒸着されたアルミニウム膜が後のベーキ
ング工程で、いわゆる火ぶくれをうものである。つぎに
脱湿エヤーなどで螢光面を乾燥し、所定領域にグラファ
イト膜(5)を塗布してこれも同様に乾燥する。最後に
アルミニウムの蒸着を行ないアルミニウム蒸着膜(4)
を形成した後、螢光面形成時に使用した有機質材料を約
400℃のベーキングによシ分解除去して螢光面の形成
を完了する。
That is, first, the fluorescent surface is wetted with pure water, etc., and most of the fluorescent material (3) is covered with a water film (7) as shown in No. z@CB).
If you spray an organic solvent lacquer such as toluene or ethyl acetate whose main component is acrylic resin, a water film (7
) on which a very thin lacquer film (8) is formed. Next, remove the lacquer film (8) from unnecessary areas as shown in Figure 2 (
C) Removed by pure water Q□ flowing out from the nozzle (9) at a constant pressure as shown in K. This is because when the lacquer skin ME (8) is formed on the area where the phosphor (3) is not coated, the aluminum film deposited on this area will blister during the subsequent baking process. . Next, the fluorescent surface is dried using dehumidifying air or the like, and a graphite film (5) is applied to a predetermined area and dried in the same manner. Finally, aluminum is vapor-deposited to form an aluminum vapor-deposited film (4).
After forming the fluorescent surface, the organic material used in forming the fluorescent surface is decomposed and removed by baking at about 400° C. to complete the formation of the fluorescent surface.

螢光面の形成を完了した管本体ωには、さらに電子銃(
6)を溶着封止し、しかる後、管本体内部を真空に排気
して電子銃(6)の活性化を行なって第1図に示す完成
品となっている。
An electron gun (
6) is welded and sealed, and then the inside of the tube body is evacuated to activate the electron gun (6), resulting in the finished product shown in FIG.

従来このような方法で製造された光源用陰極線管の螢光
体は銀付活硫化亜鉛螢光体で、この時の光出力は113
図曲11aに示すように1000時間で約60%の低下
が6つ九。
The phosphor of cathode ray tubes for light sources conventionally manufactured by this method is a silver-activated zinc sulfide phosphor, and the light output at this time is 113
As shown in Figure 11a, there is a decrease of about 60% in 1000 hours.

いま、仮に力2−巨大デイスプレイ装置に、青色発光の
光源用陰極線管が取9つけられていたとすると、この青
色光源用陰極線管は緑および赤色のものに比べて光出力
低下が著しいため経時的に再現色のバランスがくずれて
くる。当然これを元の正しい色あい、すなわち元の光出
力に戻す操作が行なわれる。その方法としては電子銃(
6)からの電子照射量を増やすものである。このような
方法では刺激量の増加によシ光出力はさらに加速されて
低下し、ついにはカラー巨大ディスプレイ装置から青色
光源用陰極線管のみを早期に交換する必要が6つ九、す
なわち従来のものでは光源用陰極線管として最も重要な
光出力の低下という重大な欠点を有していた。
Now, suppose that a blue-emitting cathode ray tube is installed in a gigantic display device, but the light output of this blue light source cathode ray tube will decrease significantly over time compared to green and red ones. The balance of the reproduced colors becomes unbalanced. Naturally, an operation is performed to restore the original correct color tone, that is, the original light output. The method is an electron gun (
This increases the amount of electron irradiation from 6). In such a method, the light output decreases at an even faster rate due to the increase in the amount of stimulation, and eventually only the cathode ray tube for the blue light source from the color giant display device needs to be replaced at an early stage, i.e., compared to the conventional one. However, this cathode ray tube had the most important drawback as a light source: a decrease in light output.

この発明は上記の欠点をなくするためKなされたもので
、光出力の低下の少ない光源用陰極線管を提供すること
を目的とするものである。
The present invention has been made to eliminate the above-mentioned drawbacks, and an object of the present invention is to provide a cathode ray tube for a light source with less reduction in optical output.

すなわち、この発明を要約すれば青色発光体の粒子径を
大きくして螢光面を製造し、光源用陰極線管の光出力低
下を少なくしたものであるー発明者らは青色の光源用陰
極線管の光出力の劣化について、陰極線管としての特徴
、すなわち比較的低電圧の約8KVの加速電圧で走査表
−のスタテイクビームで刺激されること、また高電流密
度のため螢光面の温度が高くなること等を考慮し、螢光
面としての銀付活硫化亜鉛螢光体の特性、およびその被
着方法について種々実験した結果、最終的に螢光体の粒
子径を従来のものよシ極度に大きくすることによって光
出力の劣化を軽減できることを見いだした。従来のもの
の螢光体(3)の平均粒子径紘約10μでその塗布量t
isIIP/dであるが、この発明では20μ程度のも
のが良好であった。しかしながら製造工程の歩留シ完成
管の品質により夾用的には約16μ程度でその塗布量は
811F/dのものが望ましいものである。またこの発
明の効果はつぎのように説明できる。すなわち比較的低
電圧で用いるこの種の光源用陰極線管の場合、螢光体(
3)の表面で電子エネルギーが消費されるため、表面の
特性が重要となる。一方螢光体(3)は粒径の増大とと
もに螢光体(3)の結晶性、表面近くの欠陥が少なくな
p1表面近くの特性が使用条件に適し九ものとなる結果
、光出力の劣化に対し好影替するものと考えられる。
In other words, to summarize this invention, the particle size of the blue light emitter is increased to produce a fluorescent surface, thereby reducing the drop in light output of a cathode ray tube for a light source.The inventors have developed a cathode ray tube for a blue light source. The deterioration of the optical output of the cathode ray tube is due to its characteristics as a cathode ray tube, namely, that it is stimulated by the static beam of the scanning table at a relatively low accelerating voltage of about 8 KV, and that the temperature of the fluorescent surface decreases due to the high current density. As a result of various experiments on the characteristics of the silver-activated zinc sulfide phosphor as a fluorescent surface and its adhesion method, we finally decided to change the particle size of the phosphor from that of conventional ones. It has been found that the deterioration of optical output can be alleviated by making it extremely large. The average particle size of the conventional phosphor (3) was approximately 10μ, and the amount of coating was t.
Regarding isIIP/d, in the present invention, a value of about 20μ was good. However, depending on the yield of the manufacturing process and the quality of the finished tube, it is desirable that the coating amount be about 16 μm and the coating amount should be 811 F/d. Further, the effects of this invention can be explained as follows. In other words, in the case of this type of light source cathode ray tube used at relatively low voltage, the phosphor (
3) Since electron energy is consumed on the surface, the characteristics of the surface are important. On the other hand, as the particle size of the phosphor (3) increases, the crystallinity of the phosphor (3) and the characteristics near the p1 surface, which have fewer defects near the surface, become suitable for the usage conditions, resulting in a decrease in light output. It is thought that the situation will change for the better.

以下、この発明の一実施例を詳細に説明する。Hereinafter, one embodiment of the present invention will be described in detail.

螢光面の製造方法としては従来の方法とほぼ同等である
が、さらに詳細に第2図で順を追って説明する。まずガ
ラス製管本体(1)を苛性ソーダ、弗酸、そして純水を
用い内面を洗浄する。つぎに酢酸バリウムの水溶液を0
.05%に唸るように注入する。さらに810.濃度が
0.7%に調整された水ガラス、たとえばオーカシール
(東京応化匡製)の水溶液に平均粒子径16μの青色発
光体(Zn8:ムg) (3)をフェース面積に対し、
8wIg/d量分散させ九懸濁液を注入し15分〜20
分間靜装して螢光体(3)を沈澱させる。この状態は第
2図に)に示すとうりである。つぎに螢光体(3)が沈
澱したあと、管本体(1)の傾動により上澄液(ロ)を
排出し脱湿エヤーにて乾燥して螢光体(3)の被着を完
了する。以下、ラッカーフィルきング工程、アルミパッ
ク工程。
Although the method for manufacturing the fluorescent surface is almost the same as the conventional method, it will be explained in more detail step by step with reference to FIG. First, the inner surface of the glass tube body (1) is cleaned using caustic soda, hydrofluoric acid, and pure water. Next, add an aqueous solution of barium acetate to 0
.. Inject it to 05% so that it groans. Further 810. A blue luminescent material (Zn8: mg) (3) with an average particle size of 16 μm is added to an aqueous solution of water glass, such as Orca Seal (manufactured by Tokyo Ohkatai), whose concentration is adjusted to 0.7%, relative to the face area.
Disperse 8wIg/d amount and inject nine suspensions for 15 to 20 minutes.
Let stand for a minute to precipitate the phosphor (3). This state is as shown in Figure 2). Next, after the phosphor (3) is precipitated, the supernatant liquid (b) is discharged by tilting the tube body (1) and dried with dehumidifying air to complete the deposition of the phosphor (3). . Below are the lacquer filling process and aluminum packing process.

ベーキング処理工程等は従来法とまったく同方法である
0以上のようにして塗布された大粒子径青色発光体(Z
n8:ムg)は第3図曲線すに示すように、従来のもの
に比べ光出力の低下は1000時間で約30%に軽減し
た。
The baking treatment process is exactly the same as the conventional method.
As shown in the curve in FIG. 3, the decrease in optical output of n8:mg) was reduced to about 30% in 1000 hours compared to the conventional one.

この実施例では直径1インチの円筒状管本体(1)に対
する沈降法について説明し九が、その他線光性結合剤を
含むスラリー液、単に有機バインダーを含むスラリー液
による被着方法によるものにでも、この発明による螢光
体、すなわち13μ〜20μのZn8 : ムgからな
る発光体を用いることにより、光出力の低下を軽減させ
ることができる。
This example describes the sedimentation method for a cylindrical tube body (1) with a diameter of 1 inch, but it can also be applied to other deposition methods using a slurry liquid containing a photosensitive binder or simply a slurry liquid containing an organic binder. By using the phosphor according to the present invention, that is, the phosphor consisting of 13μ to 20μ Zn8:mug, it is possible to reduce the decrease in light output.

勿論、螢光面の面積の大小に関係なく使用することがで
きる。
Of course, it can be used regardless of the size of the area of the fluorescent surface.

以上のように、この発明による光源用陰極線管によれば
、青色発光体の光出力の低下が少なくなり、カラー巨大
ディスプレイ等に用いた時、画像の色バランスがくずれ
ることなく長時間安定した画像を再現できるうえ、不良
管の交換頻度が減シ、維持コストが減る等の優れた効果
を有している。
As described above, according to the cathode ray tube for light source according to the present invention, the decrease in the light output of the blue light emitter is reduced, and when used in a large color display, etc., the color balance of the image is not disrupted and the image is stable for a long time. It has excellent effects such as reducing the frequency of replacing defective pipes and reducing maintenance costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光源用陰極線管の一例を示す断面図、第2図(
ト)〜(C)は光源用陰極線管の製造方法の説明図、第
3図は従来の光源用陰極線管とこの発明による光源用陰
極線管の光出力を比較する丸めの特性図である。 (1)・・・管本体、(2)・・・フェース部、(3)
・・・螢光体層、(6)・・・電子銃。 なお図中、同一符号は同一もしくは和尚部分を示す。 代理人 葛野信−(外1名) @2図(A)
Figure 1 is a sectional view showing an example of a cathode ray tube for a light source, and Figure 2 (
G) to (C) are explanatory diagrams of a method of manufacturing a cathode ray tube for a light source, and FIG. 3 is a rounded characteristic diagram comparing the light output of a conventional cathode ray tube for a light source and a cathode ray tube for a light source according to the present invention. (1)...Pipe body, (2)...Face part, (3)
...phosphor layer, (6) ...electron gun. In the figures, the same reference numerals indicate the same or similar parts. Agent Makoto Kuzuno (1 other person) @Figure 2 (A)

Claims (1)

【特許請求の範囲】[Claims] (X>真空外囲器を構成するガラス製の管本体の少なく
ともフェース部に螢光面を有し、内部に電子銃を封止し
てなる光源用陰極線管において、前記螢光面の實色発光
層の主成分は銀付活硫化亜鉛蟹光体であって、その平均
粒子径を13μ以上20μ以下に設定したことを特徴と
する光源用陰極線管・
(X> In a cathode ray tube for a light source, which has a fluorescent surface on at least the face of a glass tube body constituting a vacuum envelope and has an electron gun sealed inside, the actual color of the fluorescent surface A cathode ray tube for a light source, characterized in that the main component of the light emitting layer is silver-activated zinc sulfide light material, and the average particle diameter thereof is set to 13μ or more and 20μ or less.
JP13522781A 1981-08-27 1981-08-27 Crt for light source Granted JPS5835860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13522781A JPS5835860A (en) 1981-08-27 1981-08-27 Crt for light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13522781A JPS5835860A (en) 1981-08-27 1981-08-27 Crt for light source

Publications (2)

Publication Number Publication Date
JPS5835860A true JPS5835860A (en) 1983-03-02
JPH0311057B2 JPH0311057B2 (en) 1991-02-15

Family

ID=15146780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13522781A Granted JPS5835860A (en) 1981-08-27 1981-08-27 Crt for light source

Country Status (1)

Country Link
JP (1) JPS5835860A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0750331A2 (en) * 1995-06-21 1996-12-27 Sony Corporation Method of forming fluorescent screen of cathode ray tube
JPWO2005059949A1 (en) * 2003-12-17 2007-07-12 学校法人日本大学 Field emission point light source lamp

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55126959A (en) * 1979-03-24 1980-10-01 Mitsubishi Electric Corp Cathode ray tube for display unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55126959A (en) * 1979-03-24 1980-10-01 Mitsubishi Electric Corp Cathode ray tube for display unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0750331A2 (en) * 1995-06-21 1996-12-27 Sony Corporation Method of forming fluorescent screen of cathode ray tube
EP0750331A3 (en) * 1995-06-21 1997-05-28 Sony Corp Method of forming fluorescent screen of cathode ray tube
JPWO2005059949A1 (en) * 2003-12-17 2007-07-12 学校法人日本大学 Field emission point light source lamp

Also Published As

Publication number Publication date
JPH0311057B2 (en) 1991-02-15

Similar Documents

Publication Publication Date Title
US3114065A (en) Color image reproducer
US2233786A (en) Fluorescent screen assembly and method of manufacture
US5693438A (en) Method of manufacturing a flat panel field emission display having auto gettering
US3525679A (en) Method of electrodepositing luminescent material on insulating substrate
US3697301A (en) Process of forming cathode ray tube screens to utilize the luminous efficiency of the phosphor material
US3714490A (en) Luminescent screen comprising phosphor cores luminescent in first color and phosphor coatings luminescent in second color
US2137118A (en) Fluorescent screen
JPH0589800A (en) Green luminous projection type cathode-ray tube
JPS5835860A (en) Crt for light source
US3904502A (en) Method of fabricating a color display screen employing a plurality of layers of phosphors
US3589791A (en) Processing of cathode-ray tubes
GB1263668A (en) Cathode ray tube bistable storage apparatus
US2178238A (en) Electric discharge device
EP0750331B1 (en) Method of forming fluorescent screen of cathode ray tube
US4463075A (en) Process for forming conductive bridge in cathode ray tubes
JPS58152350A (en) Phosphor screen for crt
US2373752A (en) Picture transmitter tube mosaic screen
US2833948A (en) Cathode ray tube screen
US4204136A (en) Dual layer phosphor screen for cathode ray tube
GB1173989A (en) Improvements in or relating to Electron Image Storage and Display Devices
JPS6340010B2 (en)
JPS59214130A (en) Manufacture of cathode ray tube for light source
JPS59217941A (en) Cathode-ray tube for light source
US4832646A (en) Aging process for cathode ray tubes
JPS636980B2 (en)