JPH0311057B2 - - Google Patents

Info

Publication number
JPH0311057B2
JPH0311057B2 JP56135227A JP13522781A JPH0311057B2 JP H0311057 B2 JPH0311057 B2 JP H0311057B2 JP 56135227 A JP56135227 A JP 56135227A JP 13522781 A JP13522781 A JP 13522781A JP H0311057 B2 JPH0311057 B2 JP H0311057B2
Authority
JP
Japan
Prior art keywords
phosphor
cathode ray
ray tube
light source
phosphor screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56135227A
Other languages
Japanese (ja)
Other versions
JPS5835860A (en
Inventor
Seihachiro Hayashi
Yasuo Ueha
Kotoji Fujiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13522781A priority Critical patent/JPS5835860A/en
Publication of JPS5835860A publication Critical patent/JPS5835860A/en
Publication of JPH0311057B2 publication Critical patent/JPH0311057B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J63/00Cathode-ray or electron-stream lamps
    • H01J63/02Details, e.g. electrode, gas filling, shape of vessel
    • H01J63/04Vessels provided with luminescent coatings; Selection of materials for the coatings

Description

【発明の詳細な説明】 この発明はデイスプレイ装置などに使用される
光源用陰極線管に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cathode ray tube for a light source used in display devices and the like.

デイスプレイの多様化に伴い、巨大デイスプレ
イ装置が種々開発されている。カラー表示や動画
の再現に適した方法として、三原色の絵素の一つ
一つを1本の陰極線管におきかえ数万本〜数十万
本の陰極線管を用いて行なう方法がある。このよ
うな陰極線管は光源用陰極線管と呼ばれ、いわば
発光素子とも表現できるのである。その構造の一
例を第1図に示す。
With the diversification of displays, various giant display devices have been developed. A method suitable for color display and moving image reproduction is to replace each of the three primary color picture elements with a single cathode ray tube, using tens of thousands to hundreds of thousands of cathode ray tubes. Such a cathode ray tube is called a light source cathode ray tube, and can also be described as a light emitting device. An example of its structure is shown in FIG.

同図において、円筒状のガラス製の管本体1の
フエース部2には緑、青もしくは赤に発光するい
ずれか一種の螢光体3が被着されている。前記螢
光体3には、いわゆるメタルパツクと称するアル
ミニウムの蒸着膜4が施されており、さらに導通
を目的とする内部塗装膜としてグラフアイト膜5
が塗布されている。6は信号に対応して電子を発
射し螢光体3を発光させるための電子銃である。
In the figure, a phosphor 3 of one type that emits green, blue, or red light is adhered to the face portion 2 of a cylindrical glass tube body 1. The phosphor 3 is coated with an aluminum vapor-deposited film 4 called a metal pack, and is further coated with a graphite film 5 as an internal coating film for the purpose of conduction.
is coated. Reference numeral 6 denotes an electron gun for emitting electrons in response to a signal to cause the phosphor 3 to emit light.

つぎにこのような光源用陰極線管の製造方法を
第2図A〜Cにより説明する。
Next, a method of manufacturing such a cathode ray tube for a light source will be explained with reference to FIGS. 2A to 2C.

まず螢光体3を披着する管本体1の内面を、弗
化水素酸水溶液、水酸化ナトリウム水溶液、そし
て純水を用いて洗浄する。しかる後、たとえば、
電解質として酢酸バリウムの水溶液を所定量注入
した後、接着剤としての水ガラスの水溶液に所定
の螢光体3を分散させた懸濁液を注入し、所定時
間静置して螢光体3を沈澱させる。螢光体3が沈
澱した後、第2図Aのように管本体1を傾動させ
て上澄液11を排出し、脱湿エヤーにて乾燥させ
て螢光体3の披着を完了する。
First, the inner surface of the tube body 1 on which the phosphor 3 is attached is cleaned using a hydrofluoric acid aqueous solution, a sodium hydroxide aqueous solution, and pure water. After that, for example,
After injecting a predetermined amount of an aqueous solution of barium acetate as an electrolyte, a suspension of a predetermined phosphor 3 dispersed in an aqueous solution of water glass as an adhesive is injected, and the phosphor 3 is left standing for a predetermined period of time. Let it settle. After the phosphor 3 is precipitated, the tube body 1 is tilted as shown in FIG. 2A to discharge the supernatant liquid 11 and dried with a dehumidifying air to complete the deposition of the phosphor 3.

このような方法は一般に沈降法と呼ばれてい
る。螢光体3を披着した後、前記メタルパツクを
行なうが、螢光体3に直接アルミニウムの蒸着を
行なうと連続した蒸着皮膜が形成されないので、
フイルミングと称して螢光体3の上にごく薄い有
機皮膜を形成した後にアルミニウムを蒸着してい
る。すなわち、まず螢光面を純水などで湿潤状態
とし螢光体3の大部分を第2図Bに示すように水
膜7で覆つた後、アクリル樹脂を主成分とするト
ルエン、酢酸エチル等の有機溶剤ラツカーを吹き
つけると水膜7の上のごく薄いラツカー皮膜8が
形成される。続いて、不必要な領域のラツカー皮
膜8を、第2図Cに示すようにノズル9から一定
圧力で流出する純水10によつて除去する。これ
ば螢光体3の披着されていない領域にラツカー皮
膜8を形成すると、この領域に蒸着されたアルミ
ニウム膜が後のベーキング工程で、いわゆる火ぶ
くれを起しガラス壁からはがれることを防ぐため
に行なうものである。つぎに脱湿エヤーなどで螢
光面を乾燥し、所定領域にグラフアイト膜5を塗
布してこれも同様に乾燥する。最後にアルミニウ
ムの蒸着を行ないアルミニウム蒸着膜4を形成し
た後、螢光面形成時に使用した有機質材料を約
400℃のベーキングにより分解除去して螢光面の
形成を完了する。
Such a method is generally called a sedimentation method. After the phosphor 3 is deposited, the metal pack is applied, but if aluminum is vapor-deposited directly onto the phosphor 3, a continuous vapor-deposited film will not be formed.
After forming a very thin organic film on the phosphor 3, which is called filming, aluminum is vapor-deposited. That is, first, the phosphor surface is wetted with pure water or the like, and most of the phosphor 3 is covered with a water film 7 as shown in FIG. When the organic solvent lacquer is sprayed, a very thin lacquer film 8 is formed on the water film 7. Subsequently, the lacquer film 8 in unnecessary areas is removed by pure water 10 flowing out from the nozzle 9 at a constant pressure, as shown in FIG. 2C. By forming the lacquer film 8 on the undeposited area of the phosphor 3, the aluminum film deposited on this area can be prevented from blistering and peeling off from the glass wall during the subsequent baking process. This is done in order to support people. Next, the fluorescent surface is dried using dehumidifying air or the like, and a graphite film 5 is applied to a predetermined area and dried in the same manner. Finally, after aluminum is vapor-deposited to form the aluminum vapor-deposited film 4, the organic material used in forming the fluorescent surface is removed.
It is decomposed and removed by baking at 400°C to complete the formation of the fluorescent surface.

螢光面の形成を完了した管本体1には、さらに
電子銃6を溶着封止し、しかる後、管本体内部を
真空に排気して電子銃6の活性化を行なつて第1
図に示す完成品となつている。
An electron gun 6 is further welded and sealed to the tube body 1 on which the fluorescent surface has been formed, and then the inside of the tube body is evacuated to activate the electron gun 6.
The finished product is shown in the figure.

従来このような方法で製造された青色光源用陰
極線管の螢光体は銀付活硫化亜鉛螢光体で、この
時の光出力は第3図曲線aに示すように1000時間
で約60%の低下があつた。
The phosphor of cathode ray tubes for blue light sources conventionally manufactured by this method is a silver-activated zinc sulfide phosphor, and the light output at this time decreases by about 60% in 1000 hours as shown in curve a in Figure 3. There was a decrease in

いま、仮にカラー巨大デイスプレイ装置に、青
色発光の光源用陰極線管が取りつけられていたと
すると、この青色光源用陰極線管は緑および赤色
のものに比べて光出力低下が著しいため経時的に
再現色のバランスがくずれてくる。当然これを元
の正しい色あい、すなわち元の光出力に戻す操作
が行なわれる。その方法としては電子銃6からの
電子照射量を増やすものである。このような方法
では刺激量の増加により光出力はさらに加速され
て低下し、ついにはカラー巨大デイスプレイ装置
から青色光源用陰極線管のみを早期に交換する必
要があつた。すなわち従来のものでは光源用陰極
線管として最も重要な光出力の低下という重大な
欠点を有していた。
Now, if a giant color display device is equipped with a blue-emitting cathode ray tube as a light source, the light output of this cathode ray tube as a blue light source will drop significantly compared to green and red ones, so the color reproduction will deteriorate over time. The balance is lost. Naturally, an operation is performed to restore the original correct color tone, that is, the original light output. The method is to increase the amount of electron irradiation from the electron gun 6. In this method, the light output further accelerates and decreases as the amount of stimulation increases, and it becomes necessary to replace only the cathode ray tube for the blue light source in the large color display device at an early stage. In other words, the conventional cathode ray tube had a serious drawback of a decrease in light output, which is the most important factor for a cathode ray tube for a light source.

この発明は上記の欠点をなくするためになされ
たもので、光出力の低下の少ない青色光源用陰極
線管を提供することを目的とするものである。
The present invention has been made to eliminate the above-mentioned drawbacks, and an object of the present invention is to provide a cathode ray tube for a blue light source with less reduction in optical output.

すなわち、この発明を要約すれば青色発光体の
粒子径を大きくして螢光面を製造し、光源用陰極
線管の光出力低下を少なくしたものである。発明
者らは青色の光源用陰極線管の光出力の劣化につ
いて、陰極線管としての特徴、すなわち比較的低
圧の約8KVの加速電圧で走査なしのスタテイク
ビームで刺激されること、また高電流密度のため
螢光面の温度が高くなること等を考慮し、螢光面
としての銀付活硫化亜鉛螢光体の特性、およびそ
の披着方法について種々実験した結果、最終的に
螢光体の粒子径を従来のものより極度に大きくす
ることによつて光出力の劣化を軽減できることを
見いだした。従来のものの螢光体3の平均粒子径
は約10μでその塗布量は5mg/cm2であるが、この
発明では20μ程度のものが良好であつた。なお、
粒子径のバラツキはほぼ±4μである。しかしな
がら製造工程の歩留まり、すなわち、蛍光体の粒
子径が大きくなると塗布工程において、塗布不良
を生じ実用的でなく、完成管の総合品質として実
用的には約16μ程度でその塗布量は約8mg/cm2
まり6ないし10mg/cm2の範囲で適用するのが望ま
しいものである。粒子径16μ以下では光出力の劣
化の軽減に対する貢献度が低い。またこの発明の
効果はつぎのように説明できる。すなわち比較的
低電圧で用いるこの種の光源用陰極線管の場合、
螢光体3の表面で電子エネルギーが消費されるた
め、表面の特性が重要となる。一方螢光体3は粒
径の増大とともに螢光体3の結晶性、表面近くの
欠陥が少なくなり、表面近くの特性が使用条件に
適したものとなる結果、光出力の劣化に対し好影
響するものと考えられる。
That is, the present invention can be summarized as follows: by increasing the particle size of the blue light emitter to produce a fluorescent surface, the reduction in light output of a cathode ray tube for a light source is reduced. The inventors investigated the deterioration of the light output of the blue light source cathode ray tube due to its characteristics as a cathode ray tube, namely, that it is stimulated by a static beam without scanning at a relatively low accelerating voltage of approximately 8 KV, and that it is stimulated by a static beam without scanning, and also has a high current density. As a result of various experiments on the characteristics of the silver-activated zinc sulfide phosphor as a fluorescent surface and its deposition method, we finally determined that the temperature of the phosphor surface would be high. It has been found that the deterioration of optical output can be reduced by making the particle size extremely larger than conventional ones. The conventional phosphor 3 has an average particle size of about 10 .mu.m and the coating amount is 5 mg/ cm.sup.2 , but in the present invention, a particle size of about 20 .mu.m is good. In addition,
The variation in particle size is approximately ±4μ. However, the yield rate of the manufacturing process, that is, when the particle size of the phosphor increases, coating defects occur in the coating process, making it impractical.The overall quality of the finished tube is approximately 16μ, and the coating amount is approximately 8mg/ It is desirable to apply it in a range of 6 to 10 mg/cm 2 , or 6 to 10 mg/cm 2 . Particles with a diameter of 16μ or less have a low contribution to reducing optical output deterioration. Further, the effects of this invention can be explained as follows. In other words, in the case of this type of light source cathode ray tube used at relatively low voltage,
Since electronic energy is consumed on the surface of the phosphor 3, the characteristics of the surface are important. On the other hand, as the particle size of the phosphor 3 increases, the crystallinity of the phosphor 3 and defects near the surface decrease, and the characteristics near the surface become suitable for the usage conditions, which has a positive effect on the deterioration of optical output. It is considered that

以下、この発明の一実施例を詳細に説明する。
螢光面の製造方法としては従来の方法とほぼ同等
であるが、さらに詳細に第2図で順を追つて説明
する。まずガラス製管本体1を苛性ソーダ、弗
酸、そして純水を用い内面を洗浄する。つぎに酢
酸バリウムの水溶液を0.05%になるように注入す
る。さらにSiO2濃度が0.7%に調整された水ガラ
ス、たとえばオーカシール(東京応化製)の水
溶液に平均粒子径16μの青色発光体(Zns:Ag)
3をフエース面積に対し、8mg/cm2量分散させた
懸濁液を注入し15分〜20分間静置して螢光体3を
沈澱させる。この状態は第2図Aに示すとうりで
ある。つぎに螢光体3が沈澱したあと、管本体1
の傾動により上澄液11を排出し脱湿エヤーにて
乾燥して螢光体3の披着を完了する。以下、ラツ
カーフイルミング工程、アルミパツク工程、ベー
キング処理工程等は従来法とまつたく同方法であ
る。以上のようにして塗布された大粒子径青色発
光体(Zns:Ag)は第3図曲線bに示すように、
従来のものに比べ光出力の低下は1000時間で約30
%に軽減した。曲線cは平均粒子径20μの場合を
示す。
Hereinafter, one embodiment of the present invention will be described in detail.
Although the method for manufacturing the fluorescent surface is almost the same as the conventional method, it will be explained in more detail step by step with reference to FIG. First, the inner surface of the glass tube body 1 is cleaned using caustic soda, hydrofluoric acid, and pure water. Next, an aqueous solution of barium acetate is injected to a concentration of 0.05%. Furthermore, a blue light emitter (Zns:Ag) with an average particle size of 16μ is added to an aqueous solution of water glass with an SiO 2 concentration adjusted to 0.7%, such as Orka Seal (manufactured by Tokyo Ohka).
A suspension of phosphor 3 dispersed in an amount of 8 mg/cm 2 per face area is injected and allowed to stand for 15 to 20 minutes to precipitate phosphor 3. This state is as shown in FIG. 2A. Next, after the phosphor 3 is precipitated, the tube body 1
The supernatant liquid 11 is discharged by tilting and dried with dehumidifying air, completing the deposition of the phosphor 3. Hereinafter, the lacquer film process, aluminum packing process, baking process, etc. are exactly the same as the conventional method. The large particle diameter blue luminescent material (Zns:Ag) coated as described above has the following properties as shown in curve b in Figure 3.
Compared to conventional models, the light output decreases by about 30% per 1000 hours.
%. Curve c shows the case where the average particle diameter is 20μ.

この実施例では直径1インチの円筒状管本体1
に対する沈降法について説明したが、その他感光
性結合剤を含むスラリー液、単に有機バインダー
を含むスラリー液による被着方法によるものにで
も、この発明による螢光体、すなわち6μ〜20μの
Zns:Agからなる発光体を用いることにより、表
面層の良好な蛍光体を使用でき、長時間の電子ビ
ームの照射による発光出力の低下を軽減させるこ
とができる。
In this embodiment, the cylindrical tube body 1 has a diameter of 1 inch.
The phosphor of the present invention, i.e., 6μ to 20μ, may be applied to other deposition methods using a slurry containing a photosensitive binder or simply a slurry containing an organic binder.
By using a light emitter made of Zns:Ag, it is possible to use a phosphor with a good surface layer, and it is possible to reduce the reduction in light emission output due to long-term electron beam irradiation.

勿論、螢光面の面積の大小に関係なく使用するこ
とができる。
Of course, it can be used regardless of the size of the area of the fluorescent surface.

以上のように、この発明による光源用陰極線管
によれば、青色発光体の光出力の低下が少なくな
り、カラー巨大デイスプレイ等に用いた時、画像
の色バランスがくずれることなく長時間安定した
画像を再現できるうえ、不良管の交換頻度が減
り、維持コストが減る等の優れた効果を有してい
る。
As described above, according to the cathode ray tube for a light source according to the present invention, the decrease in the light output of the blue light emitter is reduced, and when used in a large color display, etc., the color balance of the image is not disrupted and the image is stable for a long time. In addition to being able to reproduce the problem, it has excellent effects such as reducing the frequency of replacing defective pipes and reducing maintenance costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光源用陰極線管の一例を示す断面図、
第2図A〜Cは光源用陰極線管の製造方法の説明
図、第3図は従来の光源用陰極線管とこの発明に
よる光源用陰極線管の光出力を比較するための特
性図である。 1……管本体、2……フエース部、3……螢光
体層、6……電子銃。 なお図中、同一符号は同一もしくは相当部分を
示す。
FIG. 1 is a sectional view showing an example of a cathode ray tube for a light source;
2A to 2C are explanatory diagrams of a method of manufacturing a cathode ray tube for a light source, and FIG. 3 is a characteristic diagram for comparing the light output of a conventional cathode ray tube for a light source and a cathode ray tube for a light source according to the present invention. 1...tube body, 2...face part, 3...fluorescent layer, 6...electron gun. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 真空外囲器を構成するガラス製の管本体の少
なくともフエース部に蛍光面を有し、内部に封止
された電子銃から上記蛍光面に電子線を照射して
発光させる光源用陰極線管において、前記蛍光面
の青色発光層の主成分は塊状不定形を呈する銀付
活硫化亜鉛蛍光体であつて、その平均粒子径を
16μ以上20μ以下、その塗布量を約8mg/cm2に設
定したことを特徴とする光源用陰極線管。
1. In a cathode ray tube for a light source, which has a phosphor screen on at least the face of a glass tube body constituting a vacuum envelope, and emits light by irradiating the phosphor screen with an electron beam from an electron gun sealed inside. , the main component of the blue emitting layer of the phosphor screen is a silver-activated zinc sulfide phosphor exhibiting an amorphous block shape, and its average particle size is
A cathode ray tube for a light source, characterized in that the coating amount is set at 16μ or more and 20μ or less, and about 8mg/cm 2 .
JP13522781A 1981-08-27 1981-08-27 Crt for light source Granted JPS5835860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13522781A JPS5835860A (en) 1981-08-27 1981-08-27 Crt for light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13522781A JPS5835860A (en) 1981-08-27 1981-08-27 Crt for light source

Publications (2)

Publication Number Publication Date
JPS5835860A JPS5835860A (en) 1983-03-02
JPH0311057B2 true JPH0311057B2 (en) 1991-02-15

Family

ID=15146780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13522781A Granted JPS5835860A (en) 1981-08-27 1981-08-27 Crt for light source

Country Status (1)

Country Link
JP (1) JPS5835860A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH097517A (en) * 1995-06-21 1997-01-10 Sony Corp Manufacture of cathode-ray tube
WO2005059949A1 (en) * 2003-12-17 2005-06-30 Nihon University Field emission spot light source lamp

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55126959A (en) * 1979-03-24 1980-10-01 Mitsubishi Electric Corp Cathode ray tube for display unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55126959A (en) * 1979-03-24 1980-10-01 Mitsubishi Electric Corp Cathode ray tube for display unit

Also Published As

Publication number Publication date
JPS5835860A (en) 1983-03-02

Similar Documents

Publication Publication Date Title
US2233786A (en) Fluorescent screen assembly and method of manufacture
US5693438A (en) Method of manufacturing a flat panel field emission display having auto gettering
US3525679A (en) Method of electrodepositing luminescent material on insulating substrate
US3697301A (en) Process of forming cathode ray tube screens to utilize the luminous efficiency of the phosphor material
US6833663B2 (en) Fluorescent material layer with metal back, method of forming the fluorescent material layer, and image display device
JPH0311057B2 (en)
US3904502A (en) Method of fabricating a color display screen employing a plurality of layers of phosphors
GB1263668A (en) Cathode ray tube bistable storage apparatus
US3697794A (en) Photocathode comprising layers of tin oxide, antimony oxide, and antimony
EP0750331B1 (en) Method of forming fluorescent screen of cathode ray tube
JPH023262B2 (en)
US2751515A (en) Cathode-ray tube
US2833948A (en) Cathode ray tube screen
JPS6340010B2 (en)
US4204136A (en) Dual layer phosphor screen for cathode ray tube
US2625493A (en) Method of manufacturing a reflective fluorescent screen
JPS58152350A (en) Phosphor screen for crt
US2758942A (en) Cathode-ray tube of the kind comprising a luminescent screen
GB1173989A (en) Improvements in or relating to Electron Image Storage and Display Devices
JPS6329947B2 (en)
US2373752A (en) Picture transmitter tube mosaic screen
JP3376608B2 (en) Cold cathode discharge lamp
JP3520597B2 (en) Method for manufacturing fluorescent display tube
JPS636980B2 (en)
JPS58214268A (en) Cathode-ray tube for light source