JPS59200998A - Method of processing liquid waste containing uranium - Google Patents

Method of processing liquid waste containing uranium

Info

Publication number
JPS59200998A
JPS59200998A JP58073878A JP7387883A JPS59200998A JP S59200998 A JPS59200998 A JP S59200998A JP 58073878 A JP58073878 A JP 58073878A JP 7387883 A JP7387883 A JP 7387883A JP S59200998 A JPS59200998 A JP S59200998A
Authority
JP
Japan
Prior art keywords
uranium
fluorine
precipitate
solution
water glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58073878A
Other languages
Japanese (ja)
Other versions
JPH0461320B2 (en
Inventor
秀起 神吉
博 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58073878A priority Critical patent/JPS59200998A/en
Publication of JPS59200998A publication Critical patent/JPS59200998A/en
Publication of JPH0461320B2 publication Critical patent/JPH0461320B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はフッ化ウランを取扱う製造工゛程がらの廃液よ
シラランを除去あるいは回収する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for removing or recovering silane from waste liquid from manufacturing processes that handle uranium fluoride.

たとえば六フッ化ウランから二酸化ウランを製造する工
程は次式の反応を利用するもので、フッ化ウランは極め
て反応性に富んだ物質で、水に触れると直ちに反応する
For example, the process of producing uranium dioxide from uranium hexafluoride uses the following reaction.Uranium fluoride is an extremely reactive substance that reacts immediately when it comes into contact with water.

UF、   + 2H20=   UO2F2  + 
 4HF                     
  (112UO2F2+ 8HF +14NH40H
= (NH4)2U20□十+2NH4F++ +10
(2)六フフ化ウランを加熱蒸発させてガス状の六フッ
化ウランを水に浴%T=させると(1)式のように加水
分解してフン化ウラニルとフッ化水累の水溶液となり、
次いでアンモニア水を加えると、(2)式のごとく反応
してフッ化ウラニールは重ウラン酸アンモニウム(AD
U)として沈殿する。このADHスラリーw濾過しケー
キ状として二酸化ウランの原料として使用する。このf
液中にはウランが少量含まれ、そのまま廃液として、プ
ラントから排出することは環境保全上問題があるため、
ウランを除去或は回収するための処理法が望才れている
UF, + 2H20= UO2F2 +
4HF
(112UO2F2+ 8HF +14NH40H
= (NH4)2U20□10+2NH4F++ +10
(2) When uranium hexafluoride is heated and evaporated and the gaseous uranium hexafluoride is bathed in water (%T=), it is hydrolyzed as shown in equation (1) to form an aqueous solution of uranyl fluoride and water fluoride. ,
Next, when aqueous ammonia is added, the reaction occurs as shown in equation (2), and uranyl fluoride is converted to ammonium deuterate (AD).
It precipitates as U). This ADH slurry is filtered and shaped into a cake to be used as a raw material for uranium dioxide. This f
The liquid contains a small amount of uranium, and discharging it directly from the plant as waste liquid poses environmental conservation problems.
Processing methods to remove or recover uranium are desired.

従来ウランを含む廃液の処理法として次のような方法が
考えられている。
Conventionally, the following methods have been considered for treating waste liquid containing uranium.

(1)希釈法 この方法はウランを含む廃液を単に水で希釈する方法で
ある。この方法においては、溶液中のウラン濃度にもよ
るが、大量の水を必要とし、従ってウランの回収は不可
能である。
(1) Dilution method This method is a method in which waste liquid containing uranium is simply diluted with water. This method requires large amounts of water, depending on the uranium concentration in the solution, and therefore uranium recovery is not possible.

(2)  アルカリ土類金属塩沈殿法 この方法はウラン、アンモニア、フッ素を含む溶液に石
灰などアルカリ土類金私酸化物および水目ν化拶の1種
または2 lj以上を添加し、該溶液中のフッ素全アル
カリ土類金椙フン化物として沈殿させると同時に、ウラ
ンも共沈除去する方法である。この方法においては、ウ
ランだけでなくフッ素も同時に除去できるが、難沢過性
の沈殿が多量に発生し、沈殿物のt″過操作に多大な労
力が必要である。
(2) Alkaline earth metal salt precipitation method In this method, an alkaline earth metal oxide such as lime and one or more than 2 lj of water are added to a solution containing uranium, ammonia, and fluorine. In this method, all the fluorine in the alkaline earth metal is precipitated as fluoride, and at the same time, uranium is also co-precipitated and removed. In this method, not only uranium but also fluorine can be removed at the same time, but a large amount of precipitate, which is difficult to filter, is generated in large quantities, and a large amount of labor is required to process the precipitate over t''.

!、た沈殿物の大半はアルカリ土類全屈フッ化物である
ため、沈殿物中のウラン状変は相対的に低下し、沈殿物
中のウランの回収が極めて困11#となり、廃棄するし
かない(特公昭47−55199号公報ン。
! , most of the precipitate is alkaline earth total fluoride, so the uranium conversion in the precipitate is relatively low, making it extremely difficult to recover the uranium in the precipitate, and there is no choice but to discard it. (Special Publication No. 47-55199).

<3)  イオン交換法 この方法はウランを含む廃液全イオン交換初詣に接触さ
せ、ウラン全イオン交換樹脂に吸着させて、廃液中のウ
ランを除去するものである。イオン交換初詣に吸着した
ウランは硝咳で射出して回収する。この方法はウランの
除去・回収として優れているが、該ウラン全回収する必
要のない場合、その再生廃液の処理に問題があり、イオ
ン交4qj 9j脂の劣化の面からも経済的とは言えな
い。
<3) Ion exchange method In this method, the uranium-containing waste liquid is brought into contact with a total ion exchange resin, and the uranium is adsorbed on the uranium total ion exchange resin, thereby removing uranium from the waste liquid. The uranium adsorbed by the ion-exchange hatsumode is recovered by ejecting it with a nitrate. This method is excellent for removing and recovering uranium, but if it is not necessary to recover all of the uranium, there are problems in processing the recycled waste liquid, and it is not economical in terms of deterioration of the ion exchanger. do not have.

(4)  以上の従来法に対してウランを含む廃液にフ
ッ素とアンモニアとの共存下で水ガラスを添カロするこ
とによりウランを除去回収方法が提案された(特公昭4
B−38320号公報)。
(4) In contrast to the conventional methods described above, a method for removing and recovering uranium was proposed by adding water glass to waste liquid containing uranium in the coexistence of fluorine and ammonia (Special Publications Publication No. 4).
B-38320).

この方法は、添加水ガラスから発生する二ば化ケイ素、
グイフン化アンモニウムとADUの共沈によル沈殿物全
発生させるもので生成速度が大きく、かつ沢過性が良く
、ウラン除去率が99.7 %以上と極めて高いとして
いる。
This method uses silicon divanide, which is generated from added water glass,
It is said that all the precipitates are generated by co-precipitation of ammonium fluoride and ADU, and the production rate is high, the filtration property is good, and the uranium removal rate is extremely high at over 99.7%.

さらに水ガラスの添加量:が少ないため生成した沈殿量
が少なく、該沈殿中のウラン濃度は相対的に高くなって
経済的に回収可能な範囲内にあシ、硝酸処理によって容
易に該ウランを回収することができるとしている。しか
しこの方法の問題点は該沈殿物全生成せしめるためにフ
ッ素の添加量を5り/を以上、アンモニアはフン累−1
1七の当量よシやや多い程朋加えなければならない点で
、生成した沈殿物をΔ1別した後fコ液中には高濃度の
フッ素とアンモニウムが残存する。沢液中のアンモニウ
ムは、?l1l−高アルカリにして蒸留すれば液中から
除去することはできるが、高温゛度のフッ素をその1ま
処理せずにプラントから廃液として排出することは環境
保全上問題があシ、さらにフッ素の処理が必要である。
Furthermore, since the amount of water glass added is small, the amount of precipitate produced is small, and the uranium concentration in the precipitate is relatively high, and the uranium can be easily recovered by nitric acid treatment. It is said that it can be recovered. However, the problem with this method is that in order to completely generate the precipitate, the amount of fluorine added must be more than 5%, and the amount of ammonia must be more than 1%.
Since it is necessary to add slightly more than the equivalent of 17, high concentrations of fluorine and ammonium remain in the liquid after the formed precipitate is separated by Δ1. What is the ammonium in the sap? Although it is possible to remove high-temperature fluorine from the liquid by distilling it into a highly alkaline solution, discharging high-temperature fluorine as waste from a plant without first treating it poses environmental conservation problems; processing is required.

即ち六フン化ウランに起因するフッ素は上式(1)〜(
2)から明らかなように六フッ化ウラン1モルに対して
6モルであり、水中に溶解しているので、例えば上記公
報に記載の実施例1で示されているウランI I Om
t/lが六フッ化ウランのみに起因するとすれば、フッ
素は55mグ/l(Fとして)が水中に溶存するにすぎ
ない。
That is, fluorine originating from uranium hexafluoride is expressed by the above formulas (1) to (
As is clear from 2), the amount is 6 mol per 1 mol of uranium hexafluoride, and it is dissolved in water.
If t/l were due only to uranium hexafluoride, only 55 mg/l (as F) of fluorine would be dissolved in water.

しかるに上記公報記載の発明ではさらにフッ素をフッ化
アンモニウムの形で+ o t7t(Fとして)添〃口
しなければならず水ガラス1〜29 / L f 添加
してケイフッ化ナトリウムを生成せしめても、添刀0L
7inフッ素は約9′I/l (Fとして)水中に溶存
したまま残るからである。このフッ素を除去するためV
こ(は上記<11〜(3)の方法があるが希釈法による
ことは論−外として現在量もよく用いられ−Cいるのが
(2)のアルカリ土類金属塩沈殿法であり、上記に述べ
たとおり、人1t濾過件の沈殿物が多量に発生すること
は免れない。いずれにしても上記発明はウラン回収には
極めて有効であるが、回収後の廃液処理には極めて不利
であると言える。
However, in the invention described in the above publication, fluorine must be added in the form of ammonium fluoride (as F), and even if water glass 1~29/L f is added to produce sodium silicofluoride. , attached sword 0L
This is because 7 in. fluorine remains dissolved in water at about 9'I/l (as F). To remove this fluorine, V
There are methods of <11 to (3) above, but it goes without saying that the dilution method is used, and the present amount is also often used. As mentioned above, it is unavoidable that a large amount of precipitate will be produced, equivalent to the amount of sediment that can be filtered per ton of uranium.In any case, the above invention is extremely effective in recovering uranium, but it is extremely disadvantageous in treating waste liquid after recovery. I can say that.

本発明の目的とするところは、従来法よりウランならび
にフッ素の除去全有利かつ容易に行う方法を提供すると
ころにある。更に本発明の目的とするところは、ウラン
廃液にアンモニア及びフッ素を更に添加することなく、
便用桑品旬も少なく、かつt過性の良い沈In ’a”
 ?!i、生成沈殿物仰二が少なくて回収廃棄共に容易
かつ経済的なウランならびにフッ素の除去回収法ヲ捉供
するところにある。
It is an object of the present invention to provide a process for the removal of uranium and fluorine that is more advantageous and easier to perform than conventional methods. Furthermore, it is an object of the present invention to process uranium waste without further adding ammonia and fluorine.
There are few mulberry products for toilet use, and there is good transmissibility.
? ! i. The present invention provides a method for removing and recovering uranium and fluorine, which produces less precipitate and which is both easy and economical to recover and dispose of.

本発明者らは上記目的を達成するために種々検討の結果
以下に述べるような満足すべき方法を見出した。
In order to achieve the above object, the present inventors conducted various studies and found a satisfactory method as described below.

本発明の少雪とするところはウランを含む溶゛l(!を
加熱又は加熱濃縮を行いながら、水ガラスおよびアルカ
リ土類金属塩を添加することにより沈殿物全生成させ、
該沈殿物を溶液から分離することによりウランの除去回
収ならびにフッ素の除去を行う点にある。
The purpose of the present invention is to completely generate a precipitate by adding water glass and an alkaline earth metal salt while heating or heating and concentrating a molten liquid (!) containing uranium.
By separating the precipitate from the solution, uranium is removed and recovered and fluorine is removed.

以下本発明を具体例につき説明する。The present invention will be explained below using specific examples.

具体例I ウランを回収する場合 (1)  まずウランを含む溶液を約80〜100℃で
加熱又は加熱濃縮しながら水ガラスを添加すると、溶液
中のウランから重ウラン酸ナトリウム(Na2U20y
 ) #フッ素からケイフッ化ソーダ(Na25j、F
6 )  が生成され、ケイ順ソーダが刀0水分解され
てケイW (5i02 )が生成する。
Specific Example I When recovering uranium (1) First, when a solution containing uranium is heated at about 80 to 100°C or water glass is added while heating and concentrating it, sodium deuterate (Na2U20y
) #Fluorine to sodium silicofluoride (Na25j, F
6) is produced, and Keishun soda is decomposed into water to produce KeiW (5i02).

ケイrfl (SiO+ )は上記重ウラン酸ナトリウ
ムとケイフッ化ソーダの固形物のバインダーとして固形
物同志全強固に固着させる作用をもつ。加熱又は加熱損
イネすることによりその作用全促進し、固形物泥層が2
〜5り/l程度になるとゲル化する。
Silicon rfl (SiO+) acts as a binder for the solids of the above-mentioned sodium deuterate and sodium silicofluoride, and has the function of firmly adhering the solids to each other. By heating or heating the rice, its effect is fully promoted, and the solid mud layer becomes 2
It becomes gelatinous when the concentration reaches about 5 l/l.

水ガ“ラスはJ工S規格けい酸ソーダ1〜3号(Na2
0−ns102 )t<用いる。J I S g、’r
%けい酸ソーダには1〜3号品があるが、  5i02
 / Na、20モル比が高い程好廿しい。これ(1ケ
イ[7(Si02)のゲル化が早いからである。
Water glass is J Engineering S standard sodium silicate No. 1-3 (Na2
0-ns102)t<Use. J I S g,'r
%Sodium silicate has products No. 1 to 3, but 5i02
/Na, the higher the molar ratio of 20, the better. This is because the gelation of (1K[7 (Si02)) is fast.

水ガラスの添加号・4“は浴液中の固形物量に対してs
ho、として20〜50%添刀口する。の鑓χ宿すると
きは減圧・常圧いずれでもよく、溶液中の同形物ノ仏目
矩が約2〜57/を程度になる迄δ4縮する。
Addition number 4 of water glass is s relative to the amount of solids in the bath liquid.
Add 20 to 50% as ho. When storing the solution, either reduced pressure or normal pressure may be used, and δ4 is reduced until the size of the isomorphic substance in the solution is approximately 2 to 57 cm.

溶液甲に既にこの程度の固形物礎度があれば水ガラス添
加後約50〜80℃で約1〜2時間程度加熱するだけで
よい。
If the solution A already has a solid content of this level, it is only necessary to heat it at about 50 to 80° C. for about 1 to 2 hours after adding water glass.

(2)シかる後当該浴液を1過して固形物と秒1液に分
けする。l″液中はフッ素が残存し、ウランは固形物に
含まれている。この同形物はウランの回収用に供する。
(2) After sieving, the bath liquid is passed through once to separate solids and liquid. Fluorine remains in the liquid, and uranium is contained in the solid matter. This isomorphic material is used for uranium recovery.

即ち発核固形物からウランを回収するためには、周知の
如く石肖酸で溶出すればよい。− (3)  一方フッ素の残存するP液はさらに約80〜
100℃で加熱又は加熱濃縮しながら水ガラスおよびア
ルカリ土類金属塩′fc添加すると、次式のように反応
してフッ化カルシウム沈殿物が生成される。
In other words, in order to recover uranium from the nucleated solid, it is sufficient to elute it with lithogenic acid, as is well known. - (3) On the other hand, the P solution with residual fluorine is about 80~
When water glass and alkaline earth metal salt 'fc are added while heating or heating and concentrating at 100°C, a calcium fluoride precipitate is produced by the reaction as shown in the following formula.

Oa2+ + 2F’−→CaF2↓ この沈殿物は極めて微細で難V過性であるが、加熱又は
7JI]熱濃縮によυ水ガラスカ(刀ロア4(分解して
生成されるケイハ(Si02)75玉、沈殿物粒子同志
を強固に固着させることにより濾過性が良く、緻密な沈
殿物となる。水ガラスの添加J、4−は、当該jコ液に
添力口するアルカリ土類金属塩を含めた全固形物重に対
し5102として1〜20%である。アルカリ土類金属
塩は溶液中のフッ素の当量の約1.0〜′2−θ倍名隻
刀口する。
Oa2+ + 2F'-→CaF2↓ This precipitate is extremely fine and has low permeability, but by heating or thermal condensation, it can be converted to By firmly adhering the beads and precipitate particles to each other, it has good filterability and becomes a dense precipitate.The addition of water glass J, 4- is performed by adding an alkaline earth metal salt to the liquid. The amount of the alkaline earth metal salt is about 1.0 to 2-θ times the equivalent weight of fluorine in the solution.

アルカリ土類金属塩には(3a(OH)2. CaO0
3゜好ましくは中性塩即ちCaC’12 # OaB”
4r Ca(”3) 21ca3(po4)2が適する
。何故ならば水ガラス路≦加により1液pHはアルカリ
性域になるため、排水として放流する前に、中性域にp
HMJ整する必要があり、この時の絃の必要量を少なく
するためにはアルカリ土類金属 ましいからである。Oa  塩の代わりにMj(OH)
 2。
Alkaline earth metal salts include (3a(OH)2.CaO0
3゜Preferably a neutral salt, i.e. CaC'12 # OaB''
4r Ca("3) 21ca3(po4)2 is suitable. This is because the pH of the first liquid becomes alkaline due to water glass path ≦ addition.
This is because it is necessary to adjust the HMJ, and in order to reduce the amount of strings required at this time, alkaline earth metals are preferable. Mj (OH) instead of Oa salt
2.

MS’003 、 MfCt4 、 Mff304 、
 MS’ (NO3 )2 、 NO3(PO4 )2
も使用できる。
MS'003, MfCt4, Mff304,
MS' (NO3)2, NO3(PO4)2
can also be used.

上記(1)と同様に刃口熱濃縮するときは減圧・常圧い
ずれでもよく、@液中の固Jiネ物痕度が約2〜5り/
を程度になる迄?0扁する。浴液中に既にこの程度の固
形v!J29度があれば水ガラス添加後約50〜80℃
で約1〜2時[ロJ 71[]熱するだけでよい。
Similarly to (1) above, when thermally concentrating at the cutting edge, either reduced pressure or normal pressure may be used.
Until it becomes a degree? 0 flat. There is already this much solid in the bath liquid! If J29 degrees, it will be about 50-80℃ after adding water glass.
All you have to do is heat it for about 1 to 2 hours.

而る後当該溶液全1過して固形物と1液を分別し、フッ
素を含む固形物は尻果物として廃檗し、j″′液は排水
としてpH  調fk後放流する。
Thereafter, the entire solution is filtered to separate the solids and the first liquid, the solids containing fluorine are discarded as waste, and the liquid is discharged as wastewater after pH adjustment.

具体例■ ウランを回収しない場合 (1)  まずウランを含む溶液を約80〜100℃で
加熱儂縮しながら水ガラスおよびアルカリ土類金1修塩
會添刀目する。溶液中のウランは重ウラン酸ナトリウム
(Na2U207 ) xフッ素からケイフン化ソーダ
(Na25iF6)、フン化カルシウム(caF2)な
どの混合物が生成される。ケイ酸ソーダは加水分解され
てケイm (5i02 )を生成させ、上記沈殿物同志
を強固に固着させる作用をもつ。加熱又は加熱濃縮する
ことによりその作用が促進され、固形物濃度が59 /
 1以上になるとゲル化する。水ガラスは具体例Iで述
べたJIS規格けい酸ソーダを用いる。水ガラスの添加
量は下記アルカリ土類金属塩の添711]iを含めて溶
液中の固形物量に対してSi’02として1〜20%で
ある。アルカリ土類金属塩はウランを含む溶液のフッ素
当量の約1.0〜2.0倍程度添加する。金属塩類は具
体例1と同じ。しかる後溶液中の固形物濃度が約2〜s
 y7を程度となる迄加熱濃縮するが、当該溶液中の固
形物濃度が既に約2〜s t7を程度あれば50〜80
℃で約1〜2時聞方1熱するだけでよい。
Specific example (1) When uranium is not recovered (1) First, a solution containing uranium is heated and evaporated at about 80 to 100° C. and mixed with water glass and alkaline earth gold salt. The uranium in the solution is sodium diuranate (Na2U207). A mixture of sodium silicofluoride (Na25iF6) and calcium fluoride (caF2) is produced from xfluorine. Sodium silicate is hydrolyzed to produce silicon m (5i02), which has the effect of firmly fixing the above-mentioned precipitates together. The effect is promoted by heating or heat concentration, and the solid concentration becomes 59 /
When it becomes 1 or more, it becomes a gel. As the water glass, the JIS standard sodium silicate described in Example I is used. The amount of water glass added is 1 to 20% as Si'02 based on the amount of solids in the solution, including the addition of the alkaline earth metal salt 711]i described below. The alkaline earth metal salt is added in an amount of about 1.0 to 2.0 times the fluorine equivalent of the uranium-containing solution. The metal salts are the same as in Example 1. After that, the concentration of solids in the solution is about 2~s
Heat and concentrate y7 until it reaches a certain level, but if the solid concentration in the solution is already about 2 to 50 to 80
All you have to do is heat it at ℃ for about 1 to 2 hours.

(2)シかる後、当該浴液を7J4過し、固形物とf液
全分別する。ウランおよびフッ素は固形物の中に含まれ
、f液中には含捷れない。
(2) After filtering, the bath liquid is filtered through 7J4 to completely separate the solids and the f-liquid. Uranium and fluorine are contained in the solid matter and are not included in the f-liquid.

(3)  固形物は廃棄物として、p液は排水としてp
H調整後放流する。
(3) Solids are treated as waste and P liquids are treated as wastewater.
Discharge after adjusting H.

実施例1 ウラン95mり7t、  フッ素50mg/lf含む硝
酸ウラニル・フッ化ソーダ溶液1tをカロ熱濃縮しなが
ら、水ガラス(J工Sけい散ソーダ6号)を049添加
し、容flfを約A迄に減らした。し〃・る後生成した
沈殿wJをη1別した。1液約200−をさらに加熱濃
縮しながら水ガラス(上記と同じ)と塩化カルシウムC
!a0t2(z各々0,3グ。
Example 1 While calorothermically concentrating 7 tons of 95 m of uranium and 1 t of uranyl nitrate/sodium fluoride solution containing 50 mg/lf of fluorine, 0.49 ml of water glass (JKS silica soda No. 6) was added to bring the volume of flf to about A Reduced to. After washing, the precipitate wJ generated was separated by η1. Water glass (same as above) and calcium chloride C are added while further heating and concentrating approximately 200 kg of each liquid.
! a0t2 (z 0,3g each.

0.6gを添加し、約A迄に容積を減らし、生成した沈
殿物+r別した。P液中のウラン含有量は0.2 mW
 / を以下でウラン除去率は998%以上、フッ素の
含有量は[1+ my/ を以下でフッ素除去率ii:
 99.8 ’Xi以上であった。
0.6 g was added, the volume was reduced to about A, and the formed precipitate +r was separated. The uranium content in the P solution is 0.2 mW
/ The uranium removal rate is 998% or less, and the fluorine content is [1+ my/ or less, the fluorine removal rate ii:
It was more than 99.8'Xi.

生成した沈殿物量は、合計して約1gであつ1こ 。The total amount of precipitate produced was about 1 g and 1 piece.

比較試験(特公昭48〜38320号公報記載の方法〕 上記ウラン2よびフッ素を含む溶液にフッ化アンモニウ
ム(Fとして109/l)と塩化アンモニウム(NH3
として20 t/l)f添加しさらに水ガラスI f/
l f加えて攪拌し、生成した沈殿+P別した。P液中
のウラン含有量は0.2mf/ / を以下でウラン除
去率は998チ以上、フッ素含有二耽は97/lでほと
んど除去されていなかった。この沢)1りに酸化カルシ
ウム20f171を添加し沈殿?+を生成させた後P別
し、そのP液中のフッ素含有量は[11mW / l以
下でフッ素除去率はほぼ100%であるが、生成沈殿物
量は合計して約22rであった。
Comparative test (method described in Japanese Patent Publication No. 48-38320) Ammonium fluoride (109/l as F) and ammonium chloride (NH3) were added to the solution containing uranium 2 and fluorine.
20 t/l) f and further water glass I f/
lf was added and stirred, and the generated precipitate +P was separated. The uranium content in the P liquid was less than 0.2 mf/l, the uranium removal rate was 998 mf/l or more, and the fluorine-containing fluorine was hardly removed at 97 mf/l. Add calcium oxide 20f171 to this stream) 1 and precipitate? After generating +, P was separated, and the fluorine content in the P solution was less than 11 mW/l, and the fluorine removal rate was almost 100%, but the total amount of generated precipitate was about 22 r.

実施例2 実施例1と同様のウラン95tnグ/l、フッ素50n
1グ/lk含む硝酸ウラニル・フッ化ソーダ浴液1を全
加熱LmLながら、水ガラス(J工Sケイ酸7− タ5
 M )を0.4f、塩化カルシウム0aCt、 f 
[169を添カロし、約%迄容8!を減らし、生成した
沈設!1/lをP別した。沢液約125 m7!のウラ
ン含有量は0.2 mf / を以下でウラン除去率は
99.8係以上、フッ素含有量はo、 + mf/を以
下でフッ素除去率は99,8%以上であった。生成した
沈殿物量は、合計して約1.1gであった。
Example 2 Uranium 95tn/l and fluorine 50n as in Example 1
While fully heating L mL of uranyl nitrate/sodium fluoride bath solution containing 1 g/lk, add water glass (J Engineering S Silicic Acid 7-Ta 5
M ) 0.4f, calcium chloride 0aCt, f
[Add 169 calories and the volume is about 8%! Reduced and generated sinking! 1/l was separated by P. Approximately 125 m7 of swamp liquid! The uranium content was less than 0.2 mf/, and the uranium removal rate was 99.8% or more, and the fluorine content was less than 0.2 mf/, and the fluorine removal rate was 99.8% or more. The total amount of precipitate produced was about 1.1 g.

以上述べてきたところからも明らかなように、本発明は
従来法に比べ下記の点で有利なウランを含む廃液の処理
方法である。
As is clear from what has been described above, the present invention is a method for treating waste liquid containing uranium that is advantageous over conventional methods in the following points.

+1+  ウランの除去・回収と共にフッ素の除去も容
易に行える。
+1+ Fluorine can be easily removed along with uranium removal and recovery.

(2)  アンモニアおよびフッ素ヲさらに添刀口しな
くてよいので、添加フッ素除去に必要なアルカリ土類金
属塩の添加量が従来法より少くてすむ。
(2) Since there is no need to add ammonia and fluorine, the amount of alkaline earth metal salt required to remove added fluorine can be smaller than in the conventional method.

(3)  加熱又は加熱濃縮することにより、水ガラス
の添刀l]請を従来法にくらべ少なくできる。
(3) By heating or heating and concentrating, the amount of water glass added can be reduced compared to the conventional method.

(4)  生成する沈殿物はf過性が良いのみならず緻
密であるため従来のアルカリ土類金属塩沈殿法(及びフ
ッ素除去に該方法音用いる特公昭48−38320号公
報記載の方法ンに比べて汚泥発生量が少ない。
(4) Since the precipitate produced is not only highly permeable but also dense, it is difficult to use the conventional alkaline earth metal salt precipitation method (and the method described in Japanese Patent Publication No. 48-38320, which uses this method for fluorine removal). The amount of sludge generated is small compared to other methods.

(5)  (2! 、 (3) 、 (4+よシ該沈殿
物中のウラン含有量は相対的に冒くなる。
(5) (2!, (3), (4+) The uranium content in the precipitate is relatively high.

(6)  ウランを回収する場合もウランを回収せ伊ウ
ランを含む固形物として廃棄する場合も、生成汚泥景が
少ないためウランおよびフン累の処理が容易かつ榎めて
有利に行える。
(6) In both the case of recovering uranium and the case of recovering uranium and disposing of it as a solid substance containing uranium, the treatment of uranium and feces can be carried out easily and advantageously because there is little sludge produced.

徂代理人  内 1)  明 復代理人  萩 原 亮 −Among the agents: 1) Akira Sub-agent Ryo Hagi Hara -

Claims (1)

【特許請求の範囲】[Claims] ウランを含む溶液からウランを除去回収する方法におい
て、ウランを含む溶液全加熱又は加熱濃縮しながら水ガ
ラスおよびアルカリ土類金属塩全添加して沈殿物を生成
し、該沈殿物を溶液から分離することを特徴とする廃液
の処理方法。
In a method for removing and recovering uranium from a solution containing uranium, water glass and alkaline earth metal salts are added to the solution containing uranium while heating or heating the solution to form a precipitate, and the precipitate is separated from the solution. A waste liquid treatment method characterized by:
JP58073878A 1983-04-28 1983-04-28 Method of processing liquid waste containing uranium Granted JPS59200998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58073878A JPS59200998A (en) 1983-04-28 1983-04-28 Method of processing liquid waste containing uranium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58073878A JPS59200998A (en) 1983-04-28 1983-04-28 Method of processing liquid waste containing uranium

Publications (2)

Publication Number Publication Date
JPS59200998A true JPS59200998A (en) 1984-11-14
JPH0461320B2 JPH0461320B2 (en) 1992-09-30

Family

ID=13530895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58073878A Granted JPS59200998A (en) 1983-04-28 1983-04-28 Method of processing liquid waste containing uranium

Country Status (1)

Country Link
JP (1) JPS59200998A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61239196A (en) * 1985-04-16 1986-10-24 三菱原子燃料株式会社 Method of treating radioactive waste liquor containing fluorine and nuclear fuel substance
JP2014512523A (en) * 2011-03-14 2014-05-22 アレバ・エヌペ Photon spectroscopic analyzer and photon spectroscopic method, method for calibrating the apparatus, and use of the apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316358A (en) * 1976-07-30 1978-02-15 Shimoda Gijutsu Kenkyusho Kk Method of removing metal ions from solutions
JPS54118998A (en) * 1978-03-08 1979-09-14 Japan Atom Energy Res Inst Processing method of radioactive material contained liquid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316358A (en) * 1976-07-30 1978-02-15 Shimoda Gijutsu Kenkyusho Kk Method of removing metal ions from solutions
JPS54118998A (en) * 1978-03-08 1979-09-14 Japan Atom Energy Res Inst Processing method of radioactive material contained liquid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61239196A (en) * 1985-04-16 1986-10-24 三菱原子燃料株式会社 Method of treating radioactive waste liquor containing fluorine and nuclear fuel substance
JP2014512523A (en) * 2011-03-14 2014-05-22 アレバ・エヌペ Photon spectroscopic analyzer and photon spectroscopic method, method for calibrating the apparatus, and use of the apparatus
US9400336B2 (en) 2011-03-14 2016-07-26 Areva Np Photonic spectrometry device and method, method for calibrating the device, and use of the device

Also Published As

Publication number Publication date
JPH0461320B2 (en) 1992-09-30

Similar Documents

Publication Publication Date Title
US4981664A (en) Method of production of high purity silica and ammonium fluoride
US4857290A (en) Process for producing silica of high purity
JPH11514567A (en) Method for treating flue gas containing sulfur oxides
JPH0481526B2 (en)
US4915705A (en) Production of silica and fluorine-containing coproducts from fluosilicic acid
US5165907A (en) Method of production of high purity silica and ammonium fluoride
JP2542797B2 (en) Method for producing high-purity silica
US4374810A (en) Recovery of fluorine from pond water of wet process phosphoric acid plants and recycling of defluorinated water
JPS58208126A (en) Manufacture of pure silicon dioxide
US4557918A (en) Method for producing silica
JPS59200998A (en) Method of processing liquid waste containing uranium
SU1586509A3 (en) Method of producing elementary sulfur from gases
US5077020A (en) Metal recovery process using waterglass
JPS58502201A (en) Method for recovering useful products from waste generated during the production of aluminum fluoride
JPS5839894B2 (en) Method for removing phosphorus and silicon from water-soluble smelting slag
JPS5924731B2 (en) Method for removing and recovering uranium or/and thorium from a liquid containing uranium or/and thorium
US5683666A (en) Method for the removal of sulfur dioxide and nitrogen oxides for a gaseous stream
JPS6042218A (en) Manufacture of extremely high purity silica
JPS61178414A (en) High-purity silica and production thereof
US6117408A (en) Method of producing zinc bromide
JP2769113B2 (en) Method for producing high-purity silica
JPS5815027A (en) Recovering method for alkali metal, vanadium and phosphorus from desulfurization and dephosphorization slag
JPS6321213A (en) Production of high purity silica
JP2909197B2 (en) Methods for recovering metals from metal-containing process waste streams
SU789392A1 (en) Method of processing fluorine-containing wastes of aluminium production