JPH0461320B2 - - Google Patents

Info

Publication number
JPH0461320B2
JPH0461320B2 JP7387883A JP7387883A JPH0461320B2 JP H0461320 B2 JPH0461320 B2 JP H0461320B2 JP 7387883 A JP7387883 A JP 7387883A JP 7387883 A JP7387883 A JP 7387883A JP H0461320 B2 JPH0461320 B2 JP H0461320B2
Authority
JP
Japan
Prior art keywords
uranium
fluorine
precipitate
solution
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7387883A
Other languages
Japanese (ja)
Other versions
JPS59200998A (en
Inventor
Hideki Kamyoshi
Hiroshi Baba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58073878A priority Critical patent/JPS59200998A/en
Publication of JPS59200998A publication Critical patent/JPS59200998A/en
Publication of JPH0461320B2 publication Critical patent/JPH0461320B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】 本発明はフツ化ウランを取扱う製造工程からの
廃液よりウランを除去あるいは回収する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for removing or recovering uranium from waste liquid from a manufacturing process involving uranium fluoride.

たとえば六フツ化ウランから二酸化ウランを製
造する工程は次式の反応を利用するもので、フツ
化ウランは極めて反応性に富んだ物質で、水に触
れると直ちに反応する。
For example, the process of producing uranium dioxide from uranium hexafluoride uses the following reaction.Uranium fluoride is an extremely reactive substance that reacts immediately when it comes into contact with water.

UF6+2H2O=UO2F2+4HF (1) 2UO2F2+8HF+14NH4OH=(NH42U2O7
12NH4F+11H2O(2) 六フツ化ウランを加熱蒸発させてガス状の六フ
ツ化ウランを水に溶解させると(1)式のように加水
分解してフツ化ウラニルとフツ化水素の水溶液と
なり、次いでアンモニア水を加えると、(2)式のご
とく反応してフツ化ウラニールは重ウラン酸アン
モニウム(ADU)として沈殿する。このADUス
ラリーを過しケーキ状として二酸化ウランの原
料として使用する。この液中にはウランが少量
含まれ、そのまま廃液として、プラントから排出
することは環境保全上問題があるため、ウランを
除去或は回収するための処理法が望まれている。
UF 6 +2H 2 O=UO 2 F 2 +4HF (1) 2UO 2 F 2 +8HF+14NH 4 OH=(NH 4 ) 2 U 2 O 7 +
12NH 4 F + 11H 2 O(2) When uranium hexafluoride is heated and evaporated and gaseous uranium hexafluoride is dissolved in water, it is hydrolyzed as shown in equation (1) to form an aqueous solution of uranyl fluoride and hydrogen fluoride. Then, when aqueous ammonia is added, the reaction occurs as shown in equation (2), and uranyl fluoride precipitates as ammonium deuterate (ADU). This ADU slurry is filtered and shaped into a cake to be used as a raw material for uranium dioxide. This liquid contains a small amount of uranium, and discharging it as waste from the plant poses environmental protection problems, so a treatment method for removing or recovering uranium is desired.

従来ウランを含む廃液の処理法として次のよう
な方法が考えられている。
Conventionally, the following methods have been considered for treating waste liquid containing uranium.

(1) 希釈法 この方法はウランを含む廃液を単に水で希釈
する方法である。この方法においては、溶液中
のウラン濃度にもよるが、大量の水を必要と
し、従つてウランの回収は不可能である。
(1) Dilution method This method simply dilutes the waste liquid containing uranium with water. This method requires large amounts of water, depending on the uranium concentration in the solution, and therefore uranium recovery is not possible.

(2) アルカリ土類金属塩沈殿法 この方法はウラン、アンモニア、フツ素を含
む溶液に石灰などアルカリ土類金属酸化物およ
び水酸化物の1種または2種以上を添加し、該
溶液中のフツ素をアルカリ土類金属フツ化物と
して沈殿させると同時に、ウランも共沈除去す
る方法である。この方法においては、ウランだ
けでなくフツ素も同時に除去できるが、難過
性の沈殿が多量に発生し、沈殿物の過操作に
多大な労力が必要である。また沈殿物の大半は
アルカリ土類金属フツ化物であるため、沈殿物
中のウラン濃度は相対的に低下し、沈殿物中の
ウランの回収が極めて困難となり、廃棄するし
かない(特公昭47−35199号公報)。
(2) Alkaline earth metal salt precipitation method In this method, one or more alkaline earth metal oxides and hydroxides such as lime are added to a solution containing uranium, ammonia, and fluorine. This method precipitates fluorine as an alkaline earth metal fluoride and simultaneously removes uranium by coprecipitation. In this method, not only uranium but also fluorine can be removed at the same time, but a large amount of difficult-to-pass precipitate is generated and a great deal of effort is required to over-manipulate the precipitate. Furthermore, since most of the precipitates are alkaline earth metal fluorides, the uranium concentration in the precipitates is relatively low, making it extremely difficult to recover the uranium in the precipitates, and the only option is to dispose of the uranium. Publication No. 35199).

(3) イオン交換法 この方法はウランを含む廃液をイオン交換樹
脂に接触させ、ウランをイオン交換樹脂に吸着
させて、廃液中のウランを除去するものであ
る。イオン交換樹脂に吸着したウランは硫酸で
溶出して回収する。この方法はウランの除去・
回収として優れているが、該ウランを回収する
必要のない場合、その再生廃液の処理に問題が
あり、イオン交換樹脂の劣化の面からも経済的
とは言えない。
(3) Ion exchange method In this method, waste liquid containing uranium is brought into contact with an ion exchange resin, and the uranium is adsorbed onto the ion exchange resin, thereby removing uranium from the waste liquid. Uranium adsorbed on the ion exchange resin is recovered by elution with sulfuric acid. This method removes uranium and
Although it is excellent for recovery, when there is no need to recover the uranium, there are problems in processing the recycled waste liquid, and it cannot be said to be economical in terms of deterioration of the ion exchange resin.

(4) 以上の従来法に対してウランを含む廃液にフ
ツ素とアンモニアとの共存下で水ガラスを添加
することによりウランを除去回収する方法が提
案された(特公昭48−38320号公報)。この方法
は、添加水ガラスから発生する二酸化ケイ素、
ケイフツ化アンモニウムとADUの共沈により
沈殿物を発生させるもので生成速度が大きく、
かつ過性が良く、ウラン除去率が99.7%以上
と極めて高いとしている。さらに水ガラスの添
加量が少ないため生成した沈殿量が少なく、該
沈殿中のウラン濃度は相対的に高くなつて経済
的に回収可能な範囲内にあり、硝酸処理によつ
て容易に該ウランを回収することができるとし
ている。しかしこの方法の問題点は該沈殿物を
生成せしめるためにフツ素の添加量を5g/
以上、アンモニアはフツ素量の当量よりやや多
い程度加えなければならない点で、生成した沈
殿物を別した該液中には高濃度のフツ素と
アンモニウムが残存する。液中のアンモニウ
ムは、液を高アルカリにして蒸留すれば液中か
ら除去することはできるが、高濃度のフツ素を
そのまま処理せずにプラントから廃液として排
出することは環境保全上問題があり、さらにフ
ツ素の処理が必要である。即ち六フツ化ウラン
に起因するフツ素は上式(1)〜(2)から明らかなよ
うに六フツ化ウラン1モルに対して6モルであ
り、水中に溶解しているので、例えば上記公報
に記載の実施例1で示されているウラン110
mg/が六フツ化ウランのみに起因するとすれ
ば、フツ素は53mg/(Fとして)が水中に溶
存するにすぎない。しかるに上記公報記載の発
明ではさらにフツ素をフツ化アンモニウムの形
で10g/(Fとして)添加しなければならず
水ガラス1〜2g/を添加してケイフツ化ナ
トリウムを生成せしめても、添加したフツ素は
約9g/(Fとして)水中に溶存したまま残
るからである。このフツ素を除去するためには
上記(1)〜(3)の方法があるが希釈法によることは
論外として現在最もよく用いられているのが(2)
のアルカリ土類金属塩沈殿法であり、上記に述
べたとおり、難過性の沈殿物が多量に発生す
ることは免れない。いずれにしても上記発明は
ウラン回収には極めて有効であるが、回収後の
廃液処理には極めて不利であると言える。
(4) In contrast to the above conventional methods, a method has been proposed in which uranium is removed and recovered by adding water glass to the waste liquid containing uranium in the coexistence of fluorine and ammonia (Japanese Patent Publication No. 38320/1983). . This method involves adding silicon dioxide, which is generated from water glass,
It generates a precipitate by co-precipitation of ammonium silica and ADU, and the formation rate is high.
It also has good transient properties, with an extremely high uranium removal rate of over 99.7%. Furthermore, since the amount of water glass added is small, the amount of precipitate produced is small, and the uranium concentration in the precipitate is relatively high and within the economically recoverable range, and the uranium can be easily recovered by nitric acid treatment. It is said that it can be recovered. However, the problem with this method is that in order to generate the precipitate, the amount of fluorine added is 5 g/
As mentioned above, since it is necessary to add ammonia in an amount slightly larger than the equivalent amount of fluorine, a high concentration of fluorine and ammonium remains in the liquid after removing the generated precipitate. Ammonium in the liquid can be removed from the liquid by making the liquid highly alkaline and distilling it, but discharging high-concentration fluorine as waste from the plant without treatment poses environmental conservation problems. , further treatment of fluorine is required. That is, as is clear from the above formulas (1) and (2), fluorine originating from uranium hexafluoride is 6 moles per 1 mole of uranium hexafluoride, and is dissolved in water. Uranium-110 as shown in Example 1 described in
If mg/ of fluorine were to be attributed only to uranium hexafluoride, only 53 mg/(F) of fluorine would be dissolved in water. However, in the invention described in the above publication, 10 g/(F) of fluorine must be added in the form of ammonium fluoride. This is because about 9 g/(F) of fluorine remains dissolved in the water. There are methods (1) to (3) above to remove this fluorine, but the dilution method is out of the question, and the most commonly used method at present is (2).
This is an alkaline earth metal salt precipitation method, and as mentioned above, it is inevitable that a large amount of difficult-to-pass precipitate will be generated. In any case, although the above invention is extremely effective for uranium recovery, it can be said to be extremely disadvantageous for waste liquid treatment after recovery.

本発明の目的とするところは、従来法よりウラ
ンならびにフツ素の除去を有利かつ容易に行う方
法を提供するところにある。更に本発明の目的と
するところは、ウラン廃液にアンモニア及びフツ
素を更に添加することなく、使用薬品量も少な
く、かつ過性の良い沈殿を得、生成沈殿物量が
少なくて回収廃棄共に容易かつ経済的なウランな
らびにフツ素の除去回収法を提供するところにあ
る。
An object of the present invention is to provide a method for removing uranium and fluorine that is more advantageous and easier than conventional methods. Furthermore, it is an object of the present invention to obtain a precipitate with good permeability without further adding ammonia or fluorine to the uranium waste solution, using a small amount of chemicals, and producing a small amount of precipitate that is easy to collect and dispose of. The objective is to provide an economical method for removing and recovering uranium and fluorine.

本発明者らは上記目的を達成するために種々検
討の結果以下に述べるような満足すべき方法を見
出した。
In order to achieve the above object, the present inventors conducted various studies and found a satisfactory method as described below.

本発明の要旨とするところはフツ化ウランを取
り扱う製造工程からの廃液を加熱又は加熱濃縮を
行いながら、水ガラスおよびアルカリ土類金属塩
を添加することにより沈殿物を生成させ、該沈殿
物を溶液から分離することによりウランの除去回
収ならびにフツ素の除去を行う点にある。
The gist of the present invention is to generate a precipitate by adding water glass and an alkaline earth metal salt to the waste liquid from a manufacturing process that handles uranium fluoride while heating or heating and concentrating the waste liquid. The purpose is to remove and recover uranium and remove fluorine by separating it from the solution.

以下本発明を具体的につき説明する。 The present invention will be explained in detail below.

具体例 ウランを回収する場合 (1) まずウランを含む溶液を約80〜100℃で加熱
又は加熱濃縮しながら水ガラスを添加すると、
溶液中のウランから重ウラン酸ナトリウム
(Na2U2O7)、フツ素からケイフツ化ソーダ
(Na2SiF6)が生成され、ケイ酸ソーダが加水
分解されてケイ酸(SiO2)が生成する。ケイ
酸(SiO2)は上記重ウラン酸ナトリウムとケ
イフツ化ソーダの固形物のバインダーとして固
形物同志を強固に固着させる作用をもつ。加熱
又は加熱濃縮することによりその作用を促進
し、固形物濃度が2〜5g/程度になるとゲ
ル化する。
Specific example: When recovering uranium (1) First, when a solution containing uranium is heated or concentrated by heating at approximately 80 to 100°C, water glass is added.
Sodium diurate (Na 2 U 2 O 7 ) is produced from uranium in solution, sodium silicate (Na 2 SiF 6 ) is produced from fluorine, and silicic acid (SiO 2 ) is produced by hydrolysis of sodium silicate. do. Silicic acid (SiO 2 ) acts as a binder for the solids of sodium biurate and sodium silicate, and has the function of firmly adhering the solids to each other. The effect is promoted by heating or heating and concentration, and gelation occurs when the solid concentration reaches about 2 to 5 g/g.

水ガラスはJIB規格けい酸ソーダ1〜3号
(Na2O・nSiO2)を用いる。JIS規格けい酸ソ
ーダには1〜3号品があるが、SiO2/Na2Oモ
ル比が高い程好ましい。これはケイ酸(SiO2
のゲル化が早いからである。
As the water glass, JIB standard sodium silicate Nos. 1 to 3 (Na 2 O.nSiO 2 ) is used. JIS standard sodium silicate products include Nos. 1 to 3, but the higher the SiO 2 /Na 2 O molar ratio, the better. This is silicic acid (SiO 2 )
This is because it gels quickly.

水ガラスの添加量は溶液中の固形物量に対し
てSiO2として20〜50%添加する。濃縮すると
きは減圧・常圧いずれでもよく、溶液中の固形
物濃度が約2〜5g/程度になる迄濃縮す
る。
The amount of water glass added is 20 to 50% as SiO 2 based on the amount of solids in the solution. When concentrating, either reduced pressure or normal pressure may be used, and the concentration is performed until the concentration of solid matter in the solution becomes about 2 to 5 g/d.

溶液中に既にこの程度の固形物濃度があれば
水ガラス添加後約50〜80℃で約1〜2時間程度
加熱するだけよい。
If the solution already has a solid concentration of this level, it is sufficient to heat the solution at about 50 to 80°C for about 1 to 2 hours after adding water glass.

(2) しかる後当該溶液を過して固形物と液に
分離する。液中にフツ素が残存し、ウランは
固形物に含まれている。この固形物はウランの
回収用に供する。即ち当該固形物からウランを
回収するためには、周知の如く硝酸で溶出すれ
ばよい。
(2) The solution is then filtered to separate solids and liquids. Fluorine remains in the liquid, and uranium is contained in the solid matter. This solid material will be used for uranium recovery. That is, in order to recover uranium from the solid material, it is sufficient to elute it with nitric acid, as is well known.

(3) 一方フツ素の残存する過はさらに約80〜
100℃で加熱又は加熱濃縮しながら水ガラスお
よびアルカリ土類金属塩を添加すると、次式の
ように反応してフツ化カルシウム沈殿物が生成
される。
(3) On the other hand, the residual amount of fluorine is about 80~
When water glass and alkaline earth metal salt are added while heating or heating and concentrating at 100°C, a calcium fluoride precipitate is produced by reaction as shown in the following equation.

Ca2++2F-→CaF2↓ この沈殿物は極めて微細で難過性であるが、
加熱又は加熱濃縮により水ガラスが加水分解して
生成されるケイ酸(SiO2)が、沈殿物粒子同志
を強固に固着させることにより過性が良く、緻
密な沈殿物となる。水ガラスの添加量は、当該
液に添加するアルカリ土類金属塩を含めた全固形
物量に対しSiO2として1〜20%である。アルカ
リ土類金属塩は溶液中のフツ素の当量の約1.0〜
2.0倍添加する。
Ca 2+ +2F - →CaF 2 ↓ This precipitate is extremely fine and difficult to pass through, but
Silicic acid (SiO 2 ), which is produced by hydrolyzing water glass by heating or thermal concentration, firmly adheres to each other to form a highly permeable and dense precipitate. The amount of water glass added is 1 to 20% as SiO 2 based on the total amount of solids including alkaline earth metal salts added to the liquid. The alkaline earth metal salt is approximately 1.0 to 1.0 of the equivalent of fluorine in the solution.
Add 2.0 times.

アルカリ土類金属塩にはCa(OH)2、CaCO3
好ましくは中性塩即ちCaCl3、CaSO4、Ca
(NO22、Ca3(PO42が適する。何故ならば水ガ
ラス添加により液PHはアルカリ性域になるた
め、排水として放流する前に、中性域にPH調整す
る必要があり、この時の酸の必要量を少なくする
ためにはアルカリ土類中性金属塩が好ましいから
である。Ca塩の代わりにMg(OH)2、MgCO2
MgCl2、MgSO4、Mg(NO22、Mg2(PO42も使
用できる。
Alkaline earth metal salts include Ca(OH) 2 , CaCO 3 ,
Preferably neutral salts i.e. CaCl 3 , CaSO 4 , Ca
(NO 2 ) 2 and Ca 3 (PO 4 ) 2 are suitable. This is because the pH of the liquid becomes alkaline due to the addition of water glass, so it is necessary to adjust the pH to a neutral range before discharging it as wastewater.In order to reduce the amount of acid required at this time, alkaline earth This is because neutral metal salts are preferred. Mg(OH) 2 , MgCO2 instead of Ca salt,
MgCl2 , MgSO4 , Mg( NO2 ) 2 , Mg2 ( PO4 ) 2 can also be used.

上記(1)と同様に加熱濃縮するときは減圧・常圧
いずれでもよく、溶液中の固形物濃度が約2〜5
g/程度になる迄濃縮する。溶液中に既にこの
程度の固形物濃度があれば水ガラス添加後約50〜
80℃で約1〜2時間加熱するだけでよい。
As in (1) above, when heating and concentrating, either reduced pressure or normal pressure may be used, and the solid concentration in the solution is approximately 2 to 5.
Concentrate until it reaches about 1.5 g/g. If the solution already has a solid concentration of this level, it will be about 50~ after adding water glass.
All you need to do is heat it at 80℃ for about 1-2 hours.

而る後当該溶液を過して固形物と液を分別
し、フツ素を含む固形物は廃棄物として廃棄し、
液は排水としてPH調整後放流する。
After that, the solution is filtered to separate solids and liquids, and solids containing fluorine are discarded as waste.
The liquid is discharged as wastewater after pH adjustment.

具体例 ウランを回収しない場合 (1) まずウランを含む溶液を約80〜100℃で加熱
濃縮しながら水ガラスおよびアルカリ土類金属
塩を添加する。溶液中のウランは重ウラン酸ナ
トリウム(Na2U2O7)、フツ素からケイフツ化
ソーダ(Na2SiF6)、フツ化カルシウム
(CaF2)などの混合物が生成される。ケイ酸ソ
ーダは加水分解されてケイ酸(SiO2)を生成
させ、上記沈殿物同志を強固に固着させる作用
をもつ。加熱又は加熱濃縮することによりその
作用が促進され、固形物濃度が5g/以上に
なるとゲル化する。水ガラスは具体例で述べ
たJIS規格けい酸ソーダを用いる。水ガラスの
添加量は下記アルカリ土類金属塩の添加量を含
めて溶液中の固形物量に対してSiO2として1
〜20%である。アルカリ土類金属塩はウランを
含む溶液のフツ素当量の約1.0〜2.0倍程度添加
する。金属塩類は具体例と同じ。しかる後溶
液中の固形物濃度が約2〜5g/程度となる
迄加熱濃縮するが、当該溶液中の固形物濃度が
既に約2〜5g/程度あれば50〜80℃で約1
〜2時間加熱するだけでよい。
Specific example When uranium is not recovered (1) First, water glass and an alkaline earth metal salt are added while heating and concentrating a solution containing uranium at about 80 to 100°C. The uranium in the solution is sodium diuranate (Na 2 U 2 O 7 ), and the fluorine is mixed into sodium silicate (Na 2 SiF 6 ), calcium fluoride (CaF 2 ), and other mixtures. Sodium silicate is hydrolyzed to produce silicic acid (SiO 2 ), which has the effect of firmly fixing the above-mentioned precipitates together. This action is promoted by heating or heating and concentration, and gelation occurs when the solids concentration reaches 5 g/or more. The water glass used is the JIS standard sodium silicate mentioned in the specific example. The amount of water glass added is 1 as SiO 2 based on the amount of solids in the solution, including the amount of alkaline earth metal salt added below.
~20%. The alkaline earth metal salt is added in an amount of about 1.0 to 2.0 times the fluorine equivalent of the uranium-containing solution. Metal salts are the same as the specific examples. After that, the solution is heated and concentrated until the solid concentration in the solution is about 2 to 5 g/approx. If the solid concentration in the solution is already about 2 to 5 g/approx.
Just heat for ~2 hours.

(2) しかる後、当該溶液を過し、固形物と液
を分別する。ウランおよびフツ素は固形物の中
に含まれ、過中には含まれない。
(2) After that, the solution is filtered to separate solids and liquid. Uranium and fluorine are included in solids and not in solids.

(3) 固形物は廃棄物として、過は排水としてPH
調整後放流する。
(3) Solids are treated as waste and waste is treated as wastewater.
Discharge after adjustment.

実施例 1 ウラン95mg/、フツ素50mg/を含む硝酸ウ
ラニル・フツ化ソーダ溶液1を加熱濃縮しなが
ら、水ガラス(JISけい酸ソーダ3号)を0.4g添
加し、容積を約1/5迄に減らした。しかる後生成
した沈殿物を別した。液約200mlをさらに加
熱濃縮しながら水ガラス(上記と同じ)と塩化カ
ルシウムCaCl2を各々0.3g、0.6gを添加し、約
1/2迄に容積を減らし、生成した沈殿物を別し
た。液中のウラン含有量は0.2mg/以下でウ
ラン除去率は99.8%以上、フツ素の含有量は0.1
mg/以下でフツ素除去率は99.8%以上であつ
た。
Example 1 While heating and concentrating uranyl nitrate/sodium fluoride solution 1 containing 95 mg of uranium and 50 mg of fluorine, 0.4 g of water glass (JIS sodium silicate No. 3) was added to reduce the volume to about 1/5. reduced to Thereafter, the formed precipitate was separated. While further heating and concentrating about 200 ml of the liquid, 0.3 g and 0.6 g of water glass (same as above) and calcium chloride CaCl 2 were added, respectively, to reduce the volume to about 1/2, and the formed precipitate was separated. The uranium content in the liquid is 0.2 mg/or less, the uranium removal rate is 99.8% or more, and the fluorine content is 0.1
The fluoride removal rate was 99.8% or more at mg/mg or less.

生成した沈殿物量は、合計して約1gであつ
た。
The total amount of precipitate produced was approximately 1 g.

比較試験(特公昭48〜38320号公報記載の方法) 上記ウランおよびフツ素を含む溶液にフツ化ア
ンモニウム(Fとして10g/)と塩化アンモニ
ウム(NH2として20g/)を添加しさらに水
ガラス1g/を加えて撹拌し、生成した沈殿を
別した。液中のウラン含有量は0.2mg/以
下でウラン除去率は99.8%以上、フツ素含有量は
9g/でほとんど除去されていなかつた。この
液に酸化カルシウム20g/を添加し沈殿物を
生成させた後別し、その液中のフツ素含有量
は0.1mg/以下でフツ素除去率はほぼ100%であ
るが、生成沈殿物量は合計して約22gであつた。
Comparative test (method described in Japanese Patent Publication No. 48-38320) Ammonium fluoride (10 g/as F) and ammonium chloride (20 g/as NH 2 ) were added to the solution containing uranium and fluorine, and further 1 g/g of water glass was added. was added and stirred, and the formed precipitate was separated. The uranium content in the liquid was less than 0.2mg/, and the uranium removal rate was more than 99.8%, and the fluorine content was 9g/, which was hardly removed. 20g of calcium oxide was added to this solution to form a precipitate, which was then separated.The fluorine content in the solution was less than 0.1mg/, and the fluorine removal rate was almost 100%, but the amount of precipitate produced was The total weight was about 22g.

実施例 2 実施例1と同様のウラン95mg/、フツ素50
mg/を含む硝酸ウラニル・フツ化ソーダ溶液1
を加熱濃縮しながら、水ガラス(JISけい酸ソ
ーダ3号)を0.4g、塩化カルシウムCaCl2を0.6
gを添加し、約1/8迄容積を減らし、生成した沈
殿物を別した。液約125mlのウラン含有量は
0.2mg/以下でウラン除去率は99.8%以上、フ
ツ素含有量は0.1mg/以下でフツ素除去率は、
99.8%以上であつた。生成した沈殿物量は、合計
して約1.1gであつた。
Example 2 Uranium 95 mg/, fluorine 50 as in Example 1
Uranyl nitrate/sodium fluoride solution containing mg/1
While heating and concentrating, add 0.4 g of water glass (JIS sodium silicate No. 3) and 0.6 g of calcium chloride CaCl2.
g was added, the volume was reduced to about 1/8, and the precipitate formed was separated. The uranium content of approximately 125ml of liquid is
At 0.2 mg/or less, the uranium removal rate is over 99.8%, and at 0.1 mg/or less, the fluorine removal rate is
It was over 99.8%. The total amount of precipitate produced was about 1.1 g.

以上述べてきたところからも明らかなように、
本発明は従来法に比べ下記の点で有利なウランを
含む廃液の処理方法である。
As is clear from what has been said above,
The present invention is a method for treating waste liquid containing uranium that is advantageous over conventional methods in the following points.

(1) ウランの除去・回収と共にフツ素の除去も容
易に行える。
(1) Fluorine can be easily removed along with uranium removal and recovery.

(2) アンモニアおよびフツ素をさらに添加しなく
てよいので、添加フツ素除去に必要なアルカリ
土類金属塩の添加量が従来法より少くてすむ。
(2) Since there is no need to further add ammonia and fluorine, the amount of alkaline earth metal salt required to remove added fluorine can be smaller than in the conventional method.

(3) 加熱又は加熱濃縮することにより、水ガラス
の添加量を従来法にくらべ少なくできる。
(3) By heating or heating and concentrating, the amount of water glass added can be reduced compared to conventional methods.

(4) 生成する沈殿物は過性が良いのみならず緻
密であるため従来のアルカリ土類金属塩沈殿法
(及びフツ素除去に該方法を用いる特公昭48−
38320号公報記載の方法)に比べて汚泥発生量
が少ない。
(4) Since the precipitate produced is not only highly permeable but also dense, it is difficult to use the conventional alkaline earth metal salt precipitation method (and the use of this method to remove fluorine).
The amount of sludge generated is smaller than that of the method described in Publication No. 38320).

(5) (2)、(3)、(4)より該沈殿物中のウラン含有量は
相対的に高くなる。
(5) From (2), (3), and (4), the uranium content in the precipitate is relatively high.

(6) ウランを回収する場合もウランを回収せずウ
ランを含む固形物として廃棄する場合も生成汚
泥量が少ないためウランおよびフツ素の処理が
容易かつ極めて有利に行える。
(6) Whether uranium is recovered or uranium is not recovered and disposed of as a solid material containing uranium, the amount of sludge produced is small, so uranium and fluorine can be easily and extremely advantageously processed.

Claims (1)

【特許請求の範囲】[Claims] 1 フツ化ウランを取り扱う製造工程から排出さ
れる廃液からウラン及びフツ素を除去する方法に
おいて、ウラン及びフツ素を含む廃液を加熱又は
加熱濃縮しながら水ガラス及びアルカリ土類金属
塩を添加して沈殿物を生成し、該沈殿物を廃液か
ら分離することを特徴とするウラン廃液の処理方
法。
1. In a method for removing uranium and fluorine from waste liquid discharged from manufacturing processes that handle uranium fluoride, water glass and alkaline earth metal salts are added while heating or heating and concentrating the waste liquid containing uranium and fluorine. 1. A method for treating uranium waste liquid, which comprises generating a precipitate and separating the precipitate from the waste liquid.
JP58073878A 1983-04-28 1983-04-28 Method of processing liquid waste containing uranium Granted JPS59200998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58073878A JPS59200998A (en) 1983-04-28 1983-04-28 Method of processing liquid waste containing uranium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58073878A JPS59200998A (en) 1983-04-28 1983-04-28 Method of processing liquid waste containing uranium

Publications (2)

Publication Number Publication Date
JPS59200998A JPS59200998A (en) 1984-11-14
JPH0461320B2 true JPH0461320B2 (en) 1992-09-30

Family

ID=13530895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58073878A Granted JPS59200998A (en) 1983-04-28 1983-04-28 Method of processing liquid waste containing uranium

Country Status (1)

Country Link
JP (1) JPS59200998A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2561909B2 (en) * 1985-04-16 1996-12-11 三菱原子燃料 株式会社 Treatment method of radioactive liquid waste
FR2972811B1 (en) * 2011-03-14 2014-02-07 Soc Franco Belge De Fabrication De Combustibles Fbfc PHOTONIC SPECTROMETRY DEVICE AND METHOD, DEVICE CALIBRATION METHOD, AND DEVICE USAGE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316358A (en) * 1976-07-30 1978-02-15 Shimoda Gijutsu Kenkyusho Kk Method of removing metal ions from solutions
JPS54118998A (en) * 1978-03-08 1979-09-14 Japan Atom Energy Res Inst Processing method of radioactive material contained liquid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316358A (en) * 1976-07-30 1978-02-15 Shimoda Gijutsu Kenkyusho Kk Method of removing metal ions from solutions
JPS54118998A (en) * 1978-03-08 1979-09-14 Japan Atom Energy Res Inst Processing method of radioactive material contained liquid

Also Published As

Publication number Publication date
JPS59200998A (en) 1984-11-14

Similar Documents

Publication Publication Date Title
US4171342A (en) Recovery of calcium fluoride from phosphate operation waste water
US4981664A (en) Method of production of high purity silica and ammonium fluoride
US3961027A (en) Cyclic process for re-use of waste water generated during the production of UO2
US3725265A (en) Purification of waste water
US3966877A (en) Method of processing of waste gases
US4915705A (en) Production of silica and fluorine-containing coproducts from fluosilicic acid
US5165907A (en) Method of production of high purity silica and ammonium fluoride
JPH0481526B2 (en)
JPS641196B2 (en)
US4374810A (en) Recovery of fluorine from pond water of wet process phosphoric acid plants and recycling of defluorinated water
US3625648A (en) Recovery of fluorine and p2o5 from dilute aqueous acidic phosphatic solutions
US4060586A (en) Recovery of fluorides from gypsum
JPH0461320B2 (en)
US4689178A (en) Method for magnesium sulfate recovery
CA1181596A (en) Reclamation process for water-borne uranium
JPS6071505A (en) Manufacture of phosphoric acid
JP3264677B2 (en) Method for producing hydrogen fluoride
JPH0582330B2 (en)
US4554144A (en) Removal of magnesium and/or aluminum values from impure aqueous phosphoric acid
EP0460524B1 (en) Process for preparing hydrogen fluoride
US5077020A (en) Metal recovery process using waterglass
US2385208A (en) Process for recovering fluorine compounds
JP2001137864A (en) Method for treating waste water containing hydrofluoric acid
JPS5924731B2 (en) Method for removing and recovering uranium or/and thorium from a liquid containing uranium or/and thorium
JPH05170435A (en) Method for recovering calcium fluoride from fluorine-containing etchant