JPH1187912A - Manufacture of double-sided wiring board - Google Patents

Manufacture of double-sided wiring board

Info

Publication number
JPH1187912A
JPH1187912A JP24529797A JP24529797A JPH1187912A JP H1187912 A JPH1187912 A JP H1187912A JP 24529797 A JP24529797 A JP 24529797A JP 24529797 A JP24529797 A JP 24529797A JP H1187912 A JPH1187912 A JP H1187912A
Authority
JP
Japan
Prior art keywords
double
conductive
wiring board
sided
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24529797A
Other languages
Japanese (ja)
Inventor
Takeshi Takeda
剛 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24529797A priority Critical patent/JPH1187912A/en
Publication of JPH1187912A publication Critical patent/JPH1187912A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a double-sided wiring board which is capable of not only easily controlling the thickness of the wiring board but also securing mechanical strength. SOLUTION: This manufacture is provided with a process for making a through-hole 4 in a thickness direction at a prescribed part of an insulating core sheet 1, the process for providing a conductive projection 5 on one main surface of conductor foils 2 and 2' corresponding to the through-hole 4, the process for making the conductive projections 5 face each other and positioning, laminating and arranging the conductor foils 2 and 2' on both sides of the insulating core sheet 1 via an insulating sheet layer 3, the process for pressing and integrating the laminated body and forming a double-sided conductor foiled laminated board for which the tip parts of the corresponding conductive projections 5 are electrically connected with each other inside the through-hole 4 of the insulating core board 1 and the process for patterning the wiring of the double-sided conductor foils 2 and 2'.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、両面型配線板の製
造方法に係り、さらに詳しくは強度や寸法精度のすぐれ
た両面型配線板の製造方法に関する。
The present invention relates to a method for manufacturing a double-sided wiring board, and more particularly, to a method for manufacturing a double-sided wiring board having excellent strength and dimensional accuracy.

【0002】[0002]

【従来の技術】両面型配線板の構成において、絶縁体層
(層間絶縁体層)を介し、両主面に一体的に配設された
配線パターン層間の電気的な接続は、一般的に、絶縁体
層に厚さ方向に貫通する孔を穿設し、この孔の内壁面に
導電性のメッキ層を設け、いわゆるスルホール接続方式
で行っている。また、スルホール接続工程の簡略化のた
め、絶縁体層に穿設した貫通孔内に、導電性ペーストを
充填して行うことも試みられている。すなわち、前記配
線パターン層間の電気的な接続箇所に、層間絶縁体層を
貫通(貫挿)する孔を設け、この孔内壁面に導電性のメ
ッキ層を成長させ、スルホール接続を形成する代りに、
孔内に導電性ペーストを充填・埋め込み、所要のスルホ
ール接続を形成することが知られている。
2. Description of the Related Art In the construction of a double-sided wiring board, electrical connection between wiring pattern layers integrally provided on both main surfaces via an insulating layer (interlayer insulating layer) is generally performed as follows. A hole penetrating in the thickness direction is formed in the insulator layer, and a conductive plating layer is provided on the inner wall surface of the hole, so that a so-called through-hole connection method is used. Further, in order to simplify the through-hole connection process, attempts have been made to fill a through-hole formed in an insulator layer with a conductive paste. That is, instead of forming a hole that penetrates (penetrates) the interlayer insulating layer at an electrical connection point between the wiring pattern layers and grows a conductive plating layer on the inner wall surface of the hole, a through hole connection is formed. ,
It is known that a conductive paste is filled and buried in a hole to form a required through-hole connection.

【0003】たとえば、両面型配線板の場合は、一般的
に、次のような手順で製造されている。先ず、ガラス布
にエポキシ樹脂を含浸・付着させた(ガラス・エポキシ
樹脂系)プリプレグ層の両主面側に、予め、所定位置に
導電性バンプ(導電性突起)を設けてある電解銅箔と、
導電性バンプを設けてない電解銅箔とを重ね・配置し、
加熱・加圧成型して両面銅張り積層板を製造する。
For example, a double-sided wiring board is generally manufactured by the following procedure. First, an electrolytic copper foil provided with conductive bumps (conductive protrusions) at predetermined positions in advance on both main surfaces of a prepreg layer (glass-epoxy resin type) in which an epoxy resin is impregnated and adhered to a glass cloth. ,
Overlay and arrange with electrolytic copper foil without conductive bumps,
Heat and pressure molding to produce double-sided copper-clad laminates.

【0004】ここで、プリプレグ層および電解銅箔の厚
さは、両面型配線板の設計仕様(配線板の厚さ、配線パ
ターン幅・配線密度)などによって選択・設定される。
また、前記加熱・加圧成型の過程で、層間絶縁体層を成
すガラス・エポキシ樹脂系プリプレグ層中の樹脂は、軟
化溶融状態を採るので、導電性バンプの先端部がプリプ
レグ層を貫通し、対向する電解銅箔面に対接して電気的
な接続が形成される。
The thickness of the prepreg layer and the thickness of the electrolytic copper foil are selected and set in accordance with the design specifications of the double-sided wiring board (thickness of the wiring board, wiring pattern width and wiring density).
Further, in the process of the heating and pressure molding, the resin in the glass-epoxy resin-based prepreg layer forming the interlayer insulator layer adopts a softened molten state, so that the tip of the conductive bump penetrates the prepreg layer, An electrical connection is formed in contact with the facing electrolytic copper foil surface.

【0005】その後、両面銅張り積層板の銅箔面に、フ
ォトエッチング処理を施して配線パターニングすること
により、所望の配線パターンを有する両面型配線板が製
造される。
[0005] Thereafter, the copper foil surface of the double-sided copper-clad laminate is subjected to photo-etching and wiring patterning to produce a double-sided wiring board having a desired wiring pattern.

【0006】一方、最近の軽薄・短小化傾向に伴って、
両面型配線板を含む各種配線板においても、軽薄化など
が要求されており、配線板の薄型化、配線の多層化、配
線の微細化ないし配線の高密度化などが図られている。
On the other hand, with the recent tendency to be light and thin,
Various types of wiring boards, including double-sided wiring boards, are also required to be lighter and thinner, and thinner wiring boards, more multilayer wiring, finer wiring, higher density wiring, and the like are being pursued.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記導
電性バンプの層間絶縁体層の貫通によって、配線パター
ン層間のスルホール接続を行う方式の両面銅張り板の場
合、次ぎのような不具合が認められる。たとえば、厚さ
0.2mm程度の仕様で、ガラス・エポキシ樹脂系プリプレ
グ層および電解銅箔の厚さを選択・設定しても、それら
素材(品質)のバラツキや、製造工程・操作などによっ
て、製造した両面型配線板の厚さを、常時、許容の範囲
(たとえば±10%)内に制御することが困難で、製造歩
留まりの低下が懸念される。
However, in the case of a double-sided copper-clad board in which through holes are connected between wiring pattern layers by penetrating the conductive bumps through the interlayer insulating layer, the following problems are recognized. For example, thickness
Even if the thickness of the glass / epoxy resin prepreg layer and the electrolytic copper foil are selected and set at the specification of about 0.2mm, the double-sided wiring manufactured by the variation of the material (quality) and the manufacturing process / operation etc. It is difficult to always control the thickness of the plate within an allowable range (for example, ± 10%), and there is a concern that the production yield may be reduced.

【0008】また、上記厚さのバラツキに加えて、両面
配線板の機械的な強度が劣り損傷を招来し易いこと、あ
るいは電子部品の位置決め・実装を困難化するソリを生
じる傾向があるなどの問題がある。すなわち、軽薄・短
小で、かつ信頼性の高い実装回路装置化を可能とする両
面型配線板としては、装着・組み込み作業が非量産的・
煩雑化するなどの問題点があり、実用上、十分満足でき
る製造方法とはいえない。
Further, in addition to the above-mentioned thickness variation, the mechanical strength of the double-sided wiring board is inferior and damage is liable to occur, or warpage that makes positioning and mounting of electronic components difficult is caused. There's a problem. In other words, mounting and assembling work is non-mass-produced as a double-sided wiring board that is light, thin, short, and can be used as a highly reliable mounting circuit device.
There are problems such as complication, and the production method cannot be said to be a satisfactory method in practical use.

【0009】本発明は、上記事情にに対処してなされた
もので、配線板の厚さを制御し易いばかりでなく、機械
的な強度を確保することができる両面型配線板の製造方
法の提供を目的とする。
The present invention has been made in view of the above circumstances, and provides a method of manufacturing a double-sided wiring board capable of ensuring not only easy control of the thickness of the wiring board but also mechanical strength. For the purpose of providing.

【0010】[0010]

【課題を解決するための手段】請求項1の発明は、絶縁
性コア板の所定箇所に厚さ方向に貫通する孔を穿設する
工程と、前記穿設孔に対応させて導電体箔の一主面に導
電性突起を設ける工程と、前記絶縁性コア板の両面に絶
縁性シート層を介し、かつ導電性突起を対向させて導電
体箔を位置決め積層・配置する工程と、前記積層体を加
圧一体化し、対応する導電性突起の先端部同士が絶縁性
コア板の穿設孔内で電気的に接続した両面導電体箔張り
積層板を形成する工程と、前記両面導電体箔を配線パタ
ーニングする工程と、を有することを特徴とする両面型
配線基板の製造方法である。
According to a first aspect of the present invention, there is provided a method of forming a hole penetrating a predetermined portion of an insulating core plate in a thickness direction, and a step of forming a conductive foil corresponding to the formed hole. A step of providing conductive protrusions on one principal surface; a step of positioning, stacking and arranging conductive foils on both surfaces of the insulating core plate with insulating sheet layers interposed therebetween and with the conductive protrusions facing each other; Forming a double-sided conductor foil-clad laminate in which the tips of the corresponding conductive protrusions are electrically connected in the perforated holes of the insulating core plate, and And a wiring patterning process.

【0011】請求項2の発明は、請求項1記載の両面型
配線基板の製造方法において、導電性突起を導電性ペー
ストのスクリーン印刷・乾燥で設けることを特徴とす
る。
According to a second aspect of the present invention, in the method for manufacturing a double-sided wiring board according to the first aspect, the conductive projections are provided by screen printing and drying of a conductive paste.

【0012】請求項3の発明は、請求項1もしくは請求
項2記載の両面型配線基板の製造方法において、絶縁性
シート層がガラス・エポキシ樹脂系のプリフレグである
ことを特徴とする。
According to a third aspect of the present invention, in the method for manufacturing a double-sided wiring board according to the first or second aspect, the insulating sheet layer is a glass / epoxy resin pre-flag.

【0013】本発明において、絶縁性コア板は、製造す
る両面型配線板の厚さの制御、および機械的な強度に寄
与するものであり、一般的に、厚さ 0.1〜 1.0mm程度で
あり、たとえばガラス・エポキシ樹脂系、ポリイミド樹
脂系、ビスマレイミドトリアジン樹脂系、フェノール樹
脂系、ポリエステル樹脂系、メラミン樹脂系、ポリカー
ボネート樹脂系のシート類(もしくはフィルムないし薄
板)などの絶縁体が挙げられる。なお、この絶縁性コア
板に対する貫通孔の穿設は、たとえばドリル加工やパン
チング加工などによって行われる。
In the present invention, the insulating core plate contributes to the control of the thickness and the mechanical strength of the double-sided wiring board to be manufactured, and generally has a thickness of about 0.1 to 1.0 mm. Examples thereof include insulators such as glass / epoxy resin, polyimide resin, bismaleimide triazine resin, phenol resin, polyester resin, melamine resin, and polycarbonate resin sheets (or films or thin plates). The through-holes are formed in the insulating core plate by, for example, drilling or punching.

【0014】また、導電体箔としては、たとえば厚さ12
〜35μm 程度の電解銅箔やアルミ箔などが挙げられ、そ
の材質および厚さは、製造する両面型配線板の用途や厚
さなどによって適宜選択する。そして、この導電体箔の
一主面に対する導電性突起の形成は、たとえばメタルマ
スクを用い、導電性樹脂ペーストをスクリーン印刷、印
刷後の乾燥を適宜繰り返すことによって、所定寸法(底
面径,高さ)の円錐状もしくは角錐状に形成できる。な
お、上記導電性突起の大きさ・形状は、前記例示の形状
に限定されないが、対向するコア基板の貫通孔内を十分
に充填する程度であることが望ましい。
The conductor foil may have a thickness of, for example, 12
Electrolyzed copper foil and aluminum foil having a thickness of about 35 μm or the like can be mentioned. The material and thickness of the foil are appropriately selected depending on the use and thickness of the double-sided wiring board to be manufactured. The conductive protrusions are formed on one main surface of the conductive foil by screen printing of a conductive resin paste using a metal mask, for example, and by appropriately repeating drying after printing to obtain predetermined dimensions (bottom diameter, height). ) Can be formed in a conical shape or a pyramid shape. The size and shape of the conductive protrusions are not limited to the above-described shapes, but are desirably sufficient to sufficiently fill the through holes of the opposing core substrate.

【0015】ここで、導電性樹脂ペーストとしては、た
とえば銀,金,銅,半田粉などの導電性粉末、これらの
合金粉末もしくは複合(混合)金属粉末と、樹脂バイン
ダー成分とを混合して調製されたペースト類が挙げられ
る。
The conductive resin paste is prepared by mixing a conductive powder such as silver, gold, copper and solder powder, an alloy powder or a composite (mixed) metal powder thereof, and a resin binder component. Pastes.

【0016】また、樹脂バインダー成分としては、たと
えばポリカーボネート樹脂、ポリスルホン樹脂、ポリエ
ステル樹脂、フェノキシ樹脂などの熱可過塑性樹脂、フ
ェノール樹脂、ポリイミド樹脂、エポキシ樹脂などの熱
硬化性樹脂などが一般的に挙げられる。その他、メチル
メタアクリレート、ジエチルメチルメタアクリレート、
トリメチロールプロパントリアクリレート、ジエチレン
グリコールジエチルアクリレート、アクリル酸メチル、
アクリル酸エチル、アクリル酸ジエチレングリコールエ
トキシレート、ε−カプロラクトン変性ジペンタエリス
リトールのアクリレートなどのアクリル酸エステル、メ
タアクリル酸エステルなどの紫外線硬化型樹脂もしくは
電子線照射硬化型樹脂などが挙げられる。
As the resin binder component, for example, thermoplastic resins such as polycarbonate resin, polysulfone resin, polyester resin and phenoxy resin, and thermosetting resins such as phenol resin, polyimide resin and epoxy resin are generally used. No. In addition, methyl methacrylate, diethyl methyl methacrylate,
Trimethylolpropane triacrylate, diethylene glycol diethyl acrylate, methyl acrylate,
UV-curable resins such as acrylates such as ethyl acrylate, diethylene glycol ethoxylate acrylate, and acrylates of ε-caprolactone-modified dipentaerythritol, and methacrylates, and electron beam-curable resins.

【0017】さらに、絶縁性コア板面に配置する絶縁性
シートとしては、たとえば熱可塑性樹脂フイルム(シー
ト)が挙げられ、その厚さは、一般的に、30〜 100μm
程度が好ましい。ここで、熱可塑性樹脂シートとして
は、たとえばポリカーボネート樹脂、ポリスルホン樹
脂、熱可塑性ポリイミド樹脂、4フッ化ポリエチレン樹
脂、6フッ化ポリプロピレン樹脂、ポリエーテルエーテ
ルケトン樹脂などのシート類が挙げられる。また、硬化
前の状態に保持される熱硬化性樹脂(プリプレグ)シー
トとしては、エポキシ樹脂、ビスマレイミドトリアジン
樹脂、ポリイミド樹脂、フェノール樹脂、ポリエステル
樹脂、メラミン樹脂、あるいはブタジェンゴム、ブチル
ゴム、天然ゴム、ネオプレンゴム、シリコーンゴムなど
の生ゴムのシート類が挙げられる。これら合成樹脂は、
単独でもよいが絶縁性無機物や有機物系の充填物を含有
してもよく、さらにガラスクロスやマット、有機合成繊
維布やマット、あるいは紙などの補強材と組み合わせて
成るシートであってもよい。
Further, as the insulating sheet disposed on the surface of the insulating core plate, for example, a thermoplastic resin film (sheet) may be mentioned, and its thickness is generally 30 to 100 μm.
The degree is preferred. Here, examples of the thermoplastic resin sheet include sheets such as a polycarbonate resin, a polysulfone resin, a thermoplastic polyimide resin, a tetrafluoroethylene resin, a hexafluoropropylene resin, and a polyetheretherketone resin. The thermosetting resin (prepreg) sheet kept in a state before curing includes epoxy resin, bismaleimide triazine resin, polyimide resin, phenol resin, polyester resin, melamine resin, or butadiene rubber, butyl rubber, natural rubber, neoprene Examples include sheets of raw rubber such as rubber and silicone rubber. These synthetic resins are:
The sheet may be used alone, or may contain an insulating inorganic or organic filler, and may be a sheet formed by combining with a reinforcing material such as glass cloth or mat, organic synthetic fiber cloth or mat, or paper.

【0018】請求項1ないし請求項3の発明では、絶縁
性コア板の両面に層間接続された配線パターンが形成さ
れる。つまり、予め、厚さが制御・規定され、かつ所定
の機械的強度を保証する絶縁性の基板をコアとし、この
コア基板面に配線パターンが形成されるため、ほぼ一定
厚で、かつ適度の機械的な強度を有する両面型配線板が
歩留まりよく製造される。また、両面配線パターンの層
間接続は、加圧一体化の工程で、絶縁性シートを貫挿
し、かつコア基板の貫通孔に対向・挿入する導電性突起
先端部の対接と貫通孔内の充填で確実に行われる一方、
隣接する層間接続の絶縁・離隔も適切になされるため、
信頼性の高い層間接続が形成される。
According to the first to third aspects of the present invention, the wiring patterns connected between the layers are formed on both surfaces of the insulating core plate. In other words, since an insulating substrate whose thickness is controlled and specified in advance and which guarantees a predetermined mechanical strength is used as a core, and a wiring pattern is formed on the surface of the core substrate, the thickness is approximately constant and appropriate. A double-sided wiring board having mechanical strength is manufactured with high yield. In addition, the interlayer connection of the double-sided wiring pattern is performed in the step of pressure integration, in which the insulating sheet is inserted, and the front end of the conductive protrusion which faces / inserts into the through hole of the core substrate and the inside of the through hole are filled. On the other hand,
Since the insulation and separation of adjacent interlayer connections are also made properly,
A highly reliable interlayer connection is formed.

【0019】[0019]

【発明の実施の形態】以下、図1、図2および図3を参
照して実施例を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment will be described below with reference to FIGS. 1, 2 and 3. FIG.

【0020】図1〜図3は、この発明の実施例に係る両
面型配線板の製造工程を模式的に示す断面図である。先
ず、厚さ約 0.3mmのガラスエポキシ樹脂系の硬化基板
(コア基板)1、厚さ18μm の電解銅箔2,2′、直径
0.5mmの孔を所定の位置に穿設して成る厚さ 0.5mmのメ
タルスクリーン版、銀粉末−フェノール樹脂系の導電性
ペースト、および厚さ約 100μm のガラスエポキシ樹脂
系プリプレグ(未硬化)3をそれぞれ用意した。
1 to 3 are cross-sectional views schematically showing steps of manufacturing a double-sided wiring board according to an embodiment of the present invention. First, a cured substrate (core substrate) 1 of a glass epoxy resin having a thickness of about 0.3 mm, electrolytic copper foils 2 and 2 ′ having a thickness of 18 μm, and a diameter of
0.5 mm thick metal screen plate formed by drilling 0.5 mm holes at predetermined positions, silver powder-phenol resin conductive paste, and glass epoxy resin prepreg (uncured) having a thickness of about 100 μm 3 Were prepared respectively.

【0021】次いで、前記コア基板1の所定位置(箇
所)に、ドリル加工によって径 0.6mm程度の貫通孔4を
穿設する一方、前記電解銅箔2,2′の一主面に、メタ
ルスクリーン版をそれぞれ位置決め配置し、前記貫通孔
4に対向する位置に銀粉末−フェノール樹脂系の導電性
ペーストを印刷した。印刷した導電性ペーストを 165
℃,15分間,乾燥処理した後、同一メタルスクリーン版
をそれぞれ用い同一位置に印刷,乾燥処理を4回繰り返
してから加熱効果処理を施して円錐状(底面径 0.5mm,
高さ 0.5mm)の導電性バンプ5をそれぞれ設けた。
Next, a through hole 4 having a diameter of about 0.6 mm is formed at a predetermined position (location) of the core substrate 1 by drilling, and a metal screen is formed on one main surface of the electrolytic copper foils 2 and 2 ′. The plates were positioned and arranged, and a silver powder-phenol resin-based conductive paste was printed at a position facing the through hole 4. 165 Printed conductive paste
After drying at ℃ for 15 minutes, printing and drying were repeated four times at the same position using the same metal screen plate, and then subjected to a heating effect treatment to form a cone (bottom diameter 0.5 mm,
Conductive bumps 5 each having a height of 0.5 mm) were provided.

【0022】その後、図1に断面的に示すごとく、前記
貫通孔4を設けたコア基板1,一主面の所定位置に導電
性バンプ5を設けた電解銅箔2,2′およびガラスエポ
キシ樹脂系プリプレグ3を位置決め積層・配置した。次
ぎに、この積層体を加熱型プレスに当て板を介してセッ
トし、 175℃の加熱、 60kg/cm2 の圧力で 1時間加圧プ
レスを行って、ガラス・エポキシ樹脂系プリプレグ3の
硬化を行うとともに、ガラス・エボキシ樹脂系プリプレ
グ3を貫通させた各導電性バンプ5先端部を、互いに対
向するコア基板1の貫通孔4内に圧入し対接・接続させ
て、両面の電解銅箔2,2′間を電気的に接続するスル
ホール接続部5′を形成した。
Thereafter, as shown in cross section in FIG. 1, a core substrate 1 provided with the through holes 4, electrolytic copper foils 2, 2 ′ provided with conductive bumps 5 at predetermined positions on one main surface, and a glass epoxy resin The system prepreg 3 was positioned and laminated and arranged. Next, the laminate was set on a heating press via a contact plate, and heated at 175 ° C. and pressurized at a pressure of 60 kg / cm 2 for 1 hour to cure the glass / epoxy resin prepreg 3. At the same time, the front ends of the conductive bumps 5 penetrating the glass-epoxy resin-based prepreg 3 are pressed into the through holes 4 of the core substrate 1 facing each other so as to be in contact with and connected to each other. , 2 'are electrically connected to each other.

【0023】図2および図3は、上記加圧成型工程にお
ける導電性バンプ5の状態を示すもので、先ず、導電性
バンプ5の先端部は、ガラス・エポキシ樹脂系プリプレ
グ3を圧入・貫挿する。引き続いて、導電性バンプ5の
先端部は、図2に示すごとく、コア基板1の貫通孔4内
で対向し、かつ導電性バンプ5の先端部同士が対接・接
続する一方、図3に示すごとく、コア基板1の貫通孔4
内を充填しながら、層間接続部5′を形成する。
FIGS. 2 and 3 show the state of the conductive bumps 5 in the above-mentioned pressure molding step. First, the tip of the conductive bumps 5 is press-fitted with a glass-epoxy resin prepreg 3. I do. Subsequently, as shown in FIG. 2, the tips of the conductive bumps 5 face each other in the through holes 4 of the core substrate 1, and the tips of the conductive bumps 5 contact and connect with each other. As shown, the through holes 4 in the core substrate 1
While filling the inside, an interlayer connection portion 5 'is formed.

【0024】次いで、前記両面銅箔張り積層板の銅箔
2,2′面にスクリーン印刷法で、所要のエッチングパ
ターンを印刷し、塩化第二鉄の水溶液をエッチング液と
して不要部分銅箔をエッチング除去してから、エッチン
クレジストを除去することにより、所要のスルホール接
続部5′を有する両面型の配線板を得た。
Next, a required etching pattern is printed by screen printing on the copper foils 2 and 2 'of the double-sided copper foil-clad laminate, and the unnecessary copper foil is etched using an aqueous solution of ferric chloride as an etching solution. After the removal, the etching resist was removed to obtain a double-sided wiring board having a required through-hole connection portion 5 '.

【0025】上記によって製造した配線板は、その両面
配線パターン層の接続抵抗は、たとえば 2.1Ωで、この
値は、銅箔のパターン抵抗(バンプ 1個当たりの銅箔パ
ターン抵抗分1mΩ)を考慮すると、スルホール接続抵抗
の平均が1mΩとなって、ビア接続抵抗および銅箔パター
ン抵抗ともバラツキが少ないものであった。
In the wiring board manufactured as described above, the connection resistance of the double-sided wiring pattern layer is, for example, 2.1Ω, and this value takes into account the copper foil pattern resistance (1 mΩ of copper foil pattern resistance per bump). Then, the average of the through-hole connection resistance was 1 mΩ, and both the via connection resistance and the copper foil pattern resistance had little variation.

【0026】また、上記の製造手段によりそれぞれ製造
した約10枚の両面型配線板につき、試験評価したとこ
ろ、その厚さは定0.51〜0.56mmであり、設計・仕様値に
対して± %の範囲にあって、配線板の厚さ制御を容易
に行えることが確認された。すなわち、それら両面型配
線板は、いずれも固定的なコア基板1の厚さによって、
最終的な厚さが容易に制御されるだけでなく、コア基板
1自体の強度や非変形性に助長され、機械的な強度の向
上やソリの発生防止も図られている。
Further, about ten double-sided wiring boards manufactured by the above-mentioned manufacturing means were tested and evaluated, and the thickness was 0.51 to 0.56 mm, which was ±% of the design / specification value. It was confirmed that the thickness could be easily controlled within the range. That is, each of these double-sided wiring boards depends on the thickness of the fixed core substrate 1.
Not only is the final thickness easily controlled, but also the strength and non-deformability of the core substrate 1 itself are promoted to improve mechanical strength and prevent warpage.

【0027】なお、本発明は、上記実施例に限定される
ものでなく、発明の趣旨を逸脱しない範囲で、いろいろ
の変形を採ることができる。たとえば層間絶縁体層は、
ガラス・エポキシ樹脂プリプレグの代りに、熱可塑性樹
脂であってもよいし、また、導電性突起は銀粉末−フェ
ノール樹脂以外の他の導電性組成物で形成することがで
きる。
The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the invention. For example, the interlayer insulator layer
Instead of the glass-epoxy resin prepreg, a thermoplastic resin may be used, and the conductive protrusions may be formed of a conductive composition other than silver powder-phenol resin.

【0028】[0028]

【発明の効果】請求項1ないし請求項3の発明によれ
ば、予め、厚さが制御・規定され、かつ所定の機械的強
度を保証する絶縁性の基板をコアとし、このコア基板面
にスルホール接続する配線パターンが形成する。すなわ
ち、ほぼ一定厚で、かつ適度の機械的な強度を有するコ
ア基板を内層とするため、厚さが制御され、かつ機械的
な強度も良好な両面型配線板を歩留まりよく提供でき
る。しかも、両面配線パターン間のスルホール接続は、
導電性突起先端部の対接および貫通孔内の充填で行わ
れ、かつ隣接するスルホール接続の絶縁・離隔も容易に
確保されるため、信頼性の高いスルホール接続を備えた
両面型配線板を提供できる。
According to the first to third aspects of the present invention, an insulating substrate whose thickness is controlled and defined in advance and which guarantees a predetermined mechanical strength is used as a core. A wiring pattern for through-hole connection is formed. That is, since a core substrate having a substantially constant thickness and a suitable mechanical strength is used as an inner layer, a double-sided wiring board having a controlled thickness and good mechanical strength can be provided with good yield. Moreover, the through-hole connection between the double-sided wiring patterns
Providing a double-sided wiring board with highly reliable through-hole connection, which is performed by contacting the tip of the conductive protrusion and filling in the through-hole and easily securing insulation and separation of adjacent through-hole connections it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】両面型配線板の製造方法において各素材の積層
・配置状態を模式的に示す断面図。
FIG. 1 is a cross-sectional view schematically showing a state of lamination and arrangement of respective materials in a method for manufacturing a double-sided wiring board.

【図2】両面型配線板の製造方法において対向する導電
性突起先端部がコア基板の貫通孔に圧入された状態を模
式的に示す断面図。
FIG. 2 is a cross-sectional view schematically showing a state in which opposing conductive protrusion tips are press-fitted into through holes of a core substrate in the method for manufacturing a double-sided wiring board.

【図3】両面型配線板の製造方法において対向する導電
性突起先端部がコア基板の貫通孔で対接・充填した状態
を模式的に示す断面図。
FIG. 3 is a cross-sectional view schematically showing a state in which a tip end of a conductive protrusion facing and filled with a through hole of a core substrate in a method of manufacturing a double-sided wiring board.

【符号の説明】[Explanation of symbols]

1……コア基板 2,2′……電解銅箔 3……絶縁体層(ガラス・エポキシ樹脂系プリプレグ) 4……貫通孔 5……導電性突起(バンプ) 5′……スルホール接続部 DESCRIPTION OF SYMBOLS 1 ... Core board 2, 2 '... Electrolytic copper foil 3 ... Insulator layer (glass epoxy resin prepreg) 4 ... Through-hole 5 ... Conductive protrusion (bump) 5' ... Through-hole connection part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性コア板の所定箇所に厚さ方向に貫
通する孔を穿設する工程と、 前記穿設孔に対応させて導電体箔の一主面に導電性突起
を設ける工程と、 前記絶縁性コア板の両面に絶縁性シート層を介し、かつ
導電性突起を対向させて導電体箔を位置決め積層・配置
する工程と、 前記積層体を加圧一体化し、対応する導電性突起の先端
部同士が絶縁性コア板の穿設孔内で電気的に接続した両
面導電体箔張り積層板を形成する工程と、 前記両面導電体箔を配線パターニングする工程と、を有
することを特徴とする両面型配線基板の製造方法。
1. A step of forming a hole penetrating in a thickness direction at a predetermined position of an insulating core plate; and a step of forming a conductive projection on one main surface of a conductive foil corresponding to the hole. Positioning and laminating and arranging the conductor foil with insulating sheet layers interposed on both surfaces of the insulating core plate and facing the conductive protrusions; and press-integrating the laminate to form the corresponding conductive protrusions Forming a double-sided conductor foil-clad laminate in which the leading ends of the double-sided conductor foils are electrically connected in the perforations of the insulating core plate; and wiring-patterning the double-sided conductor foil. Manufacturing method of a double-sided wiring board.
【請求項2】 導電性突起を導電性ペーストのスクリー
ン印刷・乾燥で設けることを特徴とする請求項1記載の
両面型配線基板の製造方法。
2. The method for manufacturing a double-sided wiring board according to claim 1, wherein the conductive projections are provided by screen printing and drying of a conductive paste.
【請求項3】 絶縁性シート層がガラス・エポキシ樹脂
系のプリフレグであることを特徴とする請求項1もしく
は請求項2記載の両面型配線基板の製造方法。
3. The method for manufacturing a double-sided wiring board according to claim 1, wherein the insulating sheet layer is a glass-epoxy resin-based pre-leg.
JP24529797A 1997-09-10 1997-09-10 Manufacture of double-sided wiring board Withdrawn JPH1187912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24529797A JPH1187912A (en) 1997-09-10 1997-09-10 Manufacture of double-sided wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24529797A JPH1187912A (en) 1997-09-10 1997-09-10 Manufacture of double-sided wiring board

Publications (1)

Publication Number Publication Date
JPH1187912A true JPH1187912A (en) 1999-03-30

Family

ID=17131583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24529797A Withdrawn JPH1187912A (en) 1997-09-10 1997-09-10 Manufacture of double-sided wiring board

Country Status (1)

Country Link
JP (1) JPH1187912A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7096578B2 (en) 1999-10-12 2006-08-29 Tessera Interconnect Materials, Inc. Manufacturing method for wiring circuit substrate
KR100704922B1 (en) * 2005-11-16 2007-04-09 삼성전기주식회사 Pcb using paste bump and method of manufacturing thereof
KR100714571B1 (en) * 2005-11-17 2007-05-07 삼성전기주식회사 Thin film capacitor embedded printed circuit board, and methods of manufacturing the same
KR100722604B1 (en) 2005-09-02 2007-05-28 삼성전기주식회사 Manufacturing method of printed circuit board
KR100722739B1 (en) 2005-11-29 2007-05-30 삼성전기주식회사 Core substrate and multiplayer printed circuit board using paste bump and method of manufacturing thereof
JP2009124173A (en) * 2005-11-16 2009-06-04 Samsung Electro-Mechanics Co Ltd Printed circuit board using paste bump, and method of manufacturing the same
US9365947B2 (en) 2013-10-04 2016-06-14 Invensas Corporation Method for preparing low cost substrates

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100377625C (en) * 1999-10-12 2008-03-26 德塞拉互连材料股份有限公司 Wiring circuit substrate and manufacturing method thereof
US7721422B2 (en) 1999-10-12 2010-05-25 Tessera Interconnect Materials, Inc. Methods of making microelectronic assemblies
US7546681B2 (en) 1999-10-12 2009-06-16 Tessera Interconnect Materials, Inc. Manufacturing method for wiring circuit substrate
US7096578B2 (en) 1999-10-12 2006-08-29 Tessera Interconnect Materials, Inc. Manufacturing method for wiring circuit substrate
KR100722604B1 (en) 2005-09-02 2007-05-28 삼성전기주식회사 Manufacturing method of printed circuit board
JP2009124173A (en) * 2005-11-16 2009-06-04 Samsung Electro-Mechanics Co Ltd Printed circuit board using paste bump, and method of manufacturing the same
KR100704922B1 (en) * 2005-11-16 2007-04-09 삼성전기주식회사 Pcb using paste bump and method of manufacturing thereof
US7973248B2 (en) 2005-11-16 2011-07-05 Samsung Electro-Mechanics Co., Ltd. Printed circuit board using paste bump and manufacturing method thereof
KR100714571B1 (en) * 2005-11-17 2007-05-07 삼성전기주식회사 Thin film capacitor embedded printed circuit board, and methods of manufacturing the same
KR100722739B1 (en) 2005-11-29 2007-05-30 삼성전기주식회사 Core substrate and multiplayer printed circuit board using paste bump and method of manufacturing thereof
US7622329B2 (en) 2005-11-29 2009-11-24 Samsung Electro-Mechanics Co., Ltd. Method for fabricating core substrate using paste bumps
US7859106B2 (en) 2005-11-29 2010-12-28 Samsung Electro-Mechanics Co., Ltd. Multilayer printed circuit board using paste bumps
US9365947B2 (en) 2013-10-04 2016-06-14 Invensas Corporation Method for preparing low cost substrates
US10283484B2 (en) 2013-10-04 2019-05-07 Invensas Corporation Low cost substrates

Similar Documents

Publication Publication Date Title
JP3057924B2 (en) Double-sided printed circuit board and method of manufacturing the same
WO2001045478A1 (en) Multilayered printed wiring board and production method therefor
JP4075673B2 (en) Copper-clad laminate for multilayer printed wiring board, multilayer printed wiring board, and method for manufacturing multilayer printed wiring board
US8076589B2 (en) Multilayer wiring board and its manufacturing method
KR100747022B1 (en) Imbedded circuit board and fabricating method therefore
JP4348815B2 (en) Method for manufacturing printed wiring board
JPH1079579A (en) Printed circuit board and manufacturing method of printed circuit board
JPH08139450A (en) Manufacturing method of printed-wiring board
US20030137815A1 (en) Printed wiring board and method of manufacturing the same
JP3600317B2 (en) Multilayer printed wiring board and method of manufacturing the same
JP3428070B2 (en) Manufacturing method of printed wiring board
JPH1187912A (en) Manufacture of double-sided wiring board
JP2006156669A (en) Wiring board with built-in part and method of manufacturing the same
WO2001095678A1 (en) Method for manufacturing printed-circuit board
WO2002056655A1 (en) Circuit board and production method therefor
JP3609126B2 (en) Printed wiring board and method for producing printed wiring board manufacturing member
JP3705370B2 (en) Manufacturing method of multilayer printed wiring board
JP3738536B2 (en) Method for manufacturing printed wiring board
JPH10117066A (en) Multilayer printed circuit board and manufacture of the same
JP2000013028A (en) Manufacture of multi-layer printed board
JPH08264939A (en) Manufacture of printed wiring board
JP3549063B2 (en) Manufacturing method of printed wiring board
JP4058218B2 (en) Method for manufacturing printed wiring board
JP3823940B2 (en) Method for manufacturing circuit-formed substrate
JPH0878802A (en) Printed wiring board and manufacture thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041207