JP2006156669A - Wiring board with built-in part and method of manufacturing the same - Google Patents

Wiring board with built-in part and method of manufacturing the same Download PDF

Info

Publication number
JP2006156669A
JP2006156669A JP2004344485A JP2004344485A JP2006156669A JP 2006156669 A JP2006156669 A JP 2006156669A JP 2004344485 A JP2004344485 A JP 2004344485A JP 2004344485 A JP2004344485 A JP 2004344485A JP 2006156669 A JP2006156669 A JP 2006156669A
Authority
JP
Japan
Prior art keywords
wiring pattern
insulating layer
wiring board
wiring
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004344485A
Other languages
Japanese (ja)
Inventor
Kenji Sasaoka
賢司 笹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2004344485A priority Critical patent/JP2006156669A/en
Publication of JP2006156669A publication Critical patent/JP2006156669A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring board equipped with a built-in part which is provided through a process of embedding an electric/electronic part in an insulating board and its manufacturing method, wherein manufacturing loads can be reduced, and reliability can be improved. <P>SOLUTION: The wiring board provided with a built-in part is equipped with: a wiring pattern; the electric/electronic part electrically, mechanically connected to the surface of the wiring pattern; and an insulating layer where the electric/electronic part is embedded and which is laminated on the surface of the wiring pattern where the electric/electronic part is connected, and provided with a reinforcing material in a region other than a certain region where the electric/electronic part is embedded. The method of manufacturing the wiring board provided with a built-in part comprises manufacturing processes of electrically and mechanically connecting the electric/electronic part on a first metal foil or the first metal wiring pattern of a first insulating layer, arranging a second insulating layer which contains a reinforcing material and is equipped with an opening located corresponding to the electric/electronic part on the first metal foil or the first wiring pattern, arranging a second metal foil or a third insulating layer on the second insulating layer, and turning the laminated layers into one piece. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、絶縁板中に電気/電子部品を埋設して有する部品内蔵配線板およびその製造方法に係り、特に、製造する負担の低減に適する部品内蔵配線板およびその製造方法に関する。   The present invention relates to a component built-in wiring board having an electric / electronic component embedded in an insulating plate and a method for manufacturing the same, and more particularly to a component built-in wiring board suitable for reducing the manufacturing burden and a method for manufacturing the same.

部品内蔵配線板の従来技術として下記特許文献1に開示されたものがある。この部品内蔵配線板は、多層配線層のうち内層の配線層のパターン上に電子部品が表面実装された構造を有している。電子部品は絶縁板中に埋設されるが、その絶縁板には、絶縁性樹脂またはこれとフィラとの混合物をドクターブレード法などによりシート状に成形して得られたものが用いられている。積層工程においては、電子部品の相当する位置に特にくぼみや開口などの逃げ部分を持たせないか、または電子部品の占める大きさより小さなくぼみを持たせた絶縁板が用いられる。
特開2003−197849号公報
As a prior art of a component built-in wiring board, there is one disclosed in Patent Document 1 below. This component built-in wiring board has a structure in which an electronic component is surface-mounted on a pattern of an inner wiring layer in a multilayer wiring layer. Electronic parts are embedded in an insulating plate, and the insulating plate is obtained by molding an insulating resin or a mixture of this and a filler into a sheet shape by a doctor blade method or the like. In the laminating process, an insulating plate is used that does not have a relief portion such as a recess or an opening, or a recess smaller than the size occupied by the electronic component, at a corresponding position of the electronic component.
JP 2003-197849 A

上記の構造および製造方法では、絶縁性樹脂の材料として、プリント配線板で一般的なガラスクロスやアラミド樹脂繊維を補強材とするいわゆるプリプレグを用いるのが難しい。すなわち、特殊な絶縁材料を準備する必要がありその入手性やコストの点で不利である。また、無理にプリプレグを用いると、内蔵される電子部品にガラスクロスなどがぶつかり応力が発生して電子部品を破壊する恐れや、内層の配線パターンと電子部品との接続信頼性を損なう恐れを生じる。   In the structure and the manufacturing method described above, it is difficult to use a so-called prepreg that uses a glass cloth or an aramid resin fiber as a reinforcing material for a printed wiring board as a material for the insulating resin. That is, it is necessary to prepare a special insulating material, which is disadvantageous in terms of availability and cost. Also, if the prepreg is forcibly used, a glass cloth or the like may collide with the built-in electronic component and stress may be generated, causing the electronic component to be damaged, or the connection reliability between the inner wiring pattern and the electronic component may be impaired. .

本発明は、上記した事情を考慮してなされたもので、絶縁板中に電気/電子部品を埋設して有する部品内蔵配線板およびその製造方法において、製造負担を低減し信頼性向上にも資する部品内蔵配線板およびその製造方法を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances. In the component built-in wiring board having an electric / electronic component embedded in an insulating plate and the manufacturing method thereof, the manufacturing burden is reduced and the reliability is improved. An object is to provide a component built-in wiring board and a method for manufacturing the same.

上記の課題を解決するため、本発明に係る部品内蔵配線板は、配線パターンと、前記配線パターンの面上に電気的機械的に接続された電気/電子部品と、前記電気/電子部品を埋設し、かつ、前記配線パターンの前記電気/電子部品の接続された側の面上に積層され、かつ、前記電気/電子部品が埋設された領域を除き該領域以外の領域に補強材を有する絶縁層とを具備することを特徴とする。   In order to solve the above problems, a component built-in wiring board according to the present invention includes a wiring pattern, an electrical / electronic component electrically and mechanically connected on the surface of the wiring pattern, and the electrical / electronic component embedded therein. And an insulating layer that is laminated on the surface of the wiring pattern where the electrical / electronic component is connected and has a reinforcing material in a region other than the region except the region where the electrical / electronic component is embedded. And a layer.

すなわち、電気/電子部品を埋設する絶縁層が、電気/電子部品が埋設された領域を除き該領域以外の領域に補強材を有する構造である。換言すると、電気/電子部品が埋設された領域では補強材を有さず、その以外の領域では補強材を有する。これにより、電気/電子部品と補強材との衝突を避け信頼性を向上する。また、絶縁層として配線板で一般的なプリプレグを硬化させたものを使用することが可能になる。   That is, the insulating layer in which the electric / electronic component is embedded has a structure having a reinforcing material in a region other than the region except for the region in which the electric / electronic component is embedded. In other words, the region where the electrical / electronic component is embedded does not have the reinforcing material, and the region other than that has the reinforcing material. Thereby, the collision between the electrical / electronic component and the reinforcing material is avoided, and the reliability is improved. Moreover, it becomes possible to use what hardened a general prepreg with the wiring board as an insulating layer.

また、本発明に係る部品内蔵配線板の製造方法は、第1の金属箔上にまたは第1の金属配線パターンを有する第1の絶縁層の前記第1の金属配線パターン上に電気/電子部品を電気的・機械的に接続する工程と、前記第1の金属箔上にまたは前記第1の絶縁層の前記第1の金属配線パターン上に、補強材を含有しかつ前記接続された電気/電子部品に対応する位置に開口を有する第2の絶縁層を配置し、さらに該第2の絶縁層上に第2の金属箔または第3の絶縁層を配置し、積層・一体化する工程とを具備することを特徴とする。   In addition, the method of manufacturing a component built-in wiring board according to the present invention provides an electrical / electronic component on a first metal foil or on the first metal wiring pattern of the first insulating layer having the first metal wiring pattern. Electrically and mechanically connected to the first metal foil or the first metal wiring pattern of the first insulating layer, the reinforcing material and the connected electrical / mechanical connection. A step of disposing a second insulating layer having an opening at a position corresponding to the electronic component, disposing a second metal foil or a third insulating layer on the second insulating layer, and laminating and integrating; It is characterized by comprising.

この製造方法によれば、電気/電子部品を埋設する絶縁層(第2の絶縁層)が、電気/電子部品が埋設された領域を除き該領域以外の領域に補強材を有する構造になる。これにより、電気/電子部品と補強材との衝突が避けられて信頼性が向上する。また、第2の絶縁層として配線板で一般的なプリプレグを硬化させたものを使用することが可能になる。   According to this manufacturing method, the insulating layer (second insulating layer) in which the electric / electronic component is embedded has a structure having a reinforcing material in a region other than the region except for the region in which the electric / electronic component is embedded. Thereby, the collision between the electric / electronic component and the reinforcing material is avoided, and the reliability is improved. In addition, it is possible to use a common prepreg cured with a wiring board as the second insulating layer.

本発明によれば、絶縁板中に電気/電子部品を埋設して有する部品内蔵配線板およびその製造方法において、製造負担を低減し信頼性向上を図ることができる。   According to the present invention, in a component built-in wiring board having an electrical / electronic component embedded in an insulating plate and its manufacturing method, the manufacturing burden can be reduced and the reliability can be improved.

本発明の実施態様として、前記絶縁層が少なくとも2つの絶縁層の積層であり、前記少なくとも2つの絶縁層の間に挟設された第2の配線パターンをさらに具備するようにしてもよい。配線パターンをさらに多層化する場合に向く。   As an embodiment of the present invention, the insulating layer may be a laminate of at least two insulating layers, and may further include a second wiring pattern sandwiched between the at least two insulating layers. It is suitable when the wiring pattern is further multilayered.

ここで、前記第2の配線パターンを挟設する前記少なくとも2つの絶縁層のうち前記配線パターンの側ではない絶縁層の、前記第2の配線パターンが位置する側とは反対側に設けられた第3の配線パターンと、前記配線パターンの側ではない前記絶縁層を貫通して前記第2の配線パターンの面と前記第3の配線パターンの面との間に挟設された層間接続体とをさらに具備するようにしてもよい。   Here, of the at least two insulating layers sandwiching the second wiring pattern, the insulating layer that is not on the wiring pattern side is provided on the side opposite to the side on which the second wiring pattern is located. A third wiring pattern, and an interlayer connection body interposed between the surface of the second wiring pattern and the surface of the third wiring pattern through the insulating layer that is not on the wiring pattern side May be further provided.

さらにここで、前記層間接続体は、導電性組成物からなり、かつ、積層方向に一致する軸を有し前記軸の方向に径が変化している形状である、とすることができる。この層間接続体は、配線パターンの側ではない絶縁層を貫通する層間接続体の一例であり、例えば導電性組成物のスクリーン印刷により形成される導電性バンプを由来とする層間接続体である。   Furthermore, here, the interlayer connector can be made of a conductive composition and has a shape that has an axis that coincides with the stacking direction and has a diameter that changes in the direction of the axis. This interlayer connection body is an example of an interlayer connection body that penetrates an insulating layer that is not on the wiring pattern side, and is an interlayer connection body derived from conductive bumps formed by screen printing of a conductive composition, for example.

また、前記層間接続体は、導電性組成物からなり、かつ、積層方向に一致する軸を有し前記軸の方向に径が変化していない形状である、とすることもできる。この層間接続体は、配線パターンの側ではない絶縁層を貫通する層間接続体の別の例であり、例えば配線パターンの側ではない絶縁層を貫通する穴に導電性組成物を充填して形成される層間接続体である。   Moreover, the said interlayer connection body can also be made into the shape which consists of an electroconductive composition and has an axis | shaft which corresponds to a lamination direction, and the diameter does not change to the direction of the said axis | shaft. This interlayer connector is another example of an interlayer connector that penetrates an insulating layer that is not on the wiring pattern side. For example, the interlayer connector is formed by filling a hole penetrating the insulating layer that is not on the wiring pattern side with a conductive composition. It is an interlayer connection body.

また、前記層間接続体は、金属からなり、かつ、積層方向に一致する軸を有し前記軸の方向に径が変化している形状である、とすることもできる。この層間接続体は、配線パターンの側ではない絶縁層を貫通する層間接続体のさらに別の例であり、例えば金属板をエッチングすることにより形成される導体バンプを由来とする層間接続体である。   Moreover, the said interlayer connection body can also be made into the shape which has the axis | shaft which corresponds to a lamination direction from the metal, and the diameter is changing in the direction of the said axis | shaft. This interlayer connection body is still another example of an interlayer connection body that penetrates an insulating layer that is not on the side of the wiring pattern, for example, an interlayer connection body derived from a conductor bump formed by etching a metal plate. .

また、前記層間接続体は、金属からなり、かつ、積層方向に一致する軸を有し前記軸の方向に径が変化していない形状である、とすることもできる。この層間接続体も、配線パターンの側ではない絶縁層を貫通する層間接続体のさらに別の例であり、例えば金属のめっきにより形成される導体バンプを由来とする層間接続体である。   The interlayer connection body may be made of a metal and has a shape that has an axis that coincides with the stacking direction and has a diameter that does not change in the direction of the axis. This interlayer connection body is still another example of an interlayer connection body that penetrates an insulating layer that is not on the wiring pattern side, and is an interlayer connection body derived from, for example, a conductor bump formed by metal plating.

また、前記少なくとも2つの絶縁層のうち前記配線パターンに接触する方の絶縁層を貫通して前記配線パターンの面と前記第2の配線パターンの面との間に挟設された層間接続体をさらに具備するようにしてもよい。   An interlayer connector sandwiched between the surface of the wiring pattern and the surface of the second wiring pattern through the insulating layer in contact with the wiring pattern of the at least two insulating layers; Furthermore, you may make it comprise.

ここで、前記層間接続体は、導電性組成物からなり、かつ、積層方向に一致する軸を有し前記軸の方向に径が変化している形状である、とすることができる。この層間接続体は、配線パターンに接触する方の絶縁層を貫通する層間接続体の一例であり、例えば導電性組成物のスクリーン印刷により形成される導電性バンプを由来とする層間接続体である。   Here, the interlayer connection body can be made of a conductive composition and has a shape that has an axis that coincides with the stacking direction and has a diameter that changes in the direction of the axis. This interlayer connection body is an example of an interlayer connection body that penetrates the insulating layer that is in contact with the wiring pattern, for example, an interlayer connection body derived from conductive bumps formed by screen printing of a conductive composition. .

また、前記層間接続体は、導電性組成物からなり、かつ、積層方向に一致する軸を有し前記軸の方向に径が変化していない形状である、とすることもできる。この層間接続体は、配線パターンに接触する方の絶縁層を貫通する層間接続体の別の例であり、例えば配線パターンに接触する方の絶縁層を貫通する穴に導電性組成物を充填して形成される層間接続体である。   Moreover, the said interlayer connection body can also be made into the shape which consists of an electroconductive composition and has an axis | shaft which corresponds to a lamination direction, and the diameter does not change to the direction of the said axis | shaft. This interlayer connector is another example of an interlayer connector that penetrates the insulating layer that contacts the wiring pattern. For example, a hole penetrating the insulating layer that contacts the wiring pattern is filled with a conductive composition. It is an interlayer connection body formed.

また、実施態様として、前記配線パターンの前記電気/電子部品の接続された側とは反対側の面上に積層された第2の絶縁層をさらに具備する、としてもよい。電気/電子部品を接続する配線パターンが内層の配線パターンとなる場合の構成である。   Further, as an embodiment, the wiring pattern may further include a second insulating layer stacked on a surface opposite to the side where the electrical / electronic component is connected. This is a configuration in the case where the wiring pattern for connecting the electrical / electronic components is an inner layer wiring pattern.

そこで、前記第2の絶縁層の前記配線パターンが位置する側とは反対側に設けられた第2の配線パターンをさらに具備する、とすることができる。   Therefore, it is possible to further include a second wiring pattern provided on the side of the second insulating layer opposite to the side where the wiring pattern is located.

ここで、前記第2の絶縁層を貫通して前記配線パターンの面と前記第2の配線パターンの面との間に挟設され、かつ、導電性組成物からなり、かつ、積層方向に一致する軸を有し前記軸の方向に径が変化している形状である層間接続体をさらに具備する、とし得る。第2の絶縁層を貫通する層間接続体の一例であり、例えば導電性組成物のスクリーン印刷により形成される導電性バンプを由来とする層間接続体である。   Here, it penetrates through the second insulating layer and is sandwiched between the surface of the wiring pattern and the surface of the second wiring pattern, and is made of a conductive composition and coincides with the stacking direction. It is further possible to further include an interlayer connection body that has a shaft that has a shape that has a diameter that changes in the direction of the shaft. It is an example of an interlayer connection that penetrates the second insulating layer, for example, an interlayer connection derived from conductive bumps formed by screen printing of a conductive composition.

また、前記第2の絶縁層を貫通して前記配線パターンの面と前記第2の配線パターンの面との間に挟設され、かつ、導電性組成物からなり、かつ、積層方向に一致する軸を有し前記軸の方向に径が変化していない形状である層間接続体をさらに具備する、としてもよい。第2の絶縁層を貫通する層間接続体の別の例であり、例えば第2の絶縁層を貫通する穴に導電性組成物を充填して形成される層間接続体である。   Further, it penetrates the second insulating layer and is sandwiched between the surface of the wiring pattern and the surface of the second wiring pattern, is made of a conductive composition, and coincides with the stacking direction. An interlayer connection body having a shaft and a shape whose diameter does not change in the direction of the shaft may be further provided. It is another example of an interlayer connector that penetrates the second insulating layer, for example, an interlayer connector that is formed by filling a hole penetrating the second insulating layer with a conductive composition.

また、前記第2の絶縁層を貫通して前記配線パターンの面と前記第2の配線パターンの面との間に挟設され、かつ、金属からなり、かつ、積層方向に一致する軸を有し前記軸の方向に径が変化している形状である層間接続体をさらに具備する、とすることもできる。第2の絶縁層を貫通する層間接続体のさらに別の例であり、例えば金属板をエッチングすることにより形成される導体バンプを由来とする層間接続体である。   In addition, the shaft extends through the second insulating layer and is sandwiched between the surface of the wiring pattern and the surface of the second wiring pattern, and is made of metal and has an axis that coincides with the stacking direction. It is also possible to further include an interlayer connection body having a shape whose diameter changes in the direction of the axis. It is still another example of an interlayer connection that penetrates the second insulating layer, for example, an interlayer connection derived from a conductor bump formed by etching a metal plate.

また、前記第2の絶縁層を貫通して前記配線パターンの面と前記第2の配線パターンの面との間に挟設され、かつ、金属からなり、かつ、積層方向に一致する軸を有し前記軸の方向に径が変化していない形状である層間接続体をさらに具備する、としてもよい。これも第2の絶縁層を貫通する層間接続体のさらに別の例であり、例えば金属のめっきにより形成される導体バンプを由来とする層間接続体である。   In addition, the shaft extends through the second insulating layer and is sandwiched between the surface of the wiring pattern and the surface of the second wiring pattern, and is made of metal and has an axis that coincides with the stacking direction. An interlayer connection body having a shape whose diameter does not change in the direction of the axis may be further provided. This is still another example of an interlayer connection that penetrates the second insulating layer, and is an interlayer connection derived from, for example, a conductor bump formed by metal plating.

また、前記配線パターンと前記第2の配線パターンとを電気的導通させるように前記第2の絶縁層に設けられたスルーホール内壁導電体をさらに具備する、としてもよい。このスルーホール内壁導電体も層間接続体のごく一般的な一例である。   In addition, a through hole inner wall conductor provided in the second insulating layer may be further provided so as to electrically connect the wiring pattern and the second wiring pattern. This through hole inner wall conductor is also a very general example of an interlayer connection.

また、製造方法としての実施態様として、前記第2の絶縁層は、補強材を含有しかつ硬化状態である絶縁層上に、補強材を含有しかつ半硬化状態にある絶縁層を張り合わせる工程と、前記張り合わせられた両絶縁層に前記開口を設ける工程とを有する製造工程により製造されたものである、とすることができる。張り合わせ後に開口を設けることで位置精度の合った開口を設けることができる。   Further, as an embodiment as a manufacturing method, the second insulating layer includes a reinforcing material and a step of bonding an insulating layer containing a reinforcing material and in a semi-cured state on the insulating layer that is in a cured state. And a process of providing the openings in the bonded insulating layers. By providing an opening after pasting, it is possible to provide an opening with a good positional accuracy.

以上を踏まえ、以下では本発明の実施形態を図面を参照しながら説明する。図1は、本発明の一実施形態に係る部品内蔵配線板の構成を模式的に示す断面図である。図1に示すように、この部品内蔵配線板は、絶縁層11、配線パターン12、13、スルーホール内壁導電層14、半田15、電気/電子部品16を有する。絶縁層11は、絶縁樹脂11aとこれを補強する補強材11b(例えばガラスクロス)とからなる。   Based on the above, embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view schematically showing a configuration of a component built-in wiring board according to an embodiment of the present invention. As shown in FIG. 1, this component built-in wiring board includes an insulating layer 11, wiring patterns 12 and 13, a through hole inner wall conductive layer 14, solder 15, and electrical / electronic components 16. The insulating layer 11 includes an insulating resin 11a and a reinforcing material 11b (for example, glass cloth) that reinforces the insulating resin 11a.

電気/電子部品16は、絶縁層11内に埋設され、かつ、半田15を介して配線パターン12に電気的・機械的に接続されている。配線パターン12の電気/電子部品16の接続された面と同じ面上に絶縁層11が積層され、さらに絶縁層11の反対側に配線パターン13が設けられる。絶縁層11の補強材11bは、電気/電子部品16が埋設された領域には存在しない。絶縁層11の両面の配線パターン12、13は、絶縁層11に設けられたスルーホール内壁導電層14により電気的に導通され得る。このような構成の部品内蔵配線板では、製造過程で絶縁層11として容易にガラスエポキシのプリプレグを使用することができる。   The electrical / electronic component 16 is embedded in the insulating layer 11 and electrically and mechanically connected to the wiring pattern 12 via the solder 15. The insulating layer 11 is laminated on the same surface as the surface of the wiring pattern 12 to which the electrical / electronic component 16 is connected, and the wiring pattern 13 is provided on the opposite side of the insulating layer 11. The reinforcing material 11b of the insulating layer 11 does not exist in the region where the electric / electronic component 16 is embedded. The wiring patterns 12 and 13 on both surfaces of the insulating layer 11 can be electrically connected by a through hole inner wall conductive layer 14 provided in the insulating layer 11. In the component built-in wiring board having such a configuration, a glass epoxy prepreg can be easily used as the insulating layer 11 in the manufacturing process.

以下、図1に示した部品内蔵配線板の製造工程について図2を参照して説明する。図2は、図1に示した部品内蔵配線板の製造過程を模式的断面で示す工程図である。   Hereinafter, the manufacturing process of the component built-in wiring board shown in FIG. 1 will be described with reference to FIG. FIG. 2 is a process diagram schematically showing a manufacturing process of the component built-in wiring board shown in FIG.

まず、図1(a)に示すように、配線パターン12とすべき厚さ例えば18μmの金属箔(電解銅箔)12Aを用意し、その面上所定の位置に例えばスクリーン印刷によりクリーム状の半田15を印刷付着する。次に、図2(b)に示すように、例えばマウンタを用いて電気/電子部品16(例えば厚さ0.1mmの0603サイズまたは0402サイズのチップ抵抗)をその両端子が上記半田15に接するように載置し、その後半田15をリフローさせて電気/電子部品16を金属箔12A上に電気的・機械的に接続する。   First, as shown in FIG. 1A, a metal foil (electrolytic copper foil) 12A having a thickness of, for example, 18 μm to be used as the wiring pattern 12 is prepared, and a cream-like solder is formed on the surface thereof by, for example, screen printing. 15 is attached by printing. Next, as shown in FIG. 2B, the electrical / electronic component 16 (for example, a 0603 size or 0402 size chip resistor having a thickness of 0.1 mm) is brought into contact with the solder 15 using a mounter, for example. After that, the solder 15 is reflowed, and the electrical / electronic component 16 is electrically and mechanically connected to the metal foil 12A.

次に、絶縁層11とすべきガラスエポキシのプリプレグ11A(厚さ例えば150μm)を用意し、内蔵される電気/電子部品16が配置される位置に対応する例えば直径0.8mmの穴あけ(電気/電子部品16が0603サイズの場合)によって、プリプレグ11Aに開口11oを形成する。そして、図2(c)に示すように、金属箔12Aの電気/電子部品16が接続された側に対向して、開口11oが形成されたプリプレグ11A、さらにプリプレグ11Aの上側に配線パターン13とすべき厚さ例えば18μmの金属箔(電解銅箔)13Aを位置合わせし積層配置する。   Next, a glass epoxy prepreg 11A (thickness, for example, 150 μm) to be used as the insulating layer 11 is prepared, and a hole having a diameter of, for example, 0.8 mm corresponding to the position where the built-in electric / electronic component 16 is disposed (electric / When the electronic component 16 is 0603 size), the opening 11o is formed in the prepreg 11A. As shown in FIG. 2 (c), a prepreg 11A having an opening 11o formed opposite to the side of the metal foil 12A to which the electrical / electronic component 16 is connected, and a wiring pattern 13 on the upper side of the prepreg 11A. A metal foil (electrolytic copper foil) 13 </ b> A having a thickness of, for example, 18 μm is aligned and laminated.

積層配置後、加熱しつつ積層方向に加圧してプリプレグ11Aを流動化させ全体を一体化する。このとき、プリプレグ11Aの絶縁樹脂11aの部分が電気/電子部品16周りの空間を埋めて密着する状態となる。この状態でプリプレグ11Aは完全に硬化し絶縁層11になる。この積層一体化では、電気/電子部品16が配置される領域のプリプレグ11Aにあらかじめ開口11oが設けられているので、電気/電子部品16が過大に加圧されることがない。したがって、電気/電子部品16と金属箔12Aとの接続部分(半田15)に過大な応力が発生せず、また電気/電子部品16の破壊も防止できる。これにより信頼性を向上できる。   After the stacked arrangement, pressure is applied in the stacking direction while heating to fluidize the prepreg 11A to integrate the whole. At this time, the insulating resin 11a portion of the prepreg 11A fills the space around the electrical / electronic component 16 and comes into close contact therewith. In this state, the prepreg 11 </ b> A is completely cured and becomes the insulating layer 11. In this laminated integration, since the opening 11o is provided in advance in the prepreg 11A in the region where the electric / electronic component 16 is disposed, the electric / electronic component 16 is not excessively pressurized. Therefore, excessive stress is not generated at the connecting portion (solder 15) between the electric / electronic component 16 and the metal foil 12A, and the electric / electronic component 16 can be prevented from being broken. Thereby, reliability can be improved.

積層一体化後、周知のように所定位置穴あけ、めっきの各工程を行い、図2(d)に示すような、スルーホール内壁導電層14を備えた両面シールド基板を得る。さらに、両面の金属箔12A、13Aに例えば周知のフォトリソグラフィによるパターニングを行い、これらを配線パターン12、13に加工すると、図1に示したような構成の部品内蔵配線板を得ることができる。   After the lamination and integration, a predetermined position drilling and plating processes are performed as is well known to obtain a double-sided shield substrate having a through-hole inner wall conductive layer 14 as shown in FIG. Further, when the metal foils 12A and 13A on both sides are patterned by, for example, well-known photolithography and processed into the wiring patterns 12 and 13, a component built-in wiring board having a configuration as shown in FIG. 1 can be obtained.

なお、上記では電気/電子部品16の金属箔12Aへの接続に半田15を用いたが、これに代えて例えば導電性接着剤を用いることもできる。また、補強材11bとしてガラスクロスを含有するプリプレグ11Aの場合を説明したが、この補強材に代えてアラミドクロスやガラス不織布、アラミド不織布などの補強材を含有するプリプレグとしてもよい。   In the above description, the solder 15 is used to connect the electric / electronic component 16 to the metal foil 12A. However, for example, a conductive adhesive can be used instead. Moreover, although the case of the prepreg 11A containing a glass cloth as the reinforcing material 11b has been described, a prepreg containing a reinforcing material such as an aramid cloth, a glass nonwoven fabric, or an aramid nonwoven fabric may be used instead of the reinforcing material.

次に、本発明の別の実施形態に係る部品内蔵配線板について図3を参照して説明する。図3は、本発明の別の実施形態に係る部品内蔵配線板の構成を模式的に示す断面図である。図3に示すように、この部品内蔵配線板は、絶縁層31、32、33、配線パターン34、35、36、37、スルーホール内壁導電層38、半田40、電気/電子部品41を有する。絶縁層31、32、33は、それぞれ、絶縁樹脂31a、32a、33aとこれを補強する補強材31b、32b、33b(例えばガラスクロス)とからなる。この実施形態では、図1に示した実施形態の配線板より厚さの厚い電気/電子部品41を内蔵することができる。配線層数は、2つの内層を含め合計4層となっている。   Next, a component built-in wiring board according to another embodiment of the present invention will be described with reference to FIG. FIG. 3 is a cross-sectional view schematically showing a configuration of a component built-in wiring board according to another embodiment of the present invention. As shown in FIG. 3, this component built-in wiring board has insulating layers 31, 32, 33, wiring patterns 34, 35, 36, 37, through-hole inner wall conductive layers 38, solder 40, and electrical / electronic components 41. The insulating layers 31, 32, and 33 are made of insulating resins 31a, 32a, and 33a and reinforcing materials 31b, 32b, and 33b (for example, glass cloth) that reinforce the insulating resins 31a, 32a, and 33a, respectively. In this embodiment, an electric / electronic component 41 having a thickness larger than that of the wiring board of the embodiment shown in FIG. 1 can be incorporated. The total number of wiring layers is 4 including the two inner layers.

電気/電子部品41は、絶縁層31、32内に埋設され、かつ、半田40を介して配線パターン34に電気的・機械的に接続されている。配線パターン34の電気/電子部品41の接続された面と同じ面上に絶縁層31が積層されている。絶縁層31とこの上に積層の絶縁層32との間には配線パターン35が挟設され、同様に絶縁層35とこの上に積層の絶縁層33との間には配線パターン36が挟設されている。絶縁層33の配線パターン36が設けられた側とは反対側(すなわち外側)には配線パターン37が設けられる。   The electrical / electronic component 41 is embedded in the insulating layers 31 and 32 and is electrically and mechanically connected to the wiring pattern 34 via the solder 40. An insulating layer 31 is laminated on the same surface of the wiring pattern 34 to which the electrical / electronic component 41 is connected. A wiring pattern 35 is interposed between the insulating layer 31 and the laminated insulating layer 32 thereon. Similarly, a wiring pattern 36 is interposed between the insulating layer 35 and the laminated insulating layer 33 thereon. Has been. A wiring pattern 37 is provided on the side of the insulating layer 33 opposite to the side on which the wiring pattern 36 is provided (that is, outside).

絶縁層31、32の補強材31b、32bは、電気/電子部品41が埋設された領域には存在しない。各配線パターン34、35、36、37は、絶縁層31、32、33を貫通するスルーホール内壁導電層38により電気的に導通され得る。この構成の部品内蔵配線板でも、製造過程で絶縁層31、32として容易にガラスエポキシのプリプレグを使用することができる。   The reinforcing members 31b and 32b of the insulating layers 31 and 32 do not exist in the region where the electric / electronic component 41 is embedded. Each wiring pattern 34, 35, 36, 37 can be electrically connected by a through-hole inner wall conductive layer 38 that penetrates the insulating layers 31, 32, 33. Even in the component built-in wiring board having this configuration, a glass epoxy prepreg can be easily used as the insulating layers 31 and 32 in the manufacturing process.

以下、図3に示した部品内蔵配線板の製造工程について図4を参照して説明する。図4は、図3に示した製造過程を模式的断面で示す工程図である。ただし、電気/電子部品41の金属箔(電解銅箔)34A上への接続工程については、すでに説明した図2(a)、同(b)に示す工程とほぼ同様なので図示省略する。電気/電子部品41としては、例えば厚さ0.5mmの1005サイズや2012サイズのチップ抵抗を用いる。   Hereinafter, the manufacturing process of the component built-in wiring board shown in FIG. 3 will be described with reference to FIG. FIG. 4 is a process diagram schematically showing the manufacturing process shown in FIG. However, the connection process of the electric / electronic component 41 onto the metal foil (electrolytic copper foil) 34A is substantially the same as the process shown in FIGS. As the electrical / electronic component 41, for example, a 1005 size or 2012 size chip resistor having a thickness of 0.5 mm is used.

電気/電子部品41が接続された金属箔34Aのほかに、図4(a)に示すように、絶縁層32とプリプレグ31A(絶縁層31とすべきもの)が積層されかつ電気/電子部品41が配置される位置に対応して開口32oを有するもの(コア板)と、金属箔(電解銅箔)37Aが積層されたプリプレグ33A(絶縁層33とすべきもの)とを用意する。コア板は、あらかじめ以下のような工程により準備する。   In addition to the metal foil 34A to which the electric / electronic component 41 is connected, as shown in FIG. 4A, the insulating layer 32 and the prepreg 31A (which should be the insulating layer 31) are laminated and the electric / electronic component 41 is A thing (core plate) having an opening 32o corresponding to the position to be arranged and a prepreg 33A (what should be the insulating layer 33) on which a metal foil (electrolytic copper foil) 37A is laminated are prepared. The core plate is prepared in advance by the following process.

厚さ例えば0.5mmのFR−4の両面銅張り基板(絶縁層32を有する)を準備し、その両面の銅層に例えば周知のフォトリソグラフィによるパターニングを行い、これらを配線パターン35、36に加工する。そして、絶縁層32の配線パターン35側上に厚さ例えば公称60μmのFR−4のプリプレグ31Aを熱ラミネートで積層する。続いて、この積層されたものに、内蔵される電気/電子部品41が配置される位置に対応する例えば直径1.2mmの穴あけ(電気/電子部品41が1005サイズの場合)を例えばドリリングで行い、開口32oを設ける。   An FR-4 double-sided copper-clad substrate (having an insulating layer 32) having a thickness of 0.5 mm, for example, is prepared, and the copper layers on both sides are patterned by, for example, well-known photolithography. Process. Then, a FR-4 prepreg 31A having a thickness of, for example, 60 μm is laminated on the wiring pattern 35 side of the insulating layer 32 by thermal lamination. Subsequently, for example, drilling with a diameter of 1.2 mm corresponding to a position where the built-in electrical / electronic component 41 is disposed (when the electrical / electronic component 41 is 1005 size) is performed on the stacked product by, for example, drilling. Opening 32o is provided.

金属箔37Aが積層されたプリプレグ33A(絶縁層33とすべきもの)は、厚さ例えば18μmの電解銅箔と厚さ例えば公称60μmのFR−4プリプレグとの積層体である。以上用意された3者を図4(a)に示すように、金属箔34Aの電気/電子部品41が接続された側に対向して、開口32oが形成されたプリプレグ31Aと絶縁層32との積層体(コア板)、さらにその絶縁層32側上に金属箔37Aとプリプレグ33Aとの積層体のプリプレグ33A側をそれぞれ位置合わせし積層配置する。   The prepreg 33A (to be the insulating layer 33) on which the metal foil 37A is laminated is a laminate of an electrolytic copper foil having a thickness of, for example, 18 μm and a FR-4 prepreg having a thickness of, for example, 60 μm. As shown in FIG. 4A, the three members prepared above face the side where the electric / electronic component 41 of the metal foil 34A is connected, and the insulating layer 32 and the prepreg 31A in which the opening 32o is formed. On the laminated body (core plate), the prepreg 33A side of the laminated body of the metal foil 37A and the prepreg 33A is positioned and laminated on the insulating layer 32 side.

積層配置後、加熱しつつ積層方向に加圧してプリプレグ31Aおよびプリプレグ33Aを流動化させ一体化する。このとき、プリプレグ31Aおよびプリプレグ33Aの絶縁樹脂31a、33aの部分が電気/電子部品41周りの空間を埋めて密着する状態となる。この状態でプリプレグ31A、33Aは完全に硬化し絶縁層31、33になる。この積層一体化でも、電気/電子部品41が配置される領域の、絶縁層32およびプリプレグ31Aにはあらかじめ開口32oが設けられているので、電気/電子部品41が過大に加圧されることがない。したがって、電気/電子部品41と金属箔32Aとの接続部分(半田40)に過大な応力が発生せず、また電気/電子部品41の破壊も防止できる。これにより信頼性を向上できる。   After the stacked arrangement, the prepreg 31A and the prepreg 33A are fluidized and integrated by applying pressure in the stacking direction while heating. At this time, the portions of the prepreg 31A and the insulating resins 31a and 33a of the prepreg 33A fill the space around the electric / electronic component 41 and come into close contact with each other. In this state, the prepregs 31 </ b> A and 33 </ b> A are completely cured to become insulating layers 31 and 33. Even in this stacking integration, since the opening 32o is provided in advance in the insulating layer 32 and the prepreg 31A in the region where the electric / electronic component 41 is disposed, the electric / electronic component 41 may be excessively pressurized. Absent. Therefore, an excessive stress is not generated at the connecting portion (solder 40) between the electric / electronic component 41 and the metal foil 32A, and the electric / electronic component 41 can be prevented from being broken. Thereby, reliability can be improved.

積層一体化後、周知のように所定位置穴あけ、めっきの各工程を行い、図4(b)に示すような、スルーホール内壁導電層38を備えた両面シールド基板を得る。さらに、両面の金属箔34A、37Aに例えば周知のフォトリソグラフィによるパターニングを行い、これらを配線パターン34、37に加工すると、図3に示したような構成の部品内蔵配線板を得ることができる。   After the lamination and integration, a predetermined position drilling and plating processes are performed as is well known, and a double-sided shield substrate having a through-hole inner wall conductive layer 38 as shown in FIG. 4B is obtained. Furthermore, when the metal foils 34A and 37A on both sides are patterned by, for example, well-known photolithography and processed into the wiring patterns 34 and 37, a component built-in wiring board having a configuration as shown in FIG. 3 can be obtained.

この実施形態でも、電気/電子部品41の金属箔34Aへの接続に半田40を用いるほか、例えば導電性接着剤を用いることもできる。また、補強材31b、33bとしてガラスクロスを含有するプリプレグ31A、33Aの場合を説明したが、この補強材に代えてアラミドクロスやガラス不織布、アラミド不織布などの補強材を含有するプリプレグとしてもよい。また、絶縁層32にも、FR−4相当のもののほか、CEM−3材を用いることができる。   Also in this embodiment, in addition to using the solder 40 to connect the electric / electronic component 41 to the metal foil 34A, for example, a conductive adhesive can be used. Moreover, although the case of the prepregs 31A and 33A containing glass cloth as the reinforcing materials 31b and 33b has been described, a prepreg containing a reinforcing material such as an aramid cloth, a glass nonwoven fabric, or an aramid nonwoven fabric may be used instead of the reinforcing material. The insulating layer 32 can be made of a CEM-3 material in addition to the FR-4 equivalent.

また、銅張り基板(絶縁層32を有する)の両面の銅層を配線パターン35、36に加工した段階で、通常の所定位置穴あけ、めっきの各工程を行い、絶縁層32にスルーホール内壁導電層を形成するようにしてもよい。この段階のスルーホール内壁導電層の形成によって配線板として一層のファイン化が可能である。このスルーホール内は、その後の積層工程において絶縁樹脂31a、33aが流動して充填される。   Further, at the stage where the copper layers on both sides of the copper-clad substrate (having the insulating layer 32) are processed into the wiring patterns 35 and 36, normal predetermined position drilling and plating processes are performed, and the through-hole inner wall conductivity is formed in the insulating layer 32. A layer may be formed. By forming the through-hole inner wall conductive layer at this stage, it is possible to further refine the wiring board. The through holes are filled with the insulating resins 31a and 33a in the subsequent laminating process.

また、絶縁層32、プリプレグ31Aへの開口32oの形成は、絶縁層32とプリプレグ31Aとの積層前に個別に行うことも可能である。この場合には積層するときに位置合わせ精度が必要になる。   The openings 32o can be formed in the insulating layer 32 and the prepreg 31A separately before the insulating layer 32 and the prepreg 31A are stacked. In this case, alignment accuracy is required when stacking.

次に、本発明のさらに別の実施形態について図5を参照して説明する。図5は、本発明のさらに別の実施形態に係る部品内蔵配線板の構成を模式的に示す断面図である。図5において、すでに説明した構成部分と同一または同一相当の部分には同一符号を付し、その説明は省略する。この実施形態の部品内蔵配線板は、配線層数がさらに2つ増加して合計6層になっている。この結果、電気/電子部品41が接続される配線パターン53が内層の配線パターンになる。また、図4における説明で変形例として述べたが、コア板の絶縁層32にはこれを貫通するスルーホール内壁導電層42を有している。   Next, still another embodiment of the present invention will be described with reference to FIG. FIG. 5 is a cross-sectional view schematically showing a configuration of a component built-in wiring board according to still another embodiment of the present invention. In FIG. 5, the same or equivalent parts as those already described are denoted by the same reference numerals, and the description thereof is omitted. In the component built-in wiring board of this embodiment, the number of wiring layers is further increased by two to a total of six layers. As a result, the wiring pattern 53 to which the electric / electronic component 41 is connected becomes the inner layer wiring pattern. Further, as described as a modification in the description of FIG. 4, the insulating layer 32 of the core plate has a through hole inner wall conductive layer 42 penetrating therethrough.

以上のほか、この実施形態は、図3に示した実施形態における配線パターン34が絶縁層51およびその両面の配線パターン52、53からなる両面配線板に、配線パターン37が絶縁層61およびその両面の配線パターン62、63からなる両面配線板に、それぞれ置き換わったものである。ここで、絶縁層51両面の配線パターン52、53は、それらの面間に挟設された層間接続体54により電気的に導通され得、また、絶縁層61両面の配線パターン62、63は、それらの面間に挟設された層間接続体64により電気的に導通され得る。絶縁層51、61は、それぞれ、絶縁樹脂51a、61aとこれを補強する補強材51b、61b(例えばガラスクロス)とからなる。   In addition to the above, this embodiment is different from the embodiment shown in FIG. 3 in that the wiring pattern 34 is the double-sided wiring board composed of the insulating layer 51 and the wiring patterns 52 and 53 on both sides thereof, and the wiring pattern 37 is the insulating layer 61 and both sides thereof. These are replaced with double-sided wiring boards composed of wiring patterns 62 and 63, respectively. Here, the wiring patterns 52 and 53 on both surfaces of the insulating layer 51 can be electrically conducted by the interlayer connector 54 interposed between the surfaces, and the wiring patterns 62 and 63 on both surfaces of the insulating layer 61 are It can be electrically connected by an interlayer connector 64 sandwiched between these surfaces. The insulating layers 51 and 61 are made of insulating resins 51a and 61a and reinforcing materials 51b and 61b (for example, glass cloth) that reinforce the insulating resins 51a and 61a, respectively.

以下、図5に示した部品内蔵配線板の製造工程について図6を参照して説明する。図6は、図5に示した部品内蔵配線板の一部製造過程を模式的断面で示す工程図であり、上記説明の、絶縁層51およびその両面の配線パターン52、53からなる両面配線板の部分の製造工程を示すものである。この製造工程は、絶縁層61およびその両面の配線パターン62、63からなる両面配線板の部分についても同様である。   Hereinafter, the manufacturing process of the component built-in wiring board shown in FIG. 5 will be described with reference to FIG. FIG. 6 is a process diagram schematically showing a partial manufacturing process of the component built-in wiring board shown in FIG. 5 and is a double-sided wiring board comprising the insulating layer 51 and the wiring patterns 52 and 53 on both sides thereof as described above. The manufacturing process of this part is shown. This manufacturing process is the same for the double-sided wiring board portion including the insulating layer 61 and the wiring patterns 62 and 63 on both sides thereof.

まず、図6(a)に示すように、厚さ例えば18μmの金属箔(電解銅箔)53A上に例えばスクリーン印刷により、層間接続体54となるペースト状の導電性組成物をほぼ円錐形のバンプ状に形成する。この導電性組成物は、ペースト状の樹脂中に銀、金、銅などの金属微細粒または炭素微細粒を分散させたものである。図示の都合で金属箔53Aの下面に印刷しているが上面でもよい(以下の各図も同じである)。層間接続体54の印刷後これを乾燥させて硬化させる。   First, as shown in FIG. 6A, a paste-like conductive composition to be an interlayer connection 54 is formed on a metal foil (electrolytic copper foil) 53A having a thickness of, for example, 18 μm by, for example, screen printing. Form bumps. This conductive composition is obtained by dispersing fine metal particles such as silver, gold and copper or fine carbon particles in a paste-like resin. For convenience of illustration, printing is performed on the lower surface of the metal foil 53A, but it may be printed on the upper surface (the following figures are also the same). After the interlayer connector 54 is printed, it is dried and cured.

次に、図6(b)に示すように、金属箔53A上に厚さ例えば公称60μmのプリプレグ51Aを積層して層間接続体54を貫通させ、その頭部が露出するようにする。露出に際してあるいはその後その先端を塑性変形でつぶしてもよい(いずれにしても層間接続体54の形状は、積層方向に一致する軸を有しその軸方向に径が変化する形状である。)。続いて、図6(c)に示すように、プリプレグ51A上に金属箔(電解銅箔)52Aを積層配置して加圧・加熱し全体を一体化する。このとき、金属箔52Aは層間接続体54と電気的導通状態となり、プリプレグ51Aは完全に硬化して絶縁層51になる。   Next, as shown in FIG. 6B, a prepreg 51A having a nominal thickness of, for example, 60 μm is laminated on the metal foil 53A to penetrate the interlayer connector 54 so that the head is exposed. At the time of exposure or afterwards, the tip thereof may be crushed by plastic deformation (in any case, the shape of the interlayer connector 54 is a shape having an axis that coincides with the stacking direction and the diameter changing in the axial direction). Subsequently, as shown in FIG. 6C, a metal foil (electrolytic copper foil) 52A is laminated on the prepreg 51A, and the whole is integrated by pressing and heating. At this time, the metal foil 52A is in electrical continuity with the interlayer connector 54, and the prepreg 51A is completely cured to become the insulating layer 51.

次に、図6(d)に示すように、片側の金属箔53Aに例えば周知のフォトリソグラフィによるパターニングを施し、これを配線パターン53に加工する。そして、この図6(d)に示すものを図4(a)に示す金属箔34Aの代わりに用いる。すなわち、配線パターン53上へのクリーム状の半田40の印刷付着を行うことになる。この印刷付着工程では、配線パターン53への位置合わせが必要である。なお、図4(a)に示す金属箔37Aの代わりにも、図6(d)に示すものと同様の構成のものを用いる。以上の状態で図4と同様な積層・一体化を行い、最後にスルーホール内壁導電層38の形成および両面の金属箔52A、62Aのパターニングを行うことで図5に示した部品内蔵配線板を得ることができる。   Next, as shown in FIG. 6D, patterning by, for example, well-known photolithography is performed on the metal foil 53 A on one side, and this is processed into a wiring pattern 53. And what is shown to this FIG.6 (d) is used instead of metal foil 34A shown to Fig.4 (a). That is, the cream-like solder 40 is printed and attached onto the wiring pattern 53. In this printing adhesion process, alignment with the wiring pattern 53 is necessary. In addition, the thing of the structure similar to what is shown in FIG.6 (d) is used instead of metal foil 37A shown to Fig.4 (a). In the above state, the same lamination and integration as in FIG. 4 is performed, and finally, the through-hole inner wall conductive layer 38 is formed and the metal foils 52A and 62A on both sides are patterned to obtain the component built-in wiring board shown in FIG. Obtainable.

この実施形態では、図6(d)に示した配線板の部材に代えて図1または図3に示した部品内蔵配線板を用いることもできる(ただし、片面側の配線パターンは、パターニング前の金属箔の状態にしておく。積層一体化後にパターニングする。)。これによれば、部品内蔵配線板として部品の一層の高密度内蔵が可能である。   In this embodiment, the component built-in wiring board shown in FIG. 1 or FIG. 3 can be used instead of the wiring board member shown in FIG. 6D (however, the wiring pattern on one side is the same as that before patterning). Leave it in the state of a metal foil. According to this, it is possible to incorporate components at a higher density as a component-embedded wiring board.

次に、本発明のさらに別の実施形態について図7を参照して説明する。図7は、本発明のさらに別の実施形態に係る部品内蔵配線板の構成を模式的に示す断面図である。図7において、すでに説明した構成部分と同一または同一相当の部分には同一符号を付し、その説明は省略する。この実施形態は、図5に示した部品内蔵配線板の層間接続体54、64に代えて、金属からなり、積層方向に一致する軸を有しその軸方向に径が変化する形状の層間接続体74、84を用いたものである。   Next, still another embodiment of the present invention will be described with reference to FIG. FIG. 7 is a cross-sectional view schematically showing a configuration of a component built-in wiring board according to still another embodiment of the present invention. In FIG. 7, the same or equivalent parts as those already described are denoted by the same reference numerals, and the description thereof is omitted. In this embodiment, instead of the interlayer connection bodies 54 and 64 of the component built-in wiring board shown in FIG. 5, the interlayer connection is made of metal and has an axis that coincides with the stacking direction and has a shape whose diameter changes in the axial direction. The bodies 74 and 84 are used.

以下、図7に示した部品内蔵配線板の製造工程について図8を参照して説明する。図8は、図7に示した部品内蔵配線板の一部製造過程を模式的断面で示す工程図であり、上記説明のうち、配線パターン53と層間接続体74とからなる部分の製造工程を示すものである。   Hereinafter, the manufacturing process of the component built-in wiring board shown in FIG. 7 will be described with reference to FIG. FIG. 8 is a process diagram schematically showing a partial manufacturing process of the component built-in wiring board shown in FIG. 7. Of the above description, the manufacturing process of the part composed of the wiring pattern 53 and the interlayer connector 74 is shown. It is shown.

まず、例えば厚さ18μmの金属箔(電解銅箔)53Aにごく薄い厚さ例えば2μmの例えばニッケル合金からなる層(エッチングストッパ層ES)が積層された積層膜を用意し、このエッチングストッパ層ES側に金属板(銅板)74Aを積層一体化して、図8(a)に示すような3層構造のクラッド材を得る。そしてさらに、金属板74A上の所定位置にエッチングマスク79を形成する。   First, for example, a laminated film in which a layer (etching stopper layer ES) made of, for example, a nickel alloy having a very thin thickness, for example, 2 μm, is prepared on a metal foil (electrolytic copper foil) 53A having a thickness of 18 μm is prepared. A metal plate (copper plate) 74A is laminated and integrated on the side to obtain a clad material having a three-layer structure as shown in FIG. Further, an etching mask 79 is formed at a predetermined position on the metal plate 74A.

次に、エッチングマスク79が形成された3層クラッド材の金属板74Aを、銅のみエッチング可能なエッチング液でエッチングする。これにより図8(b)に示すように、層間接続体74を得ることができる。以下の工程は、この図8(b)に示した素材を図6(a)に示す素材に代えて、図6(b)以下の工程を行えばよい。以上の説明は、配線パターン63と層間接続体84とからなる部分について同様である。   Next, the three-layer clad metal plate 74A on which the etching mask 79 is formed is etched with an etchant that can etch only copper. Thereby, as shown in FIG.8 (b), the interlayer connection body 74 can be obtained. In the following steps, the material shown in FIG. 8B may be replaced with the material shown in FIG. 6A, and the steps shown in FIG. The above description is the same for the portion composed of the wiring pattern 63 and the interlayer connector 84.

次に、本発明のさらに別の実施形態について図9を参照して説明する。図9は、本発明のさらに別の実施形態に係る部品内蔵配線板の構成を模式的に示す断面図である。図9において、すでに説明した構成部分と同一または同一相当の部分には同一符号を付し、その説明は省略する。この実施形態は、図5に示した部品内蔵配線板の層間接続体54、64に代えて、導電性組成物からなり、積層方向に一致する軸を有しその軸方向に径が変化しない形状の層間接続体94、104を用いたものである。   Next, still another embodiment of the present invention will be described with reference to FIG. FIG. 9 is a cross-sectional view schematically showing a configuration of a component built-in wiring board according to still another embodiment of the present invention. In FIG. 9, parts that are the same as or equivalent to those already described are given the same reference numerals, and descriptions thereof are omitted. In this embodiment, instead of the interlayer connectors 54 and 64 of the component built-in wiring board shown in FIG. 5, a shape made of a conductive composition and having an axis that coincides with the stacking direction and whose diameter does not change in the axial direction. The interlayer connection bodies 94 and 104 are used.

以下、図9に示した部品内蔵配線板の製造工程について図10を参照して説明する。図10は、図9に示した部品内蔵配線板の一部製造過程を模式的断面で示す工程図であり、上記説明のうち、絶縁層51とその両面の配線パターン52、53、および絶縁層51を貫通する層間接続体94の部分の製造工程を示すものである。   Hereinafter, the manufacturing process of the component built-in wiring board shown in FIG. 9 will be described with reference to FIG. FIG. 10 is a process diagram schematically showing a partial manufacturing process of the component built-in wiring board shown in FIG. 9. In the above description, the insulating layer 51, the wiring patterns 52 and 53 on both sides thereof, and the insulating layer are shown. The manufacturing process of the part of the interlayer connection body 94 which penetrates 51 is shown.

まず、図10(a)示すように、例えば厚さ公称60μmのプリプレグ51Aの所定位置に穴あけを行い、その穴内部を導電性組成物で充填し層間接続体94とする。次に、図10(b)に示すように、プリプレグ51Aの両面に厚さ例えば18μmの金属箔(電解銅箔)52A、53Aを積層し加圧・加熱して一体化する。この積層・一体化で各金属箔52A、53Aは層間接続体94との電気的導通状態を確立し、プリプレグ51Aは完全に硬化して絶縁層51となる。   First, as shown in FIG. 10A, for example, a predetermined position of a prepreg 51 </ b> A having a nominal thickness of 60 μm is formed, and the inside of the hole is filled with a conductive composition to form an interlayer connector 94. Next, as shown in FIG. 10B, metal foils (electrolytic copper foils) 52A and 53A having a thickness of, for example, 18 μm are laminated on both surfaces of the prepreg 51A, and are integrated by pressing and heating. By this lamination and integration, the metal foils 52A and 53A establish an electrical conduction state with the interlayer connection body 94, and the prepreg 51A is completely cured to become the insulating layer 51.

次に、図10(c)に示すように、片側の金属箔53Aに例えば周知のフォトリソグラフィによるパターニングを施し、これを配線パターン53に加工する。そして、この図10(c)に示す素材を図6(d)に示す素材の代わりに用い、その後の工程は図6における説明と同様である。   Next, as shown in FIG. 10C, patterning by, for example, well-known photolithography is performed on the metal foil 53 </ b> A on one side, and this is processed into a wiring pattern 53. Then, the material shown in FIG. 10C is used instead of the material shown in FIG. 6D, and the subsequent steps are the same as those described in FIG.

次に、本発明のさらに別の実施形態について図11を参照して説明する。図11は、本発明のさらに別の実施形態に係る部品内蔵配線板の構成を模式的に示す断面図である。図11において、すでに説明した構成部分と同一または同一相当の部分には同一符号を付し、その説明は省略する。この実施形態は、図5に示した部品内蔵配線板の層間接続体54、64に代えて、金属からなり、積層方向に一致する軸を有しその軸方向に径が変化しない形状の層間接続体114、124を用いたものである。   Next, still another embodiment of the present invention will be described with reference to FIG. FIG. 11 is a cross-sectional view schematically showing a configuration of a component built-in wiring board according to still another embodiment of the present invention. In FIG. 11, the same or equivalent parts as those already described are denoted by the same reference numerals, and the description thereof is omitted. In this embodiment, instead of the interlayer connection bodies 54 and 64 of the component built-in wiring board shown in FIG. 5, the interlayer connection is made of metal and has an axis that coincides with the stacking direction and does not change its diameter in the axial direction. The bodies 114 and 124 are used.

以下、図11に示した部品内蔵配線板の製造工程について図12を参照して説明する。図12は、図11に示した部品内蔵配線板の一部製造過程を模式的断面で示す工程図であり、上記説明のうち、配線パターン53と層間接続体114とからなる部分の製造工程を示すものである。   Hereinafter, the manufacturing process of the component built-in wiring board shown in FIG. 11 will be described with reference to FIG. FIG. 12 is a process diagram schematically showing a partial manufacturing process of the component built-in wiring board shown in FIG. 11. In the above description, the manufacturing process of the part composed of the wiring pattern 53 and the interlayer connector 114 is shown. It is shown.

まず、図12(a)に示すように、例えば厚さ18μmの金属箔(電解銅箔)53A上に、所定位置にマスク除去部119Aを有するめっき阻止マスク119を形成する。マスク除去部119Aの形状は例えばほぼ円筒状である。次に、金属箔53Aを電気供給路としてそのめっき阻止マスク119側に電解めっき工程を施し、図12(b)に示すように、マスク除去部119A内に例えば銅のめっき層を成長させる。この成長させためっき層が層間接続体114になる。めっき層成長後、めっき阻止マスク119を除去すると図12(c)に示すような素材が得られる。以下の工程は、この図12(c)に示した素材を図6(a)に示す素材に代えて、図6(b)以下の工程を行えばよい。以上の説明は、配線パターン63と層間接続体124とからなる部分について同様である。   First, as shown in FIG. 12A, a plating prevention mask 119 having a mask removal portion 119A at a predetermined position is formed on a metal foil (electrolytic copper foil) 53A having a thickness of 18 μm, for example. The shape of the mask removing unit 119A is, for example, substantially cylindrical. Next, an electrolytic plating process is performed on the plating prevention mask 119 side using the metal foil 53A as an electric supply path, and, for example, a copper plating layer is grown in the mask removing portion 119A as shown in FIG. This grown plating layer becomes the interlayer connector 114. After the plating layer is grown, the plating block mask 119 is removed to obtain a material as shown in FIG. In the following steps, the material shown in FIG. 12C may be replaced with the material shown in FIG. 6A, and the steps shown in FIG. The above description is the same for the portion composed of the wiring pattern 63 and the interlayer connector 124.

以上、図5ないし図12では、絶縁層51およびその両面の配線パターン52、53からなる両面配線板の部分と、絶縁層61およびその両面の配線パターン62、63からなる両面配線板の部分とについての諸例を、その層間接続体の構成という観点から示した。これらの説明以外の層間接続体を有する両面配線板を用いることも無論可能である。例えば、層間接続体としては、周知の、穴あけおよびめっき工程によるスルーホール内壁導電体としてもよい。さらにその他様々な構成の層間接続体を有する両面配線板を用いることができる。   5 to 12, the double-sided wiring board portion including the insulating layer 51 and the wiring patterns 52 and 53 on both sides thereof, and the double-sided wiring board portion including the insulating layer 61 and the wiring patterns 62 and 63 on both sides thereof are illustrated. The examples are shown from the viewpoint of the structure of the interlayer connector. Of course, it is possible to use a double-sided wiring board having an interlayer connection other than those described above. For example, the interlayer connection body may be a well-known through-hole inner wall conductor formed by a drilling and plating process. Furthermore, a double-sided wiring board having various other configurations of the interlayer connector can be used.

次に、本発明のさらに別の実施形態について図13を参照して説明する。図13は、本発明のさらに別の実施形態に係る部品内蔵配線板の構成を模式的に示す断面図である。図13において、すでに説明した構成部分と同一または同一相当の部分には同一符号を付し、その説明は省略する。この実施形態の部品内蔵配線板は、図5に示したものに比較して、絶縁層31、33を貫通して配線パターン面間に挟設される層間接続体205、201を新たに有する点、および、絶縁層32が絶縁層3、2、1の3層積層になっている点が異なる。   Next, still another embodiment of the present invention will be described with reference to FIG. FIG. 13 is a cross-sectional view schematically showing a configuration of a component built-in wiring board according to still another embodiment of the present invention. In FIG. 13, parts that are the same as or equivalent to those already described are given the same reference numerals, and descriptions thereof are omitted. The component built-in wiring board of this embodiment newly has interlayer connection bodies 205 and 201 that pass through the insulating layers 31 and 33 and are sandwiched between the wiring pattern surfaces, as compared with the one shown in FIG. And the insulating layer 32 is a three-layer laminate of insulating layers 3, 2, 1.

ここで、絶縁層3、2間、配線層2、1間にはそれぞれ配線パターン6、5が挟設され、絶縁層3、2、1をそれぞれ貫通しかつ配線パターン面間に挟設されて層間接続体204、203、202が存在する。層間接続体54、64に加えて層間接続体205、201、204、203、202を備えることでスルーホール内壁導電層による層間接続の必要のない構成になっている。   Here, wiring patterns 6 and 5 are sandwiched between the insulating layers 3 and 2 and between the wiring layers 2 and 1, respectively, and penetrate the insulating layers 3, 2, and 1 and sandwiched between the wiring pattern surfaces. Interlayer connectors 204, 203, and 202 exist. By providing the interlayer connectors 205, 201, 204, 203, 202 in addition to the interlayer connectors 54, 64, there is no need for interlayer connection by the through-hole inner wall conductive layer.

絶縁層3、2、1は、それぞれ、絶縁樹脂3a、2a、1aとこれを補強する補強材3b、2b、1b(例えばガラスクロス)とからなる。配線パターン7、4は、それぞれ図5に示した実施形態における配線パターン35、36に相当する。   The insulating layers 3, 2, and 1 are made of insulating resins 3 a, 2 a, and 1 a and reinforcing materials 3 b, 2 b, and 1 b (for example, glass cloth) that reinforce them. The wiring patterns 7 and 4 correspond to the wiring patterns 35 and 36 in the embodiment shown in FIG.

この実施形態においても、電気/電子部品41が埋設された領域では絶縁層1、2、3、31が補強材1b、2b、3b、31bを有さず、それ以外の領域で補強材1b、2b、3b、31bを有する。よって、電気/電子部品41と補強材1b、2b、3b、31bとの衝突を避け信頼性を向上することができる。また、絶縁層1、2、3、31として配線板で一般的なプリプレグを硬化させたものを使用することが可能になる。   Also in this embodiment, the insulating layers 1, 2, 3, and 31 do not have the reinforcing materials 1b, 2b, 3b, and 31b in the region where the electrical / electronic component 41 is embedded, and the reinforcing material 1b, 2b, 3b, 31b. Therefore, it is possible to improve the reliability by avoiding the collision between the electric / electronic component 41 and the reinforcing members 1b, 2b, 3b, 31b. Moreover, it becomes possible to use what hardened a general prepreg with the wiring board as the insulating layers 1, 2, 3, and 31. FIG.

この図13に示す部品内蔵配線板の製造方法を概略的に述べると以下のようである。まず、両面にそれぞれ配線パターンと金属箔とを有しそれらの層間接続が積層方向に径の変化する形状の層間接続体によりされている両面基板を、絶縁層51、3、1、61それぞれに相当して4枚製造する。その工程は図6に示した通りである。   The manufacturing method of the component built-in wiring board shown in FIG. 13 is roughly described as follows. First, a double-sided board having wiring patterns and metal foils on both sides and having an interlayer connection having a shape in which the diameter of the interlayer connection changes in the laminating direction is provided on each of the insulating layers 51, 3, 1, 61. Correspondingly, 4 sheets are manufactured. The process is as shown in FIG.

次に、そのうち絶縁層1に相当するものの配線パターン5上に、層間接続体203となる導電性バンプを印刷形成しさらにその面に絶縁層2とすべきプリプレグを積層する。そして、その絶縁層2とすべきプリプレグ側に、絶縁層3に相当する両面基板の配線パターン6側を対向させて加圧・加熱により積層・一体化する。これにより配線層が4つの基板ができる。続いてその外側の金属箔をパターニングすることで配線パターン7、4が形成される。   Next, on the wiring pattern 5 corresponding to the insulating layer 1, conductive bumps to be the interlayer connection 203 are printed and formed, and a prepreg to be the insulating layer 2 is laminated on the surface. Then, the wiring pattern 6 side of the double-sided substrate corresponding to the insulating layer 3 is opposed to the prepreg side to be the insulating layer 2 and laminated and integrated by pressing and heating. As a result, a substrate with four wiring layers is formed. Subsequently, the wiring patterns 7 and 4 are formed by patterning the outer metal foil.

次に、形成された配線パターン7上に、層間接続体205となる導電性バンプを印刷形成しさらにその面に絶縁層31とすべきプリプレグを積層する。そして、これにより得られた積層体に、内蔵する電気/電子部品41に対応する位置の開口(例えば0.8mm径)を例えばドリリングにより形成する。   Next, on the formed wiring pattern 7, conductive bumps to be the interlayer connection body 205 are printed and formed, and a prepreg to be the insulating layer 31 is laminated on the surface. And the opening (for example, 0.8 mm diameter) of the position corresponding to the electrical / electronic component 41 to incorporate is formed in the laminated body obtained by this, for example by drilling.

一方、絶縁層61に相当するものの配線パターン63上には、層間接続体201となる導電性バンプを印刷形成しさらにその面に絶縁層33とすべきプリプレグを積層しておく。絶縁層51に相当するものの配線パターン53上には電気/電子部品41を半田40を介して接続しておく。   On the other hand, on the wiring pattern 63 corresponding to the insulating layer 61, conductive bumps to be the interlayer connector 201 are printed and formed, and a prepreg to be the insulating layer 33 is laminated on the surface. An electrical / electronic component 41 is connected to the wiring pattern 53 of the one corresponding to the insulating layer 51 via the solder 40.

以上のようにして得られた3つの部材を、図4(a)に示した配置と同様に積層配置し加圧しつつ積層方向に加圧する。このとき、絶縁層31とすべきプリプレグおよび絶縁層33とすべきプリプレグの絶縁樹脂31a、33aの部分が電気/電子部品41周りの空間を埋めて密着する状態となる。この状態で両プリプレグは完全に硬化し絶縁層31、33になる。さらに、両面に位置する金属箔に例えば周知のフォトリソグラフィによるパターニングを行い、これらを配線パターン52、62に加工すると、図13に示したような構成の部品内蔵配線板を得ることができる。   The three members obtained as described above are stacked and pressed in the stacking direction in the same manner as the layout shown in FIG. At this time, the portions of the prepreg to be the insulating layer 31 and the insulating resins 31a and 33a of the prepreg to be the insulating layer 33 fill the space around the electric / electronic component 41 and come into close contact with each other. In this state, both prepregs are completely cured and become insulating layers 31 and 33. Furthermore, if the metal foil located on both surfaces is patterned by, for example, well-known photolithography and processed into the wiring patterns 52 and 62, a component built-in wiring board having a configuration as shown in FIG. 13 can be obtained.

以上説明の図13に示す部品内蔵配線板は、層間接続体204、202を、層間接続体74、84(図7)、同94、104(図9)、同114、124(図11)のいずれかのようにして形成されたものに代えることが可能である。また、層間接続体205、201は、層間接続体94、104(図9(a))のようにして形成されたものに代えることが可能である。後者の場合、最後の積層工程が3つの素材の積層ではなく5つの素材の積層になる。   The component built-in wiring board shown in FIG. 13 described above has the interlayer connectors 204 and 202 connected to the interlayer connectors 74 and 84 (FIG. 7), 94 and 104 (FIG. 9), and 114 and 124 (FIG. 11). It can be replaced with one formed as described above. Further, the interlayer connectors 205 and 201 can be replaced with those formed as the interlayer connectors 94 and 104 (FIG. 9A). In the latter case, the last lamination process is not a lamination of three materials but a lamination of five materials.

本発明の一実施形態に係る部品内蔵配線板の構成を模式的に示す断面図。Sectional drawing which shows typically the structure of the component built-in wiring board which concerns on one Embodiment of this invention. 図1に示した部品内蔵配線板の製造過程を模式的断面で示す工程図。Process drawing which shows the manufacturing process of the component built-in wiring board shown in FIG. 本発明の別の実施形態に係る部品内蔵配線板の構成を模式的に示す断面図。Sectional drawing which shows typically the structure of the component built-in wiring board which concerns on another embodiment of this invention. 図3に示した部品内蔵配線板の製造過程を模式的断面で示す工程図。Process drawing which shows the manufacturing process of the component built-in wiring board shown in FIG. 本発明のさらに別の実施形態に係る部品内蔵配線板の構成を模式的に示す断面図。Sectional drawing which shows typically the structure of the component built-in wiring board which concerns on another embodiment of this invention. 図5に示した部品内蔵配線板の一部製造過程の模式的断面で示す工程図。Process drawing shown in the schematic cross section of the partial manufacture process of the component built-in wiring board shown in FIG. 本発明のさらに別の実施形態に係る部品内蔵配線板の構成を模式的に示す断面図。Sectional drawing which shows typically the structure of the component built-in wiring board which concerns on another embodiment of this invention. 図7に示した部品内蔵配線板の一部製造過程の模式的断面で示す工程図。FIG. 8 is a process diagram showing a schematic cross section of a partial manufacturing process of the component built-in wiring board shown in FIG. 7. 本発明のさらに別の実施形態に係る部品内蔵配線板の構成を模式的に示す断面図。Sectional drawing which shows typically the structure of the component built-in wiring board which concerns on another embodiment of this invention. 図9に示した部品内蔵配線板の一部製造過程の模式的断面で示す工程図。FIG. 10 is a process diagram showing a schematic cross section of a partial manufacturing process of the component built-in wiring board shown in FIG. 9. 本発明のさらに別の実施形態に係る部品内蔵配線板の構成を模式的に示す断面図。Sectional drawing which shows typically the structure of the component built-in wiring board which concerns on another embodiment of this invention. 図11に示した部品内蔵配線板の一部製造過程の模式的断面で示す工程図。FIG. 12 is a process diagram showing a schematic cross section of a partial manufacturing process of the component built-in wiring board shown in FIG. 11. 本発明のさらに別の実施形態に係る部品内蔵配線板の構成を模式的に示す断面図。Sectional drawing which shows typically the structure of the component built-in wiring board which concerns on another embodiment of this invention.

符号の説明Explanation of symbols

1…絶縁層、1a…絶縁樹脂、1b…補強材、2…絶縁層、2a…絶縁樹脂、2b…補強材、3…絶縁層、3a…絶縁樹脂、3b…補強材、4,5,6,7…配線パターン、11…絶縁層、11a…絶縁樹脂、11b…補強材、11A…プリプレグ、11o…開口,12,13…配線パターン、12A,13A…金属箔(銅箔)、14…スルーホール内壁導電層、15…半田、16…部品、31…絶縁層、31a…絶縁樹脂、31b…補強材、31A…プリプレグ、32…絶縁層、32a…絶縁樹脂、32b…補強材、32o…開口、33…絶縁層、33a…絶縁樹脂、33b…補強材、33A…プリプレグ、34,35,36,37…配線パターン、34A,37A…金属箔(銅箔)、38…スルーホール内壁導電層、40…半田、41…部品、51…絶縁層、51a…絶縁樹脂、51b…補強材、52,53…配線パターン、52A,53A…金属箔(銅箔)、54…層間接続体(導電性組成物印刷による導電性バンプ)、61…絶縁層、61a…絶縁樹脂、61b…補強材、62,63…配線パターン、64…層間接続体(導電性組成物印刷による導電性バンプ)、74,84…層間接続体(金属板エッチングによる導体バンプ)、74A…金属板、79…エッチングマスク、94,104…層間接続体(導電性組成物充填)、114,124…層間接続体(めっきによる導体バンプ)、119…めっき阻止マスク、119A…マスク除去部、201,202,203,204,205…層間接続体(導電性組成物印刷による導電性バンプ)、ES…エッチングストッパ層。   DESCRIPTION OF SYMBOLS 1 ... Insulating layer, 1a ... Insulating resin, 1b ... Reinforcing material, 2 ... Insulating layer, 2a ... Insulating resin, 2b ... Reinforcing material, 3 ... Insulating layer, 3a ... Insulating resin, 3b ... Reinforcing material, 4, 5, 6 7 ... wiring pattern, 11 ... insulating layer, 11a ... insulating resin, 11b ... reinforcing material, 11A ... prepreg, 11o ... opening, 12, 13 ... wiring pattern, 12A, 13A ... metal foil (copper foil), 14 ... through Hole inner wall conductive layer, 15 ... solder, 16 ... part, 31 ... insulating layer, 31a ... insulating resin, 31b ... reinforcing material, 31A ... prepreg, 32 ... insulating layer, 32a ... insulating resin, 32b ... reinforcing material, 32o ... opening 33 ... Insulating layer, 33a ... Insulating resin, 33b ... Reinforcing material, 33A ... Pre-preg, 34, 35, 36, 37 ... Wiring pattern, 34A, 37A ... Metal foil (copper foil), 38 ... Through wall inner wall conductive layer, 40 ... solder, 41 ... 51 ... Insulating layer, 51a ... Insulating resin, 51b ... Reinforcing material, 52, 53 ... Wiring pattern, 52A, 53A ... Metal foil (copper foil), 54 ... Interlayer connector (Conductive bump by printing conductive composition) ), 61 ... Insulating layer, 61 a ... Insulating resin, 61 b ... Reinforcing material, 62, 63 ... Wiring pattern, 64 ... Interlayer connection body (conductive bump by conductive composition printing), 74, 84 ... Interlayer connection body (metal) Conductor bumps by plate etching), 74A ... metal plate, 79 ... etching mask, 94,104 ... interlayer connector (filled with conductive composition), 114,124 ... interlayer connector (conductor bump by plating), 119 ... prevent plating Mask, 119A, mask removing portion, 201, 202, 203, 204, 205, interlayer connection (conductive bumps formed by printing conductive composition), ES, etching stopper layer.

Claims (19)

配線パターンと、
前記配線パターンの面上に電気的機械的に接続された電気/電子部品と、
前記電気/電子部品を埋設し、かつ、前記配線パターンの前記電気/電子部品の接続された側の面上に積層され、かつ、前記電気/電子部品が埋設された領域を除き該領域以外の領域に補強材を有する絶縁層と
を具備することを特徴とする部品内蔵配線板。
A wiring pattern;
Electrical / electronic components electrically and mechanically connected on the surface of the wiring pattern;
The electrical / electronic component is embedded and laminated on the surface of the wiring pattern on the side where the electrical / electronic component is connected, and other than the region except the region where the electrical / electronic component is embedded A wiring board with a built-in component, comprising: an insulating layer having a reinforcing material in a region.
前記絶縁層が、少なくとも2つの絶縁層の積層であり、
前記少なくとも2つの絶縁層の間に挟設された第2の配線パターンをさらに具備することを特徴とする請求項1記載の部品内蔵配線板。
The insulating layer is a stack of at least two insulating layers;
The component built-in wiring board according to claim 1, further comprising a second wiring pattern sandwiched between the at least two insulating layers.
前記配線パターンの前記電気/電子部品の接続された側とは反対側の面上に積層された第2の絶縁層をさらに具備することを特徴とする請求項1記載の部品内蔵配線板。   2. The component built-in wiring board according to claim 1, further comprising a second insulating layer laminated on a surface of the wiring pattern opposite to the side where the electric / electronic component is connected. 前記第2の絶縁層の前記配線パターンが位置する側とは反対側に設けられた第2の配線パターンをさらに具備することを特徴とする請求項3記載の部品内蔵配線板。   4. The component built-in wiring board according to claim 3, further comprising a second wiring pattern provided on a side of the second insulating layer opposite to the side where the wiring pattern is located. 前記第2の絶縁層を貫通して前記配線パターンの面と前記第2の配線パターンの面との間に挟設され、かつ、導電性組成物からなり、かつ、積層方向に一致する軸を有し前記軸の方向に径が変化している形状である層間接続体をさらに具備することを特徴とする請求項4記載の部品内蔵配線板。   An axis that penetrates through the second insulating layer and is sandwiched between the surface of the wiring pattern and the surface of the second wiring pattern, is made of a conductive composition, and coincides with the stacking direction. 5. The component built-in wiring board according to claim 4, further comprising an interlayer connection body having a shape that has a shape that changes in the direction of the axis. 前記第2の絶縁層を貫通して前記配線パターンの面と前記第2の配線パターンの面との間に挟設され、かつ、導電性組成物からなり、かつ、積層方向に一致する軸を有し前記軸の方向に径が変化していない形状である層間接続体をさらに具備することを特徴とする請求項4記載の部品内蔵配線板。   An axis that penetrates through the second insulating layer and is sandwiched between the surface of the wiring pattern and the surface of the second wiring pattern, is made of a conductive composition, and coincides with the stacking direction. 5. The component built-in wiring board according to claim 4, further comprising an interlayer connection body having a shape that has a shape that does not change in a direction of the axis. 前記第2の絶縁層を貫通して前記配線パターンの面と前記第2の配線パターンの面との間に挟設され、かつ、金属からなり、かつ、積層方向に一致する軸を有し前記軸の方向に径が変化している形状である層間接続体をさらに具備することを特徴とする請求項4記載の部品内蔵配線板。   The shaft is inserted between the surface of the wiring pattern and the surface of the second wiring pattern through the second insulating layer, is made of metal, and has an axis that coincides with the stacking direction. 5. The component built-in wiring board according to claim 4, further comprising an interlayer connector having a shape whose diameter changes in the axial direction. 前記第2の絶縁層を貫通して前記配線パターンの面と前記第2の配線パターンの面との間に挟設され、かつ、金属からなり、かつ、積層方向に一致する軸を有し前記軸の方向に径が変化していない形状である層間接続体をさらに具備することを特徴とする請求項4記載の部品内蔵配線板。   The shaft is inserted between the surface of the wiring pattern and the surface of the second wiring pattern through the second insulating layer, is made of metal, and has an axis that coincides with the stacking direction. 5. The component built-in wiring board according to claim 4, further comprising an interlayer connection body having a shape whose diameter does not change in the axial direction. 前記配線パターンと前記第2の配線パターンとを電気的導通させるように前記第2の絶縁層に設けられたスルーホール内壁導電体をさらに具備することを特徴とする請求項4記載の部品内蔵配線板。   5. The component built-in wiring according to claim 4, further comprising a through-hole inner wall conductor provided in the second insulating layer so as to electrically connect the wiring pattern and the second wiring pattern. Board. 前記第2の配線パターンを挟設する前記少なくとも2つの絶縁層のうち前記配線パターンの側ではない絶縁層の、前記第2の配線パターンが位置する側とは反対側に設けられた第3の配線パターンと、
前記配線パターンの側ではない前記絶縁層を貫通して前記第2の配線パターンの面と前記第3の配線パターンの面との間に挟設された層間接続体と
をさらに具備することを特徴とする請求項2記載の部品内蔵配線板。
Of the at least two insulating layers sandwiching the second wiring pattern, a third layer provided on the opposite side of the insulating layer that is not on the wiring pattern side from the side on which the second wiring pattern is located A wiring pattern;
And further comprising an inter-layer connection body provided between the surface of the second wiring pattern and the surface of the third wiring pattern through the insulating layer that is not on the wiring pattern side. The component built-in wiring board according to claim 2.
前記層間接続体が、導電性組成物からなり、かつ、積層方向に一致する軸を有し前記軸の方向に径が変化している形状であることを特徴とする請求項10記載の部品内蔵配線板。   The built-in component according to claim 10, wherein the interlayer connection body is made of a conductive composition and has a shape that has an axis that coincides with the stacking direction and has a diameter that changes in the direction of the axis. Wiring board. 前記層間接続体が、導電性組成物からなり、かつ、積層方向に一致する軸を有し前記軸の方向に径が変化していない形状であることを特徴とする請求項10記載の部品内蔵配線板。   11. The component built-in according to claim 10, wherein the interlayer connection body is made of a conductive composition and has a shape that has an axis that coincides with the stacking direction and has a diameter that does not change in the direction of the axis. Wiring board. 前記層間接続体が、金属からなり、かつ、積層方向に一致する軸を有し前記軸の方向に径が変化している形状であることを特徴とする請求項10記載の部品内蔵配線板。   11. The component built-in wiring board according to claim 10, wherein the interlayer connection body is made of a metal and has a shape that has an axis that coincides with the stacking direction and has a diameter that changes in the direction of the axis. 前記層間接続体が、金属からなり、かつ、積層方向に一致する軸を有し前記軸の方向に径が変化していない形状であることを特徴とする請求項10記載の部品内蔵配線板。   11. The component built-in wiring board according to claim 10, wherein the interlayer connection body is made of a metal and has a shape that has an axis that coincides with the stacking direction and has a diameter that does not change in the direction of the axis. 前記少なくとも2つの絶縁層のうち前記配線パターンに接触する方の絶縁層を貫通して前記配線パターンの面と前記第2の配線パターンの面との間に挟設された層間接続体をさらに具備することを特徴とする請求項2記載の部品内蔵配線板。   An interlayer connector is further provided that is interposed between the surface of the wiring pattern and the surface of the second wiring pattern through the insulating layer in contact with the wiring pattern of the at least two insulating layers. The component built-in wiring board according to claim 2, wherein: 前記層間接続体が、導電性組成物からなり、かつ、積層方向に一致する軸を有し前記軸の方向に径が変化している形状であることを特徴とする請求項15記載の部品内蔵配線板。   16. The component built-in according to claim 15, wherein the interlayer connection body is made of a conductive composition and has a shape that has an axis that coincides with the stacking direction and has a diameter that changes in the direction of the axis. Wiring board. 前記層間接続体が、導電性組成物からなり、かつ、積層方向に一致する軸を有し前記軸の方向に径が変化していない形状であることを特徴とする請求項15記載の部品内蔵配線板。   The built-in component according to claim 15, wherein the interlayer connection body is made of a conductive composition and has a shape that has an axis that coincides with the stacking direction and has a diameter that does not change in the direction of the axis. Wiring board. 第1の金属箔上にまたは第1の金属配線パターンを有する第1の絶縁層の前記第1の金属配線パターン上に電気/電子部品を電気的・機械的に接続する工程と、
前記第1の金属箔上にまたは前記第1の絶縁層の前記第1の金属配線パターン上に、補強材を含有しかつ前記接続された電気/電子部品に対応する位置に開口を有する第2の絶縁層を配置し、さらに該第2の絶縁層上に第2の金属箔または第3の絶縁層を配置し、積層・一体化する工程と
を具備することを特徴とする部品内蔵配線板の製造方法。
Electrically / mechanically connecting electrical / electronic components on the first metal foil or on the first metal wiring pattern of the first insulating layer having the first metal wiring pattern;
A second containing a reinforcing material on the first metal foil or on the first metal wiring pattern of the first insulating layer and having an opening at a position corresponding to the connected electrical / electronic component. A wiring board having a built-in component, comprising: a step of arranging a second metal foil or a third insulating layer on the second insulating layer, and laminating and integrating them. Manufacturing method.
前記第2の絶縁層が、補強材を含有しかつ硬化状態である絶縁層上に、補強材を含有しかつ半硬化状態にある絶縁層を張り合わせる工程と、前記張り合わせられた両絶縁層に前記開口を設ける工程とを有する製造工程により製造されたものであることを特徴とする請求項18記載の部品内蔵配線板の製造方法。   The step of laminating the insulating layer containing the reinforcing material and in a semi-cured state on the insulating layer containing the reinforcing material and in the cured state, the second insulating layer, and both the laminated insulating layers The method of manufacturing a component built-in wiring board according to claim 18, wherein the manufacturing method includes a step of providing the opening.
JP2004344485A 2004-11-29 2004-11-29 Wiring board with built-in part and method of manufacturing the same Pending JP2006156669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004344485A JP2006156669A (en) 2004-11-29 2004-11-29 Wiring board with built-in part and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004344485A JP2006156669A (en) 2004-11-29 2004-11-29 Wiring board with built-in part and method of manufacturing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010158979A Division JP5223893B2 (en) 2010-07-13 2010-07-13 Component built-in wiring board, method of manufacturing component built-in wiring board

Publications (1)

Publication Number Publication Date
JP2006156669A true JP2006156669A (en) 2006-06-15

Family

ID=36634572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004344485A Pending JP2006156669A (en) 2004-11-29 2004-11-29 Wiring board with built-in part and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2006156669A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010616A (en) * 2006-06-29 2008-01-17 Dainippon Printing Co Ltd Wiring board having built-in component
JP2008034588A (en) * 2006-07-28 2008-02-14 Dainippon Printing Co Ltd Multilayer printed wiring board and manufacturing method thereof
JP2008060223A (en) * 2006-08-30 2008-03-13 Hitachi Aic Inc Component built-in substrate
JP2008177323A (en) * 2007-01-18 2008-07-31 Matsushita Electric Ind Co Ltd Method of manufacturing component built-in substrate
JP2009231537A (en) * 2008-03-24 2009-10-08 Ngk Spark Plug Co Ltd Wiring board with built-in component and method of manufacturing the same
JP2009239088A (en) * 2008-03-27 2009-10-15 Dainippon Printing Co Ltd Method of manufacturing wiring board incorporating component, wiring board incorporating component
JP2010141098A (en) * 2008-12-11 2010-06-24 Shinko Electric Ind Co Ltd Substrate with built-in electronic components and method of manufacturing the same
JP2011049254A (en) * 2009-08-25 2011-03-10 Dainippon Printing Co Ltd Wiring board with built-in component
KR101154742B1 (en) 2010-12-24 2012-06-08 엘지이노텍 주식회사 Printed circuit board and method for manufacturing the same
KR101199167B1 (en) * 2010-12-24 2012-11-07 엘지이노텍 주식회사 Printed circuit board and method for manufacturing the same
JP2014103401A (en) * 2013-12-17 2014-06-05 Dainippon Printing Co Ltd Sensor element module
US10032646B2 (en) 2007-10-10 2018-07-24 Tessera, Inc. Robust multi-layer wiring elements and assemblies with embedded microelectronic elements

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111375A (en) * 1993-01-26 1995-04-25 Dyconex Patente Ag Multilayer printed circuit board its preparation and conductor foil of multilayer printed circuitboard
JP2001274555A (en) * 2000-03-27 2001-10-05 Toshiba Corp Printed wiring board, blank board for printed wiring, semiconductor device, manufacturing method for printed wiring board and manufacturing method for semiconductor device
JP2001298274A (en) * 2001-03-13 2001-10-26 Matsushita Electric Ind Co Ltd Electronic circuit arrangement
JP2002043755A (en) * 2000-07-21 2002-02-08 Ibiden Co Ltd Printed circuit board and manufacturing method
JP2002093957A (en) * 2000-09-11 2002-03-29 Sony Corp Electronic circuit device and its manufacturing method
JP2002270712A (en) * 2001-03-14 2002-09-20 Sony Corp Semiconductor element integrated multi-layer wiring board, semiconductor element integrated device, and manufacturing method therefor
JP2003258400A (en) * 2001-12-26 2003-09-12 Kyocera Corp Wiring substrate
JP2004311705A (en) * 2003-04-07 2004-11-04 Ibiden Co Ltd Multilayer printed circuit board
JP2004311736A (en) * 2003-04-08 2004-11-04 Nec Toppan Circuit Solutions Inc Method for manufacturing built-up multilayer wiring board incorporating chip comp0nents

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111375A (en) * 1993-01-26 1995-04-25 Dyconex Patente Ag Multilayer printed circuit board its preparation and conductor foil of multilayer printed circuitboard
JP2001274555A (en) * 2000-03-27 2001-10-05 Toshiba Corp Printed wiring board, blank board for printed wiring, semiconductor device, manufacturing method for printed wiring board and manufacturing method for semiconductor device
JP2002043755A (en) * 2000-07-21 2002-02-08 Ibiden Co Ltd Printed circuit board and manufacturing method
JP2002093957A (en) * 2000-09-11 2002-03-29 Sony Corp Electronic circuit device and its manufacturing method
JP2001298274A (en) * 2001-03-13 2001-10-26 Matsushita Electric Ind Co Ltd Electronic circuit arrangement
JP2002270712A (en) * 2001-03-14 2002-09-20 Sony Corp Semiconductor element integrated multi-layer wiring board, semiconductor element integrated device, and manufacturing method therefor
JP2003258400A (en) * 2001-12-26 2003-09-12 Kyocera Corp Wiring substrate
JP2004311705A (en) * 2003-04-07 2004-11-04 Ibiden Co Ltd Multilayer printed circuit board
JP2004311736A (en) * 2003-04-08 2004-11-04 Nec Toppan Circuit Solutions Inc Method for manufacturing built-up multilayer wiring board incorporating chip comp0nents

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010616A (en) * 2006-06-29 2008-01-17 Dainippon Printing Co Ltd Wiring board having built-in component
US8476535B2 (en) 2006-07-28 2013-07-02 Dai Nippon Printing Co., Ltd. Multilayered printed wiring board and method for manufacturing the same
JP2008034588A (en) * 2006-07-28 2008-02-14 Dainippon Printing Co Ltd Multilayer printed wiring board and manufacturing method thereof
TWI458415B (en) * 2006-07-28 2014-10-21 Dainippon Printing Co Ltd Multilayered printed wiring board and method for manufacturing the same
KR101362492B1 (en) * 2006-07-28 2014-02-13 다이니폰 인사츠 가부시키가이샤 Multilayered printed wiring board and method for manufacturing the same
JP2008060223A (en) * 2006-08-30 2008-03-13 Hitachi Aic Inc Component built-in substrate
JP2008177323A (en) * 2007-01-18 2008-07-31 Matsushita Electric Ind Co Ltd Method of manufacturing component built-in substrate
US10032646B2 (en) 2007-10-10 2018-07-24 Tessera, Inc. Robust multi-layer wiring elements and assemblies with embedded microelectronic elements
JP2009231537A (en) * 2008-03-24 2009-10-08 Ngk Spark Plug Co Ltd Wiring board with built-in component and method of manufacturing the same
JP2009239088A (en) * 2008-03-27 2009-10-15 Dainippon Printing Co Ltd Method of manufacturing wiring board incorporating component, wiring board incorporating component
US8559184B2 (en) 2008-12-11 2013-10-15 Shinko Electric Industries Co., Ltd. Electronic component built-in substrate and method of manufacturing the same
JP2010141098A (en) * 2008-12-11 2010-06-24 Shinko Electric Ind Co Ltd Substrate with built-in electronic components and method of manufacturing the same
JP2011049254A (en) * 2009-08-25 2011-03-10 Dainippon Printing Co Ltd Wiring board with built-in component
KR101199167B1 (en) * 2010-12-24 2012-11-07 엘지이노텍 주식회사 Printed circuit board and method for manufacturing the same
KR101154742B1 (en) 2010-12-24 2012-06-08 엘지이노텍 주식회사 Printed circuit board and method for manufacturing the same
JP2014103401A (en) * 2013-12-17 2014-06-05 Dainippon Printing Co Ltd Sensor element module

Similar Documents

Publication Publication Date Title
JP5191889B2 (en) Manufacturing method of component built-in wiring board
JP5168838B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP4935139B2 (en) Multilayer printed wiring board
WO2010007704A1 (en) Flex-rigid wiring board and electronic device
JP4075673B2 (en) Copper-clad laminate for multilayer printed wiring board, multilayer printed wiring board, and method for manufacturing multilayer printed wiring board
JP5100989B2 (en) Component built-in wiring board
JP2006294725A (en) Wiring board, multilayered wiring board, and manufacturing method of these
JP2011159855A (en) Partially multilayer printed circuit board, and method of manufacturing the same
JP2010141098A (en) Substrate with built-in electronic components and method of manufacturing the same
US10674608B2 (en) Printed circuit board and manufacturing method thereof
JP4195619B2 (en) Multilayer wiring board and manufacturing method thereof
JP2006156669A (en) Wiring board with built-in part and method of manufacturing the same
JP2006114621A (en) Wiring plate with built-in component and manufacturing method thereof
WO2006118141A1 (en) Multilayer wiring board and method for producing same
JP5057653B2 (en) Flex-rigid wiring board and manufacturing method thereof
JP4657870B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP2005268378A (en) Method of manufacturing substrate with incorporated components
JP5223893B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP4538513B2 (en) Manufacturing method of multilayer wiring board
JP2019121766A (en) Printed wiring board and manufacturing method thereof
JP2008016651A (en) Component built-in wiring board and its manufacturing method
JP5882100B2 (en) Component built-in circuit board
JPH1187912A (en) Manufacture of double-sided wiring board
JP3905802B2 (en) Printed wiring board and manufacturing method thereof
KR20120019144A (en) Method for manufacturing a printed circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100713

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100723

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100820