JPH11308001A - Connection structure for dielectric waveguide line - Google Patents

Connection structure for dielectric waveguide line

Info

Publication number
JPH11308001A
JPH11308001A JP10113439A JP11343998A JPH11308001A JP H11308001 A JPH11308001 A JP H11308001A JP 10113439 A JP10113439 A JP 10113439A JP 11343998 A JP11343998 A JP 11343998A JP H11308001 A JPH11308001 A JP H11308001A
Authority
JP
Japan
Prior art keywords
dielectric waveguide
dielectric
main conductor
conductor
waveguide line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10113439A
Other languages
Japanese (ja)
Inventor
Takeshi Takenoshita
健 竹之下
Hiroshi Uchimura
弘志 内村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10113439A priority Critical patent/JPH11308001A/en
Priority to DE19918567A priority patent/DE19918567C2/en
Priority to FR9905188A priority patent/FR2778024B1/en
Priority to US09/298,399 priority patent/US6515562B1/en
Publication of JPH11308001A publication Critical patent/JPH11308001A/en
Pending legal-status Critical Current

Links

Landscapes

  • Waveguide Connection Structure (AREA)
  • Waveguides (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a connection structure for a dielectric waveguide line that easily connects dielectric waveguide lines which can be designed freely and are vertically laminated and formed in a dielectric substrate to each other. SOLUTION: Dielectric waveguide lines 6L and 6U which are provided with a pair of main conductor layers 2L, 3L, 2U and 3U between which dielectric substrates 1L and 1U are inserted, two lines of through-conductor groups 4L and 4U for sidewalls, which are electrically connected and formed between the layers 2L, 3L, 2U and 3U in less than a half interval of signal wavelength in the transmission direction of a high frequency signal and sub-conductor layers 5L and 5U, which are formed parallel between the layers 2L and 3L, and 2U and 3U and are electrically connected to the groups 4L and 4U share ones 2L and 3U of the main conductor layers, are arranged in overlapped state and form windows 7 for connection on the shared parts.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主にマイクロ波帯
やミリ波帯等の高周波信号を伝送する誘電体導波管線路
同士の接続構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a connection structure between dielectric waveguide lines for transmitting a high-frequency signal such as a microwave band or a millimeter wave band.

【0002】[0002]

【従来の技術】近年、マイクロ波やミリ波などの高周波
信号を用いた移動体通信および車間レーダ等の研究が盛
んに進められている。これらの高周波信号を伝達するた
めの伝送線路としては、例えば同軸線路・導波管・誘電
体導波管・マイクロストリップ線路等が知られている。
2. Description of the Related Art In recent years, research on mobile communication and inter-vehicle radar using high-frequency signals such as microwaves and millimeter waves has been actively pursued. As transmission lines for transmitting these high-frequency signals, for example, coaxial lines, waveguides, dielectric waveguides, microstrip lines, and the like are known.

【0003】また、最近では、多層構造の誘電体からな
る配線基板内に積層技術によって誘電体導波管線路を形
成したものが提案されている。例えば、特開平6−5371
1 号公報においては、誘電体基板を一対の主導体層で挟
み、さらに主導体層間を接続する2列に配設されたビア
ホール群によって側壁を形成した導波管線路が提案され
ている。この導波管線路は、誘電体材料の四方を一対の
主導体層とビアホール群による擬似的な導体壁で囲むこ
とによって導体壁内の領域を信号伝送用の誘電体線路と
したものである。
Recently, there has been proposed a wiring board formed of a dielectric material having a multilayer structure and a dielectric waveguide line formed by a lamination technique. For example, JP-A-6-5371
In Japanese Patent Application Publication No. 1 (1993) -1994, there is proposed a waveguide line in which a dielectric substrate is sandwiched between a pair of main conductor layers, and a side wall is formed by two rows of via holes connecting the main conductor layers. In this waveguide line, a region inside the conductor wall is formed as a dielectric line for signal transmission by surrounding four sides of a dielectric material with a pseudo conductor wall formed by a pair of main conductor layers and via holes.

【0004】さらに、本発明者らは特願平8−229925号
において誘電体基板中に形成した多層構造による誘電体
導波管線路を提案した。これは積層型導波管とも呼ばれ
るものであり、前述のような誘電体導波管線路を誘電体
層と一対の主導体層とビアホール群等の貫通導体群とで
形成し、さらに貫通導体群に加えて副導体層を形成する
ことにより、電気的な壁としての側壁を強化したもので
ある。前述のような誘電体導波管線路では導波管内にビ
アホールに平行でない電界が発生すると側壁から電界の
漏れが発生するが、この積層型導波管では副導体層があ
るためにこのような電界の漏れが発生しない優れたもの
となる。
Further, the present inventors have proposed a dielectric waveguide line having a multilayer structure formed in a dielectric substrate in Japanese Patent Application No. 8-229925. This is also called a laminated waveguide, and the above-described dielectric waveguide line is formed by a dielectric layer, a pair of main conductor layers, and a through conductor group such as a via hole group, and further a through conductor group. In addition, the side wall as an electric wall is strengthened by forming a sub-conductor layer. In the above-described dielectric waveguide line, when an electric field that is not parallel to the via hole is generated in the waveguide, the electric field leaks from the side walls. This is an excellent device that does not cause electric field leakage.

【0005】[0005]

【発明が解決しようとする課題】このような配線基板の
内部等に配設できる誘電体導波管線路は、主にマイクロ
波用およびミリ波用の多層配線基板あるいは半導体素子
収納用パッケージにおける伝送線路として用いることを
目的とするものである。また、これらの多層配線基板あ
るいは半導体素子収納用パッケージにアンテナを一体化
して高機能化する場合に、アンテナの給電線として用い
ることが可能である。
Such a dielectric waveguide line which can be disposed inside a wiring board is mainly used for transmission in a multilayer wiring board for microwaves and millimeter waves or a package for housing semiconductor elements. It is intended to be used as a line. In addition, when the antenna is integrated with these multilayer wiring boards or semiconductor element storage packages to achieve high functionality, it can be used as a feed line for the antenna.

【0006】誘電体導波管線路は誘電体基板の平面方向
には自由に形成して配設できるが、小型化および高集積
化のためには上下に配置して形成された誘電体導波管線
路同士の接続が必要となる。従来用いられてきた導波管
の場合であれば、金属製の導波管を単に曲げることによ
り3次元的な接続が容易にできるので、そのような技術
は特に必要がなかった。
The dielectric waveguide line can be freely formed and arranged in the plane direction of the dielectric substrate. However, for miniaturization and high integration, the dielectric waveguide line formed vertically is used. Connection between pipe lines is required. In the case of a conventionally used waveguide, a three-dimensional connection can be easily made by simply bending a metal waveguide, and such a technique is not particularly necessary.

【0007】これに対し、本発明者らは、上下に配置し
て形成された誘電体導波管線路同士を接続するために、
ビアホールで形成した給電ピンによる接続構造を既に提
案している。この構造によれば誘電体基板内において上
下に積層するように形成された誘電体導波管線路同士の
接続が可能になった。
On the other hand, the inventors of the present invention have proposed a method for connecting dielectric waveguide lines formed by being arranged one above the other,
A connection structure using a power supply pin formed by a via hole has already been proposed. According to this structure, it is possible to connect the dielectric waveguide lines formed so as to be vertically stacked in the dielectric substrate.

【0008】しかしながら、この接続構造においても、
次のような解決すべき問題点があった。例えば、前述の
接続構造において、給電ピンは誘電体導波管線路の内部
で1/4波長のモノポールアンテナとして機能する。従
って、最も良く伝送させたい波長の1/4の長さに給電
ピンの長さを調整する必要があるが、この給電ピンはビ
アホール等の貫通導体により形成されるので、誘電体導
波管線路が形成される誘電体基板を構成するために積層
する誘電体シートの厚みに制限される。もちろん、給電
ピンの長さをうまく設定できるように誘電体シートの厚
みを変えることは可能であるが、様々な設計に対応でき
なくなるという問題点があり、また、結果としてコスト
アップにつながることにもなるという問題点もあった。
However, in this connection structure,
There were the following problems to be solved. For example, in the connection structure described above, the feed pin functions as a quarter-wave monopole antenna inside the dielectric waveguide line. Therefore, it is necessary to adjust the length of the power supply pin to の of the wavelength desired to be transmitted best. However, since this power supply pin is formed by a through conductor such as a via hole, the dielectric waveguide line is required. Is limited to the thickness of a dielectric sheet to be laminated to form a dielectric substrate on which is formed. Of course, it is possible to change the thickness of the dielectric sheet so that the length of the power supply pin can be set well, but there is a problem that it is not possible to cope with various designs, and as a result, the cost is increased. There was also a problem that became.

【0009】また、給電ピンには電流が集中して流れ、
特にミリ波領域では表皮効果の影響によりほとんど表面
に電流が集中するため、導体抵抗によるエネルギーの損
失が大きくなるという問題点があった。
Also, current flows intensively into the power supply pin,
In particular, in the millimeter wave region, since the current is almost concentrated on the surface due to the skin effect, there is a problem that the energy loss due to the conductor resistance increases.

【0010】さらに、誘電体導波管線路は誘電体シート
の積層面が導波管のE面と平行となるモード、つまり電
界が積層面に平行となるモードで用いることもできる
が、この場合には給電ピンを用いても給電ピンに電流は
励起されないため、上下に積層して形成された誘電体導
波管線路の接続ができないという問題点があった。
Further, the dielectric waveguide line can be used in a mode in which the laminated surface of the dielectric sheet is parallel to the E-plane of the waveguide, that is, in a mode in which the electric field is parallel to the laminated surface. However, even if a power supply pin is used, no current is excited in the power supply pin, so that there is a problem that a dielectric waveguide line formed by stacking vertically cannot be connected.

【0011】本発明はこれらの問題点を解決すべく案出
されたものであり、従来の多層化技術によって容易に作
製することのできる誘電体導波管線路において、自由な
設計が可能な、誘電体基板内に上下に積層して形成され
た誘電体導波管線路同士を容易に接続することができる
誘電体導波管線路の接続構造を提供することを目的とす
るものである。
The present invention has been devised to solve these problems, and a dielectric waveguide line which can be easily manufactured by a conventional multilayer technique can be freely designed. It is an object of the present invention to provide a connection structure of a dielectric waveguide line which can easily connect dielectric waveguide lines formed by being vertically stacked in a dielectric substrate.

【0012】[0012]

【課題を解決するための手段】本発明者らは、上記の問
題点を解決すべく検討を重ねた結果、誘電体基板内にお
いて下層側に形成された誘電体導波管線路端部の上側の
主導体層の一部と上層側に形成された誘電体導波管線路
端部の下側の主導体層の一部を共有するように2つの誘
電体導波管線路を上下に重ねて形成し、その共有させた
主導体層の一部に結合用の窓を開けることにより、上下
の誘電体導波管線路を電磁的に接続できることを見出し
た。
Means for Solving the Problems The inventors of the present invention have repeatedly studied to solve the above-mentioned problems, and as a result, have found that the upper side of the end of the dielectric waveguide line formed on the lower layer side in the dielectric substrate. The two dielectric waveguide lines are stacked one on top of the other so as to share a part of the main conductor layer and a part of the main conductor layer below the end of the dielectric waveguide line formed on the upper layer side. It has been found that the upper and lower dielectric waveguide lines can be electromagnetically connected by opening a coupling window in a part of the formed and shared main conductor layer.

【0013】本発明の誘電体導波管線路の接続構造は、
誘電体基板を挟持する一対の主導体層と、高周波信号の
伝送方向に信号波長の2分の1未満の間隔で前記主導体
層間を電気的に接続して形成された2列の側壁用貫通導
体群と、前記主導体層間に主導体層と平行に形成され、
前記側壁用貫通導体群と電気的に接続された副導体層と
を具備して成り、前記主導体層、側壁用貫通導体群およ
び副導体層で囲まれた領域によって高周波信号を伝送す
る誘電体導波管線路を2つ、前記主導体層の一方を共有
させて重ねて配置するとともに、この一方の主導体層の
共有部に結合用窓を形成したことを特徴とするものであ
る。
The connection structure of the dielectric waveguide of the present invention is as follows.
A pair of main conductor layers sandwiching a dielectric substrate, and two rows of side wall penetrations formed by electrically connecting the main conductor layers at an interval of less than half the signal wavelength in the transmission direction of the high-frequency signal A conductor group, formed in parallel with the main conductor layer between the main conductor layers,
A dielectric body, comprising: a sub-conductor layer electrically connected to the side wall through conductor group; and a high frequency signal transmitted by a region surrounded by the main conductor layer, the side wall through conductor group, and the sub conductor layer. Two waveguide lines are arranged so as to overlap one another while sharing one of the main conductor layers, and a coupling window is formed in a shared portion of the one main conductor layer.

【0014】また、本発明の誘電体導波管線路の接続構
造は、上記構成において、前記結合用窓の中心から前記
伝送方向に前記高周波信号の管内波長以下の位置に、伝
送方向の直交方向に前記信号波長の2分の1未満の間隔
で前記主導体層間を電気的に接続して形成された端面用
貫通導体群と、前記主導体層間に主導体層と平行に形成
され、前記副導体層および前記端面用貫通導体群と電気
的に接続された端面用副導体層とを形成したことを特徴
とするものである。
In the above structure, the connection structure of the dielectric waveguide line according to the present invention may be arranged such that a distance from a center of the coupling window in the transmission direction is equal to or less than a guide wavelength of the high-frequency signal in a direction orthogonal to the transmission direction. An end face through conductor group formed by electrically connecting the main conductor layers at an interval of less than one-half of the signal wavelength; and a through-hole conductor group formed between the main conductor layers in parallel with the main conductor layer; A conductor layer and an end face sub-conductor layer electrically connected to the end face through conductor group are formed.

【0015】[0015]

【発明の実施の形態】以下、本発明の誘電体導波管線路
の接続構造について図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A connection structure of a dielectric waveguide according to the present invention will be described below with reference to the drawings.

【0016】図1は本発明に用いる誘電体導波管線路の
構成の例を示す概略斜視図である。
FIG. 1 is a schematic perspective view showing an example of the configuration of a dielectric waveguide line used in the present invention.

【0017】図1において、1は誘電体基板、2および
3は誘電体基板1を挟持する一対の主導体層、4は信号
伝送方向に信号波長の2分の1未満の間隔で主導体層2
・3間を電気的に接続して形成された2列の側壁用貫通
導体群である。また、5は側壁用貫通導体群4の各列を
形成する貫通導体同士を電気的に接続する、主導体層2
・3と平行に形成された副導体層である。6はこれら一
対の主導体層2・3と側壁用貫通導体群4および副導体
層5により形成される誘電体導波管線路である。
In FIG. 1, 1 is a dielectric substrate, 2 and 3 are a pair of main conductor layers sandwiching the dielectric substrate 1, and 4 is a main conductor layer at an interval of less than half the signal wavelength in the signal transmission direction. 2
-Two rows of side wall penetrating conductor groups formed by electrically connecting the three. Reference numeral 5 denotes a main conductor layer 2 for electrically connecting through conductors forming each row of the side wall through conductor group 4 to each other.
-A sub-conductor layer formed in parallel with 3. Reference numeral 6 denotes a dielectric waveguide line formed by the pair of main conductor layers 2 and 3, the side wall through conductor group 4, and the sub-conductor layer 5.

【0018】このように一対の主導体層2・3と側壁用
貫通導体群4とで囲まれた領域に対してさらに副導体層
5を形成することにより、誘電体導波管線路6の内部か
ら見るとその側壁は側壁用貫通導体群4と副導体層5と
によって細かな格子状になり、様々な方向の電磁波が遮
蔽される。
As described above, the sub-conductor layer 5 is further formed in a region surrounded by the pair of main conductor layers 2 and 3 and the through conductor group 4 for the side wall, whereby the inside of the dielectric waveguide line 6 is formed. When viewed from the side, the side walls are formed in a fine lattice by the side wall penetrating conductor group 4 and the sub-conductor layer 5, so that electromagnetic waves in various directions are shielded.

【0019】図1に示すように、所定の厚みaの誘電体
基板1を挟持する位置に一対の主導体層2・3が形成さ
れており、主導体層2・3は誘電体基板1の少なくとも
誘電体導波管線路6の形成位置を挟む上下面に形成され
ている。また、主導体層2・3間には主導体層2と3と
を電気的に接続するスルーホール導体やビアホール導体
等の貫通導体が多数設けられ、これら多数の貫通導体に
より2列の側壁用貫通導体群4を形成している。
As shown in FIG. 1, a pair of main conductor layers 2 and 3 are formed at positions sandwiching a dielectric substrate 1 having a predetermined thickness a. It is formed on the upper and lower surfaces sandwiching at least the position where the dielectric waveguide line 6 is formed. A large number of through conductors, such as through-hole conductors and via-hole conductors, for electrically connecting the main conductor layers 2 and 3 are provided between the main conductor layers 2 and 3, and these large number of through conductors form two rows of side walls. A through conductor group 4 is formed.

【0020】2列の側壁用貫通導体群4は、所定の間隔
(幅)bをもって、高周波信号の伝送方向に信号波長の
2分の1未満の所定の間隔cで形成されており、これに
よりこの誘電体導波管線路6における電気的な側壁を形
成している。
The two rows of side wall penetrating conductor groups 4 are formed with a predetermined interval (width) b and a predetermined interval c that is less than half the signal wavelength in the transmission direction of the high-frequency signal. An electric side wall of the dielectric waveguide line 6 is formed.

【0021】ここで、誘電体基板1の厚みaすなわち一
対の主導体層2・3間の間隔に対する制限は特にない
が、シングルモードで用いる場合には間隔bに対して2
分の1程度または2倍程度とすることがよく、図1の例
では誘電体導波管線路のH面に当たる部分が主導体層2
・3で、E面に当たる部分が側壁用貫通導体群4および
副導体層5でそれぞれ形成される。また、間隔bに対し
て厚みaを2倍程度とすれば、誘電体導波管線路のE面
に当たる部分が主導体層2・3で、H面に当たる部分が
側壁用貫通導体群4および副導体層5でそれぞれ形成さ
れることとなる。
Here, there is no particular limitation on the thickness a of the dielectric substrate 1, that is, the distance between the pair of main conductor layers 2 and 3.
In the example of FIG. 1, the portion corresponding to the H plane of the dielectric waveguide is the main conductor layer 2.
In 3, a portion corresponding to the E plane is formed by the side wall through conductor group 4 and the sub-conductor layer 5. Further, if the thickness a is about twice as large as the interval b, the portion corresponding to the E surface of the dielectric waveguide line is the main conductor layers 2 and 3, and the portion corresponding to the H surface is the through conductor group 4 for side wall and the sub conductor layer. The conductor layers 5 are respectively formed.

【0022】また、間隔cが信号波長の2分の1未満の
間隔に設定されることで側壁用貫通導体群4が電気的な
壁が形成できる。この間隔cは、望ましくは信号波長の
4分の1未満である。
Further, by setting the interval c to be less than one half of the signal wavelength, an electrical wall can be formed by the side wall through conductor group 4. This spacing c is preferably less than one quarter of the signal wavelength.

【0023】平行に配置された一対の主導体層2・3間
にはTEM波が伝播できるため、側壁用貫通導体群4の
間隔cが信号波長λの2分の1(λ/2)よりも大きい
と、この誘電体導波管線路6に電磁波を給電しても電磁
波は側壁用貫通導体4の間から漏れ、ここで作られる疑
似的な導波管に沿って伝播しない。しかし、側壁用貫通
導体群4の間隔cがλ/2よりも小さいと、電磁波は誘
電体導波管線路6に対して垂直方向に伝播することがで
きず、反射しながら誘電体導波管線路6の信号伝送方向
に伝播される。その結果、図1の構成によれば、一対の
主導体層2・3と2列の側壁用貫通導体群4および副導
体層4によって囲まれる断面積がa×bのサイズの領域
が誘電体導波管線路6となる。
Since the TEM wave can propagate between the pair of main conductor layers 2 and 3 arranged in parallel, the distance c between the side wall penetrating conductor groups 4 is smaller than one half (λ / 2) of the signal wavelength λ. When the electromagnetic wave is supplied to the dielectric waveguide line 6, the electromagnetic wave leaks from between the side wall penetrating conductors 4 and does not propagate along the pseudo waveguide formed here. However, if the distance c between the side wall through conductor groups 4 is smaller than λ / 2, the electromagnetic wave cannot propagate in a direction perpendicular to the dielectric waveguide line 6 and is reflected while the dielectric waveguide line 6 is being reflected. The signal is propagated in the signal transmission direction of the line 6. As a result, according to the configuration of FIG. 1, a region having a cross-sectional area of a × b size surrounded by a pair of main conductor layers 2 and two rows of penetrating conductor groups 4 for side walls and sub-conductor layers 4 is a dielectric material. It becomes the waveguide line 6.

【0024】また、図1に示した態様では側壁用貫通導
体群4は2列に形成したが、この側壁用貫通導体群4を
4列あるいは6列に配設して、側壁用貫通導体群4によ
る疑似的な導体壁を2重・3重に形成することにより、
導体壁からの電磁波の漏れをより効果的に防止すること
ができる。
In the embodiment shown in FIG. 1, the side wall penetrating conductor groups 4 are formed in two rows. However, the side wall penetrating conductor groups 4 are arranged in four rows or six rows to form the side wall penetrating conductor groups. By forming the pseudo conductor wall by double and triple by 4,
Leakage of electromagnetic waves from the conductor wall can be more effectively prevented.

【0025】上記の誘電体導波管線路6によれば、誘電
体導波管による伝送線路となるので、その導波管サイズ
は誘電体基板1の比誘電率をεr とすると通常の導波管
の1/√εの大きさになる。従って、誘電体基板1を構
成する材料の比誘電率εr を大きくするほど導波管サイ
ズは小さくすることができ、高密度に配線が形成される
多層配線基板または半導体素子収納用パッケージあるい
は車間レーダの伝送線路として利用可能な大きさの誘電
体導波管線路6とすることができる。
According to the dielectric waveguide line 6 above, since the transmission line according to a dielectric waveguide, the normal conductive when the waveguide size is the relative permittivity of the dielectric substrate 1 and epsilon r The size of the waveguide is 1 / √ε. Therefore, the waveguide size the larger the relative dielectric constant epsilon r of the material constituting the dielectric substrate 1 can be reduced, the multilayer wiring board or a semiconductor device package for housing or vehicle dense wiring is formed A dielectric waveguide line 6 having a size usable as a transmission line of a radar can be obtained.

【0026】なお、側壁用貫通導体群4を構成する貫通
導体は前述のように信号波長λの2分の1未満の間隔c
で配設されており、この間隔cは良好な伝送特性を実現
するためには一定の繰り返し間隔とすることが望ましい
が、信号波長λの2分の1未満の間隔であれば、適宜変
化させたりいくつかの値を組み合わせたりしてもよいこ
とは言うまでもない。
The through conductors forming the side wall through conductor group 4 have an interval c of less than half the signal wavelength λ as described above.
It is desirable that the interval c be a constant repetition interval in order to realize good transmission characteristics. However, if the interval c is an interval less than half the signal wavelength λ, the interval c is appropriately changed. Needless to say, or some values may be combined.

【0027】このような誘電体導波管線路を構成する誘
電体基板1としては、誘電体として機能し高周波信号の
伝送を妨げることのない特性を有するものであればとり
わけ限定するものではないが、伝送線路を形成する際の
精度および製造の容易性の点からは、誘電体基板1はセ
ラミックスからなることが望ましい。
The dielectric substrate 1 constituting such a dielectric waveguide line is not particularly limited as long as it functions as a dielectric and has a characteristic that does not hinder transmission of a high-frequency signal. The dielectric substrate 1 is desirably made of ceramic from the viewpoint of the accuracy in forming the transmission line and the ease of manufacture.

【0028】このようなセラミックスとしてはこれまで
様々な比誘電率を持つセラミックスが知られているが、
本発明に係る誘電体導波管線路によって高周波信号を伝
送するためには常誘電体であることが望ましい。これ
は、一般に強誘電体セラミックスは高周波領域では誘電
損失が大きく伝送損失が大きくなるためである。従っ
て、誘電体基板1の比誘電率εr は4〜100 程度が適当
である。
As such ceramics, ceramics having various relative dielectric constants have been known.
In order to transmit a high-frequency signal by the dielectric waveguide according to the present invention, it is preferable that the dielectric waveguide is a paraelectric. This is because ferroelectric ceramics generally have large dielectric loss and high transmission loss in a high frequency range. Therefore, the relative dielectric constant ε r of the dielectric substrate 1 is suitably about 4 to 100.

【0029】また、一般に多層配線基板や半導体素子収
納用パッケージあるいは車間レーダに形成される配線層
の線幅は最大でも1mm程度であることから、比誘電率
が100 の材料を用い、上部がH面すなわち磁界が上側の
面に平行に巻く電磁界分布になるように用いた場合は、
用いることのできる最小の周波数は15GHzと算出さ
れ、マイクロ波帯の領域でも利用可能となる。
In general, the line width of a wiring layer formed on a multilayer wiring board, a package for housing semiconductor elements or an inter-vehicle radar is at most about 1 mm, so that a material having a relative dielectric constant of 100 is used, and When used so that the surface, that is, the magnetic field distribution is such that the magnetic field winds parallel to the upper surface,
The minimum frequency that can be used is calculated as 15 GHz, and can be used even in the microwave band.

【0030】一方、一般的に誘電体基板1として用いら
れる樹脂からなる誘電体は比誘電率εr が2程度である
ため、線幅が1mmの場合は、約100 GHz以上でない
と利用することができないものとなる。
On the other hand, dielectric consisting of commonly resin used as the dielectric substrate 1 since the specific dielectric constant epsilon r of the order of 2, if the line width is 1 mm, making use not about 100 GHz or higher Can not be done.

【0031】また、このような常誘電体セラミックスの
中にはアルミナやシリカ等のように誘電正接が非常に小
さなものが多いが、全ての常誘電体セラミックスが利用
可能であるわけではない。誘電体導波管線路の場合は導
体による損失はほとんどなく、信号伝送時の損失のほと
んどは誘電体による損失であり、誘電体による損失α
(dB/m)は次のように表わされる。 α=27.3×tanδ/〔λ/{1−(λ/λc )2
1/2 〕 式中、tanδ:誘電体の誘電正接 λ :誘電体中の波長 λc :遮断波長 規格化された矩形導波管(WRJシリーズ)形状に準ず
ると、上式中の{1−(λ/λc )2 1/2 は0.75程度
である。
Further, among such paraelectric ceramics, many have very small dielectric loss tangents, such as alumina and silica, but not all paraelectric ceramics can be used. In the case of a dielectric waveguide line, there is almost no loss due to the conductor, and most of the loss during signal transmission is due to the dielectric, and the loss due to the dielectric α
(DB / m) is expressed as follows. α = 27.3 × tan δ / [λ / {1- (λ / λc) 2 }
1/2 ] where tan δ: dielectric loss tangent of the dielectric λ: wavelength in the dielectric λc: cut-off wavelength According to the standardized rectangular waveguide (WRJ series) shape, {1- ( λ / λc) 21/2 is about 0.75.

【0032】従って、実用に供し得る伝送損失である−
100 dB/m以下にするには、次の関係が成立するよう
に誘電体を選択することが必要である。 f×εr 1/2 ×tanδ≦0.8 式中、fは使用する周波数(GHz)である。
Therefore, the transmission loss is practically usable.
In order to make it 100 dB / m or less, it is necessary to select a dielectric so that the following relationship is satisfied. f × ε r 1/2 × tan δ ≦ 0.8 In the formula, f is a frequency (GHz) to be used.

【0033】このような誘電体基板1としては、例えば
アルミナセラミックスやガラスセラミックス・窒化アル
ミニウムセラミックス等があり、これらによる誘電体基
板1は、例えばセラミックス原料粉末に適当な有機溶剤
・溶媒を添加混合して泥漿状になすとともにこれを従来
周知のドクターブレード法やカレンダーロール法等を採
用してシート状となすことによって複数枚のセラミック
グリーンシートを得、しかる後、これらセラミックグリ
ーンシートの各々に適当な打ち抜き加工を施すとともに
これらを積層し、アルミナセラミックスの場合は1500〜
1700℃、ガラスセラミックスの場合は850 〜1000℃、窒
化アルミニウムセラミックスの場合は1600〜1900℃の温
度で焼成することによって製作される。
Examples of such a dielectric substrate 1 include alumina ceramics, glass ceramics, and aluminum nitride ceramics. These dielectric substrates 1 are prepared by adding a suitable organic solvent / solvent to ceramic raw material powder, for example. A plurality of ceramic green sheets are obtained by forming into a sheet by adopting a conventionally known doctor blade method, calender roll method, or the like, and then obtaining an appropriate number of ceramic green sheets. They are stamped and laminated, and in the case of alumina ceramics, 1500-
It is manufactured by firing at a temperature of 1700 ° C, 850 to 1000 ° C for glass ceramics, and 1600 to 1900 ° C for aluminum nitride ceramics.

【0034】また、一対の主導体層2・3としては、例
えば誘電体基板1がアルミナセラミックスから成る場合
には、タングステン等の金属粉末に適当なアルミナ・シ
リカ・マグネシア等の酸化物や有機溶剤・溶媒等を添加
混合してペースト状にしたものを厚膜印刷法により少な
くとも伝送線路を完全に覆うようにセラミックグリーン
シート上に印刷し、しかる後、約1600℃の高温で焼成
し、厚み10〜15μm以上となるようにして形成する。な
お、金属粉末としては、ガラスセラミックスの場合は銅
・金・銀が、窒化アルミニウムセラミックスの場合はタ
ングステン・モリブデンが好適である。また、主導体層
2・3の厚みは一般的に5〜50μm程度とされる。
For example, when the dielectric substrate 1 is made of alumina ceramic, the pair of main conductor layers 2 and 3 may be made of an oxide such as alumina, silica, or magnesia or an organic solvent suitable for metal powder such as tungsten. -A paste formed by adding a solvent or the like is printed on a ceramic green sheet by a thick-film printing method so as to completely cover at least the transmission line, and then fired at a high temperature of about 1600 ° C to a thickness of 10 It is formed so as to have a thickness of 15 μm or more. The metal powder is preferably copper, gold, and silver in the case of glass ceramics, and tungsten and molybdenum in the case of aluminum nitride ceramics. The thickness of the main conductor layers 2 and 3 is generally about 5 to 50 μm.

【0035】また、側壁用貫通導体群4を構成する貫通
導体としては、例えばビアホール導体やスルーホール導
体等により形成すればよく、その断面形状も製作が容易
な円形の他、矩形や菱形等の多角形であってもよい。こ
れら貫通導体は、例えばセラミックグリーンシートに打
ち抜き加工を施して作製した貫通孔に主導体層2・3と
同様の金属ペーストを埋め込み、しかる後、誘電体基板
1と同時に焼成し形成する。なお、これらの貫通導体は
直径50〜300 μmが適当である。
The through conductor constituting the side wall through conductor group 4 may be formed of, for example, a via-hole conductor or a through-hole conductor. It may be a polygon. These through conductors are formed, for example, by embedding a metal paste similar to that of the main conductor layers 2 and 3 in a through hole formed by punching a ceramic green sheet, and then firing the same at the same time as the dielectric substrate 1. These through conductors preferably have a diameter of 50 to 300 μm.

【0036】次に、このような誘電体導波管線路を用い
た、本発明の誘電体導波管線路の接続構造の実施の形態
の一例を図2に基づいて説明する。
Next, an example of an embodiment of a connection structure of a dielectric waveguide line according to the present invention using such a dielectric waveguide line will be described with reference to FIG.

【0037】図2は本発明の誘電体導波管線路の接続構
造の実施の形態の一例を示す概略斜視図である。この図
における符号のLは上下に重ねて配置した誘電体導波管
線路のうち下層側の誘電体導波管線路に、Uは上層側の
誘電体導波管線路に属していることを意味する。1L
(1U)は厚みaの誘電体基板、2L(2U)および3
L(3U)は誘電体基板1L(1U)を挟持して形成さ
れた一対の主導体層、4L(4U)は所定の間隔(幅)
bでもって高周波信号の伝送方向に信号波長の2分の1
未満の間隔cで主導体層2L(2U)・3L(3U)間
を電気的に接続して形成された2列の側壁用貫通導体
群、5L(5U)は副導体層、6L(6U)は一対の主
導体層2L(2U)・3L(3U)と2列の側壁用貫通
導体群4L(4U)および副導体層6L(6U)とで囲
まれた領域によって構成される誘電体導波管線路部であ
る。
FIG. 2 is a schematic perspective view showing an example of an embodiment of the connection structure of the dielectric waveguide lines according to the present invention. The symbol L in this figure means that it belongs to the lower dielectric waveguide line of the dielectric waveguide lines arranged vertically and U belongs to the upper dielectric waveguide line. I do. 1L
(1U) is a dielectric substrate having a thickness a, 2L (2U) and 3L
L (3U) is a pair of main conductor layers formed sandwiching the dielectric substrate 1L (1U), and 4L (4U) is a predetermined distance (width).
b in the transmission direction of the high-frequency signal to one half of the signal wavelength
Two rows of side wall through conductor groups formed by electrically connecting the main conductor layers 2L (2U) and 3L (3U) with an interval c of less than 5L (5U) are subconductor layers, and 6L (6U) Is a dielectric waveguide constituted by a region surrounded by a pair of main conductor layers 2L (2U) and 3L (3U), two rows of penetrating conductor groups 4L (4U) for side walls, and sub-conductor layers 6L (6U). It is a pipe line part.

【0038】これら誘電体基板1L(1U)、主導体層
2L(2U)・3L(3U)および側壁用貫通導体群4
L(4U)は、前述の本発明に用いる誘電体導波管線路
と同様にして構成される。
The dielectric substrate 1L (1U), the main conductor layers 2L (2U) and 3L (3U), and the side wall through conductor group 4
L (4U) is configured in the same manner as the above-described dielectric waveguide line used in the present invention.

【0039】また、7は上層側および下層側の誘電体導
波管線路6Uおよび6Lを電磁気的に接続するための結
合用窓であり、一方の主導体層3Uと一方の主導体層2
Lを共有させて誘電体導波管線路6Uと誘電体導波管線
路6Lとを重ねて配置し、それら一方の主導体層3Uと
2Lの共有部に、主導体層3U・2Lの非形成部として
形成されている。
Reference numeral 7 denotes a coupling window for electromagnetically connecting the upper and lower dielectric waveguide lines 6U and 6L, and includes one main conductor layer 3U and one main conductor layer 2U.
L and the dielectric waveguide line 6U and the dielectric waveguide line 6L are arranged so as to overlap with each other, and the main conductor layers 3U and 2L are not formed in the shared portion of one of the main conductor layers 3U and 2L. It is formed as a part.

【0040】本発明によれば、このように下層側の誘電
体導波管線路6Lと上層側の誘電体導波管線路6Uとの
接続部において、下層側の誘電体導波管線路6Lの上側
の主導体層2Uと上層側の誘電体導波管線路6Uの下側
の主導体層3Lとの一部を共有して上下の誘電体導波管
線路6U・6Lが重ねられて接している一部分に、主導
体層3U(2L)の非形成部を結合用窓7として形成し
たことから、この非形成部が電磁気的な結合用の窓とな
り、下層側の誘電体導波管線路6Lと上層側の誘電体導
波管線路6Uとがこの結合用窓7を介して電磁気的に接
続されることとなる。
According to the present invention, at the connection between the lower dielectric waveguide line 6L and the upper dielectric waveguide line 6U, the lower dielectric waveguide line 6L is connected to the lower dielectric waveguide line 6L. The upper and lower dielectric waveguide lines 6U and 6L overlap and share a part of the upper main conductor layer 2U and a part of the lower main conductor layer 3L on the upper dielectric waveguide line 6U. Since the non-formed portion of the main conductor layer 3U (2L) is formed as a coupling window 7 in a portion where the main conductor layer 3U (2L) is formed, the non-formed portion serves as an electromagnetic coupling window, and the lower dielectric waveguide line 6L is formed. The upper dielectric waveguide line 6U is electromagnetically connected to the upper dielectric waveguide line 6U via the coupling window 7.

【0041】このような本発明の誘電体導波管線路の接
続構造によれば、結合を給電ピンによって行なう従来技
術の場合のように誘電体シートの厚さによる特性の制限
はなく、例えば誘電体基板1U・1Lとなるグリーンシ
ートの積層前に2つの誘電体導波管線路6U・6Lが共
有する主導体層3U・2Lを印刷する際に結合用窓7の
パターンを形成できるので、生産性が高く安価な製造が
可能なものとなる。
According to the connection structure of the dielectric waveguide line of the present invention, the characteristic is not limited by the thickness of the dielectric sheet as in the prior art in which the coupling is performed by the feed pin. Since the pattern of the coupling window 7 can be formed when the main conductor layers 3U and 2L shared by the two dielectric waveguide lines 6U and 6L are printed before the green sheets to be the body substrates 1U and 1L are stacked, the production is performed. This makes it possible to produce a highly efficient and inexpensive product.

【0042】また、給電ピンの場合には、伝播した電磁
波のエネルギーは一旦全て給電ピンを通り、電流エネル
ギーに変換される。この場合、給電ピンは超電導体とし
ない限り何らかの抵抗を持つので、そこでは熱が発生す
ることとなり、これは接続部でのエネルギーロスとな
る。これに対して、本発明の誘電体導波管線路の接続構
造によれば、下層側の誘電体導波管線路6Lを伝播して
きた電磁波エネルギーは結合用窓7によって上層側の誘
電体導波管線路6Uの電磁波エネルギーと直接結合する
ので、上記のようなエネルギーロスが発生することがな
い。
In the case of the power supply pin, all the energy of the propagated electromagnetic wave once passes through the power supply pin and is converted into current energy. In this case, the power supply pin has some resistance unless it is a superconductor, so that heat is generated there, which results in energy loss at the connection. On the other hand, according to the connection structure of the dielectric waveguide line of the present invention, the electromagnetic wave energy propagating through the lower dielectric waveguide line 6L is transmitted by the coupling window 7 to the upper dielectric waveguide line. Since it is directly coupled to the electromagnetic wave energy of the pipeline 6U, the above-described energy loss does not occur.

【0043】本発明の誘電体導波管線路の接続構造にお
いて、結合用窓7を形成する場合、その位置・形状およ
び大きさについては、接続構造に要求される周波数特性
・結合量および反射量が複雑に関与する。このため、要
求される周波数特性を満足するように電磁界解析により
繰り返し計算することによって、所望の接続特性を有す
る結合用窓7の位置・形状および大きさ等が決定される
こととなる。
In the connection structure of the dielectric waveguide line according to the present invention, when the coupling window 7 is formed, its position, shape and size are determined by the frequency characteristics, coupling amount and reflection amount required for the connection structure. Are involved. Therefore, the position, shape, size, and the like of the coupling window 7 having desired connection characteristics are determined by repeatedly performing calculations by electromagnetic field analysis so as to satisfy the required frequency characteristics.

【0044】なお、図2では、誘電体導波管線路6U
(6L)の接続部に端面を形成するために、それぞれ結
合用窓7の中心から高周波信号の伝送方向に信号波長以
下の位置に、伝送方向の直交方向に信号波長の2分の1
未満の間隔で主導体層2U・3U(2L・3L)間を電
気的に接続して形成された端面用貫通導体群8U(8
L)と、主導体層2U・3U(2L・3L)間に主導体
層2U・3U(2L・3L)と平行に形成され、副導体
層5U(5L)および端面用貫通導体群8U(8L)と
電気的に接続された端面用副導体層9U(9L)とが形
成されている。
In FIG. 2, the dielectric waveguide line 6U
In order to form an end face at the connection portion of (6L), a half of the signal wavelength in a direction orthogonal to the transmission direction is placed at a position below the signal wavelength in the transmission direction of the high-frequency signal from the center of the coupling window 7.
The end face through conductor group 8U (8) formed by electrically connecting the main conductor layers 2U and 3U (2L and 3L) with an interval of less than
L) and the main conductor layers 2U and 3U (2L and 3L) and are formed in parallel with the main conductor layers 2U and 3U (2L and 3L), and the sub-conductor layer 5U (5L) and the through-hole conductor group 8U (8L ) Are electrically connected to the end face sub-conductor layer 9U (9L).

【0045】この場合、下層側の誘電体導波管線路6L
のA側(図2中の左方向)から入力された電磁波は結合
用窓7で上層側の誘電体導波管線路6Uと結合し、その
B側(図2中の右方向)から出力される。このとき、各
誘電体導波管線路6L・6Uの接続部における端部の位
置、すなわち端面用貫通導体群8U・8Lおよび端面用
副導体層9L・9Lを形成する位置は、要求された特性
に応じて電磁解析により求めれば良く、その特性が満足
できればどこでも良いが、結合用窓7の中心から管内波
長以下の位置に最適な位置がある。これは、端面の位置
により結合用窓7の中心における位相を調整するわけで
あるが、その位相は管内波長λg毎に繰り返されるため
である。
In this case, the lower dielectric waveguide line 6L
The electromagnetic wave input from the A side (left direction in FIG. 2) is coupled to the upper dielectric waveguide line 6U through the coupling window 7, and is output from the B side (right direction in FIG. 2). You. At this time, the positions of the ends of the connection portions of the dielectric waveguide lines 6L and 6U, that is, the positions at which the end face through conductor groups 8U and 8L and the end face sub-conductor layers 9L and 9L are formed, have the required characteristics. May be obtained by electromagnetic analysis in accordance with the above equation, and any location may be used as long as the characteristics can be satisfied. However, there is an optimum position from the center of the coupling window 7 to a position at or below the guide wavelength. This is because the phase at the center of the coupling window 7 is adjusted according to the position of the end face, and the phase is repeated for each guide wavelength λg.

【0046】また、このような端面用貫通導体群8U・
8Lおよび端面用副導体層9L・9Lによる誘電体導波
管線路6U・6Lの端部は、その目的に応じて形成すれ
ばよいものであって、必ずしも形成する必要はない。例
えば、誘電体導波管線路6Uの端部を形成し、誘電体導
波管線路6Lには端部を形成しない場合は、誘電体導波
管線路6LのA側から入力された電磁波は、結合用窓7
でその一部が結合し、誘電体導波管線路6UのB側から
出力されるものとそのまま誘電体導波管線路6LのC方
向(図2中の右方向)へ伝播する電磁波とに分岐され
る。つまり、この場合には上層側と下層側とに電磁波が
分岐される分岐回路となる。
Further, such a through conductor group for end face 8U.
The ends of the dielectric waveguide lines 6U and 6L formed by the 8L and the end face sub-conductor layers 9L and 9L may be formed according to the purpose, and are not necessarily formed. For example, when the end of the dielectric waveguide 6U is formed and the end of the dielectric waveguide 6L is not formed, the electromagnetic wave input from the A side of the dielectric waveguide 6L is Window 7 for connection
A part thereof is coupled, and diverges into an electromagnetic wave propagating in the C direction (right direction in FIG. 2) of the dielectric waveguide line 6L as it is output from the B side of the dielectric waveguide line 6U. Is done. That is, in this case, a branch circuit is formed in which the electromagnetic wave is branched into the upper layer side and the lower layer side.

【0047】一方、誘電体導波管線路6Lの端部を形成
し、誘電体導波管線路6Uの端部を形成しない場合に
は、誘電体導波管線路6LのA側から入力された電磁波
は結合用窓7で全て結合するが、誘電体導波管線路6U
のB側へ伝播する電磁波とD側(図2中の左方向)へ伝
播する電磁波とに分岐される。つまり、この場合には上
層側における分岐回路とすることができる。
On the other hand, when the end of the dielectric waveguide line 6L is formed and the end of the dielectric waveguide line 6U is not formed, the input is performed from the A side of the dielectric waveguide line 6L. Electromagnetic waves are all coupled through the coupling window 7, but the dielectric waveguide line 6U
Are divided into an electromagnetic wave propagating to the B side and an electromagnetic wave propagating to the D side (leftward in FIG. 2). That is, in this case, a branch circuit on the upper layer side can be provided.

【0048】[0048]

【実施例】次に、本発明の誘電体導波管線路の接続構造
の具体例を図3から図7に示す。
Next, specific examples of the connection structure of the dielectric waveguide line according to the present invention are shown in FIGS.

【0049】図3〜図7においてそれぞれ(a)は接続
構造の概略斜視図であり、(b)はその伝送特性の周波
数特性を示す線図である。(b)の線図において横軸は
周波数(単位:GHz)を、縦軸は減衰量(単位:d
B)を示し、各特性曲線はSパラメータのうちS11(反
射量)およびS21(透過量)を表わしている。なお、各
斜視図は図1・図2と同様の箇所には同じ符号を付して
あり、誘電体導波管線路6L(6U)の開口端面および
結合用窓7は斜線を施して示し、側壁用貫通導体群4L
(4U)・端面用貫通導体群8L(8U)については簡
略化して、副導体層・端面用副導体層については省略し
て図示している。また、伝送特性はシミュレーションに
より求めた。
FIGS. 3A to 7A are each a schematic perspective view of a connection structure, and FIG. 3B is a diagram showing frequency characteristics of transmission characteristics. In the diagram (b), the horizontal axis represents frequency (unit: GHz), and the vertical axis represents attenuation (unit: d).
B), and each characteristic curve represents S 11 (reflection amount) and S 21 (transmission amount) among the S parameters. In each perspective view, the same parts as those in FIGS. 1 and 2 are denoted by the same reference numerals, and the opening end face of the dielectric waveguide line 6L (6U) and the coupling window 7 are indicated by oblique lines. Side wall through conductor group 4L
(4U) and the through conductor group for end face 8L (8U) are simplified, and the sub-conductor layer and the sub-conductor layer for end face are not shown. The transmission characteristics were obtained by simulation.

【0050】まず、図3は誘電体基板1L(1U)の厚
みa=0.6 mm、側壁用貫通導体群4L(4U)の間隔
(幅)b=1.456 mm、結合用窓7の中心から端面用貫
通導体群8L(8U)までの距離d=1.2 mm、結合用
窓7の幅を側壁用貫通導体群4L(4U)の間隔(幅)
bは同じとし伝送方向の長さw=0.4 mmとした場合の
例である。この場合、図3(b)より、77.5GHzで最
も良く透過していることが分かる。しかしながら、その
ときの反射は−9dB程度であり、改善の余地が見られ
る。
First, FIG. 3 shows the thickness a of the dielectric substrate 1L (1U) a = 0.6 mm, the spacing (width) b of the side wall through conductor group 4L (4U) b = 1.456 mm, and the distance from the center of the coupling window 7 to the end face. The distance d to the through conductor group 8L (8U) is d = 1.2 mm, and the width of the coupling window 7 is set to the distance (width) between the side wall through conductor groups 4L (4U).
b is the same and the example is a case where the length w in the transmission direction is 0.4 mm. In this case, it can be seen from FIG. 3B that the transmission is best at 77.5 GHz. However, the reflection at that time is about -9 dB, and there is room for improvement.

【0051】そこで、図4に示すように、厚みa・間隔
(幅)b・距離dはそのままで長さw=1.2 mmに広げ
ると、70GHzから82GHzにわたる広帯域で反射が−
15dB以下の良好な特性でもって電磁波が透過するよう
になる。
Therefore, as shown in FIG. 4, if the length a is increased to w = 1.2 mm while keeping the thickness a, the interval (width) b, and the distance d as they are, the reflection in a wide band from 70 GHz to 82 GHz becomes −
Electromagnetic waves can be transmitted with good characteristics of 15 dB or less.

【0052】次に、図5は厚みa=1.456 mm、間隔
(幅)b=0.6 mm、長さw=1.2 mmとして結合用窓
7の両端を誘電体導波管線路6L・6Uの端面とほぼ一
致させた場合の例である。このとき、電界の向きは水平
方向で、主導体層2L・3L・2U・3UはE面となっ
ている。この場合、電磁波は83GHzで最も良く透過し
ている。ただし、透過する周波数帯域はそれほど広くな
い。
Next, FIG. 5 shows that the thickness a = 1.456 mm, the interval (width) b = 0.6 mm, the length w = 1.2 mm, and both ends of the coupling window 7 are connected to the end faces of the dielectric waveguide lines 6L and 6U. This is an example of a case where they are almost matched. At this time, the direction of the electric field is horizontal, and the main conductor layers 2L, 3L, 2U, and 3U are E-planes. In this case, the electromagnetic wave is best transmitted at 83 GHz. However, the transmitted frequency band is not so wide.

【0053】これに対し、図6は厚みa・間隔(幅)b
・長さwはそのままで、結合用窓7の幅eを0.2 mmと
した場合である。この場合、電磁波は66GHzで良く透
過しており、帯域も図5の例に比べてやや広くなってい
る。
On the other hand, FIG. 6 shows the thickness a and the interval (width) b.
The case where the width e of the coupling window 7 is set to 0.2 mm while the length w is kept as it is. In this case, the electromagnetic wave is well transmitted at 66 GHz, and the band is slightly wider than the example of FIG.

【0054】そして、図7は図6の例に対して厚みa・
間隔(幅)b・幅dはそのままで、長さwを2.4 mmに
広げた場合の例である。この場合、電磁波は70GHzか
ら80GHzにわたる広い帯域で透過していることが分か
る。
FIG. 7 shows the thickness a ·
This is an example in which the length w is increased to 2.4 mm while the interval (width) b and width d are kept as they are. In this case, it can be seen that the electromagnetic wave is transmitted in a wide band from 70 GHz to 80 GHz.

【0055】以上により、本発明の誘電体導波管線路の
接続構造によれば、結合用窓の形状および大きさを変化
させることにより、この接続部を透過する高周波信号の
電磁波の周波数特性をほぼ所望通りに変化させられるこ
とが確認できた。
As described above, according to the connection structure of the dielectric waveguide line of the present invention, by changing the shape and size of the coupling window, the frequency characteristics of the electromagnetic wave of the high-frequency signal transmitted through this connection portion are changed. It was confirmed that it could be changed almost as desired.

【0056】なお、本発明は以上の実施の形態の例に限
定されるものではなく、本発明の要旨を逸脱しない範囲
で種々の変更や改良を施すことは何ら差し支えない。例
えば、以上の例では下層側の誘電体導波管線路6Lを伝
播する電磁波の方向と上層側の誘電体導波管線路6Uを
伝播する電磁波の方向は同じとしたが、誘電体導波管線
路6Lおよび6Uについて接続部における端面を同じ方
向に作って電磁波の伝播方向を逆にしても良い。また、
誘電体導波管線路6Lと6Uとを任意の角度で交差する
ように形成しても良く、この場合は、主導体層2L・3
L(2U・3U)をH面とすれば、従来の導波管におけ
るベーテ孔方向性結合器と同様の機能となる。
It should be noted that the present invention is not limited to the above-described embodiments, and that various changes and improvements can be made without departing from the spirit of the present invention. For example, in the above example, the direction of the electromagnetic wave propagating through the lower dielectric waveguide line 6L is the same as the direction of the electromagnetic wave propagating through the upper dielectric waveguide line 6U. The ends of the lines 6L and 6U at the connection portions may be formed in the same direction to reverse the propagation direction of the electromagnetic wave. Also,
The dielectric waveguide lines 6L and 6U may be formed to intersect at an arbitrary angle. In this case, the main conductor layers 2L and 3U
If L (2U.3U) is the H plane, the function becomes the same as that of the conventional Beet-hole directional coupler in the waveguide.

【0057】さらに、結合用窓7の形状は、円形やその
他多角形でもよく、細長くしていわゆるスロット形状に
してもよい。また、結合用窓7を複数形成してもよい。
Further, the shape of the coupling window 7 may be circular or other polygonal shape, and may be elongated to have a so-called slot shape. Further, a plurality of coupling windows 7 may be formed.

【0058】また、側壁用貫通導体群4L・4Uを構成
する複数の貫通導体の断面形状は、図2に示したような
円形に限られず、楕円形や三角形・四角形・多角形、あ
るいは平板状としてもよい。
The cross-sectional shape of the plurality of through conductors forming the side wall through conductor groups 4L and 4U is not limited to the circular shape as shown in FIG. 2, but may be elliptical, triangular, square, polygonal, or flat. It may be.

【0059】[0059]

【発明の効果】以上詳述した通り、本発明の誘電体導波
管線路の接続構造によれば、誘電体基板内で上下に重ね
て配置された下層側の誘電体導波管線路と上層側の誘電
体導波管線路の接続部において、下層側の誘電体導波管
線路の上側の主導体層と上層側の誘電体導波管線路の下
側の主導体層とを共有させ、上下の誘電体導波管線路が
接している一部分に導体層のない部分を形成して結合用
窓としたことから、結合を給電ピンによって行なう従来
技術の場合の接続構造のように誘電体シートの厚さによ
る特性の制限がなく、例えばグリーンシート積層前に2
つの誘電体導波管線路が共有する主導体層3U・2Lを
印刷する際に結合用窓7のパターンを形成できるので、
結合用窓の形成が容易であり、生産性が高く安価な製造
が可能な接続構造となる。
As described above in detail, according to the connection structure of the dielectric waveguide line of the present invention, the lower dielectric waveguide line and the upper dielectric layer which are arranged vertically on the dielectric substrate are arranged. In the connection portion of the dielectric waveguide line on the side, the upper main conductor layer of the lower dielectric waveguide line and the lower main conductor layer of the upper dielectric waveguide line are shared, Since a portion without a conductor layer is formed at a portion where the upper and lower dielectric waveguide lines are in contact with each other to form a coupling window, a dielectric sheet is used as in the prior art connection structure in which coupling is performed by a power supply pin. There is no limitation on the characteristics due to the thickness of the green sheet.
When printing the main conductor layers 3U and 2L shared by two dielectric waveguide lines, the pattern of the coupling window 7 can be formed.
It is easy to form the coupling window, and the connection structure has high productivity and can be manufactured at low cost.

【0060】また、本発明の誘電体導波管線路の接続構
造において結合用窓を形成する場合、その位置・形状お
よび大きさについて接続構造に要求される周波数特性・
結合量および反射量が複雑に関与し、その設計には従来
の給電ピンによる方法よりも自由度があるので、非常に
設計しやすいものとなる。
When the coupling window is formed in the connection structure of the dielectric waveguide line of the present invention, the position, shape and size of the connection window require the frequency characteristics required for the connection structure.
Since the coupling amount and the reflection amount are involved in a complicated manner and the design thereof has more flexibility than the conventional feed pin method, it is very easy to design.

【0061】さらに、給電ピンを用いた接続構造のよう
に給電ピン表面に電流が集中することがなく、誘電体導
波管線路同士の結合におけるエネルギーのロスが小さ
い。
Furthermore, unlike the connection structure using the feed pin, current does not concentrate on the feed pin surface, and energy loss in coupling between the dielectric waveguide lines is small.

【0062】以上により、本発明によれば、従来の多層
化技術によって容易に作製することのできる誘電体導波
管線路において、自由な設計が可能な、誘電体基板内に
上下に積層して形成された誘電体導波管線路同士を容易
に接続することができる誘電体導波管線路の接続構造を
提供することができた。
As described above, according to the present invention, a dielectric waveguide line which can be easily manufactured by the conventional multilayer technique can be freely designed, and can be stacked vertically on a dielectric substrate. It is possible to provide a connection structure of the dielectric waveguide lines which can easily connect the formed dielectric waveguide lines.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いられる誘電体導波管線路の構成の
例を示す概略斜視図である。
FIG. 1 is a schematic perspective view showing an example of a configuration of a dielectric waveguide line used in the present invention.

【図2】本発明の誘電体導波管線路の接続構造の実施の
形態の一例を示す概略斜視図である。
FIG. 2 is a schematic perspective view showing an example of an embodiment of a connection structure of a dielectric waveguide line according to the present invention.

【図3】(a)は本発明の誘電体導波管線路の接続構造
の具体例を示す斜視図、(b)はその伝送特性の周波数
特性を示す線図である。
FIG. 3A is a perspective view showing a specific example of a connection structure of a dielectric waveguide line according to the present invention, and FIG. 3B is a diagram showing frequency characteristics of its transmission characteristics.

【図4】(a)は本発明の誘電体導波管線路の接続構造
の他の具体例を示す斜視図、(b)はその伝送特性の周
波数特性を示す線図である。
FIG. 4A is a perspective view showing another specific example of the connection structure of the dielectric waveguide line of the present invention, and FIG. 4B is a diagram showing frequency characteristics of the transmission characteristics.

【図5】(a)は本発明の誘電体導波管線路の接続構造
の他の具体例を示す斜視図、(b)はその伝送特性の周
波数特性を示す線図である。
FIG. 5A is a perspective view showing another specific example of the connection structure of the dielectric waveguide line of the present invention, and FIG. 5B is a diagram showing the frequency characteristics of the transmission characteristics.

【図6】(a)は本発明の誘電体導波管線路の接続構造
の他の具体例を示す斜視図、(b)はその伝送特性の周
波数特性を示す線図である。
FIG. 6A is a perspective view showing another specific example of the connection structure of the dielectric waveguide line according to the present invention, and FIG. 6B is a diagram showing frequency characteristics of its transmission characteristics.

【図7】(a)は本発明の誘電体導波管線路の接続構造
の他の具体例を示す斜視図、(b)はその伝送特性の周
波数特性を示す線図である。
FIG. 7A is a perspective view showing another specific example of the connection structure of the dielectric waveguide line of the present invention, and FIG. 7B is a diagram showing the frequency characteristics of the transmission characteristics.

【符号の説明】[Explanation of symbols]

1、1L、1U・・・・・・・・・・・・誘電体基板 2、2L、2U、3、3L、3U・・・・主導体層 4、4L、4U・・・・・・・・・・・・側壁用貫通導
体群 5、5L、5U・・・・・・・・・・・・副導体層 6、6L、6U・・・・・・・・・・・・誘電体導波管
線路 7・・・・・・・・・・・・・・・・・・結合用窓 8L、8U・・・・・・・・・・・・・・端面用貫通導
体群 9L、9U・・・・・・・・・・・・・・端面用副導体
1, 1L, 1U ... dielectric substrate 2, 2L, 2U, 3, 3L, 3U ... main conductor layer 4, 4L, 4U ... ···· Through-hole conductor group for side wall 5, 5L, 5U ··· Subconductor layer 6, 6L, 6U ··· Dielectric conductor Waveguide line 7 ····· Coupling window 8L, 8U ····· End face through conductor group 9L, 9U・ ・ ・ ・ ・ ・ Sub conductor layer for end face

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 誘電体基板を挟持する一対の主導体層
と、高周波信号の伝送方向に信号波長の2分の1未満の
間隔で前記主導体層間を電気的に接続して形成された2
列の側壁用貫通導体群と、前記主導体層間に主導体層と
平行に形成され、前記側壁用貫通導体群と電気的に接続
された副導体層とを具備して成り、前記主導体層、側壁
用貫通導体群および副導体層で囲まれた領域によって高
周波信号を伝送する誘電体導波管線路を2つ、前記主導
体層の一方を共有させて重ねて配置するとともに、該一
方の主導体層の共有部に結合用窓を形成したことを特徴
とする誘電体導波管線路の接続構造。
A pair of main conductor layers sandwiching a dielectric substrate, and a pair of main conductor layers formed by electrically connecting the main conductor layers at an interval of less than half a signal wavelength in a transmission direction of a high-frequency signal.
The side wall through-conductor group and a sub-conductor layer formed between the main conductor layers in parallel with the main conductor layer and electrically connected to the side wall through-conductor group; Two dielectric waveguide lines for transmitting a high-frequency signal by a region surrounded by the side wall penetrating conductor group and the sub-conductor layer, one of the main conductor layers is shared and arranged, and A connection structure for a dielectric waveguide line, wherein a coupling window is formed in a shared portion of a main conductor layer.
【請求項2】 前記結合用窓の中心から前記伝送方向に
前記高周波信号の管内波長以下の位置に、伝送方向の直
交方向に前記信号波長の2分の1未満の間隔で前記主導
体層間を電気的に接続して形成された端面用貫通導体群
と、前記主導体層間に主導体層と平行に形成され、前記
副導体層および前記端面用貫通導体群と電気的に接続さ
れた端面用副導体層とを形成したことを特徴とする請求
項1記載の誘電体導波管線路の接続構造。
2. The main conductor layer between the center of the coupling window and a position less than a guide wavelength of the high-frequency signal in the transmission direction in a direction orthogonal to the transmission direction at an interval of less than half of the signal wavelength. An end face through conductor group formed by being electrically connected to the end face through conductor group formed parallel to the main conductor layer between the main conductor layers and electrically connected to the sub conductor layer and the end face through conductor group. 2. The connection structure for a dielectric waveguide according to claim 1, wherein a sub-conductor layer is formed.
JP10113439A 1998-04-23 1998-04-23 Connection structure for dielectric waveguide line Pending JPH11308001A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10113439A JPH11308001A (en) 1998-04-23 1998-04-23 Connection structure for dielectric waveguide line
DE19918567A DE19918567C2 (en) 1998-04-23 1999-04-23 Connection arrangement for dielectric waveguides
FR9905188A FR2778024B1 (en) 1998-04-23 1999-04-23 CONNECTION STRUCTURE FOR DIELECTRIC WAVEGUIDE LINES
US09/298,399 US6515562B1 (en) 1998-04-23 1999-04-23 Connection structure for overlapping dielectric waveguide lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10113439A JPH11308001A (en) 1998-04-23 1998-04-23 Connection structure for dielectric waveguide line

Publications (1)

Publication Number Publication Date
JPH11308001A true JPH11308001A (en) 1999-11-05

Family

ID=14612263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10113439A Pending JPH11308001A (en) 1998-04-23 1998-04-23 Connection structure for dielectric waveguide line

Country Status (1)

Country Link
JP (1) JPH11308001A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156542A (en) * 1999-11-30 2001-06-08 Kyocera Corp Waveguide slot array antenna
WO2005091427A1 (en) * 2004-03-17 2005-09-29 Tdk Corporation Filter
KR100731544B1 (en) 2006-04-13 2007-06-22 한국전자통신연구원 Multi-metal coplanar waveguide
EP1936741A1 (en) * 2006-12-22 2008-06-25 Sony Deutschland GmbH Flexible substrate integrated waveguides
JP2008300934A (en) * 2007-05-29 2008-12-11 Kyocera Corp Structure for connection between layered waveguide lines, and wiring board having the same
JP2009055574A (en) * 2007-08-29 2009-03-12 Kyocera Corp Branched waveguide line, and multi-layer wiring and antenna substrates having the same
WO2009084697A1 (en) * 2007-12-28 2009-07-09 Kyocera Corporation High-frequency transmission line connection structure, wiring substrate, high-frequency module, and radar device
WO2010013721A1 (en) * 2008-07-31 2010-02-04 京セラ株式会社 High-frequency substrate and high-frequency module
JP2011040804A (en) * 2009-08-06 2011-02-24 Mitsubishi Electric Corp Connection structure of dielectric waveguide
JP6349437B1 (en) * 2017-05-09 2018-06-27 株式会社フジクラ Laminated waveguide device
JP2019106663A (en) * 2017-12-14 2019-06-27 日本電信電話株式会社 High frequency circuit

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156542A (en) * 1999-11-30 2001-06-08 Kyocera Corp Waveguide slot array antenna
WO2005091427A1 (en) * 2004-03-17 2005-09-29 Tdk Corporation Filter
KR100731544B1 (en) 2006-04-13 2007-06-22 한국전자통신연구원 Multi-metal coplanar waveguide
US7626476B2 (en) 2006-04-13 2009-12-01 Electronics And Telecommunications Research Institute Multi-metal coplanar waveguide
JP2008193663A (en) * 2006-12-22 2008-08-21 Sony Deutsche Gmbh Flexible substrate integrated waveguide
EP1936741A1 (en) * 2006-12-22 2008-06-25 Sony Deutschland GmbH Flexible substrate integrated waveguides
JP2008300934A (en) * 2007-05-29 2008-12-11 Kyocera Corp Structure for connection between layered waveguide lines, and wiring board having the same
JP2009055574A (en) * 2007-08-29 2009-03-12 Kyocera Corp Branched waveguide line, and multi-layer wiring and antenna substrates having the same
JP4722097B2 (en) * 2007-08-29 2011-07-13 京セラ株式会社 Branched waveguide line and multilayer wiring board and antenna board having the same
WO2009084697A1 (en) * 2007-12-28 2009-07-09 Kyocera Corporation High-frequency transmission line connection structure, wiring substrate, high-frequency module, and radar device
US8159316B2 (en) 2007-12-28 2012-04-17 Kyocera Corporation High-frequency transmission line connection structure, circuit board, high-frequency module, and radar device
JP5179513B2 (en) * 2007-12-28 2013-04-10 京セラ株式会社 High-frequency transmission line connection structure, wiring board, high-frequency module, and radar device
WO2010013721A1 (en) * 2008-07-31 2010-02-04 京セラ株式会社 High-frequency substrate and high-frequency module
JP2011040804A (en) * 2009-08-06 2011-02-24 Mitsubishi Electric Corp Connection structure of dielectric waveguide
JP6349437B1 (en) * 2017-05-09 2018-06-27 株式会社フジクラ Laminated waveguide device
JP2018191171A (en) * 2017-05-09 2018-11-29 株式会社フジクラ Lamination type waveguide device
JP2019106663A (en) * 2017-12-14 2019-06-27 日本電信電話株式会社 High frequency circuit

Similar Documents

Publication Publication Date Title
EP0883328B1 (en) Circuit board comprising a high frequency transmission line
US6515562B1 (en) Connection structure for overlapping dielectric waveguide lines
JP3996879B2 (en) Coupling structure of dielectric waveguide and microstrip line, and filter substrate having this coupling structure
US6057747A (en) Dielectric waveguide line and its branch structure
JP2008271295A (en) Body structure connecting microstrip line and layered waveguide line and wiring board with the same
JPH11308001A (en) Connection structure for dielectric waveguide line
JP3464116B2 (en) High frequency transmission line coupling structure and multilayer wiring board having the same
JP4199395B2 (en) Multilayer Magic T
JP3493265B2 (en) Dielectric waveguide line and wiring board
JP3517143B2 (en) Connection structure between dielectric waveguide line and high-frequency line conductor
JP3686736B2 (en) Dielectric waveguide line and wiring board
JP4535640B2 (en) Aperture antenna and substrate with aperture antenna
JP3517148B2 (en) Connection structure between dielectric waveguide line and high-frequency line conductor
JP3981346B2 (en) Connection structure between dielectric waveguide line and waveguide, and antenna device and filter device using the structure
JP3522138B2 (en) Connection structure between dielectric waveguide line and rectangular waveguide
JP3522120B2 (en) Connection structure of dielectric waveguide line
JPH1174701A (en) Connection structure for dielectric waveguide line
JPH11308025A (en) Directional coupler
JP3439973B2 (en) Branch structure of dielectric waveguide
JP4803869B2 (en) Connection structure of dielectric waveguide line
JP3517140B2 (en) Connection structure between dielectric waveguide line and high frequency line
JP4203404B2 (en) Branch structure of waveguide structure and antenna substrate
JP3439985B2 (en) Waveguide type bandpass filter
JP3517097B2 (en) Branch structure of dielectric waveguide
JP3512626B2 (en) Branch structure of dielectric waveguide

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031226